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A formalism for describing the reactions a+b c+d+e is presented in detail and the exper-
iments necessary for the reconstruction of the transition amplitude described. Experiments
involving polarized targets are discussed carefully and a partial-wave analysis is made which
is particularly suitable for application at low c.m. energies. It is shown that in order to re-
solve parity ambiguities it is necessary to observe the final particle polarizations.

I. INTRODUCTION

In this paper we exhaustively develop a formal-
ism' to describe reactions of the type

a+6- c+d+e

which is particularly suitable for partial-wave
analyses at low energies where there is apprecia-
ble overlap of resonances in the Dalitz plot.

The reaction is described in terms of the Dalitz-
plot variables, the spin components of the individ-
ual particles normal to the three-particle plane and
the Euler angles describing the orientation of this
plane with respect to a fixed c.m. coordinate sys-
tem. In the partial-wave analysis these Euler an-
gles are replaced by an equivalent set of quantum
numbers —J the total angular momentum, M its Z
component in the fixed coordinate system, and A

the component parallel to the normal of the three-
particle plane. This formalism then leads easily
to a method of recording the angular correlations
as a function of Dalitz-plot variables in a manner
analogous to the description of elastic scattering
in terms of Legendre coefficients.

We give explicit formulas for the restrictions
imposed on these states by parity (correcting ear-
lier versions' ') and by the presence of two identi-
cal particles together with the resulting properties
of the transition amplitudes. Armed with this for-
malism we then discuss all possible types of polar-
ization experiments and point out the existence of
a parity ambiguity in the analysis of the unpolar-
ized cross section which can only be resolved by
measurements of final particle polarizations.

We have not considered the imposition of three-
particle unitarity constraints nor have we identi-
fied all the kinematic singularities within the for-
malism. It is also clear that the type of three-

body analysis presented here is particularly useful
in the low-energy resonance region. A natural
question which then arises is what formalism is
best suited to what energy region. All these ques-
tions are very important phenomenologically and
they are at present under investigation.

The plan of the paper is as follows. In Sec. II we
describe the method of construction of the two- and
three-particle states, the projection of angular
momentum states, and the consequences of parity
and the presence of two identical particles for
these states. We then calculate the transition am-
plitudes and cross-section formulas for the pro-
cesses (1.1) together with their partial-wave de-
compositions.

In Sec. III we specialize our formulas to the case

MB- MMB (e.g., vN- ~~N, KN- vmA, etc.),

(1.2)

where M is a pseudoscalar meson and B is a —,'
baryon, and discuss all the experiments which can
be performed when B is both a stable particle (e.g.,
proton or neutron) or an unstable particle (e.g. , A,
Z) whose decay distribution gives information on
the parent polarization. We give specific formulas
in the case of scattering from unpolarized targets
where the final baryon polarization is unobserved
and comment on the application of our method to
all possible polarization experiments.

In Sec. IV we discuss the properties of this for-
mulation, its advantages and disadvantages, and
compare it with present methods used in analyzing
reactions of the type (1.1) and (1.2).

The Appendix describes the interpretation of the
density matrix we use for describing the polariza-
tion properties of 2- 3 reactions.
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II. THEORETICAL FORMALISM

A. Definitions of Coordinate Systems

and Kinematical Quantities

%e consider the production process 2- 3 shown
in Fig. 1. Our metric is such that P =M . We
define

ergies ~»(d, or, equivalently, s„s,. As for a rig-
id body, a general orientation of the three-particle
final state is specified by the rotation' A(o. , P, y}
from the standard orientation. The momenta p;
are obtained from &; by this rotation A(n, P, y). If
we define a set of moving axes OX' fixed with

respect to the particle momenta, and initially par-
allel to the set Oxy~, it is clear that OZ defines
the normal to the production plane of the three
particles. '

s = (k, + k, )' = ( p, + p, +p, )', (2 I)

St = (pj +pk) (2.2) 8. The Incident Two-Particle States

and we have the relation

s = s, + s, + s, —(M,' + M, '+ M, ') .

We consider the process in the c.m. system

We specify the initial two-particle states using
the helicities of each particle.

A two-particle helicity state in the c.m. system
is defined in the following manner:

(2.3) ~P=0, W; 6, Q, p, ;) =A(P, 0, 0)~P =0, W; 0, 0, p;)

(2.5}

(2.4)

iP=O, W;0, 0, p;) =ik, p, , ) i-k, p, ,), (2.6)

where e; and ~; are the energies of the particles
in the c.m. system.

The three outgoing momenta define a plane, and

the final configuration may be specified by the mo-
menta p; [nine variables and four constraints (Eqs.
(2.3) and (2.4)j, or by the following procedure. We

define a system of axes Oxy~ fixed in space, and

define a "standard orientation" of the three-parti-
cle final state to be when all momenta are in the

xy plane. This set of standard momenta we denote

by &;, where we choose (Fig. 2) &, + &, = —&, to be

along the x axis and ~y + ~2 to be along the z axis.
(Such a choice simplifies our discussion of systems
containing two identical particles. ) The relative
orientation of the three particles is now specified
by two variables which may be chosen to be two en-

where P is the total momentum of the two-particle
system, k is the c.m. momentum of each particle,
W the total energy of the two-particle system, 0, P
the polar coordinates of particle 1, p.„p,, the he-
licities of particles 1 and 2, and we have used the
phase conventions of Werle. ' The normalization is

k)

FIG. 1. Notation for the reaction a+5 c+d+e.
FIG. 2. Orientation of momentum vectors in the

standard state.
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(P', P,'; 8', (I))', p, ,-'IP =0, W; 8, Q, p, ;& =(4W/P)6(W —P,')5'(P')5(cos8' —cos8)6((I))' —Q) g 6„.„. (2 7)

Angular momentum states IP =0, W; p, ; JM& are
constructed in standard fashion.

d'R D~q R R P = 0, 8'; 0, 0, p,;,
(2.8)

where

2J+ 1

We obtain the usual parity condition

O'IP=0, W; p, ;; JM&

7; specifies the spin degree of freedom for each
particle: They are not helicities. Here, the 7i
specify the Z component of spin in the rest frame
of the particle. Now, E(ls. (2.10) and (2.11) are
-usually regarded in the active sense; i.e., as a
prescription for generating a complete set of states
in the frame Oxyz. However, they may also be re-
garded in the passive sense; as describing the
same state in two different reference systems:
one in which the particle has momentum p; and the
other a rest system. Thus Eqs. (2.10) and (2.11)
amount to a definition of the orientation of a set of
"rest-frame axes" for each particle, relative to
the frame Oxyz. With the above conventions, the
rest-frame axes for the final-state particles are
just the moving axes OXYZ. The 7i may be called
"transversities": spin in the rest frame quantized
along the normal to the production plane.

We define three-particle states:

with q= g, q2, the product of the intrinsic parities
of particles 1 and 2, and v„v2 the intrinsic spins
of particles 1 and 2.

(2.12)

The single-particle states are normalized as fol-
lows:

(2.13)

C. The Final Two-Particle States
By a standard change of variables,

Our standard single-particle states are con-
structed as follows:

d3-
,O'Pd Wd'Rd()), dv,

i 2 (di 8I

(2.10) W—d'I'd 5'd3Rds ds32s &' 1 (2.14)

where L(&;) is the relevant boost operator in the
xy plane. For the general orientation

(2.11)

where P" = Q,. P,". and in the c.m. system P' = W,
and d'R =dndcosPdy. We find the three-particle
states are normalized as follows:

(P', P";R'; s,', T,' IP =0, W; R; s;, T & =32s5'(P')6(W —P")5(o.' —o)5(cos(8' —cosP)6(y' —y)

(2.15)

Angular momentum states may be defined in the usual way:

(P=O, tr;r;, r;;r, A, M) = +. f&P P'~(r, P r)l =
iP~, ()|re „P)rr (2.16)
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and this may be inverted to give

I
P = 0, W; n, P, y; s;, r;) = P D„A(n, P, y) I

P = 0, W; s;, r;; J, A, M) .
JMA

(2.17)

We now consider the effect of the parity operation
on these three-particle states and the modifications
necessary when there are two identical particles.

Parity. For our standard single-particle states,
it is useful to define the operator for reflection in
the xy plane:

Z = e -i 7r Jg (P (2.18)

Clearly, since L(7(,)gener. ates boosts in this plane,

zL(7(,.) = L()(,.)z,
and consequently

i.e., our standard single-particle basis states.
Now the state (2.22) is no longer a standard state
of the type I|);s, r ) since the body-fixed axes Z
and Y are opposite to the ~ and y axes of the frame
Oxyz. A rotation of & about the x axis of a stan-
dard state does not, however, lead to (2.23) since
the rest-frame axes of each particle are also ro-
tated. Thus we need to consider states I7(, r')„with
the rest-frame axes rotated by & from those of
states I7(, r), :

(2.24)

zl~;, r;) =rI, e '"'I)T;, 7.,&, (2.19)

where q; is the appropriate intrinsic parity. Thus
we obtain for the three-particle states

These states are related to
I

m, r), by

I
)), r), = e'"'(-1)"'I)(, r)„— (2.25)

(('I P = 0, W; n, P, y; s;, r;&

= )l' e ' "'
I
P = 0, W; n, p, y —7(; s, , r, &,

(2.20)

where r = Q,.r, , and we have written q' for g,. q,
As is physically obvious, the parity operation re-

lates one three-particle configuration to another,
without changing the "transversities. " For our
definition of the angular momentum states (2.16)
we obtain

=R„(&)IO; s, , r,&-
—27T 7T 27l' g ~

2) 2 &1 1y Tl b2 3& 3 &3

Then

Pi 2 I 0~ si~ r~& = e"""'(-1)'J' '"~'

(2.26)

where 0 is the intrinsic spin of the particle. Then

R„(~) I 0; s„r„s„-r„s„——r,)

gIP=O, W; s;, r;;Z, A, M) &
I &29 r &bl I21$ 1&b 1237 3&bb

=(-1)'-"~ IP=o, w;s, , r, ;z, A, M&

(2.21)
where

= pR„()() I 0, s;, -r;), (2.27)

p et II(z Tj)~( 1 )z.(D~ T+. ) (2.28)
and we see that these states are eigenstates of the

parity operator.
Identical Particles. In this section particles 1

and 2 are assumed to be identical. If P1 2 is the
operator which exchanges particles 1 and 2, we
have

This result may then be used in (2.16) to give

Pi2ls r J;A, M&'=&Is;, r;; J, —A, M),-(2.29)

where

P„lo; s, , r, &
= p„lv„r,&., I~„r,&., l ~„r,&.,

and

$ = (-1)~+~i+ ~b+ ~b (2.30)

where

(2 22)

(2.23)

0'1 = V2 .

Note that all angular momentum quantum numbers
referred to the normal to the reaction plane have
changed sign as expected.
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D. The Transition Amplitude and Its

Partial-Wave Decomposition

where p. = p. , —p2 For convenience we define

B~~"(s, s, )= (s, , A, r, I T~(s) I p, )

and then we have

(2.33)

E, „(s,s;; 8) = (n, P, y; s;, r; I T(s) I 0, 0, p &)

JA
(2.34)

Using our results for the parity operation gives the
condition

B,j '(s, s, ) = qq'( 1)' '( 1-)' '&-"5-B„"-"&(-s&s, ).
(2.35)

The transition amplitude is

(P=O&W;n, P, ys;&r&ITIP=OW&P 8& pg)

(2.31)

For simplicity we take 8 = Q = 0, and then the par-
tial-wave decomposition of the T-matrix element
can be written

(n, p, y; s;, r; IT(s) IO, 0, g,)
= Z & D',*(n, P, y)( s;, A, r; I

T (s) I u, ),
JA

(2.32)

This parity constraint was given incorrectly by
Branson, Landshoff, and Taylor' (now corrected
in a recent erratum') and this incorrect version
was used by Arnold and Uretsky' in an analysis of
the reaction

rgb re+.

They associated the partial-wave amplitudes BJA
and B« " with the same parity initial state. Since
the parity of the final angular momentum state is
q'(-1)A ', this is clearly incorrect. Moreover,
this error completely invalidates their conclusions
concerning constraints on the absorption parame-
ters q of elastic phase-shift analyses from the
presently-available unpolarized production angular
distributions. In this paper, we show that unless
final-state polarization experiments are per-
formed, a complete parity ambiguity must exist in
the analysis. Thus bounds on the inelasticities for
each J cannot be obtained from unpolarized angu-
lar distributions and the analysis of Ref. 3 should
be disregarded.

In order to make a partial-wave decomposition
of the transition amplitude (2.34), we note that
BzA&" (s, s;) represents a transition to the final par-
tial wave Is;, r;; JAM) which is an eigenstate of
parity with eigenvalue q'(-1) ~ '. This means we

can project out states of opposite parity by writing
(2.34) as

'&) = ~AtzDp~(n» y)BJ"A& '(s, s;)5I.1+q'(-1) '+1 —q&( 1)A ']-

where

=E,'„(s,s;;B)+E,, „(s,s, ;Xi', ),

.„(, &) =5 ZAt D'*(n, p, y)B""'(s, s )I1+rI'(—1) ']
JA

(2.36)

(2.37)

and the + refers to parity of the transition. Thus
(2.36) and (2.37) are our partial-wave decomposi-
tion of the transition amplitude.

Finally if the final state contains two identical
particles then the transition to the correctly sym-
metrized final state must be considered. This then
imposes the restriction that

B,",' '(s, s, ) = (-1)"$B,"&
A&(s, s, ), (2.38)

where 0 is the intrinsic spin of one of the identical
particles and $ is defined in (2.30).

E. Cross Section and the Contributions
of States of Different Parity

The differential cross section can now easily be
calculated and we obtain in the c.m. system,

d'o 7t'2

I (B;s;, r; I T(s) I 0, p, ) I'

(2.39)
=P'IE, „(s,s, ;ft)l'.
= p IE~ 5 (s& st&&)+E~.p. (s& s&&&)l &

(2.40}
where the equations define P.

If we now substitute our partial-wave expansion
for E, „,(s, s,.;&), we .have't j

d5
=O'P At, At, .a'„,(n, P, y)B'„,*,(n, P, y)

Jl Al

(2.41)
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and w'e note that transitions from definite helicity
states give no dependence on n. This is not true
if the initial polarization vectors have nonzero
transverse components. We also note that the n,
P, and y distributions do not depend on T.

Finally we may integrate (2.41) over n, P, and

y to give

(2.42)

and the differential cross section from a nucleon
of helicity p. to a state with final baryon transver-
sity 7 is

d'o(~V)
dsR

-~ IFiii(, i Ri) I

Sl S2

If,-„(s,s;;R)I', (3 2)

where we define

f,&(s, s;;R)=PE,&(s, s;;R). (3.3)

where

+1 —q'( —1) ']
d'o'(T;p;, ) d'v (7;p, )

ds ldS2 ds lds,
(2.43)

The unpolarized cross section is immediately
obtained by averaging over initial helicities and
summing over final transversities,

d~Q
~ 2

d d d'R 2 Z Ifi.„(s si&R)l ~

Sl S2 PT
(3.4)

This may then be expressed in terms of the par-
tial-wave amplitudes B~A(s, s,.), and we discuss
this in a later section.

MB MMB, (2.44)

where M is a pseudoscalar meson and B a spin- —,
"

baryon. This is dealt with in the next section.

III. THE REACTION MB~ MMB

In this section we specialize all of our previous
formulas to the process

MB MMB,

where M is a pseudoscalar (0 ) meson and 8 a
spin--', baryon with positive parity (-, '). We take
the baryon to be particle 1 in the initial two-parti-
cle state, with helicity p, . The final baryon trans-
versity is labeled T, and it may be taken as any
one of the three final-state particles.

A. Transition Amplitude and Differential

Cross Section

The partial-wave decomposition of the transition
amplitude is now written as

F,„(s,s;; R) = ( c., P, y, s, , r
I
T (s) I 0, 0, Ii.)

R,",'(si s, ) (3 1)

We thus obtain the well-known result that waves of
different angular momentum and parity do not in-
terfere in the Dalitz plot.

If the situation obtains in which the three-particle
final state is the only inelastic channel (as approx-
imately realized in low-energy &N scattering) the
measurement of these partial-wave cross sections
can provide a valuable constraint on the inelastic-
ity parameters of elastic phase-shift analyses.

The expressions for polarizations and polariza-
tion tensors may now be written down. However,
it is more instructive and useful if we specialize
to the case

B. Experiments with Polarized Particles

In this section we obtain expressions for all mea-
surable quantities; the formulas look most trans-
parent in terms of the transition amplitudes

f,„(s,s;; R), and we omit the arguments (s, s;; R).
For MB- MMB, there are four possible types

of experiments:
(a) Unpolarized differential cross section.
(b) Polarization "asymmetry" —i.e., cross sec-

tion from polarized target.
(c) Measurement of final polarization.
(d} "Depolarization tensor" —measurement of

final baryon polarization from polarized target.
It is also convenient in this section to discuss the
equivalent experiments:

(e} In which the final baryon can undergo weak
decay to an MB system whose angular distribution
can define the density matrix of the decaying bar-
yon.

These four experiments, (a), (b), (c), and (d),
constitute a "complete set" of experiments for re-
construction of the scattering amplitude f,„(s,s, ; R)
at a given s, and final-state configuration (R, s, ).
The problem of direct reconstruction of the elastic
T matrix for the nucleon-nucleon system has been
extensively discussed. ' Here we outline the exten-
sion of these ideas to reconstruction of the inelas-
tic T-matrix elements for the reaction MB-MMB.
We make extensive use of the density matrix and
our interpretation of this is described in the Ap-
pendix. The polarizations of the initial baryon
(taken as particle 1 in construction of the initial
two-body state) are referred to the fixed axes
Oxyz, but polarizations of final particles are re-
ferred to the moving axes OXYZ. ' With this con-
vention, the formalism becomes as simple as for
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The differential cross section may be written

(3.5)

I.= »-(fp")f ')
S) S2

(3.6)

(b) Polarized target. The initial density matrix
is now

p"'= —,'(1+P, .o, ) (3.7)

(labeling the initial baryon as particle a). The
cross section now includes an "asymmetry" term
A:

where

=I,(1+P, ~ A), (3.8)

the nonrelativistic case. We briefly consider each
type of experiment.

(a) Unpolarized cross section. The initial density
matrix is

For completeness the results of all these experi-
ments in terms of the amplitudes f,„are listed in
Table I. In principle, the four complex amplitudes
may be reconstructed up to an arbitrary over-all
phase.

(e) Reactions in which the final baryon undergoes
a weak decay to an MB system.

In this case the decay angular distribution of the
final decay products of the baryon (e.g. , a A) can
serve to analyze the polarization of the baryon. If
we consider the reaction occurring from an inci-
dent target proton described by the density matrix
p', then the density matrix of the baryon in the
three-particle state is given by

fp(i)f1'
T (f "f') (3.15}

or Ip = fp' f t and I=Tr(f p' f t).
This p(~) then describes the baryon (A) in its rest

system with the axes parallel to OXYZ. If C is the
matrix which describes the decay of this baryon
leading to another spin--,' particle (e.g. , A- P& ),
then the density matrix of this particle can be
written as

I,A= -,' Tr(fo,f t) . (3 9) (3.16)

(c) Final polarization. The initial density matrix
is E(l. (3.5), and a final density matrix may be de-
fined:

If the spin states of the final baryon are defined by

IPMs) =L(P) IOMs),

I p(f)

where

(3.10)
TABLE I. Expressions for all observable quantities in

the reaction ~-~~ . Amplitudes f, &
(s, s;;R) with

7, p, =+2 are written as 7,p=+, —.

The final baryon polarization is given by =k(lf„l'+If, I'+If, l'+If I') = pi(+p22

I,P(')= —,
' Tr(ff to, ), (3.11)

(y) fp(i)f t (3.12)

The final polarization is obtained from

where

IOD; i =2 Tr(fo; f oi }.

(3.13)

(3.14)

In these formulas, directions of polarizations for
particle a are referred to Oxyz; for particle c to
OXFZ. With this understanding, the 2x 2 a matri-
ces have the standard representation of the Pauli
spin matrices.

where the final baryon is particle c and the super-
script (0) for the polarization signifies that the ini-
tial state was unpolarized.

(d) Depolarization tensor. The initial density
matrix is given by E(l. (3.7), and the final-state
density matrix is

I0A„=Re[f++f+ ] +Re[f +f * ]

I0A =Im[f++ f+ ]+Im[f +f ]

Io&, =k(lf„ I'+ lf , I'- lf, -l' —-If -I')

I0I'~ =Re[f+,f *+]+Re[f f ]

I0Py =-Im[f„f~, )-Im[f, f* ]

Io&'z'=k(lf„l'+If, I'-If-, l'-If--I')
I0D„g=Re[f, f*,]+Re[f„f* )

I0D,~=-Im[f+ f *+1—Im[f++ f *
]

I0D z =Reff f* ) -Re[f f*
)

IpD x=-Im[f+ f *+]+Im[f++f * ]

I0D,z =Re[f++f *
) -Re[f+ f *+]

IpDyz Im[f++ f+ ] -Im[f +f *
)

IpD X=Re[f„f*,] -Re[f, f ]

IpD y = Im[f, f *
) +Im[f -f * )

IOD.g=k(If„ I'+If —I'- If , I'- lf, I')-

= pox+ p22

= pea+ pz2

= pea+ p22

0=2 Rep(2

0= -2 Imp&2

0 0

= 2 Rep(2

= —2 Imp(2

= 2 Rep~&

= -2 Imp y&2

=2 Rep~2

= -2 Imp12
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where P is the momentum vector of the final bary-
on in the frame OXYZ and L(P) is the correspond-
ing boost operator, then the rest-frame axes of the
final baryon coincide with the axes OXYZ, and all
observables are referred to these axes.

The angular distribution for the decay baryon is

I, = Tr(C p"'C'). (3.17)

If the decay matrix C is expressed in terms of the
usual parameters s and P, the amplitudes for the
s- and P-wave decays, the angular distribution
then becomes

I = l(—p"'+ p ') +( p„' p„-')~ cos6

and we have that

p I

(ii) Polarized target.

p"'=-,'(1+P a )

(3.20)

+2n Rep~»)sin6cosg —2o. Imp~(isin6sinPJ,

(3.18)

where 6 and Q are the polar angles of the decay
nucleon with respect to OXYZ and

Re(s*P)
Isl'+apl' '

For comparison with the formulas derived for
experiments (a)-(d) it is convenient to introduce
an unnormalized final density matrix for the re-
mainder of this section:

p fp(i)f t

The trace of p is now the appropriate differential
cross section

Trp=I .

Thus

lip —
I.(p|i+pa2) + (p» —p22)B cos61

4m

+ 2n Rep„sin6 cosp —2n Imp» sin6 sing ] .

(3.19)
Two types of experiments can be performed in

this case: (i) from an unpolarized target and (ii)
from a polarized target. We will see that these
are equivalent (as they must be) to (a), (b), (c),
and (d) discussed earlier.

(i) Unpolarized target.
(i)

where

p = 'f o-.f'. (3.22)

The values of p' and p' in terms of the f's are
also included in Table I and we see that their mea-
surement is indeed equivalent to (a), (b), (c), and
(d)

Before proceeding to the derivation of the explic-
it formulas in the case of the unpolarized cross
sections, we would like to make some comments
concerning the formulas we have derived.

(i) The partial-wave expansion of the f,„can be
inserted into these formulas to give them in terms
of the partial-wave amplitudes.

(ii) The parity of any given partial-wave ampli-
tude 8~A'(s, s;) is q'(-I) '. It is important to note
in (a) and (b) that all observables are sums over
7 ) l.e.)

I,A„= P Re(f„f,* ),

I,Ay= Q Im(f„f,* ),

IOA. = 2 ( I f„I'—
I f, I') .

C. Explicit Formulas for the Unpolarized Cross Section

From Table I we have that

This means that a complete parity ambiguity must
exist in solutions derived only from experiments
(a) and (b).

(iii) In these experiments the measurement of
the final baryon polarization is not equivalent to
the measurement of the asymmetry from a polar-
ized target, as it is in elastic scattering. This is
due to the fact that a simple relation does not ex-
ist between f,„(R) and f, „(A). Clearly measure-
ments of the final polarization allow the resolution
of the parity ambiguity noted above.

(iv) The final baryon polarization is defined with
respect to axes in its rest frame which are defined
with respect to the three-particle production plane.
This is not directly measured in rescattering ex-
periments. However, in the case in which the final
baryon undergoes decay, the decay distribution
measures this polarization. In fact, the measure-
ment of reaction (1.2) from polarized targets offers
the easiest way of determining a depolarization
tensor.

p = —,
' f (1 + P, o,)f t

=p +P~'p (3.21)
d'0

daft
= 2 &(If +I +

I f —I ) (3.23)
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and we can substitute the partial-wave expansion (2.32) to give

de =2ZZZ&(J&Ai J'~A'~L)&,"A &," P I'~ *(P, r), u =2'
S1S2 r L JJI

AA'

where

(3.24)

F(J, A, J', A', L) =(-1)' ' C(J, 2, J', ——,'iL, O)C(J, A, J', -A iL, A —A')[I+(-I) ]

Finally we can write

d'0

S1 S2 I m

where

(3.26)

Wp = Q Q F(J, A, J', A', L) B~A B~ A
&

AA'

(3.27)

D. Qualitative Deductions from Present Data

At this point we can summarize the qualitative
deductions made from present data" "using this
formalism. As we have stressed, in the absence
of polarization measurements, a quantitative anal-
ysis is not feasible and hence a close scrutiny of
the predictions of elastic phase-shift analyses for
inelastic cross sections is impossible. However,
one can make valuable qualitative statements using

Several features of this differential cross section
deserve comment.

(1) Formula (3.26) is analogous to the expansion
of the elastic scattering differential cross section
in terms of Legendre polynomials.

(2) If I. is odd (even) then A —A' must be odd

(even).
(3) The expression for WP contains a sum over 7

and thus, as we stressed earlier, a parity ambigu-
ity necessarily exists. However, BJA represents a
transition to a state of parity q'(-I)A ' and hence
if terms with A —A' odd (even) appear we have
waves of opposite (same) parity. Coupled with re-
mark (2) this means that waves of opposite (same)
parity lead to terms with L odd (even}.

(4) If J is the maximum angular momentum

contributing in the reaction, and only one parity is
present corresponding to this value, then L
= 2J,„—1 (for J half-integral).

(5) Ignoring the sum over v there are still insuf-
ficient measurable quantities to allow determina. -
tion of the BJA. Thus some form of polarization
data is necessary to determine the amplitudes and

as we remarked earlier, measurements from po-
larized targets will still not resolve the parity
ambiguity.

points (3) and (4) of Sec. IIIC. We consider sepa-
rately &'P and & p collisions.

&'p. (a) The absence of moments WI. with L&6
(Refs. 10, 13) for E, &1.70 GeV indicates that
waves with j & —,

' are not important. Furthermore
the small size of the L =5 moments demonstrate
that large contributions from j =

& waves of oppo-
site parities are unlikely.

(b) The large sizes of W', moments" in the region
-1.45 GeV are due to the presence of waves of

opposite parity. At present no elastic phase-shift
analysis predicts large p-wave inelasticities at
these energies.

v p. (a) For E, &1.535 GeV, moments Wp with

L ~ 4 are consistent with zero. " " Thus inelastic-
ity in waves with j ~ —, is not required but the pres-
ence of j = —, waves of both parities is necessary.

(b) In the region of E, -1.7 GeV the presence of
the inelastic decays of the E» and D» resonances
is signalled by the L=4 and 5 moments. " How-

ever, the values, although significant, are not

large, and we must conclude that strong cancella-
tions are occurring between the two waves in this
ease.

(c) For E, &2.0 GeV the moments W~ a.re con-
sistent with zero for L ~ 6. We conclude that there
is little evidence for strong contributions of j =-',

states to the final states (v~N}o. IThe F»(1920)
coupling to the & P channel is suppressed by iso-
spin Clebsch-Gordan coefficients. ]

IV. SUMMARY AND DISCUSSION

In this section we summarize the main features
of this analysis and discuss its advantages and

limitations.
Methods of analyzing inelastic processes (other

than two-body reactions} are clearly needed to
supplement the understanding of elastic scattering.
The method described in detail in this paper speci-
fies a three-body final state by means of two
Dalitz-plot variables, and three Euler angles which

describe the orientation of the final-state c.m. mo-
mentum triangle with respect to a fixed set of axes.
The s-channel partial-wave decomposition is then
given in terms of three discrete angular momen-
tum variables, J; M, and A, which replace the
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three continuous angular variables. The quantum
numbers J, M, and A are easily interpreted as be-
ing the total angular momentum and its projections
onto the space-fixed z axis and body-fixed Z axis,
respectively, in the same manner as for a sym-
metric top. Our partial-wave amplitudes BIA(s, s;)
then contain all possible information about the re-
action and are model-independent parameters.
However, the number of amplitudes B~~(s, s;) nec-
essary to describe a 2- 3 reaction is large and
growing rapidly with energy: For MB- MMB, if
J~ is the maximum angular momentum present,
then there are —,'(28~+1)(2J~+3) amplitudes com-
pared to (24~+1) for elastic scattering. Further-
more these partial-wave amplitudes are functions
of the invariant masses s,. and thus should be de-
termined at every point in the Dalitz plot. Clearly
the most one can hope for is a measurement of
these quantities over small regions of the Dalitz
plot, which would require a large amount of data
in each region. Optimistically one would hope to
see variations of the partial-wave amplitudes as a
function of the Dalitz-plot variables indicating the
association of J state with a particular decay
channel. (However, to extract couplings to these
decay channels requires a detailed model of the
variation of the B+A with the Dalitz-plot variables. )
A unique determination of the B~A (up to an over-
all phase) requires, as we have seen explicitly for
the parity ambiguity, data on polarization experi-
ments as well as the unpolarized differential cross
section.

There are, however, useful features. The intro-
duction of the partial-wave expansion into the for-
mulas of Table I (a lengthy and tedious task) means
that the moments of the functions D (R) can serve
as a permanent model-independent record of the
data, containing all the correlations between pro-
duction angles and position in the Dalitz plot.
These moments therefore contain much more in-
formation than, for example, a Dalitz-plot distri-
bution averaged over all production angles. More-
over, these experimental parameters are free
from the approximations and assumptions of pa-
rameters derived in the usual isobar-model anal-
ysis.

Qualitatively, the values of the moments inte-
grated over the Dalitz plot can be useful guides as
to the partial waves present, " "e.g. , the obser-
vation of nonzero moments with odd L in unpolar-
ized cross sections is a clear indication of the
presence of waves of opposite parity, and the- max-
imum value of L can limit the value of the total an-
gular momentum considered in any analysis.

In the reaction KP- »A, for example, the mea-
surement of the A decay (together with the use of
polarized targets) allows the complete set of ex-

periments to be performed with relative ease, and
allows the partial-wave amplitudes and transition
amplitudes to be reconstructed.

It is also interesting to note that the formalism
is applicable to zero-mass particies and the versa-
tility of photon beams should prove very useful in
the analysis of photoproduction of two mesons.

Conventionally reactions of the type (1.2) have
been analyzed using the isobar model or its modi-
fications. The reason is clear: In general the
number of amplitudes necessary to describe the
process is very large and the isobar model re-
duces this number dramatically by two main fea-
tures:

(1) It limits the partial-wave amplitudes allowed.
(2} The variation of the partial-wave amplitudes

as a function of Dalitz-plot variables is specified
within a very definite model.

However, it must be stressed that the isobar
model contains several approximations and ad Age
a,ssumptions" and these are weakest in regions of
resonance overlap. The parameters derived using
the BLT formalism are free from such arbitrari-
ness and may be critically compared with the pre-
dictions of the various models.

It is worth pointing out that the connection of the
BLT three-particle states to the three-particle
states constructed by Wick" is of course explicit,
but unfortunately a little involved. This latter
method constructs the three-particle states by
first coupling particles 1 and 2 in their c.m. sys-
tem and then the (12) subsystem to particle 3 in the
over-all c.m. system. Clearly the restriction to a
quasi-two-body final state is very simple in this
formalism. These states are connected to our
states by Wigner rotations arising from transform-
ing the states from the (12) c.m. system to the
over-all c.m. system (apart from a simple rotation
relating helicity states to our transversity states:
Appendix A of Morgan" contains further details}.

In conclusion we have developed in detail a for-
malism which may be used to analyze reactions
(1.1) and have given explicit'ly the restrictions im-
plied by parity conservation and the presence of
two identical particles in the final state. A careful
discussion of polarization experiments is given and
the question of a "complete set" of experiments
considered. We have shown that a parity ambiguity
exists and indicated its resolution in terms of mea-
surement of final particle polarizations.
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APPENDIX: INTERPRETATION OF THE
DENSITY MATRIX

In order to describe polarization properties of
the particles we use the density matrix. For a
particle at rest this may be written as

(A1)

where M' and M are the z components of spin in the
rest frame of the particle. If nonzero momentum
states are constructed according to some definite
prescription,

( PM) =a(P) ( M), (A2)

then the density matrix in this basis is

where the elements p» are clearly unchanged.
However, as we have stressed, Eg. (A2) may be
regarded as defining the relative orientation of the
axes in the rest frame with respect to the system

in w'hich the particle has momentum P. The ele-
ments p». refer to quantization along these rest-
frame axes. Therefore, the density. matrix for a
moving particle described by the states (A2) may
be. written exactly as for a particle at rest, pro-
viding the spin operators and polarizations are in-
terpreted as referring to the rest-frame axes. "
Thus polarization formulas for relativistic parti-
cles have exactly the nonrelativistic form except
that the directions must be referred to rest-frame
directions for each particle. The use of these
rest-frame axes is useful in discussions of polar-
ization experiments, where they provide an easy
way to avoid the technical problems associated
with the polarization of relativistic particles. This
formalism is immediately generalized to multipar-
ticle states and we use it extensively in discussing
reactions of type (1.1) and (1.2).

For a spin-& particle at rest the general spin
state is described by a density matrix of the form

p(O)=~(1+P o), (A4)

where P is the polarization and Tr(p) =1. As dis-
cussed above, a similar form may be used for the
particle in motion providing we interpret the spin
operators o and polarization P as referring to the
appropriate rest-frame axes.
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