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It is shown that (a) the validity of s-channel helicity conservation and (b) the occurrence of
simple exponentiation depend on the coupling between the vector meson and the external field.
Both (a) and (b) can be realized in a theory where the charged vector meson has an anomalous
magnetic moment (g =1) and where the external charge distribution is not too singular.

I. INTRODUCTION

Recently, problems in connection with exponen-
tiation and s-channel helicity conservation have
received considerable attention in the study of high-
energy processes.

It has been shown that the simple-exponentiation
form of Moliere' not only holds for the scattering
amplitude for a charged scalar meson or a Dirac
particle in a static field, ' but also for the multi-
photon-exchange amplitude of electron-electron
scattering' as well as for the amplitude of pion-
pion scattering. ' On the one hand, simple-expo-

nentiation forms have been successfully used in
several models (e.g. , the Glauber model, ' the
droplet model') to describe various hadronic pro-
cesses, but on the other hand, it has been shown
that: Simple exponentiation breaks down when
Dirac particles uith anomalous magnetic moment'
or charged vector mesons &without anomalous mag-
netic moment' are scattered by a static potential.
Now, we know that' to study the theoretical aspects
of exponentiation, potential theory is a particularly
fertile ground to gain physical insight. First, the
formalism of high-energy potential scattering is
simple and transparent. This is in marked con-
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trast with the lengthy and involved field-theoretical
calculations. Secondly, because of the large
amount of effort required in any reliable field. —.the-
oretic calculation, only a small number of such
calculations can be carried out. Finally, in many
field-theoretic calculations, some assumptions are
made about the region of integration from where
the important contributions come. Results from.
high-energy potential scattering can be very use-
ful in deciding which approximation may be used
in field theories. Hence, in connection with the
problem of applicability of simple-exponentiation
forms to hadronic processes, the result obtained
by Cheng and Wu' ' are extremely interesting and
it seems worthwhile to investigate, in the frame-
work of potential scattering, the following problem
in further detail:. Can the scattering amplitude
have a simple-exponentiation form when the scat-
tered particle has internal structure? If yes,
what are the conditions under which this can occur?
Because of simplicity and the reason given below,
the vector meson seems to be the most interesting
candidate for this study.

s-channel helicity conservation (SCHC) has been
observed in p photoproduction experiments" and
in pion-nucleon analyses. " Ever since the discov-
ery of this selection rule, there has been a consid-
erable number of experimental and theoretical in-
vestigations on this subject. " Since potential scat-
tering theory has proved itself to be one of the
most powerful and most elegant approaches to gain
physical insight in high-energy scattering process-
es, ' it is of interest to see what this theory has to
say about SCHC. Most recently, it has been shown
that the above-mentioned high-energy selection
rule does not hold (1) for Dirac particles with
anomalous magnetic moment' and (2) for vector:
mesons seithout anomalous magnetic moment' when
these particles are scattered by a static field. By
considering the Dirac-particle case' as an exam-
ple, one might think that the inclusion of an anom-
alous magnetic moment for the vector meson would
make the violation of SCHC even worse. Now, in
this connection, the vector-meson case is by no
means irrelevant. Quite on the contrary, because
of the impressive evidences of SCHC found in p
photoproduction" and because of the fact that the
photon, in many qualitative respects, behaves. at
high energy like a spin-1 hadron, "the SCHC prob-
lem for scattering of a vector meson is of particu-
lar interest.

Last but not least, the very recent effort made
at the National Accelerator Laboratory in the
search of vector S' bosons" provides additional
interest in the study of the structure of spin-one
particles.

In this paper, an attempt is made to study the

problems mentioned above. We start with the case
in which the vector meson has an arbitrary mag-
netic moment. " The Born terms calculated in Sec.
II show that s-channel helicity conservation and the
occurrence of simple exponentiation depend on the
value ~ assigned to the anomalous part of the mag-
netic moment. It is seen that the special case ~=1
plays a distinctive role. In Secs. III and IV, the
high-energy approximation used by Chen~ and Wu'
is applied to this (« = 1) case. It is found that in
contrast to the Proca theory'"' (s = 0), the solution
of the differential equati. ons can be readily given
in closed form for all potentials provided that the
corresponding charge distribution is not too singu-
lar. The main results are: (a) s-channel helicity
is conserved. (b) The usual simple-exponentiation
form of Moliere is found for the helicity +1 ampli-
tudes while the helicity 0 amplitude obeys a slightly
modified simple-exponentiation form.

where"

m'U„—~e~+„~ U~ =0, v= 1, 2, 3, 4

(2 1)

G~v ——D~Uv —D, U~,

8
D =-8 —i' = —ieA„

(2.2)

(2.3)

v= ~pAv ~vAp ~

A„=i5„,,V(x) .,

(2.4)

(2.5)

Making use of (2.2), (2.3), and (2.4), we rewrite
(2.1) in the following form:

(s„e„-m') U, —s„s„U„=J„, v = 1, 2, 3,'4, (2.6)

where

J,=ie[(«+1)F,„U„+(&~A„+A~ &„)U,

—(&„Aq +A,a„)U„]+e'(A„Aq U„-A,A„U„) .

(2.7)

For the static-field case (2.5) this four-vector is
reduced to

J,= ie[(«+1)(S;V-)U, + Vs, U, ],
J» = ie[«(&»V) Uo ——V(2&oU»+ s»U, )] —e'V'U»,

(2.6)

k=1, 2, 3.

II. BORN TERM (z ARBITRARY)

We consider a vector meson with charge e, mass
m, and magnetic moment M =[e(1+«)/2m] s where
s denotes the spin, and z is a constant which char-
acterizes the "anomalous" part of M. The wave
function U&(x), g=1, 2, 3, 4 of this vector meson in
a static field V(x) satisfies the equation"
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In terms of J„ the scattering amplitude can be
written as

(2.9)

a~" = (1, 0, 0, Oj,
a~ =(0, 1, 0, 0j, (2.12)

where P„ is the four-momentum and 0, the polar-
izati:on vector of the outgoing vector meson. The
Born terms" are obtained by inserting

U ' =e'~~ "~a, v=1 2 3 4 (2.10)

into J, and collecting all terms linear in e. In
(2.10) P„'~ is the four-momentum, and a, the polar-
ization vector of the incoming vector meson.

I et us now choose a coordinate system in which
the incoming momentum p is taken to be in the z
direction, and the momentum transfer ~ in the x
direction, In the high-energy limit, E-P»m,
where P =

~ p ~, E = (P'+m')'", the incoming wave

can be written as

b„"=&0,1, 0, 0&,

(p) + E 6 -:, E sz
bv = ~Qm' 'm 2Em' m 2E

(2.13)

Here, a, and a„are transverse while a,' is lon-
gitudinal. The index (~~) means that a, is in the
scattering plane while (L) means that it is perpen-
dicular to the scattering plane. Similarly, the
three polarization vectors of the outgoing wave are

The three polarization vectors are

(2.11)
where a= I~i.

From (2.8), . (2.9), and (2.11) we obtain the de-
sired Born terms in the high-energy limit:

d'xe ' EeV 2b,*a,—Op*a, —b,*ap+2b~~

+ie(a+1)bo[(s, V)a, +(8 V) ~ a,] —ice[(B,V)b,*+(&~V) b~~]a,] . (2.14)

&n the following, we shall explicitly calculate Mz; from (2.12), (2.13), and (2.14):

A. Transverse to Transverse

Since a, =a, =b, =0, Eq. (2.14) reduces to
2Ee d'xe "V x,

(2.1V)

M~; —— d'xe ' 2EeVb~~. a~.

Now

b+(]l), ~a(ll) b+(L) a(Q

(2.15)

(2.16)

In terms of the helicity states, we have

=2Ee ~" d'xe ' "V(x),
(2.18)

bg(lI) .~(&) b+(A. ~a(~~)
Q

Hence

Here, M, designates the scattering amplitude for
the case in which the incoming vector meson is of
helicity -1 and the outgoing vector meson is of he-
licity +1. The other notations should be obvious.

B. Longitudinal to Transverse

From Eqs. (2.12), (2.13), and (2.14) we have

M~; =
JJ d xe ' "(EeV(2bfa, —b3ao) —icy[(B,V)b,*+(8~V) 5*]g ] . (2.19)

Thus, if the polarization vector of the outgoing vector meson lies in the scattering plane, the scattering
amplitude is given by
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M]tp
——-E— d'xe ' " Vx +iaB„Vx

=(x —()Vd —f d'xe ' *V(x), (2.20)

where the last step is a result of integration by
parts and the assumption that V(x)-0 for

I
xI-

If the polarization vector of the outgoing vector me-
son is perpendicular to the scattering plane, the
scattering amplitude Mip vanishes.

We notice that, for the special case ~ = 1 the am-
plitude Mii p also vanishes, Hence in terms of the
helicity amplitudes we have this special case:

(2.21)

where M„and M, are the scattering amplitude in
which the incoming vector meson is of helicity 0
and the outgoing vector meson is of helicity +1 and
-1, respectively.

C. Transverse to Longitudinal

In this case, we have

M„g =(1 K)ZX —' f d xe 'e*V(x)

(2.23)

Here we see again that v= 1 plays a special role.
Obviously for ~=1, M, ~i vanishes, and accordingly

(2.24)

where M, + and M, are the corresponding helicity
amplitudes,

M&, =E— d'xe ' " 2V x 6+i v+1 B„Vx

(2.22)

which gives

D. Longitudinal to Longitudinal

The expression for this matrix element is

I„=]I d'x e '~x ILEeV(2bfa, —bfa, —b,*a,) +ie(((+ 1)b,*(B,V)a, —ice[(s,V)b,*+(si V) ~ b*]a,j
Q2

=Ee 1+,(I+2m) d'xe '~" V(x) .2m' (2.25)

In this case, we see that the value of w does not
influence the qualitative behavior of Mpp In the
Proca case ((( =0), this result is in agreement with
that of Cheng and Wu' up to a term proportional to
(~im)'.

The main result of this section is: All helicity-
flip Born terms vanish for ~=1. This may be
looked upon as a hint" for the occurrence of simple
exponentiation and for the validity of s-channel he-
licity conservation for this particular case (tc = 1).

III. WAVE FUNCTION (v=1)

[D„,D„]= —ieF„, (3.2)

In this section, we apply the method used by
Cheng and Wu' to solve the wave Eq. (2.1}for the
special case ~=1.

This system of differential equations for U„,
p, = 1, 2, 3, 4 can be put into a more convenient form:
We first apply D, to (2.1), which gives

D, D& G» —m'D„U„—i egD„F» U& = 0 .

By making use of (2.2) and the commutation rela-
tions:

ID„, D, D,] = 2ieF»D„+i-e(S„F„„) (3.3)

which are immediate consequences of (2.3) and
(2.4), we can rewrite Eq. (2.1) as

(D„D„—m') U, —D, D~ U„—ie(a + 1)F„„U„=0,

and Eq. (3.1) as

v=1, 2, 3, 4, (3.4)

DuUu= 2[(((.' —1)FpuDv Up —z(suFv~)U~] . (3.5)

(D&D„—m')U, +—,D„(SuFp&) U& —ie 2F»U& ——0,

(d= 1, 2, 3, 4 (3.6)

ie
Dv Uv =

2 (Su Fu)() U)( .
m

For the static field case in which the external
field is given by Eq. (2.5}, the system of equations
(3.6) becomes

Instead of (2.1) or (3.4), we shall use (3.5) together
with the set of equations obtained by inserting (3.5)
into (3.4). Thus, we have for the case v=1:
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[82, 8, —(8,+ieV)'-m'+ J,(8, +iev)]U, +2ie(8, V)U, =0,

[8,8, - (8,+2e V)'-m'] U,

(3 7)

+ [2ie(8, V) —(8&J,) —JOB&] Uo = 0, j = 1, 2, 3

(80+ ieV —Jo)UO+ B~ U~ =0,

where U, = -i U4 and J, is defined by

lim U(t x)=e ' ' 'a„, t2=0, 1, 2, 3 (3.9)

where P= ~pj, E=(P'+m')'", and a„ is the polar-
ization vector of the incoming vector meson.

Following Cheng and Wu, ' we make the ansatz

U„(t, x) =e ' ' '~w„(x), p=0, 1, 2, 3. (3.10)

The W„'s are supposed to be slowly varying func-
tions of x. In the high-energy limit E-~, (3.9)
and (3.10) give

Jo =
~ (8mB~v)m' (3.8) lim W&(x) = a&, p, = 0, 1, 2, 3

g~ ~oo
(3.11)

In the following, we shall explicitly solve (3.7) in
the high-energy limit. We use the same notation
and the same choice of coordinate system as in
Sec. II. The boundary conditions are

where the incoming polarization vector a„ is giv-
en in Eq. (2.12). The differential equation for W„
can be obtained by inserting (3.10) in (3.7). One ob-
tains

2E(8, +ieV ——,'Jo)WO —i[8' —m'+e'V'+iJ;eV+2ie(B, V)]W, —2e(B,V)W +2e(B~V) W2 =0,

2E(8,+ieV)W —i[8' —m'+e'V' —2ie(B,V)]W +[J,eV i(B,J—,)-iJ,B,]W, +2e(B~V) W~=0,

2E(8,+iev)W, —i(8'-m'+e'V')W, +[2e(B,V)+i(B,J',)+iJ,B,]W, =O,

iEW +(8,+i—eV —J',)W, —B,W +8~ W~=0,

(3.12a)

(3.12b)

(3.12c)

(3.12d)

where

w =w, -w„w, =(w„w),

8 = (8„8„8,) =(8~, 8,),
In order to solve these equations in the limit

E- ~, it is convenient to make the following as-
ymptotic expansion for W„:

W2'(z, xi) =0

provided that

P (z, x,) = -iJ,(z, x,)

, (8,'+ 8,') V(~, x,)

(3.18)

(3.19)

W= —w'+w +—W + ~ ~ ~
E —~0) -~ 1.) ~ (2)
m

p, =0& -~ 1~ 2.
(3.13)

Substituting this expression into (3.12) and taking
only the leading terms in E, we get

is not too singular. We note that, in the high-ener-
gy limit, the factor a, m/E in (3.17) is a, constant
for all three cases given in (2.12).

To find W ' and W~' we insert (3.13) into (3.12b),
(3.12c) and consider the next higher order terms
in E. The differential equations are

(8, + ie V ——,
'J,)W,' = 0, (3.14) (Bg+2eV)W" — [(B,J,) + —,'J,']Woo = 0 (3.20)

"=0, (3.15) and

(8,+iev)WP =0. (3.16)
Making use of the corresponding boundary condi-
tions for W„'~ (p, = 0, —,1, 2) obtained from (3.11)
and (3.13), we then have

m&
w',"'(z, xJ =

(a,—1

(8,+iev)W~~'~+ [2e(9~V)+i(B~J,)+iJoB~]wo' =0,
2m

(3.21)

where in writing (3.20) we have employed (3.14).
Making use of the boundary conditions

xexp —j dz' eV z', x~ —2 p z', x~

(3.17)

lim W' ' (e, x~}= a, —a, ,

lim W~' (z, x2) = a2,

(3.22)

(3.23)
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which follow immediately from (3.11) and (3.13), we obtain from (3.20), (3.21):

g a i
W ' (z, x~) = exp -i dz'e V(z', x~) a — ' p(z, x~) exp

2
dz'p(z', x~)

«OO «OO

(3.24)

g i
W~~'~(z, x ) = exp i — dz'e V(z', x~) a~ —~ dz' exp

2
dz "p(z",x~)

J
g~(z', x, )

«00 «OO «Oo
(3.25)

In obtaining these expressions, the explicit expression for W~,'~ in (3.17) has been used. Here a is a, —a,
and

8 (z, x~) = 9~[2eV(z, x~) —p(z, x~)]+ —,'iP(z, x~)S~ Jt
dz'[2eV(z', x ) —P(z', x„)]. (3.26)

Since our goal is to calculate the scattering amplitude, we are primarily interested in W„(z, x ) for z-
+~. From (3.13), (3.15), (3.17), (3.18), (3.24), and (3.25) we have

lim Wo(z, x~) =aoexp —i t dz'[eV(z', x~) —~zP(z', x~)]
Z~+oo J oo

(3.27)

lim W (z, x~)=a exp -i dz'eV(z', x~)
z~+~ «OO

(3.28)

+ oo + oo

lim W~(z, x~) =exp i -dz'eV(z', x~) a~ -~ dz'exp — dz "P(z",x~) g~(z', x~)
g~ +00 «00 «OO «OO

(3.29)

where we made use of the assumption that both V(x) and P(x) vanish for (x ~

—~. Here we include only the
first nonvanishing term in the expansion (3.13). The wave functions to the next order can be found by
solving the differential equation obtained by setting next &-power terms in (3.12). However, since for the
calculation of scattering amplitudes we only need the asymptotic form in the limit z-+~ and, in particu-
lar, only lim, +„W '(z, x~), we shall apply the formula derived by Cheng and Wu':

2 2

W (z, x~) - ——8~ W~(z, x~)+, Wo(z, x~) for z (3.30)

This relation can be obtained by inserting (3.10) into (3.7) and considering the limit as z- ~, in which case
the potential and the charge distribution can be neglected.

IV. SCATTERING AMPLITUDE (tc= 1)

The general expression for the scattering amplitude is given in Eq. (2.9). In the high-energy limit, this
expression reduces to'

M&;=2Ei d'x~e ' " lim -b,* W —a —b* W, —a, +b~ ~ W~-a& (4.1)

where b =5, —b„W =W, —W„and the W„'s (p, =0, 1, 2, 3) are related to the U&'s through Eq. (3.10). In

the following, we shall explicitly calculate the scattering amplitude for the case z = 1. In analogy to the
Born terms given in Sec. II, we shall classify the matrix elements according to the polarization vectors of
the incoming and outgoing vector meson.

A. Transverse to Transverse

From Eqs. (2.12), (2.13) and (3.27), (3.28), (3.29) we see that a, =a, =0, both bfW and b*W, are of order
I/E, while bg (W~ —a~) is of order 1. Hence, we have

+oo

M&;
——i2E d'x~e ' " exp -i dzeV z, x~ —1 b~ a~ (4.2)

which, together with (2.16), gives
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M()~-—M~() =O.

In terms of the helicity amplitudes, we have

+
M++=M =i2E d'g~e ' " exp -i dzeV z, x&

M, =M, =O.

B. Longitudinal to Transverse

M~~, t

——M«=i2E d'x~e ' " exp -i dzeV z, x~

(4.3)

(4.4)

instead of inserting the relevant wave functions and polarization vectors into Eq. (4.1) and going through
a rather lengthy calculation, we shall make use of the reciprocity theorem which relates the amplitudes

M~p or M, to the amplitudes Mp]) Mp~ or Mp of Sec IVC. This is because as can be easily ver-
ified, U„(t, x) and U„( t, x), -p=1, 2, 3, 4 satisfy the same set of differential Eqs. (3.7) or (2.1) with the ex-
ternal field given by (2.5). Thus this theory is invariant under time reversal. The result will be given at
the end of Sec. IVC.

Substituting (2.13) into (4.1), we obtain

C. Transverse to Longitudinal

Mz;=i2Z d'x~e "lim —W + W +—(W -a)E m
m 2Em ' m

(4 5)

By counting the powers of E in the integrand, we see that lim, + 8' ' is also needed in this case. From
(3.30), we get

f
2 2

d x~e lim ——W = d x~e lim ——(W, —a,)+2 -idx -~ex . & &+m
8'p

z~+~ m m ' ' 2am

Equations (4.5) and (4.6) lead immediately to

(4.6)

Mf,. ——i2m d'x~e ' " lim Wp. (4.7)

Therefore we have

Mp~~ = M pz = 0,
and in terms of helicity amplitudes

Mp+ =Mp = 0.

(4 6)

(4.9)

Using the arguments given in Sec. IV 8, we also have

Mi( =M~ = 0, (4.10)

M+p=M p=0. (4.11)

D. Longitudinal to Longitudinal

From (2.13) and (4.1), we have

E m2 —h2
Mf; ——i2E d'xje ' lim ——W + W, +—W, —1+ (4.12)

From (3.30) we can derive an equality similar to that given in (4.6)

d'x~e ' " lim ——W = d'x~e ' " lim ——
) W, + + Wpm ', ,„m g

' 2m 2Em
(4.13)
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It follows from (4.12) and (4.13) that

M&& =i2E d'x~e '~" lim —
TVp —1J E P

(4.14)

which, together with (2.12) and (3.27), gives

Mpp .i2E d 'x, e ' " exp -i dz e V z, x~ ——,'p z, xj —1 (4.15)

The result of this section can be summarized as follows: For K=1,
(i) The helicity amplitudes M„, M are equal and they have the usual simple-exponentiation form.
(ii) M«has a modified simple-exponentiation form. The occurrence of the additional term in the expo-.

nent is a consequence of minimal coupling and a' WO in the wave equation (2.1).
(iii) All helicity-flip amplitudes vanish.

V. DISCUSSION

We have shown that in the high-energy scatter-
ing of charged vector mesons in a static field: (a)
the validity of s-channel helicity conservation and

(b) the occurrence of simple exponentiation depend
on the coupling between the vector meson and the
external field. Both (a) and (b) can be realized in a
theory where the vector meson has an anomalous
magnetic moment, which is characterized by ~=1,
and where the external charge distribution is not
too singular.

As far as s-channel helicity conservation and

occurrence of simple exponentiation is concerned,
a comparison with the (trivial) spin-0 case and the
(nontrivial) spin--,' case shows that charged vector
mesons with two meson-magnetons (a = 1) behave
"more normally" than those with "normal" mag-
netic moment (unit-magneton, v =0)." Neverthe-
less, the result obtained in this paper should per-
haps be looked upon as an example in which both
SCHC and simple exponentiation can be realized
through a suitable choice of the coupling between
the particle and the external field. We speculate
that more general conditions can be found under
which SCHC as well as simple exponentiation
would occur.

As a simple application, one may try to formu-
late a phenomenological model for the photopro-
duction of vector mesons by combining the vector-
dominance idea" with the result obtained in the
present paper. Investigations along this line are
now in progress.

While this work was being written we received a
preprint by S. Weinberg" where, in connection
with the exponentiation problem, similar results
were obtained. His method consists in summing
the perturbation series in the eikonal approxima-
tion" under the following conditions:

(1) The external electromagnetic field A„(x) is
a sufficiently smooth function of position so that
the particle can absorb at most a finite four-mo-

mentum at each vertex. Indeed, A„(x) is chosen
in such a way, that the exponential function in Eq.
(5) of Ref. 22 may be approximated at each vertex
by the zeroth- and first-order terms of its expan-
sion in terms of the momentum transfer.

(2) One either demands on a priori grounds that
the details of the electromagnetic interaction be
arranged in such a way that the matrix element
Sa„given in Eq. (1) of Ref. 22 approaches a finite
value at the high-energy limit, or one simply as-
sumes this asymptotic behavior.

This is to be compared with the method used,
and the result obtained in the present paper: (A)
Instead of summing the perturbation series, our
starting point was the conventional" gauge-invari-
ant wave function (2.1) which we have solved explic-
itly in the high-energy limit. (B) For the trans-
verse-to-transverse amplitudes M „and M the
two different methods give the same answer. Here
we see explicitly that the conditions for the occur-
rence of simple exponentiation is less restrictive
than those given in Ref. 22. Indeed, at least one of
the crucial assumptions made in Weinberg's paper
[condition (2) mentioned above] is not necessary
for the proof. (C) For the longitudinal to longitudi-
nal amplitude M„, Weinberg's result is different
from ours. This discrepancy has its origin in the
coupling terms in the wave Eq. (2.1) which are not
included in the vertex functions of Ref. 22. That
is to say, if we accept the conventional" wave
equation for charged vector mesons, then we must
conclude that relevent coupling terms have been
neglected in the calculation of Ref. 22. (D) It is
explicitly shown in this paper that those coupling
terms mentioned in (C) do not contribute to the
other amplitudes (e.g., M„, M„, etc.).
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