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distance singularity for the vacuum matrix element of

gg, where g is the proton field of an "equivalent" elemen-
tary-proton theory. This need not contradict canonical
singularities for certain other combinations, particularly

if no reference is made to an "equivalent" elementary-
particle theory.
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We show that in the nonplanar model of Gordon and of Mueller and Trueman the triple-Pom-
eranchukon vertices of Gribov's Reggeon calculus and inclusive reactions are identical in the
forward direction. We therefore connect the zero of the forward vertex with the zero of
Gribov's vertex, and the collision of the Pomeranchukon poles and cuts. We use a modification
of the Beggeon unitary amplitudes of Gribov, Pomeranchuk, and Ter-Martirosyan to discuss
inclusive reactions for t & 0. Like Goddard and White, we find that the inclusive vertex van-
ishes linearly in t. However, we disagree with the argument of Goddard and White.

I. INTRODUCTION

Some time ago it was shown very generally that
the triple-Pomeranchukon vertex involved in inclu-
sive reactions must vanish in the forward direc-
tion. ' To see this, consider the inclusive reaction
A+B- C+X in the part of phase space defined by
the relations

p(s M t) s2«t)( M2 t~)«0)-2«()p(t) (1.2)

(p„+p,)' = s» m',

(P~+P)) —Pc) =M»m

s»M'.
m' is a typical hadron mass. In this region, the
leading contribution to the cross section is pro-
vided by the triple-Pomeranchukon coupling shown
in Fig. 1, after use of the optical theorem. " (We
assume that AC has vacuum quantum numbers. )
It follows that just this contribution, integrated
over its corner of phase space, already grows
more rapidly with s than the total cross section
unless either o.(0) & 1 or the triple-Pomeranchukon
coupling vanishes at t =0.

Several suggestions have been put forward to
deal with this constraint. One of them is o. (0)& 1,
so that the problem never arises. If one rejects
this possibility as being inconsistent with experi-
mental data, the next simplest suggestion is that
the amplitude for Fig. 1 has the form

in the region (1.1). The cross section is propor-
tional to the discontinuity of I' in M',"so a factor
sin)([2n(t) —o.(0)] produces the required zero at
/=0. That is, no special dynamical mechanism
is required because of the presence of a kinemat-
ic zero introduced by taking the absorptive part.
Chang, Gordon, Low, and Treiman showed that
the form (1.2) is realized when the Pomeranchuk-
ons are joined by the planar connection of Fig. 2.

Recently Gordon' and Mueller and Trueman'
have shown that the crucial phase given in Eq. (1.2)
is changed when the coupling has the nonplanar to-
pology of Fig. 3. The modulus of I' is unchanged,
but there are both left and right cuts in M':

y'(s M& t) s2 «( (&M)«20-&/2«(()M2 .
)

«-0&/2P«(t)))

(1.3)

Upon taking the discontinuity, the sine factor is
sin —27/[2n(t) —n(0)], which does not vanish at t =0.
In terms of the partial-wave amplitude in the BB
channel, this finite result is due to a wrong-signa-
ture nonsense pole canceling the zero in the sine.
More specifically, each produced Pomeranchukon
in the BB channel has complex helicity n(t), and
for nonplanar couplings there are poles at the non-

sense wrong-signature points n(0) =2o.(t) —n,
m=1, 3, 5, . . . . In Sec. III we will employ the anal-
ysis of Gribov, Pomeranchuk, and Ter-Martiros-
yan to explore this view of the inclusive reaction
problem. '
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FIG. 1. The triple-Pomeranchukon coupling
for inclusive reactions. FIG. 3. The nonplanar coupling of Gordon and

Mueller and Trueman.

Since the vanishing of the triple-Pomeranchukon
coupling cannot be understood "kinematically, " we
must turn to dynamics. One possibility has been
mentioned by Chang et al. , namely, that the zero
in ti is related to the zero in the triple-Pomeran-
chukon vertex that appears in Gribov's Reggeon
diagrams. ' In Gribov's theory, Reggeons appear
as elements in perturbation graphs, much as or-
dinary particles do in Feynman diagrams. Gribov
and his collaborators have argued in a series of
papers that there is no consistent solution of the
Schwinger-Dyson equations unless the triple-Pom-
eranchukon vertex vanishes in the forward direc-
tion. ~ In this paper we will call the triple-Porn-
eranchukon coupling in Gribov's graphs "Gribov's
vertex. " It is discussed in Ref. 8, and includes
the Pomeranchukon rescattering graphs depicted
in Eq. (49b) of that paper. The rescattering graphs
are alleged to renormalize Gribov's vertex to zero
when all the Reggeons are on the spin shell and
have momentum zero. e

Linking the two triple-Pomeranchukon vertices
provides a dynamical mechanism for the vanishing
of the triple-Pomeranchukon coupling in inclusive
reactions at t =0, namely, pole-cut collisions.
However, this linkage is only possible at t =0 be-
cause planar couplings like that of Fig. 2 do not
contribute to Gribov's vertex. In the terminology
of Refs. 7 and 10, the planar coupling does not con-
tribute to the residues of nonsense poles. There-

fore, the Gribov and inclusive vertices can be
identified only when one is on the fixed pole, as
at t =0.

In this paper we shall study the identity of the
two vertices at t =0, and the behavior of the inclu-
sive vertex near t=0. In Sec. II we use the model
of Gordon' and Mueller and Trueman' to calculate
Gribov's vertex at t =0. Comparing with the re-
sults of these authors, we find that the Gribov and
inclusive vertices are equal, provided n(0) =1.
The condition o,(0) =1 puts the nonsense pole at
t =0. This result is not surprising, and can be
obtained in many ways including the formalism we
use in Sec. III. However, it does complete the line
of investigation begun with the perturbative calcu-
lation of the inclusive vertex in Ref. 4. There it
was shown that the inclusive vertex vanishes at
t =0 when one uses the coupling of Fig. 2. Then
in Refs. 5 and 6 it was pointed out that a finite
coupling ensues when one uses the nonplanar cou-
pling of Fig. 3 instead. Our further result is that
this finite coupling is equal to Gribov's triple-
Pomeranchukon vertex. One is therefore entitled
to apply the arguments of Refs. 9 and 10 to the in-
clusive vertex at t =0, and to conclude that it van-
ishes there.

P(

q
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FIG. 2. A planar model of the triple-Pomeranchukon
coupling.

FIG. 4. A Pomeranchukon pole plus cut contribution
to forward elastic scattering. Gribov's triple-Pomeran-
chukon vertex is in the center.
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FIG. 5. The upper (cut) portion of Fig. 4.

In Sec. III we examine the behavior of the inclu-
sive vertex near t = 0 by using a formalism that in-
cludes the effect of pole-cut collisions. We modify
the Reggeon unitary amplitudes of Refs. 7 and 10 in

a manner that permits us to get off the nonsense
pole and examine the inclusive vertex near t =0.
Our procedure is directly comparable to that of
Goddard and White, "although it is more general
because we are not restricted to the nonsense pole.
We agree with Ref. 11 that the inclusive vertex
vanishes linearly at t =0, but we disagree with the
arguments put forth there.

II. THE TWO TRIPLE-POMERANCHUKON

COUPLINGS IN A MODEL

Gordon' and Mueller and Trueman' have calculat-
ed the discontinuity in M' of the amplitude shown

in Fig. 3. In this section we consider the contri-
bution of Fig. 4 to the forward reaction P+P,-p+p, for s=(p+p, )'»m'. By casting the am-

q = n&Pz+ Pxk+ q

kl n2 pl p2k k» t

q = nI pi+ pIk+qi~
2

b. =p,' —p, -—(k" —k'-a')p', ——k+n„

(2.1)

k" =(p,' —p, —k)', s =(p', —k)'.

Here the vectors q„etc., are two-dimensional
spacelike vectors orthogonal to P,' and k, and we
have retained the leading terms in s ' in writing

For large s the momentum transfer squared
is ~ -4~ . The propagators for the lower half
of Fig. 5 are

plitude into the form given by Gribov's calculus,
we can read off the contribution to Gribov's triple-
Pomeranchukon vertex made by the nonplanar con-
nection in the center of Fig. 4. This same connec-
tion appears in the inclusive process of Fig. 3, so
a comparison can be made in the model. We fol-
low the plan of Ref. 8, which outlines most of our
results.

We first consider the upper piece of Fig. 4, as
shown in Fig. 5. This diagram has been consid-
ered in Ref. 8, but with the lower legs on the mass
shell. In writing the amplitude we use Sudakov
variables, " and for the moment we generalize
away from the forward direction:

q' —m'+is = (n, + P,)(n,m'+ P,k') —n, P,s+ q, ' —m'+is,

(q —k,)' —m'+is =(n, —n, +P, —P,)(n,m' —n,m'+P, k' —P,k') —(n, —n, )(P, —P )s+(q, —k„)' —m'+is,

(q —k) —m' +i e = (n, + P~ —1)(n~m + P~k —k ) —n, (P~ —1)s + q~ —m +i e,

(p,' —p, —k+ q —k, )' —m' i+e

(2.2)

2
= —(k" —k' —2b, ') + n, —n, + pi —p, —1 —(k" —k' —b, ') + n,m' —n,m' — k'+ p k' —p k'—

2
—(k —k —b, ) + n, —n, ———1+p, —p, s+(A~ +q~ —k») —m +i@ .2 2 2 ~

We expect the Regge residues to damp rapidly when internal masses are large, ' so when s is large our
amplitude will be'dominated by values of n, and n, of order m'/s, and by P, and P, of order 1. Examina-
tion of the analogous propagators for the upper half of Fig. 5 shows that P,

' and P, must be of order m'/s,
while n,' and n, can be of order 1. Taken together, these arguments allow us to drop p, relative to p, in
the lower propagators, and a2 relative to z,' in the upper propagators. If we drop other terms proportion-
al to s ' in Eqs. (2.2), the lower propagators become

q' —m'+is - -n, P,s+ P,'k'+ q, ' —m'+i&,

(q —kg) —m +ic —(n~ —n2)P~s+P~ k +(q~ —kg~) —m +xc ~

(q —k) —m +i@--n~(P, —1)s+(1—P,) k +q~ —m +i@,
(2.3)

(p,' —p, —k+ q —k, )' —m'+is- -(n, —n~)(p, —1)s+ (1 —p, )'k'+ (1 —p,)(k" —k' —b') + (A~ + q~ —k»)' —m'+ie .
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Examination of the upper propagators shows that at large s they can be obtained from the lower ones by the
substitutions n, -P,', P,- n,', n, -P„q1-q1, k'-m', k"-m'.

Each Pomeranchuk pole in Fig. 5 is represented by the factorized form
-i m' n(t)

-g(mJ', m, )g(m2', m4') . [(s+ie)"'"+5(-s+ie)"'"],
sinvn(t)

where 5 is the signature. (5 =1 for Pomeranchukons. ) The energies and momentum transfers we need are

nJP&s J k, -k,~

2(q —k) ~ (P,' —q') - (1 —n', )(1 —P,)s, (O', —P, —k)'- (&,—k„)'. (2.4)

Assembling our results, we see that the amplitude for Fig. 5 factorizes in its dependence on n„p„n„q,
and n,', P'„P„q1. It takes the form

d'k e-i7In(kg~ ) + g e-i fin((A ~-kg~ ) )+ glk n(kg~ )+n((h g-Ogj ) ) N ~k'k" a k
[s[ J (2v)' (k 2) ((g k )2} n(kJJ2), n((BJ -kJJ ) ) & J J J. J 1J )

Here

2 2xA)'n(k 2) „((~ k &2&(m, m, "1,k,1). (2.5)

[m'n, P, + P,'k'+q„' —m'+is][m'(n, —n}P, +P,'k'+(k„—q, )' —m'+le]

g(m" n, (P, —1) +(1 P)'k'+ q, ',—m'(n, —n)(P, 1) +(—1 —P )'k'+(1- P )(k" —k'- t ') +(~, + q, —k„)'}
[m'(2J(pJ —1) + (1 —p, )'k'+ q,

' —m'+i c] [m'(5, —n)(p, —1) + (1 —p, )'k'+ (1 —p, )(k" —k' —tJ') + (t1 + q —k»)' —m' +is]
(2.6)

We have used the scaled integration variables n, =-mkn/s, n, =-mkn, /s. The restriction on the range of

p, is obtained by noting that the Regge residues are analytic functions of the masses in the upper half plane.
Therefore, the integral over n vanishes unless P, and 1 —P, have the same sign.

The factor [ s [ in front of the integral of Eq. (2.5) comes from the Jacobian of the transformation to
Sudakov variables. It does not change sign under s- -s, so I', is even under s- -s+ie. We write I', as
a Sommerfeld-Watson integral over the even-signature partial-wave amplitude:

1 r . e i"'+1
(2.7)

It is easy to check that the partial-wave amplitude is

Yn(k&& ), n((61 kJJ ) )-2 2
2 1J.

(2)))' j + 1 —n(k, 1') —n((b, 1 —k»)')

where

2 (XNn(k ) n((6 k ) )( t+ J~JJ~JJJJ"n(k ) ((h, nk) )1 Jm J-~l. JklJ. ) J (2.8)

coskv(lJ+ l +1 —5)
sin 2&)(lJ + —,

' ——,'5) sinks(l, + —,
' ——,'5) ' (2.9)

Equation (2.8) exhibits a cut in the angular momentum plane. The numerator of Eq. (2.9) guarantees that
there is no anomalous cut in the t plane at even integer j. The numerator also introduces the minus sign
that makes the Mandelstam Pomeranchukon cuts have opposite sign from the Amati-Fubini-Stanghellini
cuts.

It is necessary to attach I', to the lower Pomeranchukon pole in order to construct the amplitude of
Fig. 4. The problem of connecting two Regge amplitudes in series was considered by Gribov, and we
agree with his conclusion. ' However, the limits on the integral of Eq. (35) in Ref. 8 seem unmotivated
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to us, so we give an independent derivation. The
process considered is shown in Fig. 6, and now
for simplicity we specialize to forward scattering.
We use the Sudakov variables

Pj

k = np, + pp+ki, s =(p+p, )
I

k' —m'+is = (n —P)'m'+ nPs+k~' -m'+le,

2k pi- ps, -2k p- —ns ~

The amplitude is

(2.10) P

FIG. 6. Regge amplitudes in series.

-i
~
s

~
e '"'&"2) ]' "" "

g, (k')g3(k')
F]I 2(2 )' (

'
l,)(

'
l, ) )I d'k~ dn dp(k, 2+i )2[(-ns+se)' +6~(ns+ae)' ]

x [(ps+i&)'&+ 6,(-ps+is)'&]. (2.11)

g,(k')g, (k') I'" d p'p(p')
(k' —m'+is)' )„2 (k' —]]J,'+is)' '

When the integrals over n and p are split into the ranges -~ to 0, and 0 to ~, Fa can be reorganized to
read

(2.12)

Here l and I are angular momenta which are fixed for pole trajectories, and get integrated over for cut
trajectories. In Eq. (2.11) there is no simple scaling that picks out the dominant region of integration, so
we make no approximations in the propagator (k' —m'+is) ' other than dropping the term -2npm', which
js unjformly dominated by snp We .introduce a spectral representation for the dependence of the Regge
residues on the internal mass':

where"

( ) ( . ) ( . ) fd')l du'p(y)]I]s) +lit( .'s+)E)]- (2.13)

I(s) = dnn" I dPP"G(n P)
0 Jo

G(n, p) =[snp+m'(n + p ) + k, ' —p,'+i@] '. (2.14)

Note that I z vanishes unless the signature of the two amplitudes being joined is the same; we denote the
common signature by 5. In Eq. (2.13) we have used the relation

I(-s+ie) = dn n" dP P"G(-n, P).f
0 40

In the Appendix we evaluate I for large s, and find for I'TI

(2.15)

1) 1 y ) -ivtl2+g( 2 1 24) - sty)))P(1+ l )P(1 + l l )(m)ll )2s 2 (l l )

X y2y y~2p ~2 y 2 ~2 +2E. l1/2+ l2/2-1

jap

(2.16)

This expression is valid for l„and l, such that all I" functions have positive arguments; the point l, =1,
l, =1 is near the middle of the region. We use the representation

2~(l 7r/2) (3 1+ l2) ~
Pp ~l1/2+ l2/2

(k ' —p,
' i+)e' ")+' "2'= — sin-', ~(l, +I,) )

w(l, + I,)
' ' ' J, (-y+]).+is)'

to write

(X =k, ' —p') (2.17)
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sinw

72jm2I d (l y+ lg )/2 gl ~ J E2 ~ -L

(y —k '+m')'

The partial-wave amplitude that produces I'~ is1,. 1
&(j ' ~ ll+(2

Ll 3

(m)' 2'8 ' / j I'(I+I —j)1'(1—2l+j) [ 2 )/2 gl(-y+k ) jj'2(-y+kl )

(2.18)

(2.19)

In the limit l, = t„we may set —,'(l, + l, ) =j. Then, apart from a constant related to the normalization to
Eq. (2.7), we recover Gribov's result:

I'd 2k "d j g.(-y+k. ') g2(-y+ k.') (2.20)j-
(2v)2 J 1 yy

(y k 2+m2)2

It is worth noting that in Eq. (2.11) both Regge amplitudes have large energies, in contrast to Gribov's
implication. [This is why Gribov's Eq. (35) is puzzling. ] This is all to the good because it would make
little sense to insert Regge limits of amplitudes if major contributions to the Feynman integral came from
low-energy regions. We can check this point by computing the energy of the upper amplitude when aver-
aged over n and P. With the aid of results in the Appendix we find

{20 OO

(Ps) = dn n" I dPP""G(n P)f(S) 0

const' s (1,& l, )
2 2 +g~~ 1/2

constx s/1ns (l, = l,)

constxs)2 '"' (l, —1& 1,& l,).
(2.21)

We see that both energies will be large for
l l, —l, l

& 1, and Eq. (2.19) is useful for coupling trajectories
up to one unit of spin from each other.

We now assemble Fig. 4 by replacing g2(k2) in Eq. (2.11) by the operator

2&(k, k, 0, k»)f(l„&2 2& „&2 2&(m, m, 0, kll) Jl dl25(l2+ 1 —2n(kl )).

(2.22)

We also replace g, (k') by g(k') g(m2), the factorized Pomeranchukon pole residue. These manipulations can
be performed directly on Eq. (2.19) to determine the partial-wave amplitude for Fig. 4:

y g, &, &2, )r'0, &, &2,

fj k™'
(0) (2 )2 ~ 1 2 (k 2) +n(211 ) n(211 )(m t m t 0t kll) t

where the Gribov triple-Pomeranchukon vertex is

(2.23)

2, , „r(n(0)+2n(k„') —j}r(j+-,' ——,'n(0) —n(k„'))
a&211 ), n(211 ) 1J. F( 1 n(0) p n(k 2) + ) 7/(2)))2

co
y

n(0)/2+ n{2» )-1/2
( ~ k 2)

2

X d ki dP ~ 2 2 N(0fg ) g&& ) 3 +kJ. t 3 i & y 12
J

(2.24)

This agrees with Gribov's expression in the limit j- —,'n(0)+n(k, l') ——,'. Equation (2.24) is an improvement
on Gribov's definition in the sense that Eq. (2.19) is an improvement over Eq. (2.20).

We evaluate r by substituting l(l from Eq. (2.6), putting l, —l, =k' —k" =b, =0. First we make the substitu-
tion n- n+2k, 1.kl/m in Eq. (2.6), and note that the resulting integrand is invariant under the replace-
ment p, —1 —p„n, —-n„n- -n, and kl- -kl. This invariance permits us to restrict n to the range
-~ & n& 0 because the integral in Eq. (2.24) is symmetric in kl. Next make the further substitutions
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M
2 pi pl pl/p i T —Snp I q). q). plk) /p q

1
ng~ g [ngPs+ 2q) ' k) —2P)k) /P —snPg].m'

From Eq. (2.24) we obtain the relation
n(0}/2+ f}f(k 2 }-3/2

z)/ s
)

s Q2 n(0) + n(k, ) ) +,}
(

. )2/, g „(p) g«)
«)'x) ) «)'). )» I(&+ 3 'n(p) n(k 2))I(n(p)+2n(k &) j)

(2.25)

O w ~ «0)/2+ 1/2- «l(y) ) 8

dn it dn, t dP dP, I d'q~d'k~(-ns)"()(P, s)""» '[(P —P,)s]"("»- '

0

g(nps+k ') g(n, p, s+q ', n, p, s+M'p, +(q —k, )')
[nPs+ k~' —m'+i e]' [n,P,s+ q~' —m'+i@] [n,P,s +M'P, + (q~ —k, ~)' —m'+ie]

g((n, —n)(p, —p) s+ (q, —k, )', (n, —n)(p, —p) s+M'(p, —p) + (q, —k, —k„)')
[(n, —n)(P, —P)s+(q~ —k~)' m' i+-]e[(n, —n)(P, -P)s+M'(P, —P)+(q~ —k~ —k»)' —m'+is]'

(2.26)

The right-hand side of this equation agrees with F,(s, M', t) of Sec. III, Eq. (7) in Ref. 6, provided n(0)
=2n(k„'}—1." For n(0) =1, this condition is satisfied at t=0. Corresponding to this, the inclusive am-
plitude has the asymptotic form

E(s M 0) y/p ry y(0) (2.27)

at t =0. Its discontinuity (here its imaginary part) is proportional to Gribov's vertex.
The left-hand side of Eq. (2.26) exhibits various explicit singularities in j when j is continued away from

n(0) =2n(k, ~ ) —1. These singularities are also present in r since the right-hand side of Eq. (2.26) is in-
dependent of j, and they are present only because of the definition we have chosen for r. It is desirable to
use Eq. (2.26) only "on the nonsense pole" j = n(0) =2n(k»') —1. In the next section it will be apparent that
the inclusive vertex is itself the natural continuation of Gribov's vertex off the nonsense pole.

III. PARTIAL-WAVE AMPLITUDES

IN THE BB CHANNEL

In Sec. II we found that the Gribov and inclusive
vertices can be identified at t = 0, but in the model
we used, both objects were finite. In order to see
that the inclusive vertex vanishes, and how it
vanishes, we must use a formalism that includes
the effects of pole-cut collisions. One such for-
malism is that of Reggeon unitary partial-wave
amplitudes in the BB channel. By using it we can
directly compare our argument with that of Ref. 11.

%'e examine the partial-wave amplitude for the
process depicted in Fig. 1, in the channel B+B
-(A+ C)+(C+A). The energy squared will be de-
noted to=(Ps+Ps)', and we generalize to to ap.
The particles in parentheses are organized into
pairs of angular momentum, helicity, and energy
I;, m, , and t,. (i=1, 2), and j is the channel angu-
lar momentum. As discussed in Refs. 3 and 11,
the full amplitude in the limit of Eq. (1.1) is con-
trolled by the residue of the partial-wave ampli-
tude' at Regge and helicity poles. These singulari-
ties are at j=n(t, }, I, =m, =n(t, ), and for t, =p,

t, =t, =t.
Gribov, Pomeranchuk, and Ter-Martirosyan'

have written the residue at the singularities
n,. = m, = n(t, ) in a form displaying the nonsense
pole explicitly".

N.'...(t,)
2

(3.1)

A(/2(t ~)
&(t.,i)+[I/n'(l t.)1 in[j+1 —2n(l t.)] '

(3.2)

where A and B are meromorphic in the neighbor-

Here n,. =-n(t,.). The function N, which is called
the Reggeon production amplitude in Ref. 7, still
contains the Pomeranchukon pole at j = n(t, ), and
the two-Pomeranchukon cut as well. (The multi-
Pomeranchukon cuts are thought to be weak and
will be ignored in the following. ' ") Gribov et al. '
have shown that near t, = t, = —,'t„ the Reggeon
unitarity equations require that N have the form
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hood of the two-Pomeranchukon cut.
Equations (3 ~ 1) and (3.2) provide the framework

for understanding the behavior of the inclusive
cross section as a function of t, = t, = t. First we
take the residue of the Regge pole at j =&(t0) in
Eq. (3.1). Note that with j = n(t0} the nonsense
pole provides a factor that cancels the sine func-
tion introduced by taking the discontinuity in M'.
The presence of this sine means that the contribu-
tion of R to inclusive cross sections vanishes
linearly at t= 0 for linear trajectories. Aside
from this linear term, the inclusive cross section
is proportional to n (p) «) (g) the residue of
N'&, ) &,) (t0) at j=n(t0) for t0=0.

The residue n (» «) «) can be calculated from
Eq. (3 ~ 2) only at t=0 because of the restriction
I., = t, = -,' t, ; there it must vanish. Nevertheless,
it is instructive to overlook this restriction on
the applicability of Eq. (3.2), and to postulate that
the Pomeranchukon pole at j=n(t0} occurs as a
pole of A' '. If the pole occurs in this way, the
logarithm in the denominator provides an auto-
matic zero in ~ (~ ), (~ ~4)
the Pomeranchukon pole-cut collision there. Fur-
ther, since the pole-cut collision occurs at t p

= 0
regardless of t, and t, it is natural to suppose
that n «) (py) (p ) vanishes identically. Then the
inclusive reaction coupling is due solely to 8 in
Eq. (3 ~ 1), and vanishes linearly at t=0. Just this
argument has been put forward in Ref. 11.

Unfortunately for the foregoing argument, the
pole at j = o'(t0) must be due to a zero in the de-
nominator of Eq. (3.2), and is not a pole in A' '.
This is immediately evident from expressions
for the Reggeon-Reggeon and BB scattering am-
plitudes, which are developed in Bef. 7 in the
same approximation as Eq. (3.2). The Reggeon-
Beggeon scattering amplitude is

m.';.;....,(t.)
+ ~ ~ ~

(j +1 —o,'- o.".)(j+1—o, —o.)
(3 ~ 3)

1
&(t, 8+ [1/o"(-'t, )] &[i +1 —2o.(-'t, )l

'

T is the residue of Begge poles in pairs of parti-
cles in the 4 particle -4 particle amplitude, and
in M we have put o', = n,'= o(,' t,}. The—amplitude

for B+B-B+B is

(
.
)

A(t„j)
B(t„j)+[1/o'( —,

' t,)] ln[j+1-2n( —,
' t,)]

+ D(t„j). (3 4)

We note from Eq. (3.3) that the Regge pole at
j = o'(t0) is absent unless it is a zero of the de-
nominator. However, if M had no Regge pole at
j = n(t0), the residue of the missing pole, which
is [n «)„« t,) «, t4)]', would have to vanish iden-
tically in t„and not just at tp = 0, where pole and
cut collide. No reason for this to happen has ever
been put forward. Even worse, F(t0,j) has a
second-order pole at j = n(t0) if the singularity is
in A. An illegal second-order pole cannot be can-
celed by D because D does not have the two-
Pomeranchukon cut.

Once the Pomeranchukon pole is seen to occur
in the denominator of Eqs. (3 ~ 2)-(3.4), the pole-
cut collision produces a branch point in o'(t0}, and
the zero in Gribov's vertex can no longer be
traced to an obvious factor like the logarithm.
One is forced to the less conclusive position of
Refs. 9 and 10, which is that no satisfactory
theory can be constructed with a nonzero vertex
at tp 0. For example, in Ref. 10 a satisfactory
S matrix can be constructed only when the func-
tions A and B share a second-order Castillejo-
Dalitz-Dyson (CDD) pole that moves through j=1
and tp = 0. The CDD pole is the source of the
vanishing of n„(p) (p) (p) and it is forced to be
there by the Pomeranchukon pole-cut collision;
but it is by no means as obvious as the logarithm
in Eqs. (3 ' 2)-(3.4) ~

In order to validate the arguments just given,
and to determine the behavior of n «) «) „«)
near t = 0, we now remove the restriction

tp from our formulas. To do this we must go
beyond the approximations used in Ref. 7. The
first question that arises when t, and t, are free
is what singularities might be present in these
variables. Bound-state (Regge) and threshold
singularities have been removed in Ref. 7; be-
yond this little is known except that the ampli-
tudes are likely to be rife with anomalous and
complex singularities. We make the relatively
modest assumption that the amplitudes N and M
are analytic at &y tp and &2 & p p so that a
power-series development is possible. General-
izing the Ansatze of p. B197, Ref. 7, we set

N' (t,) = [c,. (t,) + (t, + t, ——,
' t,)t,. (t )+ ~ .. ] [p(t„t, , t )] -&

(3.5)
n'n' n n ( 0}=[ 2( 0}+(1+ 2 ~2 0)eg(t0)+ej(t0)(tl+t2 —2to) (ty+t +r'0t, )f,. ( )(t+tt, -2t,)+''']

&&[P(t., t,', t.')P(t. , t„t,)] '.
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The factors p ' reflect an orbital angular momen-
tum of minus one for the Pomeranchukons. We
substitute these expressions into the Regge-pole
unitarity equations (50), (59), and (60) of Ref. 7.
We retain only the terms exhibited in Eq. (3.5),
and the discontinuities across the two-Pomeran-
chukon cut are

Disc,. d, = ——,[ d& d& + A e,.d,. +&d,. e& + lr 'e& e, ],
(3.6a)

Disc,. e, = ——,[e,. d t + Xe,. ert +Zf, dry + &'.fr e; ],
(3.6b)

Disc, f,. = ——-,[e,. ert +/r. e,fr~+Xf, er- +X'f,f„.], .

(3.6c}

Disc,. c,. = ——,[c,. d t + A c,. e~ + Lb,. d J + /r. 2b/ ert ],
(3.6d)

Disc, b; = ——,[ c& et + A c&f t + A b, ert + X'.b&f t ],
(3.6e)

Disc&E= ——,[c,ct+lr. c,. bt+Ab, cr +X.'b, bj] . .
N

(3.6f)

In evaluating the phase-space integrals we have
assumed linear trajectories for simplicity, and

i -f.(t.)
Q

i + I -»(-' t.)
A

A"' [1+z c+ (t, + t, ——,
' t, ) (x —c) ]

B+ [ I/n'] ink

+ (tr+ t2 —
2 to-A)D. (3.8)

C and D, like A and B, are arbitrary meromor-
phic functions of t 0 and j in the neighborhood of
x=0.

By examining Eq. (3.8} and companion expres-
sions for M and I, it is readily seen that the
Pomeranchukon pole must appear as a zero of the
denominator of the first term of Eq. (3.8). For
this to happen, A and B must continue to have
second-order poles that are functions of t, and
j, and which pass through j =1 at tp=0. In addi-
tion, it is consistent for C to carry the same CDD
pole, but as a first-order pole. If this happens
s {0) {f ) {g) does not vanish identically, but only
linearly in t. This leads to a linear behavior of
the inclusive cross section near t=0, but for a
different reason than the one given in Ref. 11.

Looking back over the calculation, the linear
behavior of the triple-Pomeranchukon residue
can be traced to the power-series development
in Eq. (3.5).

Equations (3.6a)-(3.6c) can be solved by diagonal-
izing the quadratic forms on the right-hand sides.
The diagonalizing matrix is analytic in A. in a neigh-
borhood of A. =0, so no new singularities are in-
troduced. The diagonalized unitarity equations
are readily solved by the techniques of Ref. V.
Having constructed M, we can apply the same
procedure to Eqs. (3.6d) and (3.6e) to construct
the Reggeon production amplitude:

(3.7)

APPENDIX

Here we establish the asymptotic behavior

I(S) = dry n'r dpp'2[npS+m2n2+m2p2+X+ie] '
0 dp

r(1--,' l, ——,
' l )(z+2ie)' ""r'

[r(1+i,)r(1+—,
' l --,' l, )m" '2s " '-(l, l,)] +a(s 'r/2 '2/' ').

(A1)
Evaluate I(s) using the variables x= np, y= n/p. The integral over x converges for -2 & l
can be evaluated by contour integration. This leaves

~(i, + l, )(~+ ie)'r/2'""-'
4 sin —,

' rr(l, + l, )

dy yrr/2 r2/2-1 (s+ -m2y+ m2/y)-rr /2-r2/2-1
(A2)
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J converges for -1&l„-1&l„so I exists in the triangle defined by these two boundaries and l, + l, &2.
J' can be written as integrals on (0, 1) and (1, ~); the latter can be converted to (0, 1) by the substitution

y y '. Thus

( 1
J (t t ) = ' dyy'&(ys+m'+ y'm') '&/' '2/' '

0

The terms m' and y'm' are important only for y ~ m'/s. Therefore, we may drop y'm' relative to m'.
Introduce the scaling y = m'z/s:

t- s/m2

g(t t )
l --l l-~ dz l / l/ -- (1+ 1/ ) ly/--l /

0

(A3)

(A4)

Suppose ly & l2. The integral may be extended to infinity and related to a beta function. In the extra piece,
which must be subtracted off, one can expand the last factor in Eq. (A4) in powers of 1/z. The result is

(A5)

Z(t, , t, ) is analytic at t, = t, , so Eq. (A5) remains correct for t, & t, by analytic continuation. Upon add-
ing J (t, , t, ) and J'(t, , t, ), the middle term in Eq. (A5) cancels, and we are left with Eq. (A1).
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The point j=a&+a2 —1 is a sense-nonsense point, so
the conventional partial-wave amplitude has a square-
root singularity there. We have followed the convention
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representation functions. Finally, R can obviously be
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