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Calculating to a high order of approximation in the AQ model, we investigate the possible
connection between the deep Regge and deep scaling limits. A link between these limits is
provided by fixed poles, even when canonical dimension is not conserved.

I. INTRODUCTION

This is the first of two papers in which we inves-
tigate light-cone limit sequences for inclusive pro-
cesses which include a large mass. In this paper
we formulate and investigate the problem for elec-
troproduction. In the sequel, the considerations
in this paper are extended to processes which in-
volve multiparticle matrix elements of current
products. A preliminary account of some of this
work has been published elsewhere. '

The experimental data on inelastic electron-pro-
ton spattering' tend to support Bjorken's hypothe-
sis that, in the deep-inelastic region, the associ-

ated invariant inclusive structure functions exhibit
scale invariance. ' This has led to considerable
speculation regarding the structure of hadrons and
their currents. ' " Of particular interest here is
the observation that the kinematical region in
which Bjorken scaling may obtain is canonically
related to the light-cone region in configuration
space, and that scaling places stringent con-
straints on the strength of singularities permitted
in the matrix element of the current commutator,
in the neighborhood of the light cone. ' " Thus,
generalizing Wilson's hypothesis on the short-dis-
tance behavior of -operator products, "electromag-
netic scale invariance has been implemented quite
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elegantly with mass-independent operator -product
expansions along the light cone.""

The essential observation which justifies the
framework of operator-product expansions and
makes it powerful is that light-cone dominance in
the Bjorken scaling limit is equivalent to leading-
singularity dominance. There are other kinematic
routes to the light cone, however, and the possibil-
ity exists that the singularities which dominate the
scaling limit may become important in these. Many
authors have suggested that Regge behavior may be
prominent in the deep-scaling limit, ' ' " ' and

that the deep-Regge limit may become leading-
singularity-dominated. ' """" It is this ques-
tion with which we are concerned here.

We investigate here, in the laboratory of the Xp'
model, whether the deep-Regge limit is equivalent
to the deep-scaling limit. The process we consid-
er then is: electron+ scalar hadron- electron
+ anything. The inclusive cross section is given
in the one-photon-exchange approximation by"

lim = lim
v-+ oo q2(0 fixed

lim mW, (v, q') = P, (q', n)(-2v)

Limits taken in sequel to these, the deep-scaling
and deep-Regge limits, letting the value of the
fixed parameter grow indefinitely, are

lim = lim: lim,
A ~~~ A

lim= lim:lim .
q2 -~ R

Bjorken scaling means

lim(v/m) W, (v, q') = E,(~),
A

lim m W, (v, q') = E,(cu),
A

with 0 ~ E,.(e) & ~. In the R limit, the behavior is
expected to be

lim(v/m) W, (v, q') = P, (q', o,)(-2v)" ',

6' cE

dQdE' 4E' sin4( —,
'

0)

&
I W, (v, q') cos'(28) +2W, (v, q')sin'(-,'8)],

where E, F.', and Q are, respectively, the initial
and final electron laboratory energies and scatter-
ing angle, q' is the spacelike mass squared of the

exchanged photon, v=q p=m(E —E'), and p is the
momentum of the hadron. The structure functions
are given by

= (2&)'2pog&pl~ In)&nl~. I
p)&'(p+q -n)

S'2 Ir' v . p qpq, I
p„-—,q„p, ——,q„+w, —g„,+

m
& q

If we consider the amplitude for the forward cur-
rent-scalar-hadron scattering,

T„„=—i(2m)'2p, d'x e""(p IT(j„(x)Zp(0)) I p)

2 Pp —
2 qp P —

2 q„+T -gp„+

then the relation between T, and W,, is shown by
unitarity to be

1
W,. = —ImT,.(v, q') .

lim =
A

lim
v, -q ~~l m=-2v/q2 fixed

and the Regge limit as the g limit, defined as

We follow Brandt's terminology" and refer to
the Bjorken scaling limit as the A. limit, defined as

where z is the t =0 intercept of the leading con-
tributing Regge trajectory.

The explicit connection between the W, (v, q') and

their configuration-space representation has been
discussed thoroughly in the literature and we refer
there for details. "" The approach to the light
cone in both the R' and A limit is as 0 & x'& I/q2
-0. The A. limit projects the most singular com-
ponent in x' of W,.(p ~ x, x'). In the R' limit, how-

ever, we project first the leading p x behavior,
and then, taking q'- -~, the leading singula, rity in
x' of this component. If one assumes the leading
singularity in x' of W, (p ~ x, x') carries also the

leading p ~ x behavior, then these limits will be the
same. In q space this requires that

lim(v/m)W, (v, q') =P,~" ',
A'

lim mW, (v, q') = P, u)
A

lim(v/m)W, (v, q') = P,(q') ~ '(—2v)" ',

lim mW, (v, q') =P, (q') "(-2v)
R

where we have assumed canonical dimensionality
to obtain scaling. "" P, and P, are constant fac-
tors and, for boson currents, P, -O. For fermion
currents we have" P, - P, .

The question of the relevance of Regge behavior
in the A' limit for inclusive electroproduction has
been investigated in the XP' model to leading or-
ders in the ladder approximation. ' In this model

lim(-2v) W, (v, q') =C,u
A'
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In Sec. II we investigate the connection between
the B' and A' limits. We work always in q space,
and make repeated use of Mellin-transform tech-
niques. In order to obtain realistic q' dependence
in the Regge residues, P,.(q', n), it is necessary to
go beyond the leading-order approximations. We
find, in ladder theory, that when all leading contri-
butions are accounted for, the g' limit is identical
with the A. limit, inclusive of the constant coeffi-
cients C, and C,. The essential link between the
two limits is found to be the fixed poles which oc-
cur in the model. The noncanonical In(q'/p. ') term,
which has been linked" with the breakdown in the
model of the Bjorken, - Johnson, and Low theorem,
is shown to be a direct consequence in the g' lim-
it of a fixed J-plane dipole at J= -1.

We conclude in Sec. III with a further discussion
of our results.

II. THE A'AND R'LIMITS

IN ELECTROPRODUCTION

The amplitudes we retain are illustrated in Fig.
1. To leading order in q' in the A' and P' limits,
we do not need to separate the current insertions
by more than one parton line. Contact terms are
dropped altogether here, as they do not contribute
to the W, We compute the g' and A. ' limits to all
leading orders in ladder theory, and then make di-
rect comparisons.

Integral representations for the L,-rung ladder
contribution to the T,. are well known" and are giv-
en by

L L

T, =4~ e 2 dQo dA&d
+0 ' 1

(F I )2 DL/6L

n'a '
o L

Tx —2e —
2 d+o

Dz, = 2E ~ v+ (E~+Eo +Fo )q

+( &+ 4+F, )m —p'a&g~&,

where the ],. make up the set (g) of Feynman pa-
rameters n, , p„and y, . It is sufficient here to
note

and
L

F;= rr
(=0

We compute now the g limit, using the Mellin-
transform technique" to obtain the leading be-
haviors in asymptotic domains of the invariants.
Applying a Mellin transform to T, and T, with re-
spect to (—2v), to avoid the cuts coming from
multiparticle thresholds, we obtain

m (FL) /+2 Rg

T, =I"(-P) i dn d(
o o'o &I. "

T„(P,q') = I"( P)-
& o

d .(F;)'&i($ —oo)e
"'

where we have defined

0
L noSL

DL = 2vt'
1

—gLgL, gL = q -KL,

L

d$ = dn, dg' = dao H da.,dP,.dr, ,

and P is the Mellin variable conjugate to -2v. Here
and hereafter, we will drop inessential factors
such as -A/16w', etc The l.eading poles in the left
ha, lf of the p plane, at p = -3 in T, , and p = —1 in T, ,
may be exposed by integrating by parts in the rung
parameters n, This gives terms of the form
n, s"'/P+3 in T, , and n, s"/(P+I) in T, In order.
to compute the sum in all ladders of all terms of
order v ' in T, and v ' in T„ including all factors
of lnv, we employ the following device. " Write

&i($ —~.)e DL ILL

3
L

where e is the weak coupling, and ~L and DL are
the usual determinant and discriminant functions
which are obtained for scalar-scalar ladders. "
b.z, ($ —o.o) denotes the z function for the diagram
with the no rung removed. ~L satisfies the rela-
tion

&I. = o'o&1.(5 —o'o) + &~i
~ &I. = &I. l~ =o ~

0

The explicit form of DL is given by

q~
P( Ps Ps

ao aj ap ap aL j aL

'Yi Ys Ys

q~

FIG. 1. The ladder amplitude. The Feynman param-
eters n, , P;, and y» comprise the set ($).
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FIG. 2. One of the components of the vertex func-
tion C(P, 0, q2).

n ~+' n '+'-1 1i i
P+3 P+3 P+3

i

P+1 P+1 P+1

The singular part is now contained in only the sec-
ond terms on the right. In the subsequent expan-
sions of I, , only contributions with at least one
factor of these second terms will contribute to the

leading behavior. The possible insertions of a giv-
en power of these singular terms into an I.-rung
ladder contribute partial multinomial expressions
which are completed in the sum over all L, and
recognized as a power of order near L of the tra-
jectory function E(P, t) obtained by Polkinghorne. "

Now we must discuss an essential point of this
part of the analysis, namely, n, does not contrib-
ute to the Regge part of the high-energy behavior,
but contributes only fixed poles. " This is essen-
tially because the first rung, n„ is proportional
to the weak coupling, e, rather than g . As for
Tj we show in the Appendix that there is a series
of fixed J-plane dipoles starting at J= -1. Thus,
for Ty not only should we separate the n, term
which contributes to simple, multiplicative fixed-
pole behavior, we must separate off a second fixed
pole at the same point which gives a fixed dipole.
The result of summing over all L, distinguishing
fixed-pole contributions from contributions to
moving trajectories, is

T.(p, q')=c. (p, t, q')
3

E',
2

8(p+2, t)r(-p)
t=&

T,(p, q') =c,(p, t, q') 1'E t B(p, t)r( p)-
t

where 8(p, t) and E(p, t) are the same residue and trajectory functions which occur in scalar-scalar scatter
ing and

c(po q)= gc (po q)
L=o

with

8+' —1

0 j=l

c, (p, o, q') =e' d]'dp
dP, do.,dy,

oo L /+i

using the notation of the Appendix. All the functions in this representation for the C's are to be calculated
for the contracted-vertex graph illustrated in Fig. 2. A similar graph is appropriate" for the computation
of g.

The R limit is now obtained by applying the same Mellin-transform technique. It is not necessary to
first invert the T, and make explicit the ft limit, since there is a unique correspondence between p and the

pole singularities. Letting the Mellin variable conjugate to -q be 7., we apply the Mellin transform to

C,. (P, O, q') to obtain

c,'(p, o, T) = e'r(-T)
0

L /+3 ~O 7

d]'do. n ~" g ' S & 8' e
/=1 + ag

, (p, O, T)=e'r( T) -nd, nd, pd, (pe, )
"

I, 8+& g0 1
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In C, , integrating by parts in n, exposes the leading pole at w= —P —1. In C, we find a double pole at r
= -P —1. Displacing the inversion contours across these singularities, and retaining only the residues,
we obtain

lim C (p, o, q') =r(J3+1)C, (p, o)(-q')
Q ~oo

Iim C, (p, O, q')=r(p+1)C, (p, O)(-q') 8 'ln(q /q),
~+2~

where

L 8+1

L 8+3

0
p+3 0

d('
(~ "='

J d, dPdy, .
0

The noncanonical In(q'/p. ') factor is thus seen to be a direct consequence of the fixed dipole at Z= —1.
It remains now to calculate the A. ' limit in comparable approximation. The details are given largely in

Ref. 19. The A limit introduces a factor -w(sinvp), which is just r(-p)r(1+ p). Using again the device of
subtracting the singular portions in the rung parameters, the calculation is generalized to all leading or-
ders as above, and the Mellin transform with respect to co in the A. ' limit becomes

-2
T,(p, o) =C,(p, t) g(p+2, t)r(-p)r(1+ p)

fi t=0

T,(p, o) =c,(p, t)
1

"
g(p, t)r(-p)r(1+p)

where, as the notation suggests, C,(P, 0) and C, (P, 0) are the same constants, term by term in the series

c,. = g c',. (p, o),
L=l

as obtained in the g' limit. Inverting, we obtain finally'

lim(-2v)T, (v, q') =C,(o. —2, 0)g(o, ,o)r(-1+o)r(-++2)&u '+fixed-pole terms,
A(R)

lim mT, (v, q') =C,(o., o)8(o., o)r(1+o)r(-o), +fixed-pole terms.1n(q'/p')
A'(R'} q'

The scaling behavior obtained in the A. ' limit thus manifests itself fully in the p' limit, and the constant
factors are equal. More remarkable, the noncanonical factor 1n(q'/p') appears also in the It' limit, by vir-
tue of the fixed J-plane dipole.

III. DISCUSSION

The foregoing analysis suggests that perhaps a
crucial link between the A' and g' limit is afforded
by the fixed pole. It has been suggested that the
fixed pole may provide the mechanism for Bjorken
scaling. ' It is certainly true in the present model
that scaling comes in finite order of perturbation
theory from the fixed pole of the up rung. Howev-
er, if we regard Regge behavior as being built up
from parton exchanges, here taken in the ladder
approximation, there does not have to be a fixed
pole in the A, limit in the net amplitude. To ob-
tain further insight into the connection in perturba-
tion theory between fixed poles and interchangeable
A. ' and p' limits, we may recall scalar-photon
Compton scattering in ladder theory. Abarbanel,
Goldberger, and Treiman found"

lim W(q', v)- C(o.)

If we compute first the g limit, in leading order
all ladder rungs contribute to the trajectory func-
tion F(P, t) and the Regge residue C(P, q') is inde-
pendent of q'. We may include all leading logarith-
mic terms, by using Halliday's device as we did
for 8', and W2 in Sec. II. We obtain again a series
for C(P, q'), and in each term after the first we
will have q' dependence. A typical term has the
form

~+& 1
- z~(a )-

c,(p, q') =
JI d] Q

and we note the absence of the fixed pole. For such
a term the leading behavior as q'- ~ is a constant,
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and it appears that summing the series would not
alter this. Therefore, to all leading orders in p,
the A. ' and &' limits behave differently. Unless one
introduces a weak coupling, any configuration of
particle exchanges will recur in all possible ways,
and presumably will contribute finally to the Regge
trajectory function, E(p, t), giving again a constant
leading behavior in q' in C(P, q').

Thus the free-particle propagator in the np rung
may contribute to the trajectory function, or re-
main as a factor which shows up as a fixed pole in

the J plane. There does not seem to be a neces-
sary general connection between fixed poles and

interchangeable limits, however. Some additional
constraints conceivably could introduce fixed-pole

killing factors. In the absence of such extra con-
straints it seems likely, assuming partonlike ex-
changes build up Regge trajectories as in the A, p'
model, that interchangeability may obtain or not,
depending on whether or not fixed poles also ap-
pear at the first nonsense point in the current-
hadron scattering amplitude.
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APPENDIX

In this appendix we examine the J-plane structure of the spin-nonf lip amplitude 7, . It is well known that,
in the present model, T, has fixed simple poles in the J plane which enter multiplicatively with the moving
poles. " We wish now to demonstrate that T, contains multiplicative fixed dipoles, which must be distin-
guished from contributions to moving-trajectory behavior. That is, as we have discussed, it is possible
artificially to introduce multiplicative fixed poles of any order, but in T, they enter naturally. We start
from the Mellin transform with respect to (-2v) of T~:

Oo 1

T, (P, q') = e'r(-p) do.,d(' „' Q o., e
p L i=p

After the sealing transformation

o'o = p~0 & Px = pPi &

r&
= p(1 —~0 —&& —Pi)

T, becomes
O

T, (P, q') = e'r(-P)
do.,dP, dy,

where

+L +I, (+0& +1& ) 1& P& &2&

= &i(h),

&L, =P &I. ~

etc. Exposing the poles in T, (P) by integrating the o, by parts gives

P+1

or, more briefly,

T', (P, q') = (-I)"'r(-p) S.(P, q')(p+1)-'-'.

To obtain the large-p behavior we must invert this expression:

(-1)"' " "'"r( p)8. (p, q')(-2~-)'d
2vi „, ,„(P+1)"

and, keeping only the pole terms at P = -1,
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&;(~,q') = s "'[8 (P, q')&(-P)(-»)']

L+lg L+1
[K, (q', t = 0, P) (-2.)'r (o)]

where

""
d d exp( Py' —p'(P+y)ll(P+y)&

P+y
0

pl
K, (q', t, P) = e' dp dn, dP, (pn, ) "~- ~~exp[pp(1 —p, —n, )t+pn (1 —n, )q' —pp,'].

0

Because K,(q', P) does not contribute to the Regge behavior, it remains as a factor and becomes a part of
the Regge residue. To obtain the actual moving behavior we sum over all L:

K + 0

l=l

K, q', 0, F — -2v —~ g K,F — -2v
L=p

Here we immediately recognize the single and double fixed poles in addition to the moving singularity. The
Regge contribution becomes

Ii &(0)') &

T,"""=, [K,(q', 0, P)V(-P)(-») ]K„'(0) ' ' '
a=g

K (q', 0, n)r(-n)(-2v)
K„'(0)

with n(t) = -1+K(t) as usu". integrating back by parts in p and n&& we have

T," ' = C', (n(0), 0, q') r(-n(0)(-») "'"),
"hich has a singular residue at n(0) = -1.
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We offer two arguments that compositeness, with regular binding potentials, tends to
"soften" short-distance singularities, and suggest that compositeness may reconcile Bjorken
scaling with renormalizable strong interactions.

Since I agrangians with massive particles are
obviously not scale-invariant, one must formulate
specific dynamical assumptions as to why scale
invariance is nevertheless relevant in physics.
One such set of hypotheses is clearly formulated
by Wilson' as follows:

(i) It is assumed that there exists a scale-invari-
ant "skeleton theory" in which the hadrons are
massless, with a nontrivial interaction invariant
under SU(3)xSU(3). In this theory operator-prod-
uct expansions are valid for small distances:

A(2 x)B(-r x) g C, (x)O, (0),
x~0 i =1

with

C,(x)~x i "x a

where the d,.'s denote the (not necessarily canoni-
cal) scaling dimensions of the respective fields.

(ii) It is further assumed that the more realistic
situation corresponds to the addition of some scale-
noninvariant interactions, which are of the mass-
term or superrenormalizable type. Consequently
these are "soft" in the sense of giving corrections
to C,.(x) smaller by one power of x as x-0. Hence,
unless a particular C, (x) was identically zero in
the skeleton theory due to internal-symmetry se-
lection rules, the strength of its strongest singu-
larity as x-0 remains the same as in the skeleton

theory.
Such a formulation provides a clear rationale for

the relevance of scale invariance at small dis-
tances. However, as emphasized by Wilson, the
scale dimensions d,. in (i) are expected to be non-
canonical as a result of renormalization effects.
On the other hand, the experimental results on
deep-inelastic electron-nucleon scattering, up to
this time, seem to indicate the existence of fields
other than the stress-energy tensor and currents
with canonical dimensions. ' Also, the above for-
mulation is somewhat different in philosophy from
the conventional bootstrap idea, ' in the sense that
if the bootstrap solution really exists for only a
unique set of values of masses and coupling con-
stants, then the "skeleton" world must not satisfy
all the bootstrap constraints.

In this paper we wish to suggest that if the had-
rons are composites of one another, the strong in-
teraction as a whole may be somewhat "soft" in the
sense of giving rise to short-distance singularities
which are often weaker than naively expected from
perturbation calculations. We propose that this
softness of the strong interaction as a whole, rath-
er than the softness of the scale-noninvariant part,
is responsible for the visibility of some remnants
of canonical dimensionality in certain processes
such as deep-inelastic electroproduction. Thus
compositeness may be the reason why nature
seems to "read books on free field, theory, as far


