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We have made a study of interference effects between K*(890) and K*(1420) resonances and
the background as observed in the reaction K p —K m+n at 3.9- and 4.6-GeV/c incident mo-
menta, using a mass-dependent formalism which utilizes the generalized multipole moments.
From this analysis we have obtained the K*(890) and K*(1420) density-matrix elements in the
Jackson frame which satisfy the spin-1 and spin-2 positivity conditions, respectively. We
discuss the implications of the degree and the phase of the interference on the nature of the
production mechanism as well as the question of whether there exists a daughter resonance
near the K*(1420).

I. INTRODUCTION

The purpose of this paper is to study interfer-
ence effects between K*(890) and K*(1420) reso-
nances and the background. Particular emphasis
has been given to the problem of extracting den-

sity-matrix elements p, when the resonance in-
terferes with the background.

This study has been motivated by the long-stand-
ing problem' ' that one of the diagonal density-
matrix elements (i.e., p») for spin-2 resonances
such as f'(1250) or K*(1420) is found to be nega-
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tive with the conventional method of determining
the p; the probabilistic nature of the density
matrix demands, of course, that p be positive
for all m. In order to surmount this problem, we
have allowed for the resonance to interfere with
background using a formalism which takes into
account the mass dependence of each partial wave
present in a given mass region.

With this formalism, it should be possible in

principle to measure all elements of the spin-2
density matrix; however, we find that, with our
data, it is not possible to determine uniquely the

p „.for the K*(1420) resonance. Instead, we are
led to determine the experimentally allowed ranges
for each p reflecting the ambiguity in the pre-
cise amount of interference between the resonance
and background. Analysis of the forwardly pro-
duced K*(1420) events shows, however, that the
amount of interference required to describe the
data reaches the maximum allowable value and in
this case the density-matrix elements can be de-
termined uniquely. In particular, all p ~ for
which m or m' is equal to 2 are found to be zero,
indicating that spin-2 exchange is not an important
component of the K*(1420) production mechanism.

We find from analysis of both the K*(890) and
K*(1420) events that a large fraction of the forward
resonance events tends to be coherent with the S-
wave background. A likely explanation of this phe-
nomenon is that both the resonances and the S
wave arise from the same production mechanism.
Vector-meson exchange cannot be responsible for
the S-wave production, which leaves the m-ex-
change process as the only likely candidate for
production of both the S wave and the resonances.

gives approximately 2800 K*o(890) events and 1500
K~(1420) events. In Figs. 2(a) and 2(b) are dis-
played the t distribution for K*o(890) events and
the t' distribution (t' —= t —t,„) for K*o(1420) events,
respectively, obtained from fits to the w(K v') dis-
tribution for each t (or t') interval. It is seen that
both K*'s are produced via a peripheral mecha-
nism (the slopes for each energy are given in Ref.
1).

In order to assess the partial-wave content in
the K*o(890) region, we have examined the unnor-
malized Yz" moments as a function of w(K v') in
the interval between 0.7 and 1.1 GeV. (See Sec. III
for a precise definition of the moments used in the
present analysis. ) All the moments up to L =2 are
given in Figs. 3-8 (see Sec. IV) for six different t
intervals; those with L&2 are found to be consis-
tent with zero throughout the mass region. Al-
though there are some indications that the extreme
high-mass region contains some P wave not asso-
ciated with the K~(890), it can be seen that the
resonating P wave plus a smooth S-wave back-
ground can give an excellent description of the
data.

Turning to the partial-wave content in the
K*(1420) region, we find that no statistically sig-
nificant moment with L&4 exists in the w(K v') in-
terval between 1.1 and 1.7 GeV. Unnormalized
even moments (I.=0, 2, and 4) which show signif-
icant deviation from zero anywhere in this mass
interval are shown in Figs. 10-12 (see Sec. V) for
three different t' intervals. It can be seen that no
significant L = 4 moments are found outside the

K p-K*'(890)n- K x'n,

K p-K~(1420)n-K w'n.

(la)

(lb)

II. EXPERIMENTAL DATA

The data for this study come from an exposure
of K beams at 3.9 and 4.6 GeV/c in the BNI 80-
in. hydrogen bubble chamber. A systematic study
of the production and decay of K*(890) and K*(1420)
has been published elsewhere'; for our purposes,
we concentrate only on the following reactions:
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O
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Z 400—
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K P ~K 7I+I)

3.9+4.6 GeV/c

94)3 EVENTS

For this analysis, we have combined the 3.9- and
4.6-GeV/c data, since we find no essential differ-
ence between the two momenta. The sample so
obtained consists of 9430 events in the reaction
E P-E m'n.

We show in Fig. 1 the effective-mass spectrum
of the A x' [to be denoted w(K w')] for the com-
bined data. A fit to this distribution using two
Breit-Wigner shapes on a polynomial background

200—

0.6 I.O l.4
w (K 7r +) (Geg)

l.8 2.2

FIG. 1. K n+ effective-mass distribution for reaction
K p-K 7t'n.
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300 y K p K" (890)n
3.9+4.6 GeV/c

given t interval, the K m' system is completely
specified by three variables, the effective mass
and the two angles (8, y) specifying the orientation
of the K m' system, so that the differential cross
sections may be written

AJ

IOO
O
O

UJ

IJJ

IO I I (

0 0.2 0.4 0.6 0.8 I.O
-t (GeV )

d dQ=Z 4 ~A(~}~ I(l(Q)
i=1

+ 2+ e, e& Re(f, (w)fP(w)I &(Q)), (2)

Jl dw If&() I' =1.
~a

(3)

where w is the K v' effective mass and Q=(8, y)
stands for the Jackson angles of the K m' system. 4

e,' is the fraction of the s, wave in a given so inter-
val (defined by the limits w, and w, ), and

~f, (w) I'
represents the mass dependence of the s,. wave,
normalized according to

300 ~

+
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O
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K-p-K"'(I420) n

3.9+4.6 GeV/c

In Eq. (2) we have assumed that the amplitude
representing a given partial wave can befactorized
into two terms, one containing the mass depen-
dence [i.e., f,.(w)] and the other containing the in-
formation on the angular dependence. Thus, I,, (Q)
represents the angular dependence of the s, wave,
while I,.~(Q) specifies the interference between the

s, and sj waves. They may be written succinctly
by'

(D(D):Q 4 ) D'~(LM)D (D)
Lbf

i,j =1, 2, 3 (4)

I
I )

0 0.5 I .0 I.5 2.0
-t (GeV )

FIG. 2. (a) [(b)] -t [-t'] distribution for K*(890)
[K *@420)]events.

where
~ s,. —s,. ~

& L & s,. + s~ and L& M &+L. -D'„,
is the usual D function as defined in Rose' and

H&&(LM) is the "partial" moment (resulting from
the interference between spins s,. and s~) defined

by

K*(1420) region (1.3-1.5 GeV), while small but sta-
tistically significant L =2 moments persist outside
the K*(1420)region. From this observation, we
conclude that an adequate description of the data
can be achieved with a resonant D wave over a
background composed of S and P waves.

III. THEORETICAL FORMULAS

H;;(LM) = dQ1, q(Q)D~(Q)

dnr" n v"* n

[Yg(Q) is the spherical harmonic]. (5)

We shall denote by H(LM) the over-all moment
that can actually be determined experimentally:

In this section we present relevant theoretical
formulas necessary for the partial-wave analysis
of the K v' spectrum in the K*(1420) region. The
analysis of the K*(890) region involves similar but
simpler formulas.

We proceed with the hypothesis that three partial
waves of spins s„s„and s, are necessary to de-
scribe a region of the K n' spectrum. Now, for a

dH(LM) do
dw dwdQ

= Q e,' i f, (w) (('H, ,(LM)

+2 P e,.e&Re[f,.(w) fP(w)H, , (LM)] .
(8)
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Note that H, ((L.M) is by definition independent of
mass w, and the mass dependence of dH(LM)/dw
is contained in f,(w). The unnormalized experi-
mental moment, to be denoted NH(LM), is related
to the differential moment defined above via

=Z D~(fl(»

where the sum extends over all events in a given
mass bin of width Aw and N is the total number of
events in the mass interval between se, and zo, .
Note that with this definition of experimental mo-
ments the NH(00) moment simply represents the
mass spectrum.

The moments H(((LM) are normalized according

relations among the moments:

H(, (LM) = (-)eH("p((L —M),

(14)H (I.M) =( )'(--'((-)""H,(L -M).
These relations plus Eq. (10) show that the mo-
ments H, ,(LM) are real if L = even and zero if L
=odd, while the interference moments H,~(LM.)
(i aj) are complex (zero) if s, —s(+L =even (odd).

It should be noted that the moments H, ((LM.) are
not all independent; there are certain inequalities
that have to be satisfied among the H, , (LM)'s due
to the positivity conditions of the density matrix
(see Appendix A). In addition, there exist inequal-
ities for H, ((LM) for i+j that arise from the fol-
lowing relationship among the density-matrix ele-
ments:

to )p((()
~

2 ( p( (() p( /() (15)

H(((00) = 6(( (8a)

so that the angular distribution has the normaliza-
tion

The interference moments between the spins s,. =J
and s,. =0 are of particular importance for our pur-
poses. They can be parametrized by taking ad-
vantage of the inequality (15), i.e.,

dAI(((0) = O,, . (8b) H/0(jm) —r e(a~[p(z)/(2g+ 1)](/2 (16)

Combining (2) and (8), we see that the over-all
normalization of the differential cross section is
fixed by

l

dll
dwdQ

(9)

The moments H,, (LM) have the following expan-
sion in terms of the density matrix:

x(s/OLO i s,.0), (1o)

where we have used the notation (l,m, l,m, ~ l,m, )
for the Clebsch-Gordan coefficients and p~'~) are
the generalized density-matrix elements (see
Appendix A); p((„') is the usual density-matrix ele-
ment for a spin-s, . system, and p '~, for iwj rep-
resents the interference between the states

~ s,m)
and

~ s(m ). Hermiticity of the density matrix de-
mands that

p(o) poy) *
mm mm

while parity conservation in the production pro-
cess leads to the relations (valid if the quantiza-
tion axis is in the production plane)

p(i/) ( )m-np'p((() (12)

Formulas (11) and (12) in turn lead to the following

2s +y
Hq(LPI)=( Q p~ (l(; L(,dd)''

where 0&r &1 and 0&a &2m and p
~ is the diag-

onal density-matrix element for the spin-J system
(see Appendix B). Thus, r =1 (r =0) corre-
sponds to the maximum (zero) interference be-
tween the states (Zm) and ~00) .

We now present a symmetry relation which
greatly simplifies the analysis of the interference
effects. Relation (14) implies that the angular dis-
tribution given by Eq. (4) has the following sym-
metry:

I,/(v 8, v - y) = (-- )' '(I„(8, (() .
If we "symmetrize" the experimental data by the
operation (8, (p)-((( —8, s —(p), then the correspond-
ing theoretical distribution defined by

do 1 do do
dpdf! „2 d dp 'P dpdp ' )

(18)

does not contain those interference terms I„(Q)
for which s, —s~ is odd. This means, for instance,
that, if we symmetrize the experimental data in
the K'+(890) region, the corresponding angular dis-
tribution involves the squares of S- and P-wave
amplitudes but no S-P interference term. There-
fore, a system consisting of S and P waves can be
analyzed without ever explicitly knowing the inter-
ference terms. On the other hand, it is impossible
to analyze a system composed of S and D waves
without introducing the interference terms.

In Sec. IV, we shall analyze the Kd (890) region



INTERFERENCE EFFECTS OF K*(890) AND K*(1420).. . 15

without symmetrizing the data, since we have suf-
ficient statistics to accommodate the four addition-
al parameters which come from inclusion of the
S-P interference term. On the other hand, the
analysis of the K~(1420) region involves such a
large number of parameters that it was found nec-
essary to symmetrize the experimental data ac-
cording to Eq. (18); the theoretical distribution
function so obtained included the squares of the
S-, P-, and D-wave amplitudes as well as the S-D
interference term. Had we included the S-P and
P-D interference terms, we would have had to con-
tend with 16 additional parameters.

A slightly different aspect of this problem is
worth emphasizing. Insofar as the determination
of the K*(1420) density matrix is concerned, the
S-D interference term ought to be considered
"intrinsic, " for there is no way to separate it from
the D-wave angular distribution. The S-P and P-D
interference terms, on the other hand, have "odd"
symmetry [in the sense of Eq. (17)], and it is not
necessary to know them to extract the K*(1420)
density matrix.

IV. ANALYSIS OF THE E* (890) REGION

We have seen that the region of w(K v') from
0.7 to 1.1 GeV can be represented by S and P
waves. For this case the distribution function can
be written

fp(w) = 5,e'~ ~ sin6(w),

cot5(w) = (w, ' —u ')/(w, r), (21)

where c, is the normalization constant [see Eq.
(2)]. It is not necessary for our purposes to use a
more elaborate form for f~(w) such as the P wave-
Breit-Wigner formula, because it only amounts to
taking a slightly shifted mass and width for the
K~(890) and, possibly, a slightly different slope
for the $-wave background. We are now ready to
write the interference term in Eq. (19) more ex-
plicitly:

to the familiar density-matrix elements via Eq.
(10). (For explicit relations, see Appendix B.)
The S Pi-nterference term f~~(Q) depends on two
complex parameters H»(10) and H»(11). Togeth-
er with the parameter e~' [the fraction of S wave
in the w(K v') interval 0.7 to 1.1 GeV] and the
slope of f~'(w), we see that the analysis of the
K (890) region requires nine real parameters

In the analysis, the function f~(w) was assumed
real, and fe'(w) was assumed to be a straight line
whose slope was essentially determined by the rel-
ative height of the mass distributions near 0.7 and
1.1 GeV. For the function f~(w), we have used the
standard S-wave Breit-Wigner formula with the
K~(890) mass and width' set at u o =896 MeV and
I'=55 MeV, respectively, i,e.,

where

+2epee Re[fp(u)f g(w) j~e(Q)],

f, (Q) =—,1

= &e'Ifg(w) I'&, (Q)+ &&'Ifa(w) I'&p(Q)

(19)

(20a)

)
l40

O
C' loo
t-
Z
LLj

5-
OJ

-5—

I

(6)

and

I (0)= 1 r H (2M)B (Dl],
Af= 0

(20b)

I~e(Q) =4 g H~~(1M)B„'(Q),
kf= 0

(20c)

Buz(Q) = (2 —6~)(2L+ 1)d~z(6) cosMy (20d)

20

40-
o 30

20
z l0

0

0
+ -l0Z

-20—

40—
30—

4 '+T+

(e)

See Berman and Jacob' for explicit formulas for
d~». . Note that we have simplified the notations of
Sec III by writin. g I~(Q) or H~(LM) for I«(Q) or
H„(LM). Formula (19), when integrated over w in
the resonance region, reduces to the familiar form
of the S-P wave angular distributions applicable to
J = 1 resonance decay s

Equation (20b) shows that the square of the P
wave amplitude involves three real parameters
H~(20), H~(21), and H~(22), which may be related

0
M -

l 0
-20 (c)

c& 20
r l0

0
-

I 0—
0.7 0.9

w( K ~+) (GeV)

I

09 l. l

w(K vr') (GeV)

0.7

FIG. 3. (a)-(f) NH(LM) moments in the K*(890) region
for -t & 0.05 GeV2. The solid curves are the results of
the best fit. The dotted line in (a) represents the level
of the 8-wave background.
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the S-wave background. In other words, the mech-
anism involved in the K*(890) production is also
responsible for the S-wave production.

The values of the density-matrix elements p~,
p, „and Rep» found in this analysis are consis-
tent with those obtained earlier. ' The improve-
ments in the present analysis are: (a} mass-de-
pendent distribution has been used; (b) the S-wave
fraction is a parameter in the fit, so that one is
able to determine directly the elements p~ and p]g
instead of the combination p«-p», (c} one deter-
mines qualitatively the "degree of coherence" ro
and r„and (d) one obtains the phase of the inter-
ference no and a

I.O—

0.7 0.9
w(K ~+) (GeV)

I.I 0.7 0.9

w(K 7r+) (GeV)

0.8 ~~

P
0.6—

000 4
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FIG. 8. (a)-(f) Same as Fig. 3 but for 0.6&-t&1.0
GeV'.

0.2—

ence parameters set to zero; third, the interfer-
ence term was added to the fit; fourth and finally,
all nine parameters were varied simultaneously.
We have found that the fourth step is not in fact
necessary; the parameters remained within 1
standard deviation of those found at the third stage.

The results of the fit are compared with the un-
normalized moments NH(LM) defined by Eq. (7).
For each of six t intervals, we have plotted
NH(LM) for L up to 2 in Figs. 3-8, and the fitted
distributions are shown as solid curves in each of
these figures. It can be seen that the fits are good
in all the t regions. A small but systematic de-
viation in some NH(LM) in the high-mass region
indicates that there may exist a small nonresonant
P-wave background in this mass region. The dot-
ted line shown in each of the mass spectra repre-
sents the amount of the S wave found in the fit.

In all the fits, the positivity conditions on the
K*(890) density matrix [see (A14)] have been im-
posed. In addition, the upper limits on the inter-
ference density-matrix elements have been taken
into account by requiring r ~1 [see Ref. 20 for
comments on possible additional constraintsj. Fit-
ted values for r and a as well as the density-
matrix elements evaluated in the Jackson frame
are shown in Fig. 9 and Table I as a function of t.

We observe a large value of p«(-0. 8) at small
-t, which indicates that the pion exchange is an
important component in the K*(890) production pro-
cess in our data. ' As can be seen, ro is also
large at small f(ro~ 95%), which means t-hat the
P wave in the state

I 10) tends to be coherent with
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FIG. 9. (a)-(g) K*(890) density-matrix elements and
interference parameters (ro, no, ~&, n~) in the Jackson
frame as a function of momentum transfer squared (-t ).
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TABLE I. K* (890) density-matrix elements (Jackson frame) in reaction K p K* (890)m.

K*o(890)
~t~ (Gevt) Events' events' ~oo Re@go f p Ap

0.0 -0.05
0.05-0.1
0.1 —0.2
0.2 -0.4
0.4 -0.6
0.6 -1.0

858
655
812
748
359
282

581+ 22
458+ 19
578+ 21
620+ 18
288+ 14
231+ 11

0.78+ 0.03
0 ~ 75+ 0.03
0.67+ 0.03
0.48+ 0.03
0.31+ 0.05
0.2 7+ 0.05

0.03+ 0.02
0.02 + 0.02
0.08+ 0.02
0.14+ 0.03
0.16+ 0 ~ 04
0.25+ 0.04

-0413+ 0.02
-0016+ 0.02
—0010+ 0.02
—0.08+ 0.02
-0.03+ 0.03
—0.03+ 0.03

0.95+ 0.10
0.98+ 0.12
0.98+ 0.12
0.79+ 0.18
0.54+ 0.20
0.10+ 0.22

-1.00 + 0.08
-1.15+ 0.08
-1.16+0.07
-0.98+ 0.15
-0.51+ 0.44

0.04+ 3.10

0.64+ 0.12
0.66+ 0,12
0.52+ 0.12
0.37+ 0.12
0.44+ 0.16
0.23+ 0.18

2.18+ 0.18
2019+ 0.16
2.04+ 0.18
2.35+ 0.31
1.18+ 0.26
1.97+ 0.54

'Events in the region 0.7 ~ u tK 7(') & 1.l GeV.

V. ANALYSIS OF THE E* (1420}REGION

As pointed out in Sec. II, the w(K w+} region be-
tween 1.1 and 1.7 GeV can be described by a reso-
nating D wave plus a background composed of S
and P waves. It can be shown by using formulas
(2) and (4) that, in addition to the parameters re-
lated to the mass spectrum, a complete analysis
of the K n' system involves a total of 33 param-
eters. In order to reduce this number to a more
manageable level, we have symmetrized both the
experimental data" and the distribution function
by the prescription (18):

= s, ')f,(w) )'I, (Q)+ sp'If~(w) I'I~(Q)
sym

+ en'~ fn(w) ~'ln(Q)

+2snes Ref fn(w) f s2'(w)I»(Q)], (23)

where Is and I~ are given by (20a} and (20b), a,nd

2 4
I (0) —( ~ rH (2M)B= (0) ~ rH '„(4M)B„'(0)),

%=0 M=0

(24a)

Ins(Q) =
4 Q Hns(2 M)Bss(Q) .

Af= 0
(24b)

dH(4 M) = en' Ifn(w) I 'Hn(4 M), (25a)

B„(Q) is the same as that given in Eq. (20d).
Equation (24a) shows that the D wave angular-

distribution depends on eight real parameters
Hn(2M) and Hn(4M). These are related to the
eight density-matrix elements p as shown in
Appendix B. On the other hand, Eq. (24b), which
describes the S-D interference effect, depends on
three complex parameters H»(2M). Together
with the three real parameters required to de-
scribe I0(Q), a total of 17 real parameters are
needed to describe the angular distributions of
Eq. (23).

We now explicitly write the experimental mo-
ments in terms of the partial moments Ha(LM}.
From Eq. (6), we obtain

= s,'(y, (w) ()'H, (2M)+ sn') f,(w) I'Hn (2M)

+ 2enes Re[ fn(w) fg(w}H»(2 M}]

= e~'f ~'(w}H~(2 M) + en'50' sin'5(w)Hn(2 M)

+ snss fs(w)5, sin5(w)[pitons)]
"'

&5
'''

x r „cos[n „+5(w)], (25b)

where we have assumed that fs(w) and f~(w) are
real and fn(w) has the same Breit-Wigner form a,s
that given in Eq. 21. The interference moments
Hns(2M) have been reexpressed using formula (16).

It can be seen from Eq. (25a) that Hn(4M) can be
uniquely determined, once en and fn(w) are known.
However, the experimental moment H(2M) has
contributions from three different sources:
Hn(2M) from the resonant D wave, H~(2M) from
the P-wave background, and H»(2 M) from the
S-D interference.

Assuming that the P-wave background has
smooth mass dependence throughout the K*(1420}
region, we can uniquely determine H~(2M) by ob-
serving the behavior of dH(2M)/dw outside the
K*(1420) region.

However, it is not always possible to distinguish
Hn(2M) from Hns(2M). As can be seen in formula
(25b), if o.„is near +—,'w, the mass dependence of
the S-D interference term can behave like the reso-
nance term

~ fn(w) ~0 [this is true as long as fs(w)
does not have violent mass-dependence near the
resonance]. In this particular case, one can only
determine the ranges for Hn(2M)'s (and conse-
quently the ranges for p,). This is precisely what
happens with our present experimental data. The
most prominent moment in our data, the NH(20)
moment, has a mass dependence of the Breit-Wig-
ner shape with mass and width very nearly those
found in the mass spectrum. Because of this, we
find experimentally that no is near +—,'m, and we
are led to determine only the ranges for Hn(2M}'s.

For the mass dependence of the resonance, we
have used the S-wave Breit-Wigner shape with the
K*(1420) parameters' fixed at w0=1420 MeV and
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I'=120 MeV. [See Eq. (21).] We have chosen to
parametrize the background mass dependence by
three straight lines, and the resulting fits are
shown in Figs. 10, 11, and 12. It should be pointed
out that this procedure is nearly as good as a
smooth polynomial fit to the background; it can be
seen in Fig. 10(a), for instance, that the straight
lines approximate well the curve with open circles,
which has been obtained by fitting the background
to a polynomial shape.

The normalized mass dependence of the back-
ground, to be denoted by f~'(w), is related to those
of the S and P waves via

150—

o 100

I-
~ 50)
LLJ

(e~ + ep )fe (K) = eg fg (w) + ep fp (lU), (26)

) 150

~ 100
I—
Z

50

where fa, f~, and f~ are assumed real. Experi-
mentally, we find that the only significant back-
ground moment is NH(20). Making the simple as-
sumption that the P wav-e mass dependence, f~(w),
can be approximated by a straight line, we have
determined its slope by examining the NH(20) mo-
ment outside the K*(1420) region. The S-wave
mass dependence can then be fixed through Eq.
(26), once fe(w) and f~(w) have been determined.

From this discussion, we see that there are a
total of six parameters related to the mass spec-
trum, i.e., three slopes for fe'(w), one slope for
f~'(w), e~', and e~'. Together with the 1'I param-
eters required to describe the angular distribution,
the analysis of the K*(1420) region involves a to-
tal of 23 parameters. As was the case for the
K*(890) analysis, we have used the maximum-
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O
CU—40—
Z.'

20

(b)
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10—
N 0 ~

ITz lo
-20—

a I I 3- I
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I I

+~. , IIi+.
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I.IO 1.25 1.40

(e)
. I~+%++

I

l.55 I.70
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FIG. 10. (a)-(e) NH(LM) moments in the K*(1420) re-
gion for -t'& 0.1 GeV . The solid curves are the results
of the best fit. The solid lines (dotted line) represent
the background level (P-wave level). The curve with
open circles represents an alternative polynomial fit to
the background.

I
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FIG. 11. (a)-(d) Same as Fig. 10 but for 0.1 &-t&0.5
GeV .
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likelihood method' to determine these parameters.
The fitting procedure involved seven distinct
stages, as follows:

(1) Determine the K*(1420) fraction eD' and the
shape of the background spectrum fs'(jj)).

(2) With the 3 Din-terference terms fixed at
zero, determine the slope of f~'(w}, the P wave-

fraction e~', and the values of Hp(2M), HD(2M),
and H~(4M). This procedure leads to a value of
p~~, which is significantly negative for all t' inter-
vals [see Table III(a), below), "demonstrating the
need for S-D interference effects. In subsequent
stages, we fix the P-wave parameters as found at
this stage and introduce the interference terms
H~~(2M) in the fit to obtain the limiting values of
H, (2 M).

(3) In order to obtain the maximum value of
HD(20), we set pj~ j =0 and vary (j.o (starting value
= --,' v) and r, of H»(20). Note that in this case
Hn(20} is related to Hn(40) [see formula (B5)], i.e.,

H (20) =-', [1+-,'H (40)]. (27)

(4) Set r =1 and vary Hn(20} and o.o (starting
value = --,' v) to maximize the likelihood; this pro-
cedure gives the minimum HD(20) and leads to a
positive value for p~~, .

(5) As can be seen in Figs. 10-12, the moments
H(21) and H(22} are sma. ll throughout the A*(1420}
region. There is the possibility that this situation
arises from cancellation of a la.rge positive (nega-
tive) Hn(2M) moment with equally large negative
(positive) H»(2M) moment. Therefore, the limit-
ing values of H~(21) or H~(22) have been obtained
by setting r, =r, = 1 and by varying HD(21), HD(22),
and the phases o., and z, . This procedure leads to
a maximum or minimum value of HD(2M) depending
on whether the starting value of n„has been set at

1 I+—,m or --, n.

(6) Investigate the uniqueness of fit by varying
different sets of parameters, e.g. , minimum
HD(21) with maximum HD(22), etc.

(7) If the limiting values of HD(2M) together with

HD(4M) are used to obtain the corresponding limit-
ing values of p ~,, it is found that the full spin-2
positivity conditions of Eqs. (A23) to (A28) a,re
grossly violated, even though p„ is non-negative.
In order to avoid this problem, we have progres-
sively reduced the ranges of H~(2M) until the posi-
tivity conditions can be satisfied. The quoted ex-
perimental ranges for p( „', in Tables III(b} and
III(c) below have been obtained in this manner.

In all the fits, we have imposed the spin-1 posi-
tivity conditions (A14) on the P wave ba.ckgr-ound
moments Hp(2M). It should be noted that the pa-
rameters e~', e~', and H~(2M) can be uniquely
determined as long as the mass spectra f~'(j()) and
f~'(j()) are significantly different. If this is not the
case, one can only determine the combination
e~'H~(2M). This can be seen by writing down the
angular distribution functions for the case f, '(j())
=f~'(w} from Eq. (23); the background angular dis-
tribution is then proportional to

e~'I~(0)+ e~'fp(Q)

-IO

10—
O

0 . + j~+ ~~+4+ '

-lO (

1.10 1.25

w (K w+) (GeV)

l.?0

FIG. 12. (a)-(d) Same as Fig. 10 but for 0.5&-t&2.0
GeV~

(28)
We find experimentally that, for the first two t'

intervals, fz'(w) and fp'(w) have sufficiently differ-
ent shapes so that it is possible to determine
uniquely e~' and H~(2M). On the other hand, for
the third t' interval the likelihood function turns
out to be relatively flat when plotted as a function
of c~'. We have chosen the minimum value of 6~'
for which one obtains a good fit to the data. This
value corresponds to the maximum amount of S
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TABLE II. Fitted moment for three regions of ~t'(.

(s) lt'I» O.t Gev'.

Events'
K*(1420) events'
6g
P

Hp(20)
Hp(21)
Hp {22)

Hg) (20)
rp
Qp

Hg (21)

Hp (22)
y2

Ag

1700
530+ 51

0.31+ 0.03
0.27+ 0.02
0.39+ 0.02

-0.05+ 0.02
0.0 + 0.02

Minimum

0.24+ 0.03
1.0
4.43+ 0.12

-0.19+ 0.03
1.0
4.46+ 0.18
0.0 + 0.02
0.0
0.0

Hg(40)
Hg (41)
Hg) (42)
Hg) {43)
Hg (44)

0.24+ 0.01
0.97+ 0.12
4.43+ 0 ~ 12
0.15+ 0.03
1.0
1.33+ 0.18
0.0 +0.02
0.0
0.0

0.14+ 0.04
-0.02+ 0.03
—0.01+ DA) 2

0.0 + 0.02
O.D + 0.04

Ne interference

0.58+ 0.04
0.0
0.0

-0.04+ 0.02
0.0
0.0
0.0 +0.02
0.0
0.0

(bi 0.1~ ~t'I ~ 0.5 GeVt.

Events'
K*(1420) events'
Cg)

2

Ep 2

Hp {20)
Hp(21)
Hp(22)

Hg (20)
rp
Ap

Hg) (21)
rf
Ag

Hg) (22)
r2
Ap

1518
703+ 45

0.46+ 0.03
0.19+0.02
0.31+0.03

-0.17+ 0.02
0.04+ 0.02

Minimum

0.20+ 0.02
1.0
4.49+ 0.12

-0,18+ 0.02
1.0
4.30+ 0.14

-0.07+ 0.02
1.0
4.51~ 0.32

Hg (40)
Hg) (41)
Hg) (42)
H~(43)
Hg (44)

Maximum

0.23+ 0.01
0.88 + 0.22
4.53+ 0.12
0.16+ 0.02
1.0
1.77+ 0.14
0.06+ 0.02
1.0
1.56+ 0.30

0.10+ 0.02
0.01+ 0.02

-0.02+ 0.02
—0.01+ 0.02

0.0 + 0.02

No interference

0.49+ 0.04
0.0
0.0

-0.02 + 0.02
0.0
0.0
0.0 +0.02
0.0
0.0

(o) O.5 (t'[~ Z.O GeV'.

Events'
K*(1420) events'
Cg
E'p 2

Hp(20)
Hp (21)
Hp (22)

Hg (20)
rp
Gp

Hg (21)
ri
Ag

Hg (22)
r2
tXp

859
206+ 43
0.24+ 0.05
0.21+ 0.08
0.19+ 0.03

-0.20+ 0.09
0.09+ 0.03

Minimum

0.02 + Q.Q4

1.0
4.53+ 0.16

—0.47+ O.Q7

1.0
4,51+ Q. Q9

-0.37+ 0.03
1.0
4.61+ 0.10

H~ (40)
Hp (41)
Hg (42)
H~(43)
Hp (44)

Maximum

0.20+ 0.02
0.39+ 0.22
4.38+ 0.31
0.31+ 0.04
1.0
1.71+ 0.09
0.34* 0.03
1.0
1.75+ 0.10

0.0 + 0.08
—0.05+ 0.05

0.01+ 0.03
-0.05~ Q.04

0.01+ 0.02

No interference

0.38+ 0.05
Q.Q

0.0
—0.13+ Q.04

Q.Q

Q.Q

-0.01+ 0.03
0.0
0.0

Events in the region 1.1» u (K ~')» 1.7 GeV.
To determine this moment, we have set r&

—-0, since p&&= 0. (See text for further discussion. )
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FIG. 13. (a)-(i) K*(1420) density-matrix elements in
the Jackson frame as a function of momentum transfer
squared (-t). The vertical bars represent the experi-
mentally allowed ranges.

wave and leads to bigger experimental ranges for
H (2M}.

In Figs. 10-12 are plotted those unnormalized
even moments with significant deviation from zero
anywhere in the w(K s+) region between 1.1 and
1.7 QeV, and the results of the fits are shown as
solid curves in these figures. The fitted values
for cr', eo', H~(2M), Hs(LM), r„, and n„are
given in Tables II(a), II(b), and II(c). The solid
(dotted) lines in the mass spectra represent the
fitted background (P-wave) shape. It can be seen
that the fitted curves describe well the experimen-
tal moments. The NH(40} moment for the third t'
interval [Fig. 12(d)] shows a break near the
K*(1420) mass, and the best fit in this case turns
out to be H~(40) =0; the large error quoted for this
value [see Table II(c)] reflects a poor fit to this
moment.

The most prominentexperimental feature is
clearly the NH(20) moments for all f' intervals.
They peak at the K*(1420) mass and have the Breit-
Wigner shape. W'hat the present analysis shows is
that the peaks are "too big" for the number of
K*(1420) events found in the mass spectra and that
a considerable amount of S-D interference effects
is necessary in order to obtain physical values

for the density-matrix elements.
In this connection it is of particular importance

to note that for the first t' interval (~t'~ &0.1 GeV'}
the minimum amount of interference necessary to
satisfy the positivity conditions (i.e., p~t~s' = 0) ap-
proaches the maximum allowable interference
(i.e., r, = 1 00/o). This means that for this case one
is able to determine uniquely all the elements of
the K*(1420) density matrix, the first obvious one
being that p~(, '=0. The fact that p,', ) =0 impli. es
that, as shown in Appendix A, all p, =O if m or
m' is equal to 2. In particular, Rep„and Rep~(~
are both zero, so that H~(21) and HD(22) are now
proportional to HD(41) and Hs(42) [see (B5)] which
can be determined uniquely from the experimental
data.

That p„ is equal to zero has further implica-
tions: It implies that the interference moment
H»(22) should be identically zero [see Eq. (16)]
and that H»(21) is proportional to p[OD' [see Eq.
(B14)]:

5' 00
(gp)HDS(21 ) =

[5 ~D)] I/2 pzO
poo

(29)

This relation shows that one can determine in this
case not only the real part of p~(~ but the imagi-
nary part as well. Therefore, with the assump-
tions of the maximum S-D interference, every sin-
gle element (real as well as imaginary parts) of
the K*(1420) density matrix can be determined.

In Table III(a) are given two sets of density-ma-
trix elements for the first t' interval: one with
the maximum S-D interference and the other with
zero interference. Again, we note that without the
interference term the value of p„ is negative by
many standard deviations. With p~(, ' =0, the spin-
2 positivity conditions reduce to the spin-1 condi-
tions; it can be easily checked that the quoted den-
sity-matrix elements satisfy these conditions.

Inspection of Tables II(b) and II(c) shows that the
amount of interference required to achieve p„=O
is less than 100Vo for the next two t' intervals. We
give in Tables III(b) and III(c) the ranges for the
density-matrix elements for which it is possible
to satisfy the spin-2 positivity conditions. Note
that the elements Rep, , and p, , have unique val-
ues, since they are proportional to Hs(43) and
Ho(44}, which were determined uniquely in this
analysis.

We display in Fig. 13 the elements of the
K*(1420) density matrix as a function of t' We.
see that the elements p „ for which either m or
m' is 2, are consistent with zero, whereas the ele-
ment poo is large, especially in the low t' regions.
This observation suggests that the m-exchange con-
tribution is important for the K*(1420) production
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TABLE III. E* (1420) density-matrix elements
(Jackson frame) for three regions of lt'I

(a) (t'( ~ 0.1 GeV .
Maximum

interference
No

interference

poo
Repro
Impao

Rep»
Rep p(
Rep2

0.0 + 0.05
0.16+ 0.06
0,68+ 0.07

-0.04+ 0.06
0.0 + 0.05
0.03+ 0.06
0.0 + 0.03
0.0 + 0.04
0.0 + 0.03
0.0 ~0.04

—0.34+ 0.05
0.32+ 0.06
1.03+ 0.07

-0.05+ 0.06

0.02+ 0.06
-0.01+ 0.03
—0.04 + 0.04

0.0 +0.03
0.0 + 0.04

(b) 0.1& /t'/ & 0.5 GeV'.

0.0
0.19+
0.58+

-0.07+
-0.04+
-0.08 +
-0.05+

0.02 ~
0.03—
0.02 ~
0.02 ~
0.02 ~
0.02 ~

pop
Rep gp

Rep 2o

Rep„
Rep2 &

——

0.03+ 0.01
0.20+ 0.02
0.60+ 0.03
0.10+ 0.02
0.12+ 0.02
0.05+ 0.02
0.05+ 0.02
0,02+ 0.02
0.0 + 0.02

(c) 0.5~ (t'(» 2.0 GeV'.

0.05+ 0.05 ~
0.21+ 0.09—
0.22+ 0.15 ~

-0.23+ 0.10 ~
-0.24+ 0.07—
-0.15+ 0.05 ~
-0.13+ 0.09~

poo
Repro

Rep 2p

Rep 2&

Rep2

0.19+ 0.04
0.30+ 0.05
0.40+ 0.17
0.06+ 0.09
0.24+ 0.07
0.15+ 0.05
0.17+ 0.06
0.08+ 0.06
0.02+ 0.06

'Because p22 =0, the imaginary part of this density-
matrix element should be zero as well.

VI. CONCLUSIONS

In this paper we have shown how to analyze the
decay of a resonance into two pseudoscalar mesons
in the presence of background interference. For
this purpose, we have introduced the concept of
interference moments, which may be viewed as a
generalization of the familiar multipole moments
describing the resonance decays. " From the study
of the symmetry relations for these interference
moments, we have shown that the interference of

in our data. The m-exchange process is also a nat-
ural candidate for the S-wave production. That
both the S and D waves result from the same pro-
duction mechanism may explain why the two waves
are so strongly coherent.

S-wave background with a spin-1 resonance may
be ignored by considering the symmetrized angu-
lar distributions. On the other hand, the interfer-
ence of a spin-2 resonance with S-wave background
is inseparable from the angular distributions of the
resonance alone, so that inclusion in the analysis
of the interference effect is essential for the deter-
mination of the density-matrix elements.

The fundamental. assumption we have made in our
analysis is that the background partial waves have
smooth mass dependence through the resonance
region. This enables us to write down the mass-
dependent angular distributions, from which we
extract the resonance moments. For the case of
the spin-2 resonance, however, we have found that
certain moments have contributions not only from
the resonance but also from the S-D interference
effect whose mass dependence appears very much
like the K*(1420) Breit-Wigner shape. Because of
this, we are led to determine only the lower and
upper limits for some of the resonance moments.

For the K*c(890) analysis, we have assumed that
the P-wave resonance rides on an S -wave back-
ground whose mass dependence is linear in the
mass region between 0.7 and 1.1 GeV. A system
consisting of S and P waves is a relatively simple
one. We have, therefore, determined not only the
resonance moments but also the interference mo-
ments.

For the K~(1420) ana, lysis, we have assumed
that the mass region between 1.1 and 1.7 GeV con-
sists of a D-wave resonance and S- and P-wave
backgrounds with the P wave having linear mass
dependence. With the data properly symmetrized,
it is necessary to consider only the even moments.
This means that, of the interference moments,
only the S-D interference terms need be consid-
ered, and one may ignore the S-P and P-D inter-
ference terms. '4 We find that, when the data are
so analyzed, the interference effect between the
spin-2 state

~ 20) and the S-wave background is so
strong that it nearly reaches its maximum allow-
able value in the small t' region (~t'~ ~ 0.1 GeV').
This situation can arise only if the production am-
plitude of the K*(1420) in the state ~20) is the
same, except for a proportionality constant, as
that of the S-wave background for each combination
of the initial and final nucleon helicities. A simple
explanation for this may be that the same produc-
tion mechanism is involved in both the D-wave res-
onance and the S-wave background. Coupled with
the observation that the density-matrix element
p,o is large for small d' regions, the m-exchange
mechanism seems a natural candidate for produc-
ing the strong interference effect.

There has been some interest as to whether
there exist daughter states under the K"(890) or
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K*(1420}resonances. What the present analysis
shows is that S-wave daughter states are not re-
quired to obtain a good description of our data.
This does not mean, however, that daughter states
cannot exist in our data. This question can only be
answered from a full Km phase-shift analysis, a
field altogether different from that to which we ad-
dress ourselves here. We feel. that the current
theoretical understanding of exchange processes,
including absorptive effects, is not reliable enough
for us to perform a meaningful Km phase-shift
analysis.

Firestone et a/. "have claimed evidence for the
existence of an S-wave resonance of slightly dif-
ferent mass near the K*(1420) peak. Their con-
clusions have been arrived at by examining the
mass spectra with different cuts on the Jackson
angular distribution. We point out that the identi-
cal angular-distribution cuts on our data do not
show a shift in the value of the K~(1420) mass, in
contrast to the observations of Firestone et al."
Translated into our language, this is due to the
fact that the interference phase (ro is near +w/2 in
our data. However, it is easy to see that, if e„is
different from +v/2, the S Dinter-ference effect
can cause a considerable shift in the resonance
peak if the angular cut is made. We therefore con-
clude that it is not possible to ascertain existence
of a nearby resonance by making cuts on the decay
angular distribution of a resonance.
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APPENDIX A

We present here the definition of the generalized
density matrix in terms of the production ampli-
tudes and exhibit the inequalities that have to be
satisfied by the density-matrix elements. In addi-
tion, we give explicitly the spin-1 and spin-2 posi-
tivity conditions for density matrices evaluated in
the Jackson frame (or in any frame with z axis in
the production plane}.

Let A('„be the production amplitude for a parti-
cle of spin s, in the state

I s,m) and let p stand for
all other spin indices that are necessary to fully
specify the amplitude, e.g. , the initial and the fi-
nal nucleon helicities in reaction (1). Then, the

generalized density-matrix elements for spins s,.
and s& may be written

()p, =+A „A,„. (A1)

If the two particles represented by spins s, and s~

are different, (Al) measures the interference be-
tween the states I s,m) and

I szm'), whereas if the
two particles are identical, it reduces to the defi-
nition of the familiar trace-one Hermitian density-
matrix element for spin s, " The generalized
Hermiticity takes the form, from this definition,

(&f) (f&)+
~mm =~m m ~ (A2)

It is easy to show by considering a reflection
through the production plane" that, if parity is
conserved in the production process, the density-
matrix elements (Al) satisfy, in addition,

p((J) 0 )) ( )s& sg( )nl -m p((J) (A3)

This shows that the interference density-matrix
elements are bounded by the diagonal density-ma-
trix elements of the particles s, and s~. The in-
equality (A4} applies as well to the ordinary den-
sity-matrix elements, i.e., to the case i =j. In
this case, the inequality implies that the off-diag-
onal density-matrix elements have upper bounds
given by the diagonal elements:

(«)I2 ~ («) («)
Ipmm' I pmm pea'm' ' (A5)

It should be noted, however, that the full positivity
conditions give in general more stringent condi-
tions than those provided by (A5), with one excep-
tion: From (AS} and (A5) for m' = -m, one obtains

(A6)

It will be shown below that (A6) forms a part of the
set of positivity conditions for spin-1 and spin-2
density matrices.

Let us now turn to a discussion of the positivity
conditions. Ordinary density-matrix elements are
Hermitian, so that the density matrix can be diag-
onalized by a unitary transformation. The positiv-
ity conditions result from, the fact that the proba-

where )), ()i&) stands for the intrinsic parity of the
particle with spin s, (s&). Note that if the two par-
ticles are identical, (A3) reduces to the familiar
symmetry relation for ordinary density-matrix
elements.

We now derive an important inequality for the
density-matrix elements (Al) which limits the size
of the interference density-matrix elements. Note
that the right-hand side of (Al) may be considered
a scalar product of two complex vectors; by apply-
ing the Schwarz inequality, one then obtains

(A4}
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bilistic nature of the density matrix demands that
its eigenvalues be non-negative. The general pre-
scription for deriving the positivity conditions
is well known; one solves for the eigenvalues of
the density matrix and requires that they be non-
negative.

Owing to parity conservation in the production
process, not all elements of the density matrix
are independent, and the characteristic polynomial
becomes a product of two polynomials. Thus, for
the case of the spin-1 density matrix, the charac-
teristic polynomial of order three breaks up into
two polynomials of order one and two. Similarly,
the fifth-order characteristic polynomial of spin
2 becomes a product of second- and third-order
polynomials.

Our aim here is not so much to give a general
treatment of the positivity conditions as to exhibit
clearly the spin-2 positivity conditions evaluated in
the Jackson frame. To this end, we first treat the-

case of the spin-1 density matrix, since that of spin
2 can be handled in the same fashion, albeit with
more complex algebra.

1. Spin-1 Density Matrix

Let us first start with the spin-1 density matrix
evaluated in the Jackson frame:

Pll P10 Pl 1

P 10 POO P10

1 1 P10 Pll

By suitable adjustments of the rows and columns
the characteristic polynomial

f~& 0, k=0, n. (A12)

Applying this rule (the Descartes rule of signs")
to (A8) and (A9), we obtain

a~O,

b+e& 0,
&e -

I p I',
(A13)

which may be written succinctly in terms of the
density-matrix elements as follows:

p (c„-p, ,)-2lp, .l' (A14)

2. Spin-2 Density Matrix

We start with a spin-2 density matrix evaluated
in the Jackson frame and follow the steps outlined
in the spin-1 section. The fifth-order character-
istic polynomial breaks up into two separate poly-
nomials as follows:

The inequalities (A14) then represent the full
positivity conditions for the spin-1 density matrix
evaluated in any frame in which the quantization
axis lies in the production plane. If a resonance
decays into two pseudoscalars, it is not possible
to measure the imaginary parts of the density-ma-
trix elements. For the case of a spin-1 resonance,
this means that Imp10 cannot be measured and the
positivity conditions (A14) should be modified by
replacing the absolute value of p» by its real part.
As we shall see, the problem of projecting the
positivity conditions into the space of measured
variables becomes nontrivial in the case of the
spin-2 density matrix.

h(A. )
—= det(A, I- p) = 0 (A7)

can be factorized into two polynomials as follows: =0 ) (A15)
A. —a=O,

e *pv/2

v2p

(A8}

(A9)

X —e p*/v2 -q+/W2

=0 (A16)

where A, stands for the eigenvalue and

a =pll+ pl

Pll Pl -1 &

e:p00

P =~~p„.
If we write a polynomial of order n in A. as

(A10)

where

A. —c

a=pll+Pl -1 =Pll Pl 1

c=p»+

u=p»+p, » v=p» —p, »
e=p, P =W2p„, q=&2p

(A17)

n, (z) =p (-}'f,z" ', f, =1
h=o

the necessary and sufficient condition that the
roots are non-negative is

(A11)
Note that p, q, u, and v are in general complex,
while-all other variables are real.

Applying the Descartes rule of signs to the poly-
nomials (A15) and (A16) and separating out the un-
measured from the measured variables, one ob-



26 AGUILAR-BENITEZ, CHUNG, AND EISNER

tains for the spin-2 positivity conditions

f 0, f -4, f -0, f o4, f o-@', (A18)

where

f, =a+d,

f, =ad —us',

f~=b+c+e,

f, = be —pe'+ c(b + e) —q„' —vs',

f, = c(be —Pe') —bqe' —eve'+ 2Peqsv
2

Qi

4'2 —pi + qr + VI

4 3 Cpl + bqr' + evr' —2vzpI qi

—2pRqI VI+ 2qR PI VI '

(A19)

Here subscripts R and I denote the real and imagi-
nary parts.

We see that f, to f, are measurable, whereas C „
4 „and 4, involve unmeasured variables. How-
ever, the minima of these functions can be calcu-
lated to give

C, i
. =C, f,=o,

= afar,

V = min(0, X„X., X ],
(A20)

x' -f,x'+f.x -fs = o (A21)

Combining (A20) with (A18), one obtains a set of
constraints on the measured parts of the spin-2
density-matrix elements, which result from the
positivity conditions. This is the form given in the
paper by Bassompierre et al. '

However, one can go further than this. Note
first that (A18) and (A20) imply that f, and f, have
to be positive. If f, is negative, it can be shown
that p, is also negative, but its value is such that

in contradiction to the Eqs. (A18}. From this argu-
ment, one sees that the full positivity conditions
impose on the measured variables the following
constraints':

f )0, i=i, 5 (A22)

which can be rearranged to give the following set
of inequalities:

b- PR'

(A23}

(A24}

(A25)

where g» X» and X, are the three roots of the equa-
tion

ad) u„',

be —p„'+ c(b+ e) ) q„'+ v„',

c(be —ps') - bqe'+ eve' — p„qev„.

(A26)

(A27)

(A28)

APPENDIX B

It is the main purpose of this Appendix to exhib-
it explicitly the relationship between the moments
and the density-matrix elements for spins 1 and 2.
Our starting point is Eq. (10), which can be in-
verted to yield

The inequality (A24) is a consequence of (A27) and

(A28}; however, it is convenient to include it in the
full set of positivity conditions. Note that the first
three conditions imply that diagonal elements p~,
p», and p» are all positive (or zero). Note also
that the first two inequalities are identical in form
to the positivity conditions of the spin-1 density
matrix [see (A14)]. It can be shown that, as a con-
sequence of (A24), the inequalities (A27) and (A28)
restrict the variables q~ and v~ to lie within a cir-
cle and an ellipse, respectively, and that the major
axis of the ellipse is smaller than the radius of the
circle. These observations imply that the inequal-
ity (A27) is in general redundant. However, if
be =pe', then (A28) implies that qe and ve form a
line, while (A27) restricts the line to within a cir-
cle. Of course, the mathematical equality be =p„'
never happens in reality, and so the inequality
(A27) may be considered redundant for allpractical
purposes.

Suppose now that p„=0. We will see that this
imposes a severe constraint on the other density-
matrix elements due to the positivity conditions.
From (A25), we see that p, , =0 in this case, so
that c =d =0 [see (A17)]. This in turn implies that
ue ——0 from (A26). It can be shown that, if c =0,
(A27) and (A28) can be satisfied simultaneously
only if q„=v„=0. From this we can conclude that,
if p» =0, the positivity conditions cannot be satis-
fied unless p ~ =0 if m or m' =2. This statement
applies to the imaginary as well as to the real part
of p„., since the derivation outlined here can be
applied as well to the full complex density-matrix
elements. We note that this conclusion can be de-
rived trivially, if we go back to the definition (Al)
of the density-matrix elements. If p~" =0 for a
given m, Eq. (Al) shows that the corresponding
amplitude A, '„ itself should be zero for all p. . Con-
sequently, any density-matrix element containing
that particular m as an index must also be zero.
What we emphasize here is that this fact is natur-
ally contained in the set of positivity conditions
given in (A23) to (A28).
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(])) ~ 2L+1
Z (2, + 1)' (2 1)'/'

L

(l [see (83)]. The relation (A4) in this case as-
sumes the form

(s/m 'LM
I s,m)

(s/OLO I s,.O)
(81) I p(:."I'- p"' (86)

It is convenient to write down two special cases of
this relation. Let us consider as a first case the
ordinary resonance density matrix, i.e., s,. = s&

=J:
p(JO) [p(Z)] 1/22, ein m (87)

so that it is convenient to parametrize the inter-
ference density matrix as follows:

2I. +1 (Jm'LMI Zm)
2 j+ 1 (J OL0

I JO)
even L

(82)

where 0 &x +1 and 0 & e &2m. Combining this
with (83), we obtain for the interference moments

This relation shows that measurement of even mo-
ments gives the real part of the density-matrix
elements. A second special case of (81) is of in-
terest for our purposes. It concerns the case when
the spin s& is zero:

p(/o) (2~+ 1)1/2H (gm) (83)

where we have set s,. =J. This shows that the inter-
ference moment between spin J and spin 0 is pro-
portional to the interference density-matrix ele-
ment.

%e now present explicitly the spin-1 density-ma-
trix elements (denoted by p~~', ) intermsofthespin-
1 moments Hr(LM). Using (82), we obtain

pxp' = —,
' [1+5H~(20)],

pi(, ) = —,
' [1 —2H~(20)],

(84)

(g ) 1/2

H,p )=( r„e"2J+1 (86)

This is the form we have used to parametrize the
interference of the S-wave background with the
spin-1 and spin-2 resonances in the K m' system.

Suppose now that for nz =0 the parameter ro turns
out to be equal to 1. From the definition of density
matrices (Al), it can be shown that in this case

A =aAOp Op & (89)

(810)

where a is in general complex and independent of
the index p. . The relevant density-matrix elements
then have the form

poo
——P IAo I'=1,

p "=+A 'A ' =a+ IA,'„'I'=a.

Similarly, the spin-2 density-matrix elements
p(D), can be given in terms of the moments HD(LM)
as follows:

On the other hand, from (87) we obtain

p(ZO) [p(Z)] 1/28«exp

so that

(811)

p~(
' =-,' [1+5HD(20) + 9HD(40)], A(z) [ (&)j 1/2esnPA(o)

op
—irpoo jl e ou (812)

p(, '= —,
' [1+-,'H (20) —6H (40)],

p2(2
) = —,

' [1—5HD(20) + —,
'

HD(40)],

Rep(OD) = —,
'

HD(21) + 3 (,—p)'/2H(41),

Rep(D) = (2)1/2H (21) —(1 )1/2H(41)

Rep2'p ) = -HD(22) + —,
'

(-,
' )"'Hp(42),

p =-(—')' Hn(22) —3(—')' H (42)

Rep( ), =-—'(-')' 'Ho(43),

p' ' =3(—')'"H (44)

Let us now come back to a discussion of the in-
terference density matrix between the spins J and

Using this formula, the interference density ma-
trix can be written

p(J o) ~ A(&)A(o) +
mo ~ my Op

or

[p(J )] 1/2eie«pp( J)

e !ex
Op ( «7 )

mp

[(2g + 1)p (/')
]

1/2 '

(813)

(814)

This shows explicitly that, if ro=1, the measure-
ment of the interference moment yields the real as
well as the imaginary part of p o .'
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