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The relation between explicit and spontaneous breaking of chiral SU(3) x SU(3) symmetry is
analyzed. Because it is assumed that the transformations of the asymptotic fields, even if
nonlinear, are the same up to the linear term as they are in the limit of no explicit symmetry
breaking„ it is possible to solve the equations of the Glashow-Weinberg model. Using only the
pseudoscalar-meson masses and the ratio of the kaon and pion leptonic decay constants as in-
put, the remaining parameters of the model are computable. Numerical results are obtained
for M~, Zz ~2/Z ~2, e8/&2eo, and (0(uJO)/ 2 (0)uo)0). Figures display the dependence of M„
on the ratio I z/E„. Two noteworthy features of the analysis are: (1) The Glashow-Weinberg
model admits two types of solutions simultaneously, one characterized by chiral SU(2) x SU(2)
as a weakly broken subsymmetry [i.e. , by. the hadron Hamiltonian's being approximately in-
variant under chiral SU(2) x SU(2)], which is the view of Gell-Mann, Oakes, and Renner, and

the other by SU(3) as a weakly broken subsymmetry, which is the view of Brandt and Preparata.
(2) The limit of no explicit symmetry breaking is realized with the entire spinless chiral mul-
tiplet degenerate in mass, and massless if either the full symmetry or any subsymmetry is
spontaneously broken. It is made plausible that recent studies of the limit of no explicit sym-
metry breaking which find an octet of pseudoscalar Goldstone bosons and an SU(3)-invariant
vacuum do so because their assumptions or approximations guarantee that they must.

I. INTRODUCTORY REMARKS

AND SUMMARY OF RESULTS

H =H, +H',

with

(1a)

That the hadron Hamiltonian should consist of
one part H, which is invariant under chiral SU(3)
xSU(3) and another part H' which transforms as a
(3, 3*)+(3*,3) representation of the group was sug-
gested by Gell-Mann. ' Explicitly, the hypothesis
was

function sum rules).
The (3, 3*)+(3*,3) model has also been recon-

sidered by Gell-Mann, Oakes, and Renner' (GOR),
who neglect the effect of g-q' mixing and of scalar
mesons and who assume pole dominance of the
axial-vector current divergences by n, K, and g
mesons and approximate SU(3) symmetry for ma-
trix elements of the scalar densities between one-
pseudoscalar-meson states. In this context, QQR
find that the hadron Hamiltonian is approximately
chiral-SU(2) x SU(2)-invariant and the vacuum ap-
proximately SU(3) -invariant: Explicitly,

H = dx[souo(x) +fau8(x)], (1b)
and

a = -0.89 (2a)

where the u, (x) belong to a nonet of scalar densi-
ties, which together with a nonet of pseudoscalar
densities v,.(x) make up a (3, 3*)+(3*,3) representa-
tion of chiral SU(3) xSU(3).

This idea has been reconsidered by Glashow and
Weinberg (GW), who make an additional assump-
tion about smoothness of certain vertex functions
and find inequalities to be satisfied by the ~-meson
mass, a condition on the K» form factor f, (t) at
)= 0, and a formula which relates the masses of
the pseudoscalar nonet and of the w meson and
which reduces to the Gell-Mann-Qkubo mass for-
mula when the vacuum is SU(3)-invariant. In these
equations appear the leptonic decay constants of
the pseudoscalar mesons and w meson, needed
ratios of which cannot be determined without in-
troducing additional assumptions (GW use spectral-

where we have used the definitions

a-=e,/v2 s,

and

b
-=Z, /W2Z, ,

with

~,. =-&Oiu,.(&) ~O) = 0,,~, +0,,~, .

[Strictly speaking, GOR find

(3a)

(3b)

(4)

rather than Eg. (2b), which is then a consequence
as long as A 40.] For the leptonic decay constants
defined by

1092



WEAKLY BROKEN SUBSYMMETRIES OF HADRONS 1093

(0 lA„(0) l P,.( k)) =-ik„Es,./[(2w)'2(u-j"',

where

E~, =I"~5» for B=1,2, . . . , 7

(6a)

(6b)

of Gell-Mann's model,

a GOR
—0.89 ~GOR

—1 bGOR

vs

(13)

(large Latin indices run from 1 to 8, small Latin
indices from 0 to 8), GOR obtain

a~@ = -0.17, &Bp
—-0.92m~'/m „', b~p='P )

(14)

(o l~;(0)l&;(k)) =&;/"'/l. (2~)'2~„-1"',

where

(8a)

z '"=z '"gij i ij
they obtain

z 1/2 008

for i=1, 2, . . . , 7 (8b)

(9a)

F„=FK = F„;
and for the renormalization constants defined by

is due to their proximity to the limiting situations
of b=o vs a=o, SU(3)-invariant vacuum vs SU(3)-
invariant Hamiltonian. Both GQR-like and BP-like
results may be obtained as solutions of the GW
model. We find this to be so in our analysis.

Already Auvil and Deshpande' have shown that the
GW model admits, under the conditions of no g-g'
mixing (ZOB"'=0) and of Gell-Mann-Okubo mass
splitting for the 0 octet, as possible limiting solu-
tions

ancl

Z 1/2 Z 1/2 Z 1/2
K (9b) and

b=0, a= -0.89, g=1, R=1, (15)

Or for the ratios

R -=Z, /Z„ (1Oa)

g =g 1/2/Z 1/2
K ft'

their results are

ancl

(lob)

(1la)

(11b)

The result given in Eq. (2a) is correlated by GOR
with the relative smallness of the mass of the phys-
ical pion, which, if the parameter a were exactly
equal to -1 [corresponding to no explicit breaking
of chiral SU(2) x SU(2) j, would be a massless, Gold-
stone boson. The result given in Eq. (2b) is close
to the limiting value b =0, for which the vacuum
would be invariant under SU(3).

Recently, in a different scheme which also uses
the (3, 3*)+(3*,3) model for broken chiral SU(3)
xSU(3) symmetry, Brandt and Preparata, ' (BP)
have instead found

a = -0.17,

g —1.2,

(12a)

(12b)

g =0.92m''/m „'= 12 . (12c)

The result in Eq. (12a) is close to the limiting val-
ue a=0, which corresponds to no explicit breaking
of SU(3) symmetry The possibi. lity of a =0 was,
of course, the original suggestion of Gell-Mann, '
but is controverted in the GOR reformulation.

The disparity between the GOR and BP versions

a=o, b = -0.89, g=mr'/m, ', R= 1. (16)

(We note that these values for g and R are not the

only possibilities, and that we do not agree com-
pletely with their conclusions concerning the mass
and leptonic decay constant of the w meson. ) The
GOR results almost coincide with (15), and the BP
results at least tend toward (16).

We consider herein what may be called a GW-like
theory; By a GW theory we mean a theory of bro-
ken chiral symmetry which has three essential com-
ponents: (1) Gell-Mann's hypothesis of (3, 3*)
+ (3*,3) transformation properties for the symme-
try-breaking part of the hadron Hamiltonian, (2) the
possibility of spontaneous breaking of both SU(3)
x SU(3) and SU(3) symmetries, and (3) both 0 and
0' mesons. The GOR and BP theories do not satis-
fy all these criteria: The scalar mesons and the
SU(3) asymmetry of the vacuum have been either
eliminated (GOR) or ignored (BP).

In GW theories, in order to get results for a, b,
masses, etc. , hitherto there have been two ways
to get needed relations among the leptonic decay
constants: Either spectral-function sum rules are
used to determine g and the other relevant ratios
of leptonic decay constants, "or the renormaliza-
tion constants are constrained to be all equal due to
various smoothness requirements" or all equal to
unity in a tree-diagram approximation. "When-
ever the renormalization constants are so con-
strained, certain of the GW equations reduce to
useful relations among the leptonic decay constants.
However, as may be expected from Eqs. (15) and

as we shall see later, the constraint g= 1, or even

g = 1, automatically prejudices a GW theory to
favor a GOR world in which b is small and a = -1.
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Therefore, the fact that Dutt, Eliezer, and Nanda, '
Carruthers and Haymaker, ' and Olshansky' find
that the limit of no explicit symmetry breaking,
e, -0 and c,-0, is realized in the GOR manner is
perhaps not really a prediction of their analyses,
but rather a self-consistent result. [Actually
Olshansky also finds another possibility, A,, = A,, = 0
and all 0' masses degenerate (the normal solution),
with the choice between the GQR solution and the
normal solution to be settled ultimately by the val-
ue of the n-N o c'ommutator. ] It would be very in-
teresting to. see, if possible, the results of an anal-
ysis as in Refs. 8 and 9 with the renormalization
constants unconstrained.

Our theory is GW-like in that it contains the
three essential components, except that the first
component is modified, as will be discussed below.
Because we are willing to make a commitment as
to how the asymptotic (in- or out-) fields trans-
form, we can obtain not only the GW equations,
but also relations among the leptonic decay con-
stants, so that we are able to solve the GW equa-
tions for arbitrary values of R, with no use of spec-
tral-function sum rules and no prior constraint on

Although we do not believe that the hadron Hamil-
tonian transforms strictly as a (3, 3")+(3*,3) rep-
resentation, ""we nevertheless determine the con-
sequences of assuming that, at least for vacuum-
to-one-spinless-meson and vacuum-to-vacuum ma-
trix elements of the commutators [G„,H] and

[G„,[G„,H]], respectively [where G„ is a gener-
ator of chiral SU(3) x SU(3)], we can take H' to
effectively belong to a. (3, 3*)+(3*,3) representation
[i.e. , we use Eqs. (I) only under these circum-
stances].

We limit our attention to the nonets of 0' mesons,
and we assume that, even when the hadron Hamil-
tonian is asymmetric, we can take the transforma-
tions of the asymptotic fields of the 0' mesons to
be the same, up to the terms linear in the fields,
as they are" when H is invariant. If II were in-

variant, then, of course, the transformations of
asymptotic fields are necessarily purely linear—
since the Hamiltonian when expressed in terms of
asymptotic fields (which are free) is bilinear, no

local nonlinear transformations of the fields can
leave it invariant. When II is not required to be
invariant, we can no longer expect the transforma-
tions of asymptotic fields to be at most linear (or
even purely local), but, for simplicity, we assume
that the coefficients of the leading local terms are
not appreciably modified. "

The spontaneous breakdown of the symmetry is
introduced" via the appearance, in the commuta-
tors of the generators with the asymptotic fields,
of c numbers C, and C, added to the I= F=O scalar

asymptotic fields S,(x) and S,(x): C, =C, =O is re-
quired for a chiral-SU(3)xSU(3)-invariant vacuum,

C, =O for an SU(3)-invariant vacuum, C, =2v2C,
for a chimeral-SU(3)-invariant" vacuum, and C,
= —v2C, for a chiral-SU(2)xSU(2)-invariant vacu-
um. These c numbers are expressible" in terms
of the leptonic decay constants of the pseudoscalar
nonet and of the g meson, so that, for example,
C, = 0 implies F, = 0 and F, = FK, etc. Since there
are only two c numbers, there can only be two in-
dependent leptohic decay constants among the five
that appear; and it is just the consequent relations
among the five leptonic decay constants which en-
able us to go beyond the results of the usual GW
theories, without constraining the renormalization
constants.

The effects of the existence of the c numbers in
the limit of no exPlicit breaking of chir al SU(3)
x SU(3) symmetry, in which case the nonlinear
and/or nonlocal terms in the commutators of the
generators with the asymptotic fields [the unwrit-
ten terms indicated by the dots in Eqs. (22)] van-
ish, can be determined by using the explicit expres-
sion for II in terms of asymptotic fields to deter-
mine the implications of 0 = G„= -i [G„,H] (and also
by examining (0([G„,p,.]~0),

"where p,. is an asymp-
totic field). In the case of no mixing, for the SU(3)
generator T~, we have

T„=f~)~ JI dx(M) C)S(+m('P, P)+M) S~S ),

while for the chiral generator X„, we have

X„=d~, , dx[m, 'C P, +(m( M.
~ )P,S~] -.

Requiring the coefficients of the bilinear terms in

T„to vanish. implies mass degeneracy within the
0 and 0' octets: T, =0 implies m, '=mK', mK'
=m„', M~'=M, ', and M, '=M, '; requiring the bi-
linear coefficients in X„to vanish implies mass
degeneracy within the entire 0' chiral multiplet:

m ~=M 2 m =M m =M .2 m 2=M andKB~K
~
a&Ka'

admittedly, unsurprising results, since, zohen II
is invariant, we assign the 0' asymptotic fields to
a linear representation. Since the c numbers are
expressible in terms of the leptonic decay con-
stants, requiring the coefficients of the linear
terms in G„ to vanish implies that either the 0'
mesons are massive and their leptonic decay con-
stants are zero (the normal case) or the 0' me-
sons are massless and their leptonic decay con-
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TABLE I. Results for case I, mixing angle 0=0.

R M (GeV ) f& &2 a& = b2 b& = a& Cs/W2Cp

TABLE III. Results for case III, mixing angle 0=-10.6'.

R M (GeV ) &i &2 - ai -—b2 bi= 2 Cs/v2Cp
2

1.18 0.898
1.23 0.951
1.28 0.961
1.34 0.956

0.932 14.0 -0.912 -0.0622 -0.107
0.949 13.7 -0.914 -0.100 -0.133
0.975 13.4 -0.915 —0.142 -0.157
1.02 12.8 -0.915 -0.194 -0.185

1.18 2.70
1.23 2.33
1.28 2.09
1.34 1.90

1.17 11.1 -0.890 -0.204 —0.107
1,27 10.3 -0.886 —0.272 —0.133
1.41 9.28 -0.879 -0.348 -0.157
1.65 7.90 -0.865 -0.448 -0.185

stants need not be zero or equal (the spontaneous
breakdown case). Note that if any subsymmetry is
spontaneously broken (i.e., the relevant leptonic
decay constant is different from zero), all eighteen
0' mesons are massless due to the degeneracy.
Qur view of the limit of no explicit symmetry break-
ing differs from the popular view due to GQR, ' who
have only n, K, and g mesons massless, with E„
=F~40 and E„=O. But, as we have mentioned be-
fore, they are working in a theory where g' and 0'
mesons and SU(3) vacuum asymmetry are neglected.

Upon deriving the GW equations and our relations
among the leptonic decay constants, we are able to
obtain equations for M, ', for g, for a, for b, and
for C,/&2C„which require as basic input data only
the v, K, 7), and q' masses and the Er/E, ratio R.
For the z-mass equation, we consider four cases:
(I) no mixing; (II) positive mixing angle; (III) nega-
tive mixing angle; and (IV) g = 1, or g = m„'/m „',
constraints which yield a well-known equation
which expresses M„' simply in terms of m~', m, ',
and ft. We exhibit plots (see Figs. 1-4) of M„' as
a function of g, showing the existence of certain
upper and lower bounds for M, ' and showing that
certain values of g correspond to negative M„' and
are consequently forbidden, and also numerical re-
sults (see Tables I—IV), using a few interesting val-
ues of ft, for M, ', g, a, 5, and C, /v 2C, .

Since a general GW theory with no constraints on

g yields a quadratic equation for g,
"we obtain two

solutions: (1) a solution similar to that favored by
GOR: g, = O(1); and (2) a solution simila, r to that
favored by BP: g, = O(m~'/m, '). Corresponding to
these solutions, we get, e.g. , with no mixing and

with &=1.28, the results a, = -0.91, b, =-0.14 and

a, =-0.14, b, = -0.91; we also get C, /&2C, =-0.16,
this result being independent of the value of g. The
fact that a, = b, and a, = b, is no accident —it can be

shown that there is a single equation relating a and

b with only m„m~, m„, and m „.as parameters,
which is symmetric under the interchange a —b.
This same symmetry in the a-b plane is manifested
in the Mathur-Qkubo plot" of the allowed domains
for broken chiral symmetry in the GW model.

We can determine under what circumstances the
simple case IV (&= 1 or &

= mr'/m, ') could serve
as an approximation to cases I, II, or III (mixing
angle 6=0, e)0, or e(0). We find that, for rea-
sonable values of 8, case IV can approximate only
ca,se I (and then only over a very short range);
specifically, we obtain

for R =1.32,

(M, '),v
—-(M, '), =0.96 GeV',

f„=1.00 and g, = 13.05 = mr'/m „',
a, = b, = -0.91 and b, = a, = -0.18,

C, /v 2 C = -0.18 .

(17a)

(17b)

(17c)

(17d)

(17e)

II. THEORY

Since the hadron Hamiltonian, when expressed in
terms of the asymptotic fields, must describe free
hadrons, for the 0' mesons we must have

H = (kinetic terms) +H', (18)

However, the mass required, M, =980 MeV, lies
between the values, -890 MeV and -1200 MeV,
which have been suggested. "

Although our preliminary results, Eqs. (29), (33),
and (35), were also obtained by Auvil and Desh-
pande, apart from their limiting GQR-like and BP-
like solutions, our Eqs. (15) and (16), their further
work is restricted by the condition g=1.

TABLE II. Results for case II, mixing angle 0=10.6 .

R M„(GeV ) g& g2 a& = b2 b& = a2 Cs/ 2Cp R M„(GeV ) a&= b2 b( =a2 Cs/ 2Cp

TABLE IV. Results for case IV, f& =1 and f2 =~~ /~„~

1.18 0.540
.1.23 0.547
1.28 0.551
1,34 0.555

0.896 14.6 -0.915 —0.0368 —0.107
0.886 14.7 -0.919 -0.0564 -0.133
0.881 14.8 —0.923 —0.0785 -0.157
0.881 14.8 —0.926 —0.107 —0.185

1.18
1.23
1.28
1.34

1.51
1.23
1.06
0.914

1 13.05 -0.906 -0.107 -0.107
1 18.05 -0.909 -0.133 -0.133
1 13.05 —0.913 —0.157 —0.157
1 13.05 —0.916 —0.185 -0.185
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with

dx 2(m,. P,. +APOPS+M) S) +b, gS SO)8,

(20)
where there is a sum on i and j from 0 to 8 and
where we have introduced singlet-octet mixing:

Ps = gcosg+q' sing,

Pp g sino+ q' cos L9

ms' = m ' cos'0+m ' sin'8,

m, '=m 'sin'6)+m 'cos'g,

and

A = (m „'-m ~') sin2g,

with analogous equations for the scalar nonet. The
question of whether or not we should use the Gell-
Mann-Okubo mass formula in this theory will be
discussed shortly. If we do not impose it, then not
all the parameters introduced by mixing can be
specified by knowing only the masses of n, K, q,
and q' mesons; hence, we neglect mixing and put
8=0 (our case I). If we do impose it, then all the
parameters introduced by mixing can be specified
as usual,

and

2= 2 2 2
mp =m„+m„-ms,

H'= ' dx2(m 'a'+mr'K'+m„'r)'+m„i'q"

+M 252+M 2+2+M 2o2+M 2or2)
K a 0

(19)

The hadron Hamiltonian as given by Eqs. (18}and

(19) is exactly equal to the expression for the had-
ron Hamiltonian in terms of interpolating fields.

In terms of the SU(3) bases, we have

ory are assigned to the (3, 3*}+(3*,3) representa-
tion. For the 0' asymptotic fields, we make the
assumption that

and

(T~, S~] = zf„,g(S1+ C&) + ~ ~ ~,

[T~i P, ] = sf„;&P& +

[X„,S,.]= -id„,,J,. + ~ ~ ~,

[X„,P, ]=id„,.&(S&+C,.)+

(22 a.)

(22b)

(22c)

(22d)

where

pCp+ &gs&s (23)

=zF (24)

is a c number. Since the Hamiltonian is not invari-
ant, we admit the possibility of nonlinear terms
(indicated by the dots). However, for the sake of
simplicity, we tentatively retain the same coeffi-
cients for the leading terms as would be necessary
were the Hamiltonian invariant.

If we believed Eq. (21) to be a strict equality,
then we could use Eqs. (22) to compute
&E l[T„+,T„+]lid'). This would yield the Gell-Mann-
Okubo mass formula. However, we do not know
a Priori that the hadron Hamiltonian, Eqs. (18)-
(20), contains no SU(3) representations higher than
the octet. Hence we allow for the possibility that
the Gell-Mann-Okubo mass formula may (cases II
and III} or may not (case I) hold. For case IV, it
makes no difference.

The c numbers are necessarily present in the
above commutators, Eqs. (22), because, for ex-
ample,

&0lh. (~.), ( )ll0) = [&0lA:(0)l (o))

—&n (5)g;(0)l0)][(2w)'/2m, ]"'

& =+2[(m, ' —m ')(m ' -m ')]' '

where the plus or minus sign corresponds to posi-
tive or negative mixing angle e (cases II and III).

If Gell-Mann's hypothesis' is correct, then we
should be able to equate the right-hand sides of
Eqs. (Ib) and (20). Actually the right-hand side of
Eq. (20) contains a small amount of SU(3)xSU(3)
singlet, but that is of no consequence since H' is
only used in commutators with the generators.
We put.

sou, + e,u, = —,'(m, 'P,.'+APDP, +M('Sq'+ A~S,S,),
(21)

Thus, from Eqs. (22a) and (22d) we obtain

E„=-',&3C,

and

Ai Aij j
so that, with Eq. (23),

E, = (&2c, +c,)/W3,

E = (v 2 C, ——,'C, )/v 3,
C, /v 2 C = -2(R —1)/(2R + 1),
F„=F +E, ,

E = —,'(4E E }

(25a)

(25b)

(26a)

(26b)

(27)

(28a}

(28b)

with the stipulation that this "equality" only be used
as described in Sec. I.

The scalar and pseudoscalar densities in the the-

and

F,o= 3&2(E, —Er). (28c)



1098 L. BESSLER AND D. J. WELLING

From Eq. (27) it is clear that the limits of invari-
ance of the vacuum under SU(3), R-1, under
chimeral SU(3), R-O, and under chiral SU(2)
xSU(2), R-~, are realized when Cs/v2Co is equal
to 0, 2, and -1, respectively. Equations (28) are
just what enable us to go beyond the usual GW the-
ories.

If we use Eq. (21) and the transformations of both
the 0' densities and the 0' asymptotic fields to
evaluate (Ol[G„,II]ll), we get

~f j dijk

7I' ll 22 33 &

and

I44 A 55 X66 A, 77

1/2 1/2
~80 80 00 88 08

where we have used the definitions

(33e)

(34a)

(34b)

(34c)

Z 1/2 ~ 2g
K K K K (29a) (34d)

and

1/2 2
KZK —mK I'K

1/2 1/2 2'4e ss + ~soZos ms Pss+ s&Fso ~

1/2 1/2 2
88 80 ~80 00 ™080 2+ 88 7

(29b)

(29c)

(29d)

(29e)

where we have used the definitions

and

fj ijk k

7t.
= Ell —622 —633

eK
=—644= E55 666 f77 )

Es = svYes,

(Soa)

(30b)

(30c)

(30d)

+ ' dgCk:Pj g Ik 8:F]jkXg~

z „"'=- (0lu, (0)l(((k))[(2(()'2(o-]"'. (31)

If we expand" the scalar and pseudoscalar densi-
ties u,.(x) and v,.(x) in terms of asymptotic fields,

u, (x) = },. +Z&.'.& "'S.(x) &K~K ™K'+K~

2 2

2 2

(35a)

(35b)

(35c)

Although Eqs. (29) are, within the context of our
assumptions, exact, in Eqs. (33) we have neglected
effects coming from commutators of the generators
with the bilinear and higher terms in the expan-
sions for u and v. The terms we have neglected
can be shown to arise from multiparticle inter-
mediate states. How Eqs. (33) can be derived by
considering only single-particle intermediate
states has been demonstrated by Auvil and Desh-
pande. ' That our approximation is sufficient for
our purposes will become clear shortly. In a
theory with the renormalization constants con-
strained to be all diagonal and to be all equal or
all equal to unity, Eqs. (SS) simplify and imply the

very useful Eqs. (28). In the limit of no explicit
symmetry breaking, Eqs. (33) are just a straight-
forward application of a general formula derived
in Ref. 15, and are exact.

Eliminating the renormalization constants by si-
multaneous use of Eqs. (29) and (33) yields

and

+ dydee: S,(y)S,(z): G((,(xyz) + ~ ~ ~

(32a)

v, (x) = Z, ,"'P,(x).
and

2 2 2 2
88 88 80 80 ™888 0 80 + 88 80 '

(35d)

and

x =I'Z "'
K K K

K K K

1/2 1/2
~ss s8ss so so )

(SSa)

(33b)

(33c)

(33d)

+ dydee: S,(y)P„(z):JI,„(xyz.) + ~ ~ ~,

(32b)
and evaluate, again using the transformation prop-
erties of both the 0' densities and the 0' asymp-
totic fields, the matrix elements (Ol[T, u]lo) and

(Ol[X, v]lo), we find

Even in a theory with the renormalization constants
constrained, these relations still hold, of course.
It is interesting to note that these same equations
(35) could have been derived directly by evaluating,
using Eq. (21) and the transformation properties
of both the 0' densities and the 0' asymptotic
fields, the matrix elements (Ol[T„T„]lo),
&ol[X„X.]lo&, &oI[X,X ]lo&, and (Ol[X X 110). Thus,
the assumptions [Eqs. (21) and (22)] used in such a
derivation and in the derivation of Eqs. (29) are
clearly compatible with the assumption [Eqs. (22)]
and one-particle-pole approximation used in the
derivation of Eqs. (33).

By means of Eqs. (30) and (34) it is possible to
show that Eqs. (35} can be combined into"
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4(M„'E„'+m„'E ')

0.110 0.0158
R —1 (R —1)' '

for 0&0 (case II),

(37a)

(36)
Suppose we do not impose the Gell-Mann-Okubo
mass formula and we take 8= 0 (our case I); if we

put in the experimental 0 masses and then, re-
calling Eqs. (28), study the limit C, -0 and ~C, ~

& ~
(i.e. , R-1), which is the limit of an SU(3)-invari-
ant vacuum, we find M„'- -~. On the other hand,
suppose we do impose the Gell-Mann-Okubo mass
formula and we consider ge0 (our cases II and III);
if we repeat the procedure, we find that Eq. (36)
just degenerates into the Gell-Mann-Okubo mass
formula while M„' drops out and is thus unspeci-
fied.

The explicit functional forms we find from Eq.
(36) using Eqs. (28) and the experimental data" for
the 0 masses are: for 8=0 (case I),

F Z»2=F Z»2+F Z»2
K K (39)

These equations are analogous in form to our earli-
er result

Eff = Fg+FK (28a)

If we put Z,"'=Z»"'=Z„"' (i.e., g= 1), then Eq.
(39) reduces to Eq (28a.},and Eq. (38) can be used to
compute M„', if we put the various Z""s propor-
tional to the corresponding masses squared (i.e.,
g =ni»'/m„' and Z„'/'/Z '/' = M, 2/m„'), then Eq.
(38) reduces to Eq. (28a), and Eq. (39) can be used
to compute M, '. Thus, for either g= 1 or g=m»2/
m, 2, Eqs. (38) and (39) reduce to Eq. (28a) and to

is still rather uncertain, "we attempt no prediction
for R. However, we can rule out ease II if we re-
gard R & 1 as unlikely.

Since Eqs. (30) imply e„=e»+ e„, we conclude
from Eqs. (29) that'

2P Z 1/2 ~ 2F Z -1/2 +M 2~ Z -1/2 . (38)fl' fl' 'll' K g K K K K

since Eqs. (34) imply A.,=A»+A. „, we conclude
from Eqs. (33) that'

2 0K
(3'tb)

2 2Rmz -m
K R ]

for 8&0 (case III),

2 0 990 0 e 308
R —1

(37c)

In Figs. 1, 2, and 3 we have plotted these expres-
sions for M„' as a, function of R. At R = 1, the
curves exhibit the behavior described above. We

can, if we wish, establish certain bounds on R
since those values corresponding to M, ' &0 must
be unphysical. Since the experimental value of M, '

= 0.246+
R —1 (40)

In Fig. 4, we have M, ' as a function of R for this
case IV. At R=1, M, ' is, as in cases II and III,
unspecified.

It is more interesting, however, to eliminate
Z„'/' and F, by combining Eqs. (38), (39), and
(28a) to get a single quadratic equation for g in
terms of M, ', rn~', m, ', and R. The solutions are

g=(m, ' +m'»R' +M„'(1- R)'+([m„'+m'»R' +M„'(I —R) ] —4m m»RP )/2m„'R. (41)

/2 = -2(m»2R —m „g)/(2m» R + /22 2 f); (42)

using Eqs. (33b), (33c), and (34a)-(34c}, we get

We will denote the solution with the negative square
root as fI and that with the positive as g, . If we use
the /c-mass equations, Eqs. (36) and (40), to deter-
mine limR pI, '(I —R)', we find: For case I (no
Gell-Mann-Okubo mass formula) and R = 1 that g,
= 1 and g2 = m»'/m„2; for cases II and III (with Gell-
Mann-Okubo mass formula) and R= 1 that g, = 1 and

g2 =m»2/m, 2; and for case IV (without need for Gell-
Mann —Okubo mass formula) and R = 1 that g, = 1 and
g2=m»2/m, 2. The results for case IV are, of
course, just what we assumed in order to get Eq.
(40).

Using Eqs. (29b), (29c), and (30a}-(30c},we get

b = -2(R& —1)/(2R&+1) . (43)

For case I and R=1, we have a, =b, =-0.9 and a,
=b, = -0.05; for cases II, III, and IV and R=1, we
have a, =b, = -0.89 and a, =b, =0. The GOR results
(without mixing, but with the Gell-Mann-Okubo
mass formula) seem to coincide with the solution
(g„a„b,) for cases II, III, and IV at R= l.

It is easy to verify, by use of Eq. (41) that a, = b,
and a, =b,- for any R. Alternatively, if one exploits
Eqs. (35b)-(35d) in such a way as to eliminate R,
one gets an equation (with only the 0 masses as
parameters) which is manifestly symmetric under
the interchange a —b and which for each b has a
possibility of as many as two real solutions for a
and vice versa. Therefore, a, = b, and a, = b, is not
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unexpected.
In Tables I-IV, we give the results for g, a, b,

and C,j~2C, for a few interesting values of R in
the cases I-IV. It is obvious that, at least for
1.34 ~ P ~ 1.18, solution 1 is more nearly GOR-like
[weakly broken chiral SU(2) x SU(2) symmetry]
while solution 2 is more nearly BP-like [weakly
broken SU(3) symmetry].

By simultaneously solving Eels. (40) and (37), we

can find for which values of g case IV coincides
with cases I-III. Cases IV and I coincide at g
=0.91 (M„' &0) and at R =1.32 (further details
were given in Sec. I); however, since near R = 1.32

Fig. 1 exhibits much more curvature than Fig. 4,
it is clear that case IV can serve as an approxima-
tion to case I only over a very small range of R.
Case IV and II coincide at R = 1.72 (not interesting)
and at A =1. Cases IV and III coincide at g =0.89
(M, ' &0) and at R = 1.

III. FINAL REMARKS

The results which follow when our Eqs. (28) hold,
are obtainable because we have made a conjecture,

Eqs. (22), a,s to how the asymptotic 0' fields might
transform to linear order. We have imposed no
constraint on the renormalization constants.

It is now manifest how a GW-like theory of brok-
en chiral SU(3) x SU(3) symmetry may admit either'
chiral SU(2) x SU(2) or' SU(3) as a weakly broken
subsymmetry. It should be clear that any argu-
ment' ' which appears to support the GQR realiza-
tion of the limit of no explicit symmetry breaking,
but has constrained the renormalization constants
to be all equal or all equal to unity, has only ob-
tained a self-consistent result.

It would be interesting to do, if possible, an anal-
ysis as in Refs. 8 or 9 without requiring the re-
normalization constants to be all equal, or at least
to see what happens if all the renormalization con-
stants are proportional to their corresponding
masses squared (as in the BP scheme). In any
event, it would be useful to see if contact with ex-
perimental results can be made without prior com-
mitment to a specific viewpoint (i.e. , neither neces-
sarily a GQR theory nor necessarily a BP theory),
in order to determine whether or not experiment
is able to choose between a GOR world or a BP
world in the context of such an impartial theory.
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