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The asymptotic (~s~—~) behavior of a number of dual, crossing-symmetric amplitudes with
nonzero Mandelstam double-spectral functions is studied. The difficulties in obtaining Regge
behavior in the right-hand half of the s plane are analyzed in detail.

I. INTRODUCTION

Two years ago, Suzuki' proposed a model for a
four-point function that resembles the Veneziano
Ansatz, but which has complex trajectory functions.
More recently, a number of models' ' have been
invented that have a curved double-spectral-func-
tion boundary, which can be made to coincide ex-
actly with the Mandelstam cp' boundary, and even,
if one is prepared to add two terms together, with
the correct y4 boundary. However, these models
have been shown to have Regge asymptotic be-
havior only as Res - -~, i.e., in the left half of
the complex s plane. The main purpose of this
paper is to examine the asymptotic behavior of
these models in the right half of the s plane.

We find that, for a very restricted range of
values of t (namely, ~t~ & s„where s, is the physi-
cal threshold), the models of Refs. 3-5 have Regge
behavior in all directions of the complex s plane
(except possibly along the positive real axis). How-
ever, for ~t~ & s„ these models develop singulari-
ties that spoil the Regge behavior in a sector of
the s plane around the real axis, the angle of which
depends on t, and which can be large for perfectly
physical values of t. For the model of Ref. 2 we
find that, in addition to the above trouble, there
are extra complications that destroy Regge be-
havior in a fixed sector

~
args

~

& 30' for all values
of t.

In Secs. II and III, we consider models of the gen-
eral form



ASYMPTOTIC BEHAVIOR OF DUAL AMPLITUDES WITH. . . 1071

n(s, 0) = n(s) —= a+A. s+ hn(s),

where

(1.2)

1

A(s, t)=
~

dzz-"" (1-z)-""-'
0

where n(s, z) is a continuous function of z in [0, 1],
with the property

tive of the value of t. Except for rather small
values of ltl, the t-dependent sector will of course
be greater than this, but in no case will there be
Regge behavior inside this fixed sector. Finally,
certain concluding remarks are presented in Sec.
VII.

II. LEFT-HALF-PLANE BEHAVIOR

s t'" ds'Imn(s')
a J, s'(s'-s) ' (1.3) In this section, we consider the large-s behavior

of (1.1), with

while

n(s, 1)=a+is. (1.4)

1 3
p 7T + E' ~+ yq ~+ gZ E' .

Since we shall require that

(2 1)

Technically, n(s, z) is said to be a homotopy of
n(s), the trajectory function, onto its "linear
part, " i.e., a+A, s.

In Sec. II, we impose sufficient conditions on

n(s, z), such that, for some P(t),

A(s, t) ~ P(t)(-s) '-' (1.5)

for any fixed t [with Ren(t) &1 for simplicity], and
in any direction in the left-hand half-plane of s,
i.e., ~m & y, & gn, where

y, =args. (1.6)

In Sec. III, we consider the extra conditions that
one must impose on n(s, z) in order to have the
Hegge behavior (1.5) also in the right-hand half-
plane of s, with an infinitesimal wedge about the
real axis deleted. At the end of Sec. III, then, we
are armed with sufficient conditions for the be-
havior (1.5), for any fixed t, Ren(t) &1, and

n(s, z)
A. S Isl ~

(2.2)

uniformly with respect to z, 0 &z & 1, it follows
that the phase of n(s, z) is asymptotically cp, .
Moreover, since Ren(t, 0) =Ren(t) &1, we see that
the integral (1.1) is well defined.

Make the change of variables

u=(1-z)lsl (2.3)

so that

Isl d+ + -0.(s, l -tt/ Isl) g -0,(t, &/ Isl)

A(s, t) = —1 ——
(2.4)

We would like to consider the limit lsl -m, and

conclude that (we employ the standard mathemati-
cal notation A -B, meaning A/B-1)

n(s, 1 —u/lsl) -A. s,
Isl - , e q, (1.7) so

We turn then to a consideratiori of the specific
models, showing in Sec. IV that the model of
Suzuki' satisfies the sufficient conditions of Sec.
III, and therefore has Regge behavior in the right
half s plane. In Sec. V we show that the model of
Ref. 3 does not satisfy these sufficient conditions,
unless t is in the small circle ltl & s,. For ltl & s„
we show in detail that the amplitude does not have
Hegge behavior as lsl-~, if

(
—0.(s, 1—u/ Isl)

1 —— - exp(A. u e'~')

and that

n(t, u/l s l) - n(t, 0) =—n(t) .
Hence

(2.5)

(2.6)

A(s, t)-lsl"' ' duu "' exp(A. ue'~'). (2.7)
0

arg(t)l»gsl&zv-ta" »(ltl/s. )
' (1.8)

This integral converges, since cosy, &0. Set

w =Xuexp[i(p, —z)] (2.8)
In the sector (1.8), the amplitude explodes ex-
ponentially as lsl - ~.

In Sec. VI, we show first that the model of Refs.
4-5 has exactly the same defect. We then show
that the model of Ref. 2 is in an even more lamen-
table condition, in that there is not only a t-depen-
dent forbidden sector of the s plane roughly like
(1.8) (in detail a little different), but there is also
trouble from a new source that causes non-Regge
behavior in a fixed sector

l argsl & 30', irrespec-

and then rotate the m-integration contour by m —y„
thus bringing it down to the real, positive M) axis.
The result is

A(s, t) —(-xs)""& ' dww "~"e ~

0

= (-~s) &'&-'r(1 —n(t)). (2.9)

The following points have to be checked in order
to validate these manipulations:
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(I) It will be observed that the asymptotic equali-
ties (2.5) and (2.6) can be expected to be good only
when u« ls l, so that they could not reasonably be
maintained over the whole range of integration,
0 & u&lsl. We shall split the integral (2.4) into two
pieces:

For the first piece, u/lsl &lsl ' '«1, and so (2.5)
and (2.6) follow easily, being implied by the con-
dition (2.2}. The second piece of the integral will
be shown to vanish faster than any inverse power
of lsl, as lsl-~, so that it can be neglected, in
comparison with the first piece.

(II) The interchange in the order of the opera-
tions "liml,

l

„"and the u integration in Eq. (2.1)
must be justified. We shall show that, for suitable
o.(s, z),

t Is) oo

du ~ ~ = du lim
"0 )sl ~~

lim
)sl--~0

(2.10)

(III} The rotation of the ul contour in Eq. (2.9)
must be justified.

We consider points I-III in order:
(I) Because of Eq. (2.2), and because cosy, &0,

we can certainly find sy so large that

Re[-~(s, ~)]& s&lsllcosy. l (2.11}

for all lsl & s„and any z in [0, 1]. Hence, in par-
ticular, for lsl& s, and lsl'/' & u& lsl, we have [we
use the rigorous inequality (1 —1/x)" & e ' for
a& 0 and x&1]

c

—n(s, 1-u/)s))

I — & (i. —
l
S

l
/2)k, lsllco &Psl/2s

- exp(--,' A. lsl'/'leos y, l) .
(2.12)

-~(a exp(i ys), j.—u/a) u -~(g, u/~)

f(u, v) =(r "&'& 1 ——-
0' 0'

(2.13}

for 0 & u & v, and f(u, o }= 0 for u & o. Then Eq. (2.4}
may be written

Hence the piece of the integral (2.4) over the range
lsl'/' &u &lsl vanishes faster than any inverse pow-
er of lsl, since the rest of the integral can contrib-
ute at most powers of lsl.

(II) For fixed f and y„define o= lsl, and

Naturally, these conditions need only be satisfied
in some fixed neighborhood of 0=~, say, v~ s, .

It is easy to verify (a) in the present case, the
convergence of the integral being assured at u=~,
since cosy, &0, and at u=0, since Reo.(f)&l. We
have, in fact,

f(u, o} = u "&"exp(i. ue'~s),
Q~op
u fixed

so we can find an s, so large that

l f(u, o) l

& 2
l
u "' exp(A u e's' ) l (2.16)

Because of the bound
(2.12), which holds for o'/' &u «o, and the fact
that f(u, o) = 0 for u&o, it follows that we can ex-
tend (2.16) to the whole range 0 &u& ~, and &x& s,
(with a redefinition of s„ if necessary). Since
the right-hand side of the inequality (2.16) is in-
dependent of o, and since its integral exists, the
uniform (and absolute) convergence of the integral
(b) follows immediately. The uniform continuity
(c) can be readily assured by the requirement that
o.(s, z)/s be a continuous function of both s and z
(separate continuity with respect to s and to z
would not in general be enough), for lsl & s, and
0&z &1.

(III) To validate the contour rotation, we ob-
serve that the integral in Eq. (2.7) has no singu-
larities in the complex u plane, except for the
points u= 0 and u= ~. Accordingly, we write the
integral in (2.7) as

R
lim lim du ~

R~~r ~0 r
(2.17)

Imu

The following sufficient conditions may be enu-
merated:

(a) Both lim, „f(u, v) =-f(u, ~) and f du f(u, ~)
exist.

(b) The integral J du f(u, o) converges uniformly
0

with respect to o.
(c) The function f(u, o) is a continuous function

of 0, the continuity being uniform with respect to
u.

lsl "' +'A(s, f) = duf(u, o).
0

We want to find conditions such that

lim duf(u, o) = " dulim f(u, o).
~~oo p p fy~ oo

(2.14)

(2.15)
Reu

FIG. 1. Contour rotation for the integral (2.7).
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and then we rotate the contour as shown in Fig. 1
(the circular sectors are necessary, in order to
avoid the singularities at u=0 and u=~). It is easy
to check that the contribution from F vanishes as
R-~, since cosy, &0, and that that from y van-
ishes as r-0, since Ren(t) &1. This concludes
the validation of the contour rotation; and hence
we have found sufficient conditions on n(s, z), such
that the Regge behavior (2.9) is observed in the
left-hand half of the s plane.

III. RIGHT-HALF-PLANE BEHAVIOR

E'~«p~~«7T (3.1)

and which is equal to the right-hand side of (1.1)
in the common domain of definition, namely,

1
)7T+ E'~«y~~«3' —f. (3.2)

We turn now to the case ~s~ -~, Res)( —~. The
main problem is that now the integral (1.1) di-
verges at z =0, and in fact it no longer represents
the analytic continuation of A(s, t). We shall first
construct a new integral representation that is well
defined in the sector

n(s, e ") = n(s) (3.6)

in all complex directions of the x plane such that
arg(x) &8. If n(s, z) is analytic at z =0, (3.6) will
be implied by Eq. (1.2); but in many of the specific
models, there is a singularity at this point, and
then Eq. (3.6) must be verified separately. It fol-
lows then that

where we have set x= x' e' in the first integral,
x = R e' ~ in the second, and x= r e' 2 in the third.

Consider, for the moment, only the sector (3.2).
We will show that here the second and third inte-
grals in Eq. (3.5) vanish in the respective limits
B-~, r -0, if certain extra conditions are satis-
fiedby n(s, z). We can take the limits B-~, r-0,
inside the second and third integrals in Eq. (3.5),
since these integrals are not improper in the sec-
tor (3.2). Consider the 8, integral first. We have
already assumed that n(s, e ") is an analytic func-
tion of x. We need in fact to suppose that there are
no singularities in the sector 0 & arg(x) &8, in or-
der to justify the rotation (3.5), and eventually we
would like to take 0=-,'~-c. We need to impose
another condition, namely, that

The new integral representation is then analyzed,
as in the previous section, and we find that extra
conditions have to be imposed on n(s, z), if the
Regge behavior (2.9) is to be correct in the right
half-plane of s. A similar treatment is possible
for the lower half of the s plane, but this is not
really necessary, since one has real analyticity in
sx.t, and so the asymptotic behavior in the lower
half-plane can be immediately inferred from that
in the upper half--plane.

Make the transformation x= -inc in the integral
(2.1):

A(s, t)= dxexp[-x+xn(s, e ")](1—e ") "(" ' ").
0

(3.3)

Following Suzuki, ' we write this integral

n(s, exp(-Be'8&)) ~ n(s), (3.7)

since 8, «0« —,'m —e'. The 8, integral is hence as-
ymptotically equal to

e
ia d8, e px(e' &a[ +Ian(s) —R]).

0
(3.8)

Now in the sector (3.2), since n(s)-)).s as ~s~-~,
the argument of the quantity between braces (] will
be asymptotically 0, + y„which means that the
whole integral (3.8) will behave like a negative ex-
ponential of R, for s fixed and ~s~ large enough
and so it will vanish in the limit R ~. Consider
now the 8, integral in Eq. (3.5). The first factor
in (3.3) tends to unity in this limit, while

R
lim lim dx. ~

R~~r~0 r
(3.4)

[1 exp( rei82)] n(tt-s P(--8 , )) ~ (re'82)-a( )

(3 9)
and then rotate the contour in the complex x plane
by an angle 8& ,'v (just as in F-ig. 1, except that
the rotation angle is now 8, instead of v —y,). If
no singularities are encountered, the integral be-
comes simply

lim lim
~

e'8dx'
Z~~ r~o ~r'

8 8
iRe' ~d8, +. ~ + ire' 2d82 ~ ~ ~

0 0

(3.5)

ir "(')" ) -d8, exp(i8, [1-n(t)]),
0

(3.10)

which vanishes as r -0, since Ren(t) &1.
Finally, . then, we have shown that, in the sector

(3.2), and in the limit r-0, R-~, only the x' in-
tegral in Eq. (3.5) remains. We have therefore
(dropping the prime on x')

thanks to the condition (3.6). Hence the 8, integral
will be asymptotically equal to
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r~
A(s, t) = e'a dxexp(x'e'e[n(s, exp(-xe'8)) —1]j

0

[1 exp( x cia)]-n(i (-exP(-x 4(i ))

(3.11)

(1 e-x)-n(t, i-e ")

are analytic in x for

--,'a+a arg(x) 2m —e,

(3.20)

(3.21)

This representation is, equal to (3.3) in the sector
(3.2), but converges throughout the sector (3.1), if
we take 0= —,'~ -e. It is the required continuation
into the first quadrant of the s plane. We note that
it has already been assumed that there are no sin-
gularities in the right-hand half of the x plane.

The task now is to apply an asymptotic analysis,
like that of Sec. II, to the representation (3.11).
We need first to go back to the integration range
0 & z & 1 by the substitution z = e "; and then we
change to u= (1-z)~s~, just as in Sec. II. The re-
sult is

n(s, z)/s
(S] -moo

IV. SUZUKI ANSATZ

(3.22)

except possibly for x=0 and x= ~, where singular-
ities may be permitted.

(b) n(s, z)/s should be a continuous function of
both s and z, ip complex as well as real directions.
Although n(s, z) need not be analytic at z =0 and
z =1, we must at least have continuity of n(s, e ')
at x= 0 and x= ~, in the sector (3.21). The conti-
nuity with respect to s may be limited to some
neighborhood of infinity, say, ~s~ ~s„but must in-
clude s = ~. In particular,

where

(3.12)

We come now to our discussion of specific,
ancestor-free models that have been proposed.
One of the earliest models in the canonical form
(1.1)-(1.4) is that of Suzuki. ' His choice is

a=1 —n(s, (1 —u/isi)' ),
C = -n(t, 1-(1-u/~s~)"').

(3.13)

(3.14)

(3.15)

so that

The required Begge behavior will follow if we
can assert that, in the limit ~s~-~, in the sector
(3.1), and for fixed u,

n(s, (1 —u/isi)" )-xs,

n(s, z) = n(s) —f(z)&n(s), (4.1)

f(z) =Z(z)/Z(1),

with

(4.2)

pg

Z(z) = dy(-IW)"'[-»(I —X)]'"" '
dp

(4.3)

where f(z) is a van der Corput neutralizer function,
defined by

Z+g qi8

1 — -exp(A ue'&~" 8)) .
/s

(3.18)
The neutralizer has the property

f(o) = o, f(1)=1 (4.4a)
This is a decreasing exponential in sector (3.1),
since cos(p, +8)&0. The last factor in (3.12) be-
comes asymptotically

(3.1 t)

so that, finally, with the substitution

u(=A. uexp[i(y, + t) —)()], (3.18)

exp[xn(s, e ")] (3.19)

and then a rotation of the ze contour by m —cp, —0,
we recover precisely the expression (2.9). The
justification for these steps is just as in Sec. II.

In concluding this section, let us bring together
sufficient conditions on n(s, z) such that the above
steps canbe validated, as in Sec. II, but now for
sector (3.1).

(a) We would like n(s, z) to be an analytic func-
tion of z. Some singularities can be tolerated,
however, since it is enough if

so that Eqs. (1.2) and (1.4} are satisfied. In addi-
tion,

(
d

f(z) =0 for z =0 and z =1;

n = 1, 2, 3, . . . .. (4.4b)

The neutralizer has branch points at z = 0 and z = 1,
but is otherwise free of singularities, and so
n(s, z} also has these properties.

If f(z) is uniformized, it is found to have es-
sential singularities at the images of z =0 and z =1.
In fact, the variable x=-lnz of Eq. (3.3) goes part
of the way toward such a uniformization. We have

4, (e )=5 e &d(4 &(-(«(( —e &)]«' ' &. (4.«)

The important factor here is $ ~. Since we have to
rotate the x contour by an angle 0& v -e, for the
work in Sec. III, we shall have to deal with the
quantity



ASYMPTOTIC BEHAVIOR OF DUAL AMPLITUDES WITH. . . 1075

(](je'e)-Ia

the modulus of which is

(4.6)

exp(-I&I(inl & I) cosg+ [ & l~esin8). (4.7)

This vanishes as J$J-~, for any )8[ - —,'w e,-so
that we have the continuity at x= ~ in the sector
(3.21), as required. Continuity at x=0 is easy to
check, since it does not involve leaving the first
Riemann sheet of the ~ plane. Finally, we have the
necessary continuity in s, and in particular the
limit (3.22), if we require 6n(s) to be continuous,
and to satisfy in fact

hn(s)/s =0 (4.8)

in complex, as well as in real, directions. The
above analysis was essentially contained already
in the paper of Suzuki; we have merely spelled it
out in a little greater detail.

Franzen, ' and independently Adjei et al. ,
' have

proposed a model which also uses the van der
Corput neutralizer (4.2)-(4.3). This model is

f I
dzz ' ~'(1-z) ' ~'f(z),

0
(4 9)

which is not in the canonical form. The resonances
are 5 functions, and in fact (4.9) is not supposed to
be a complete amplitude, but only a part of it.
Nevertheless, it is of interest to consider the as-
ymptotics because they are indicative of various
models with neutralizers. Away from the positive
real s axis there is no trouble, since we have seen
above that f(e ") is well behaved as ~x~ -~, argx

This confirms the asymptotic analysis of
Franzen, who used a slightly different method.
Nevertheless, the function (4.9) has some strange
features. First, there are no singularities in the
finite s plane, since the neutralizer ensures con-
vergence of the integral at ~ =0, for all finite s.
There is an essential singularity at s = ~, and so
there must be bad, non-Regge behavior in some
neighborhood of the positive real axis (remember
that the general proof only works for e & y, & 2]T -e).
One can get an idea of how bad the behavior must
be by simplifying (4.9) a little. Suppose we set
f=-a/X to remove one term, and replace f(z) by
g(z)/g(1) with

8

g(z) = dy(-lny)'"', (4.10)

since we are only interested in the integrand near
z =0. In terms of the variable x=-lnz, we have

[P(I)] ' [ dsexp[- (In —a-Ss)] —I j/(I+esne),
Jo

(4.11)

where a partial integration has been performed.

The behavior of this expression for large s can be
estimated by the method of steepest descents, the
result being

(2v)'~' Xs+ a —3

which is rather frightening, to say the least.

V. A REPRESENTATION WITH CURVED

SPECTRAL BOUNDARY

We turn to a recent model' that has the standard
form (1.1), with

n(s, z) = a+A. s+ — ds's t
",Imn(s')

/(y z) s s s (5.1)

The corresponding amplitude has a nonvanishing
double-spectral function, with boundary

(s —s,)(t —s,) = s,' . (5.2)

ins '+'
imn(s) - 0.

S Q~oo
(5 3)

This indeed is rather more than is necessary.
However, to investigate the right-hand half of the
s plane, as in Sec. III, we have to make the rota-
tion in the x plane, which means that the s' contour
in Eq. (5.1) will become complex. Thus we must
require Imn(s) to have some analyticity. We shall
suppose that Imn(s'+is) is the boundary value on

s, «s'& of an analytic function that has no sin-
gularities in the right half-plane of s. The inte-
grand of (1.1) will have, aside from the usual sin-

If one takes s, =4p.', this is inside the boundary for
a cp' scalar theory, namely

(s —4p,')(f -4p') =4p .

If instead one takes (5:1)for n(s, z), and for
n(f, 1 -z) the same expression, but with t, in
place of s, (and 1 -z in place of z), and sets s,
=4&.', to=16&7, one finds the boundary

(s - 4p,')(t -16p,') = 64p4,

which is exactly correct for the s-channel elastic
wing of the spectral function in a y4 theory. To
obtain the t-channel wing, and to restore s-t cross-
ing, one would add a second term to the amplitude
with s, = 16p' and to = 4p' t this procedure would

correspond to an interference model (rather than
a dual model) and is mentioned simply as an al-
ternative possibility]. We shall content ourselves
however with a discussion of the simplest case,
in which so =t,.

It is not difficult to see, by the method of Sec. II,
that Regge behavior is assured for ~s~-~, z'm+e

-e, and fixed t, Ren(t) & I, if Imn(t) is a
continuous function, such that
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gularities at ~ = 0 and ~ = 1, a branch point at

z =z, —= 1 —s /s

arising from o.(s, z), and one at

z =z, -=t,jt

(5.4)

(5 5)
x( )"t

x=x~ &=-ln —+2ink,a (5 't)

k=0, +1, +2, . . . . For Itl & t„Hexa~ & 0, and so
there is no problem; but for ltl & t„ the branch
points (5.7) are in the right-hand half of the x
plane, and interfere with the rotation of the x con-
tour (see Fig. 2}. However, we can still rotate by
an angle 8 ' as before (see Fig. 3), with

arising from n(t, 1-z). We consider in turn the
effects of these singularities on the x-plane rota-
tion of Sec. III.

In terms of the variable x= -inc, the branch
point (5.4) is mapped into the sequence of branch
points at

x=x&"~=--inlz,
l t(q, +2sn), (5.6)

n=0, +1, a2, . . . , where y, =argz, . For lsl large,
and c& cp, & —,'n, q, is positive, but small, and

lz, l
-1 as s- ~. Hence these branch points, by

themselves, would allow one to rotate the x contour
almost to the imaginary axis. Precisely, given
any e&0, one can find s, such that the sector 0
& argx& ~m -e is free of the singularities x,", for
all s such that lsl & s, . The branch points x&"~ are
shown in Fig. 2, for a typical value of s (lsl large).

The branch point (5.5) can cause trouble, how-
ever. This is mapped into the sequence of branch
points at

FIG. 3. Characterization of 0

behavior, as in Sec. III, for the sector

m~ y, &-,'m- e&'& (5.9)

O& —,'~ —q, & O&",

as in Fig. 4. Then

y, + 8&-2w, so cos(y, + 8) &0

(5.11)

(5.12)

in the s plane. To obtain the analytic continuation
into the sector

(5.10)

we have to rotate by an angle 0&0 ', as in Fig. 2,
and this means that we must wrap the contour a-
round the branch cut. We now show that the asymp-
totic analysis of Sec. III does not apply, and that in
fact one does not have Regge behavior in the sector
(5.10).

Let us take the angIe of rotation of the contour,
8, such that

tano (.)
tp

(5.8} and

where y, =argt, which is enough to guarantee Regge y, + 8" & —2s, so cos(y, + 8'")&0. (5.18)

lmx

We will break up the integral of Fig. 4 into three

4w. x'"
S

27T- x(i)
S

„(o)
S

Rex

FIG. 2. The branch points x " and xz" and the
x-contour rotation. FIG. 4. Integration contour for Eq. (5.14).
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pieces:

A= + + dx

&&exp[-x+ xn(s, e ")]g (t, x)

= A, + A, + As, (5.14)
where

g (t, x) = [1 —e "]

[see Eq. (3.3)]. We will show that

(5.15)

(5.16)

whereP=(l —e *j ), so 0&P &1. The only dif-
ference between this equation and Eq. (3.12) of
Sec. III is that here

C(s, t, u) (5.17)

has a discontinuity in u at the point u=P(s(, cor-
responding to the jump over the cut of Fig. 4. This,
however, makes no difference to the asymptotic
analysis of A, +A, .

(a) The asymptotic equality (3.16) is still true,
and so we can certainly find an s, so large that

-j.+gs& '

1 — & exp[--,' Xu(cos(p, + 8)() (5.16)

for all (s( ~ s„and so

(A., ( &(s( 'exp[--,'Ap(scos(y, + 8)(]
Isl ,ie c

x du 1 —1 ——(, (5.19)
P Isl

which decreases faster than any power of (s( ',
since the integral can contribute at most powers
of (s(, just as in the discussion following Eq.
(2.11).

(b} We can divide the integral A, into two pieces
(for large (s():

IsI ~ ~2 f.p Is(

+l~ . ~ ~ (5.20)
0 Is(zi2

and these integrals are treated just as in Sec. II and
III. The first piece gives Regge behavior, and the

(a) A, -0 faster than any inverse power, as

(b) A, has Regge behavior;
(c) A, grows faster than any power, as (s(- ~,

thus spoiling the asymptotic behavior.

In the integrals A, and A„set x'=xe ', z'=e ",
and finally u=(1-z')(s(, as in Sec. III. The re-
sult is

~g Q

x 1- 1-1-—

second piece vanishes faster than any power of (s( '
Thus we have finally

A, (-X-s) &'& 'I-"{I—n(t)}. (5.21)

We note that the discontinuity in C has made no dif-
ference to this result, because it occurs at the
point u=P(s(, which is not in an asymptotically sig-
nificant part of the integrand. We have treated A,
+A, carefully, so that we can be quite sure that
they cannot cancel the bad behavior of A„which
we now elucidate:

(c) For the finite integral A„we stay in the x
plane, and can take the limit (s(-~ under the in-
tegral. The asymptotic equality (3.16) becomes

exp[-x+xn(s, e ")]»exp(Xsx) (5.22)

„(o)
dx y exp{A (sx( cos(y, + y„)]

xcos{X (sx( sin(y, + p„)+5],

where

(5.27)

g, =arg(x) and z= Rex ' .

We can choose q small, but independent of (s(, such
that the sign of this integrand does not change, so
the integral will be, by the mean-value theorem,

so we have asymptotically
„(0)

A, - dxexp(Xsx){g(t, x ) —g(t, x,)). (5.23)
„(o)

1

Unfortunately, although we see that

(exp(A. sx, ' )( = exp[-X (sx,'~ cos(y, + 8) ( ] (5.24)

decreases exponentially, in view of Eq. (5.12), we
have

(exp(Xsx&, 'l}( = exp[+A (sx[o' cos(y, + 8t'&) (],(5.25)

which explodes, in view of Eq. (5.13),
To establish this divergent behavior beyond all

shadow of doubt, note that x~'~, x~~'l, and {g(t, x )
—g(t, x,)) are all independent of (s(. The point
x," is a branch point of g(t, x), so we cannot make
a Taylor expansion about that point. We shall sup-
pose that

{g(t,x ) —g(t, x,)] =-y(t, x) exp{i 5(t, x)] (5.26)

is not zero at x= x(', and that there is some neigh-
borhood of this point free from zeros {the following
argument can be generalized to the case where
p(t, x) tends to zero as x- x&,'~ less quickly than
exp[-(x —x~~'

( ']). Consider the real part of a little
piece of the integral (5.23) very near the end point:
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(5.28)

where x lies on the chord joining x,' and x,' —a.
This contribution diverges exponentially, and can-
not be canceled by the real part of the rest of the
integral (5.23), since this has a weaker behavior.

In the next section we discuss the Cohen-Tan-
noudji-Henyey-Kane-Zakrzewski' (CHEZ) and

Bugrij -Jenkovsky -Kobylinsky-Schmidts' (BJKS)
AnsNze.

VI. THE CHKZ AND BJKSANSATZE

The following model, also possessing a double-
spectral function, was suggested by CHEZ':

I
(s t) dz z —tt[s(&-z)](l —z) n[tz]

0

xf [s(1 -z)]f[tz], (6.1)

where n[y] is a trajectory function satisfying
(1.2)-(1.3), and f [y] is a suitable function that de-
creases faster than any inverse power as lyl -~,
in all directions. One couM take

(6.2)

This Ansatz could be cast (somewhat artificially)
into the standard form (1.1) by identifying

n(s, z) = n[s(1 —z)] —lnf [s(l -z)]/lnz . (6.3)

However, one should note that n(s, 1) is not equal
to a +A. s, nor does A(s, t) reduce to the B function
when Imn(s) =0, as is the case for the standard
form (1.1)-(1.4). Although (6.1}has Regge be-
havior for Res -~, this comes about in rather a
different way from that studied in Sec. II, the
presence of the function f [y] being in fact essential.

An improvement of the CHKZ Ansatz was sug-
gested by Bugrij, Jenkovsky and Kobylinsky, 4 and
independently by Schmidt' (BJKS). This model has
tlie standard form (1.1), with the choice

n(s, z) = a+)).s+ An[s(1 -z)], (6.4)

which evidently does satisfy Eq. (1.4). Note that
there is no function f [y] in this case. The model
is much closer in spirit to the Ansatz of Ref. 3;
and we shall demonstrate briefly that is suffers
from the same defect, namely the existence of a
sector of non-Regge behavior about the positive
real s axis, the half-angle of which depends on t in
the same way as in Sec. V. Having done this, we
will then turn to the CHEZ model (6.1) and show
that this has two sources of non-Regge behavior,
one of which is the same as in the BJKS case, and
the other of which is specific to the CHEZ Ansatz.

tc) (t, x) exp(x l sxl cos (cp, + y„))

xcoslA, lsxl sin(y, + q&„)+ 6(t, x}j,

exp(x[a+Xs(1 —e ")+An(s(1 —e "})]). (6.5)

For large lsl and fixed x, this is asymptotically
equal to

exp[zsx(l —e ")]. (6.6)

If one makes the rotation in the x plane by the
angle 9&-,'t[ —y„ the expression (6.6) will certainly
be indistinguishable from

exp(As' = exp(A. lsxle'[s'~s ) (6. [}

in the limit as lxl -~, so that the integral will con-
verge at x=~, since cos([)+p,)&0. However, the
presence of the term e " in (6.6}means that, for
some finite x, the phase of sx(1 —e ") could be-
come less than —,'m, leading to non-Regge behavior
from the corresponding parts of the x integral.

The neatest way to show this is to change the in-
tegration va, riable to y = x(l —e "), or equivalently

y = -(1 -z)lnz,

so that one obtains

(6.8)

where

t) d~e X.ss z — An[ (sl-z)]s
z -1+zlnz

xf [s(1-z)]It(t,y), (6.9)

(6.10)

and where z is to be considered as a function of y,
through Eq. (6.8} (which has as inverse). The
rotation through an angle 8 will now be done in the

y plane instead of the x plane. The term

The integrand of (1.1), with the BJKS form (6.4),
has precisely the same branch points, as a function
of z, as has the model of Ref. 3, namely at z = 0, 1,
z„z, [see Eqs. (5.4) and (5.5)]. As in Sec. V, we

can show that the branch point z =z, causes no
trouble, but that z, does cause difficulties in the
sector (5.10), and one has to split the x plane in-
tegral into three pieces, as in Eq. (5.14). As be-
fore, one shows that A, +A, has Regge behavior,
and that A, exp)odes faster than any power of lsl.
The whole proof parallels that of Sec. V, the only
difference being that Eq. (6.4) replaces Eq. (5.1),
and that it is no longer necessary to suppose
Imt). (s'+ i&) to be the boundary value of an analytic
function. It is enough for Imn(s')/s' to be absolute-
ly integrable on s, & s' &~, and t),n(s)/s-~,

~
„0

[since one never considers p, =0, the integral (1.3)
is never singular, and so one does not need to re-
quire the Holder continuity of Imt). (s')].

We turn now to the CHKZ model (6.1). Here
there is the difficulty that, if we use the variable
x=-lnz, as in Sec. III, the term z '' ' in Eq.
(6.1}becomes
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CfZ

z -1+a in@ dy
(6.11}

is the Jacobian of the transformation z -y, and
will produce extra branch points at

even approximately equal to x,'. In fact, for!t!
& t„when the x, are all decently in the left half-
plane, there are some y,"' still in the right half-
plane. The situation is quite complicated, since

y =y„—= -(1-z„)lnz„, (6.12)
Reya ~ = —1 ——cosy, ln ———smy, (@,+ 2@k), 't, tp t,

for n =0, +1, +2, . . . , where z„are solutions of

z„—1+z„in@„=0. (6.13}

y„=2.6+ 4.4i. (6.14)

These fixed branch points mean that the y contour
can be rotated only by 19 & 60', so that one does not
have Regge behavior for

Details of a, numerical solution of Eqs. (6.12) and

(6.13) are given in the Appendix. One has, in par-
ticular, yp 0 which causes no trouble, but

(6.18a)

Imy = 1 ——cos y (p + 2wk) ——sing in —.c tp . tp
t !t! t t !t! t

(6.18b)

If !t!« t„0& y, & z, cosy, &!t!/t„ then Rey~+ & 0,

p &30 (6.15}
20

for any value of t. Some of the branch points y„
are shown in Fig. 5, where it will be seen that

yf 3 ~ lie outside the secto r def ines by the
origin and y», and so cause no further trouble.
The fixed, forbidden sector (6.15) is the price one
pays for having the extra term e ' in Eq. (6.6). It
does not arise in the BJKS case, because here e "
only occurs in En[s(1- e ")] which is negligible in
the limit !s!-~, as compared with Xs.

In addition to the fixed branch points, y„, the in-
tegrand in Eq. (6.9) has branch points at z =z, and

z, [Eqs. (5.4) and (5.5)] which map into

10

y =y&"& =—-(1 —z,)[lnz, +2zin],

n=0, a1, +2, . . . , and

tp
y =y(,

'"& =- 1 ——' ln —+ 2mik
p

(6.16)

(6.1V)
Bey

0=0, +1, a2, . . . . It is easy to see that the y~"~

cause no trouble, as in Sec. V. We shall show
now that the branch points y give rise to a t-
dependent sector in the s plane, in which Regge be-
havior is not observed, much as in Sec. V. There
is some interest in examining this case in detail,
since the branch points y, are not at the same
positions as the x, , and also the Regge behavior
(when it obtains) comes about in a different manner.

For !t!»t„ the yI" are almost at the same posi-
tion as the x~"', and so the critical angle 6} ', de-
fining the maximum permitted angle of rotation in
the y plane before a branch point is encountered,
will be approximately as in Eq. (5.8) and Fig. 3.
One is not interested in values of 6} ' in excess of
60', because in such cases the rotation is stopped
first by the fixed branch point y, [Eq. (6.14)]. For
t real and negative, for example, 0' =60' for t
= -4t, . For !t!of the order of t„ the y~~~ are not

-10

-20

FIG. 5. So1utions of Eqs. (6.12) and (6.13).
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y = (1 —z)'+ okl —z)') . (6.20)

unless k is very large and negative, but in that
case Imy@ &0, so there is no trouble in either
case. However, for smaller values of cp&, or
larger values of jtj (but still less than t,), some of
the y," encroach upon the first quadrant of the y
plane, as the reader may verify by considering Eq.
(6.18) in detail. This source of non-Regge behavior
for the corresponding sector of the s plane is in
addition to the fixed sector of angle 30, which ap-
plies for all values of t.

Finally, let us examine briefly the asymptotic
behavior of the CHEZ amplitude, to check that a
singularity in the first quadrant of the y plane does
indeed mean non-Regge behavior in a sector of the
s plane. We integrate along a contour as in Fig. 4
(but in the y plane instead of the x plane), and we

split up the integration into three pieces A. y A2,
A„as in Eq. (5.14). In the integrals A, and A
we set y'=ye 'e to obtain a real integration contour:

I V o& I

Az+A2=e e +
'

d
jvzoI o

x exp[)(.sy'e'e)
z -1+z lnz

xz-'-~"'(' ' )f)[s(1 -z)]h(t, y'e")

(6.19)

It may be shown that A, vanishes faster than any
inverse power of jsj. Indeed, if we divide the A,
integration domain into the two pieces 0 &y' & jsj '/'
and jsj '/' &y' &jy,'j, the contribution from the lat-
ter piece will also vanish faster than any inverse
power of jsj, because of the factor f [s(1-z)]. For
0&y'&jsj '/', and jsj large, it follows that y=0
and so from Eq. (6.8) we see that

UII. CONCLUDING REMARKS

We have seen that there are serious difficulties
associated with a number of crossing-symmetric
representations that have a curved double-spectral
boundary in the s-t plane. Nevertheless, the pos-
sibility of constructing such a representation with
Regge behavior for all t (or at least for a range of
t considerably greater than jtj &s,) must be re-
garded as still open.

A recent suggestion of Cohen-Tannoudji, Henyey,
and Lacaze' has our standard form (1.1) with (in
our notation}

n(s, z) = a+ As+ An[(s — s,)f(l -z)], (7.1)

which certainly has the Regge form, although the
detailed way in which this was achieved is quite
different from our above analysis of the BJKS
Ansatz.

For the finite integral A„we have asymptotically
0

Vg

dy exp()) sy)(Z(t y-) —Z(t y+)), (6 27)
vo1

where

z1-a —An [s(1-s)]
g(t y) =

I ~ f [s(l -z))h(t, y) (6 28)

The analysis goes now just as in Sec. V, following
Eq. (5.22). We take 8& —,')( —(p, & ()('), and show that
the integral (6.27) certainly explodes exponentially,
since cos(y, + 8 ' ) & 0. Note that the term f [s(1 —z)]
supplies a decreasing factor f [s(1 -z", )] which is,
however, quite insufficient to cancel exp[Xsy, '],
since the function f [w] cannot decrease faster than
exp[-Pw' ' '] as jwj -~, because it must decrease
in all complex directions.

Asymptotically, in the above interval,

exp[Asy'e'e]-1, (6.21)

where f(z) is a van der Corput neutralizer, satisfy-
ing Eqs. (4.4) and (4.5). In Ref. 8, the following
suggestion is made for f(z):

z-a-&n[s(i-s))
( teie)-1/2

z —1+z lnz

f [s(1 —z)) -f [s(y e'e)i/2]

h(t y'e' )-f[t)[y'e' ] "('

(6.22)

(6.23)

(6.24)

f(z) =a(z)/Z(1),

with

pg 1
g(z) = dyexp-

~o O'L1 -y)

(7.2)

(V.3)

so that finally we obtain

( jsl
ei[i-n(i)je/af(t) dyi(P~)-[i+n(i))/2

2
eJ p

xexp[-p[s, —s(y'e' )' ']' ') . (6.25)

It is not difficult to show that this is asymptotically
equal to

s " 2 t
I

doozy ~~'~exp — so —zo'
0

(6.26}

However, it is easy to see that this choice does not
allow any rotation at all in the x plane, and that
there is no Regge behavior in the whole of the right-
hand half of the s plane. The situation can be ame-
liorated by the Suzuki choice for g(z) [see Eq.
(4.3)], instead of Eq. (V.3). However, there are
still singularities in the right half of the x plane
for some values of t, and so there will again be a
t-dependent sector of non-Regge behavior in the s
plane. 9

A different possibility is to choose an n(s, z) that
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We present a model where hadrons are infinitely composite objects made up of pointlike
constituents (partons) . The requirement that the hadron wave function be power-behaved
determines the nature of the parton-parton interaction, In particular o(parton-parton)- const at high energies. If this is implemented by vector-gluon exchange between partons,
the following simple picture of electromagnetic form factors and large-angle hadron-had-
ron scattering arises: (a) The electromagnetic form factor E(t) has the same power behav-
ior as the hadron wave function. (b) The.-large-angle scattering cross section is proportion-
al to ~E(t)(4. (c) The effective interaction of the vector gluon with the composite hadron is
described by the same form factor E(t) as the electromagnetic interaction of the hadron.

I. INTRODUCTION

The structure of hadrons has been explored along
three complementary lines:

(a) Elastic e-P scattering has shown that the
electromagnetic form factor of the proton falls
off as (q') ' or faster, for large q'. This is seen
to be strong evidence for the composite nature of
the proton, and various bootstrap models have

been proposed to describe it.
(b) Inelastic e-p scattering has shown that the

hadronic structure functions Wy and vW, are func-
tions of the dimensionless variable v = v/q' alone,
for v, q'-~. The simplest model that reproduces
this scaling is the parton picture, which describes
the proton as "made up" in some fashion of bare
pointlike constituents which interact locally with
the electromagnetic field. ' Furthermore, the fact
that W, -~vW, as v/q'-~ indicates that partons,
if they exist, have spin ~. Finally, with the use
of sidewise dispersion relations one can relate
the wave-function renormalization constant Z, to
an integral over the structure functions W, and

vW, and obtain thus rigorous bounds for Z, . Pres-
ent data are consistent with Z, = 0, which is the
field-theoretical criterion for compositeness.

(c) Elastic P-P scattering at large angles is rea-
sonably well described by' '

d,
- I&..(t)l'f(s, t),

where f(s, t) is some slow-varying function for
which various forms have been suggested. This
seems to indicate that hadronic charge and electric
charge have the same spatial distribution in the
hadron. It also indicates that each hadron "probes"
the wave function of the other in the same fashion
that a photon does. ' This points in the direction
of a vector interaction between the constituents
of the hadrons. Results in current algebras and
the analysis of light-cone singularities also sug-
gest that partons (or quarks) interact among them-
selves via vector "gluons. "

In this paper we would like to propose a simple
model to obtain a unified picture of (a), (b), and

(c). We use an off-shell partial-bootstrap approa. ch
to describe the proton as an infinitely composite
object, i.e., containing an infinite number of point-
like partons. We assume that the force that binds
the parton to the hadron is the parton-parton force
itself. The bootstrap is partial in the sense that
the parton-parton interaction itself is considered
as primitive. Only the composite hadron struc-
ture is bootstrapped. The material is organized
as follows: In Sec. II we develop our partial-boot-
strap model for the hadron-hadron-parton vertex


