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const
1n(I1- n~(0)] 1n(1/e)3 ' (4.12)

in very close analogy to the result of Finkelstein
and Kaj antic. '
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By imposing nonlinear forms of average duality at intermediate energies it is possible to ob-
tain simple inhomogeneous relations between Regge residues. This reopens the possibility of
using duality to make genuine bootstrap calculations. We consider two different forms of non-
linear duality, both of which are applied to m. scattering, in combination with the usual linear
duality. The first (Type A) asserts that, if 0. is the cross section for a particular reaction c,
0,'e»»n« =ORegge, when averaged appropriately over one or more resonances. Applying it at the

g resonance, we obtain a total g width of 123 MeV, in agreement with experiment. The second
(Type P) uses the optical theorem and states that Aa, , = Q,noae, , on the average, where A
is the forward 7r7r absorptive part and X is a kinematic factor. The sum is over all reactions
c making up the total cross section, which we take to be n7r 7r7r, 7rTr pp, vr7r pq, and 7rvr

ec below the 3p threshoM. The last three are treated in a model-independent way, assuming
only semilocal linear duality and the dominance of I=1 exchanges, such as the 7r and A&. Cal-
culations are then made in which Pomeranchuk exchange is included in AR, , and different
energy intervals are selected for the averaging procedure. For example, a semilocal calcu-
lation around the g resonance gives a p Regge residue corresponding to a p-meson width
of 133 MeV, and a Pomeranchuk residue corresponding to an asymptotic 0„,=13.5 mb; the on]y
input parameters are the resonance masses, which can be fixed by using the partial conser-
vation of axial-vector current.

I. INTRODUCTION

There has recently been a certain revival of in-
terest in the use of duality for making bootstrap
calculations. ' At first sight this may not appear
to be very promising. For example, in the familiar
linear Dolen-Horn-Schmid average absorptive-part
duality condition'

both sides of the equation are proportional to a Reg-
ge residue function (excluding the Pomeranchukon).
The over-all scale of such functions cannot there-
fore be determined from such conditions alone, and
so we can have at best only a partial bootstrap.
This is explicitly evident in the dual Veneziano mod-
el, ' for which the normalization is completely ar-
bitrary. Fortunately, this objection does not apply
to nonlinear forms of duality, which lead to inho-
mogeneous conditions on residues and reopen the
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resonance ~ ~ Resse y (2a)

where o' is the cross section for a particular reac-
tion or channel c, Ka' is the corresponding contri-
bution to the forward elastic absorptive part in the
optical theorem, and the integral is the usual du-
ality integral over one or more resonances. This
form was probably first introduced by Chew and
Pignotti, who used it to justify the multi-Regge
model. ' Recently a more direct application of it
was recommended by Veneziano. ' It has also been
shown' that a generalized version of it is capable of
approximately reproducing some of the results
originally obtained by Schmid on the more dubious

possibility of using duality to make more complete
bootstrap calculations.

Nonlinear duality conditions, which bring in uni-
tarity and involve squares of amplitudes as well as
linear terms, are not in fact completely new. Var-
ious forms have been suggested over the years"
and have even been discussed within bootstrap
frameworks. It is only recently, however, that at-
tempts have been made to use them directly to
make bootstrap calculations. At least one form'
also seems to be capable of yielding the Pomeran-
chuk residue at the same time"; we shall be pri-
marily concerned with this latter form here.

One of the main advantages of a bootstrap dy-
namics based on duality is its simplicity, which
in turn permits us to look at more realistic models.
In contrast to both low-energy N/D (or potential)
dynamics or to high-energy multiperipheral dy-
namics, it does not necessitate solving any differ-
ential or integral equation. It also has the advan-
tage that all calculations are carried out in the
physical region and are done, moreover, at inter-
mediate energies, where there already exists a
considerable amount of experimental data. These
data are usually much easier to analyze in detail
than experiments at very high energies, especially
when we are dealing with production amplitudes.
They can therefore be more reliably incorporated
into a calculation or used as a guide in setting up
specific models.

We will use the same basic approach as in Ref. 3,
but will formulate it somewhat differently and
avoid as much as possible any direct phenomenolog-
ical input or reliance on any specific model. In
particular, instead of using a simple peripheral
one-pion-exchange model for our production pro-
cesses, we will only assume that they are domi-
nated by I=1 exchanges. Most of our results would
therefore follow from a broad class of models. As
in Refs. 2 and 3 we will use two different forms of
average nonlinear duality. The first (Type A)
states that

basis of local duality. '
Equation (2a) has to be handled with a certain

amount of caution. Chew, Rogers, and Snider"
have shown that it can lead to difficulties when used
at very low energies. Our hope is that it becomes
meaningful at intermediate energies, where inelas-
tic effects are already important. In Sec. II we use
it in mn scattering to calculate the total width of
the g meson. In this calculation, as in all others
in this paper, we assume that the Lovelace-Vene-
ziano model" is a reasonable description of nn

scattering, at least in some semilocal sense.
The second type of nonlinear duality which we

shall use (Type B) is a way of implementing the
optical theorem and has the form

(2b)

where A is the forward elastic absorptive part,
and the sum is over all reactions c which contri-
bute to the total cross section. Equation (2b) can
also be generalized to t00, as well as to inelastic
amplitudes. At intermediate energies, the domi-
nant reactions c would be quasi-two-body processes
with single Regge exchange, but if we want to use
Eq. (2b) at higher energies, we would presumably
have to include the contribution of more complicated
production graphs, such as diffraction-dissociation
or multiperipheral diagrams. Indeed this type of
duality was originally proposed as an approximate
way of solving multiperipheral-type integral equa-
tions."'

Although Eq. (2b) can be derived from a combina-
tion of linear duality and a generalized version of
Type-A duality, it is really a weaker form than the
latter. It does not even use the resonance descrip-
tion, so that both sides of Eq. (2b) are relatively
smooth functions. It should therefore be more re-
liable than Eq. (2a), particularly as we go to higher
energies. Since it uses unitarity (via the optical
theorem) we might also expect that the Pomeran-
chuk (P) trajectory would have to be included in

AR,~, . In fact, it was seen in Refs. 2 and 3 that it
is possible to use Eq. (2b) to calculate some of the
parameters of this trajectory.

In Sec. III, we discuss our Type-B duality in the
specific context of mm scattering. We then apply it
to the s-channel isospin I, = 2 state. Since this is
an exotic state it is presumably dominated by I'
exchange, "and duality can be used even at low en-
ergies. In Sec. IV we find that we have a simple
relation between the t-channel isospin I,= 1 and I, = 0
absorptive parts below the 3p threshold, assuming
only semilocal linear duality and I=1 exchange
dominance in the inelastic processes which contri-
bute to the right-hand side of Eq. (2b). Such a re-
lation would be valid in a model with m and A, Regge
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exchange, for example. In Sec. V we combine it
with Eq. (2b) at the g resonance mass. If we re-
quire the resulting relation to be consistent with
Sec. III we obtain both the forward P residue and
the normalization of the Lovelace-Veneziano model.

In Sec. VI we again calculate the forward P resi-
due, but instead of assuming semilocal duality,
use a finite-energy sum rule (FESR) in which linear
and nonlinear duality are combined. This permits
us to do our duality averaging over a wider interval.
We also relax or modify the demands of exchange
degeneracy and the Freund-Harari hypothesis. In
Sec. VII we repeat the calculation of Sec. VI but re-
place one of our positive-moment FESR's with a
negative-moment sum rule. This requires a know-
ledge of the amplitude at zero energy, for which we
use the partial conservation of axial-vector current
(PCAC). Finally, in Sec. VIII we discuss various
possible improvements and generalizations of some
of our techniques.

1
a,"'(s, 0) = dt~ T; (s, t) (',

2iI s -4q2
(4)

where q is the magnitude of the c.m, three-momen-
tum, while T„, is the resonance and TR,~ is the Reg-
ge form of the mw scattering amplitude. In Refs. 2

and 3, Eqs. (3) and (4) were only used in combina-

II. TYPE-A DUALITY AND THE TOTAL WIDTH

OF THE g MESON

It is possible to generalize Eq. (2a) to ta0 by re-
writing it in the form

Sy

ds[a,",, (s, t) —a'„'„(s, t)]v"=0, (3)
~Sp

where s, t, u are the usual Mandelstam variables,
v= —,'(s —u), s, and s, are points either at or midway
between resonances, and a'„', and aR„are the con-
tributions to the absorptive part of Figs. 1(a) and

1(b), respectively, keeping only the i(w intermedi-
ate state. In what follows, we will only consider
n = 0 and t = 0, however. In that case

tion with a model-dependent version of Type-B du-
ality to calculate the total width of the g. In this
section we will use them by themselves alone.

To calculate the two forms of T, we use the Love-
lace-Veneziano model. " In the I,= 1 state this gives

T"='(s, t) =F(s, t) —F(s, u),

with

(5)

—r(1 —o'(x))I'(I - o'(y) )
I'(1 —o.(x) —o.(y))

(6)

F(t, u) = P(t)v ")+P(u)v"(") . (8)

Now, even at the sort of intermediate energies we
shall be concerned with, the first and second terms
in Eqs. (7) and (8) dominate only near the forward
and backward directions, respectively, and can
thus be expected to have little interference between
them. Thus, as far as the integral in Eq. (4) is
concerned, we can write

)(TI ='(s, t)('= (E(t, u)('

and n(x) =n, +o.'x By. requiring the trajectory n
to give the correct p mass m&, we obtain n'
= (1 —n, )/mz' Ac. tually, since the pion has a neg-
ligibly small mass, mz (or n') is not a true param-
eter but merely serves to fix the energy scale in
our problem. The value of ap can be fixed either
by requiring the g meson" to have the correct mass
m = &5 mz or requiring the I, = 2 amplitude F(s, u)
to satisfy PCAC" (the situation for I, =0 is com-
plicated by the presence of the Pomeranchukon).
In either case we get np=0. 5. This result can also
be obtained by demanding a semilocal version of
Eq. (1) to hold exactly at t=0 in the I, =2 sta.te.
Since there are no trajectories dual to any reso-
nances in this state, this means that all s- and u-
channel resonances must cancel each other out, at
least when we average over all those having the
same mass. At t=0 this is possible only with np
= 0.5.

Equations (5) and (6) give an asymptotic behavior
of the form

TIS = i(s t) P(t)e-isa(t) va(t) P(u)e-iso(u) vn(u)
Reg

(7)
Instead of using Eq. (7) directly, however, we

found it more convenient to use the fact that F(t, u)
is a smooth function of s for s & 0 and can be written
as

(o)

FIG. 1. (a) Unitarity diagraxn giving a,",", . Single lines
denote pions and double lines denote resonances (R). (b)
Unitari+ diagram giving aR~0&. Wavy lines denote Begge
exchanges. a7),g(s, 0)= a„, (s„0)(v/v, )' (10)

The integral itself was evaluated numerically at
s sp For s & s„however, we used the fact that,
except for logarithms, Eqs. (4) and (8) lead to an
approximate energy dependence of v' ' '. %e
thus have
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where v, is the value of v at s = s,
To evaluate a"„", we shall again use Eqs. (5) and

(6). Now Eq. (6} cannot be used directly in Eq. (4)
unless an imaginary part is added to n, since we
would then have double poles in the integrand. We
shall, instead, simply use the fact that, if T is
dominated by a single Breit-Wigner resonance
with elasticity x(s) at a given energy, then Eq. (4)
gives

a'„', (s, 0) = ~(s) Im T„,(s, 0) .
At s = m, ', it is easy to check explicitly that the g
resonance does in fact dominate by simply going
back to Eq. (5) and (6), although Eq. (11) continues
to be valid even if several resonances are impor-
tant, provided each of them has approximately the
same elasticity. If we use Eqs. (5) and (6) for T„„
Eq. (11) reduces to a sum of 5 functions.

In practice, we took (s„s,) =(4m~', 6m~'), which
are the halfway points between the g meson and
the resonances immediately below and above it in
the Lovelace-Veneziano model. The value of
~(m '}was then calculated from Eq. (3), using
Eqs. (11), (5), (6), (10), (4), and (9). This gave
x =0.57P. Now the residue of the pole in Eqs. (5)
and (6) at the g mass corresponds to a partial
width of rl;„=70p MeV for the decay of the g into

Combining these two results, we obtain Ft,t
=123 MeV, a result which is independent of the
value of P and agrees with experiment to within ex-
perimental error. "

Once we have a value for I;„we also have a con-
straint on the partial widths, which must add up to
rt t If there are enough homogeneous relations
between these partial widths, either from some
kind of symmetry4 or from linear duality, we could
then determine their actual values. A more reli-
able procedure, however, would probably be to use
Type-B duality.

III. TYPE-8 DUALITY AND A SIMPLE
APPLICATION TO AN EXOTIC STATE

The first problem we are faced with in using Eq.
(2b) is deciding what to choose for the channels c.
We must certainly include the elastic mm -nn pro-

pSy . Sy

dsgb, .(t)v"~&'&+"= I dsgaa, g(s, f)v",
Sp So

(12)

where b, v"~ is the contribution of the Regge trajec-
tory a; to A„,~, and a„„and aR,~ are the contribu-

cess of Fig. 2(a). At intermediate energies, how-

ever, we will also have inelastic processes such
as the vv -AR quasi-two-body reaction of Fig. 2(b),
where R is any accessible resonance in the Love-
lace-Veneziano model (including the p). Alterna-
tively, we could also have reactions like mn - nv
and nn. -wA, . This set is actually dual to the nw-RR set, so that we cannot pick both at the same
time but must choose one or the other, at least in
any given region of phase space. It is not clear
which is better on the average; if this duality is a
good approximation it should not matter, however.
We will pick the rr- RR set for simplicity and also
because it is the correct choice below the 3p thresh-
old if we were using a generalized Reggeized Amati-
Bertocchi-Fubini-Stanghellini- Tonin (ABFST} mod-
el. ' Such a model takes into account the experi-
mental fact that if the final particles from a mul-
tiple-production reaction at high energies are or-
dered according to longitudinal momenta, the mean
subenergy of a neighboring pion pair is in the reso-
nance region.

In evaluating Fig. 2(a), we will assume that the
dominant exchanges are given by the p and f' tra-
jectories, with Lovelace-Veneziano" residue func-
tions. In contrast to what was done in Ref. 3, we
will not assume any specific model for Fig. 2(b) but
simply assume that it is dominated by 1= 1 ex-
change. This includes therefore the exchange of
the m, A» and A, trajectories. It does not include
co Regge exchange. However, the comparatively
small branching ratio of the g meson for decay into
@co suggests that this neglect may not be unreason-
able." In applying Eq. (2b) we will restrict our-
selves to energies below the 3p threshold. If we
did not, we would have to include diagrams like
Fig. 3, which would complicate the calculation con-
siderably.

Equation (2b) can be generalized away from the
forward direction by rewriting it as

(a) (b)

FIG. 2. (a) Diagram giving T„, for m7t scattering. (b)
Quasi-two-body production amplitude for 7tx 47t .

FIG. 3. A Regge generalization of the ABFST pro-
duction amplitude for nm 67t..
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tions to the absorptive part of Figs. 1(b) and 4, re-
spectively. In what follows, however, we mill again
restrict ourselves to n=0 and 1=0, in which case
a" is again given by Eq. (4). The quantities s, and

s] could be cho sen in the same way as in Sec. II,
but since resonances do not come into Eq. (13) un-
less we make further approximations, it may be
more appropriate to take them to li.e at, or halfway
between, channel thresholds. By a happy coinci-
dence it turns out that most of the thresholds we
will encounter happen to lie at or midway between
resonances anyway.

perhaps the simplest application of Eq. (12)
would be to the I,=2 state. Since there are no

resonances in this state, our duality should be
valid at much lower energies. In fact, if we take
s, =4'~' we do not have to worry about the RA in-
termediate state at all. This leaves us with aR'„,
which can again be evaluated from Eq. (4) using the
fact that, even at fairly low energies, we have

T„'~,='(s, t) =E(t, u) (13)

o«, =36.6P' with (s„s,) = (0, 4m~')

= 32.2P ' with (s„s,) = (2m~', 4m~'}.

(15a)

(15b)

We see that the result is not too sensitive to the
specific choice of the interval chosen.

The value of P can be fixed by requiring the Love-
lace-Veneziano model to give a p resonance with
the experimental width of 125 MeV." This gives

in the Lovelace-Veneziano model. If we now as-
sume, as usual, that only the I' trajectory contri-
butes to the left-hand side of Eq. (12) in this exotic
state we obtain the simple sum rule

g (0)P( ) [ ctpto~+1 —p Qp~o~+1]
n~(0) + 1

1ds 1 dtI;tu 2

0

(14)

With a P intercept of a~(0) = 1, this immediately
gives us the P residue b~(0) and hence the total
high-energy cross section v«, (via the optical theo-
rem). Thus

P =0.6 and so we have

o«t ——13.2 mb with (so, s, ) =(0, 4m&'}

=11.6 mb with (s„s,) =(2m~', 4m, ').
The corresponding "experimental" value, as ob-
tained from factorization and the np and Pp total
cross sections, is 15 mb.

Apart from our use of the Lovelace-Veneziano
model, the mair) assumption which has gone into
the above calculation is that an exotic cross sec-
tion can be well approximated on the average by
Pomeranchukon exchange even in the elastic re-
gion. To get some idea of the accuracy involved in
making such an approximation, we could look at
another exotic process, such as K'P and PP scatter-
ing, for which a considerable amount of data al-
ready exists. Thus, if we compare the high-energy
total cross section with the average cross section
in the elastic region, we see that the difference is
of the order of 30% (see, for example, pages 54
and 59 of the particle data booklet accompanying
Ref. 13). Although the situation might be slightly
better for nn scattering, where the region of elas-
tic dominance (in the s variable) is about twice as
large as it is for K'P andPP scattering, it would

clearly be necessary to take a larger energy in-
terval before we can expect any real improvement
over this sort of accuracy.

IV. RELATION BETWEEN THE I) =0 AND Ig = I

ABSORPTIVE PARTS AT INTERMEDIATE ENERGIES

In general it is more convenient to consider
states of definite I, rather than I„since fewer
Regge poles then come into Eq. (12}. If we use
Figs. 1(b) and 4, as discussed in the preceding
section, and assume semilocal linear duality, we

can also obtain a simple relation between the I, =0
and I, =1 absorptive parts. To see how this arises
let us first consider the special case where the
horizontal exchanges in Fig. 4 are elementary
pions. In that case, a~R,", is related to the product
of two t-channel nn -vz amplitudes T (see Fig. 5),
each of which has the general Lovelace-Veneziano

FIG. 4. Unitarity diagram giving aR, .
FIG. 5. Particle-Regge "scattering amplitude" which

can be used to construct Fig. 4.
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isospin structure"

T't =' = —,'[E(t, s)+ F(t, u)] —,'E(—s,u),

Tlt ' =E(t, s) —E(t, u),

Tt '=E(s, u),

(16)

(17)

(18)

where we have also made the additional approxi-
mation of replacing the small —,'e" ' and —,'e" ~"~

terms in Eq. (21) by their values at t=0 and u=0,
respectively —a somewhat stronger version of for-
ward and backward dominance. If we now apply
crossing we obtain

ImT = —ImT (19)

If we now use the fact that a„",~ can be calculated
from the absorptive part of T alone, ' we obtain
from Figs. 4 and 5

Rg l =p 2 Rg I)=1 ' (20)

At first sight, it might appear that this result de-
pends critically on the specific form of F given by
Eq. (6) since this is what we used to show that
ImT's= =O. However the vanishing of ImT
follows more generally if we require Eq. (1) to
hold semilocally. Since the I,=2 state is exotic,
so that AR„=O, this requires that all resonances
must cancel each other out, at least when we aver-
age over all those having the same mass.

Equation (20) can be expected to continue to hold
even if the horizontal lines in Figs. 4 and 5 are re-
placed by any I= 1 system, since the "amplitude"
in Fig. 5 can again be written in the form given by
Eqs. (16)-(18) if we wish to satisfy crossing, Bose
statistics, and exchange degeneracy, and since
semilocal linear duality would once again lead to a
negligible E(s, u) term. By using Eq. (20) we can
calculate certain results without ever having to
make any detailed assumptions about the exchanges
in Fig. 2(b).

To calculate a'„', we again use Eq. (4). For I,= I
and I,= 2 we take Eqs. (9) and (13) for the integrand,
as before. For I, =O the Lovelace-Veneziano model
gives

Tlu= 0(s t) P(t)s-tun(t}( t ei un(t) )v n(t)
Reg

P(u)
—i un(u)( 3 t i ttn(u)

) n(u) (21)

Once again, if we use the fact that the first and
second terms in Eqs. (8) and (21) dominate only
near the forward and backward directions, respec-
tively, and so have little interference between
them, we obtain

i
T„' = '(s, t) i' = —,

'
iE(t, u) i', (22)

if we wish to satisfy crossing, Bose statistics, and
exchange degeneracy. In the Lovelace-Veneziano
model, F would be given by Eq. (6), although in
general it could be any function with Mandelstam-
type singularities.

If we do in fact assume that F is given by Eq. (6),
we find that T ~=' vanishes for t=O and continues
to be small for a wide range of t around this point.
We can thus drop the E(s, u) term in Eq. (16). The
s-absorptive parts of T then satisfy the relation

[a„,(s, 0)] = 7[at( (s, 0)]

j" dtlF(t, u) (23)

Again, in practice, Eq. (23) was only used to eval-
uate aR',

~ at s= so. Equation (10) was then used to
evaluate it elsewhere.

~sp

ps'
b~(0) v "(') ds = j [a"„'„(s,0)+ aas,",(s, 0)]l,ds .

Sp

(25)

As in Bec. II we will take (s„s,) = (4m~', 6m~').
The latter value happens to coincide with the N1V

threshold and means that we do not have to worry
about the possible importance of the NN channel in
our calculation. The values of b~ and b& could be
extracted directly from the Lovelace-Veneziano
model. We have found it more convenient, however,
to use the fact that Eq. (1) is a good approximation
for this model, so that we can write

t Si sl
b&(t)v"(')ds= I ImE(t, s)ds

~ sp SO

(26)

(Sj
,'ImE(t, s)ds, —

jr bl(t)v"' ds= (27)
Sp ~ Sp

where we have also used Eqs. (16) and (17). From
Eq. (6), ImF is a sum of 6 functions in the s vari-
able.

Since the a'„',
~ are given by Eqs. (10) and (23), the

remaining unknowns in Eqs. (24) and (25) are b~(0)
and a&,g. Now in a specific model, such as the
one-pion-exchange model of Ref. 3, the latter
quantity could be calculated explicitly. Since we

V. CALCULATION OF by(0) AND P USING

A SEMILOCAL VERSION OF TYPE-B DUALITY

We will now apply Eq. (12) in the region of the g
resonance, using the relations of the preceding
section. In the I, =O and I, =1 states, we have

Sy

jf [b (0)v"&(') + b (0)v"(')]ds
Sp

Sg
[aa',g (s, 0) + asa,",(s, 0)], ,ds

Sp

(24)

and
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are trying to be as model-independent as possible,
we will, instead, simply eliminate it between Eqs.
(24) and (25) by using the general result (20). This
then gives us the sum rule

Sy

[b~(0)v "—aa', g(s, 0)]z, ods.
Sp

(28)

If we now take n~(0) = 1 and use Eqs. (10), (23),
(26), and (27) we are led immediately to a simple
expression for b~(0) in terms of P. Relating this
to +t t through the optical theorem we finally obtain

o„,= (10.1P + 17.3P') mb. (29)

The actual magnitudes of o„, and P can be cal-
culated by combining Eq. (29) with Eq. (15). With

(15a) we obtain o...=10.3 mb and P=0.53, whereas
with (15b) we have o„,=13.5 mb and P=0.64. Ex-
perimentally, the nP and PP total cross sections,
together with factorization, give ot,t —-15 mb, while
a p width" of 125 MeV corresponds to P = 0.6 in
the Lovelace-Veneziano model.

Finally we can combine the above results with
the g-meson vm elasticity r =0.57P obtained from
Type-A duality in Sec. II. Thus, with P= 0.53 we
have r =0.30 while P=0.64 gives r =0.36.

VI. AN ALTERNATIVE CALCULATION OF THE

I =0 FORWARD REGGE RESIDUES

In the calculations of the preceding sections our
duality averages were taken over fairly small in-
tervals. In addition, rather strong versions of ex-

Sy S~

J
b~(0)v J'~' ds = (-,')' [bp(0)v "~"—a'„",g(s, 0)], ,ds

Sp Sp

Q, g p~i~~ "= dsAs, t v
Q g

(30)

where the lower limit corresponds to v=0. This
sum rule only assumes average Regge behavior
for s&s, . Now since nonlinear duality may not be
valid at very low energies, "we probably should
not set A. = aR"„ for s &4m~'. Instead, we shall take

A(s, t) = A„,(s, t), s & s,
= pa'„„(s, t), s & s„

(31a)

(31b)

with s, =4m~'. Equations (30) and (31) can there-
fore be thought of as a hybrid of linear and non-
linear duality, and arise naturally if we use an
FESR technique to solve a multiperipheral integral
equation. "Strictly speaking, we should also in-
clude a background term in Eq. (31a). Since this
is a low-energy interval, however, we shall ne-
glect it as a first approximation. For the upper
limit in Eq. (30) we sha, ll take s, = 9m~', the high-
est energy at which we can still neglect the effect
of Flg. 3.

If we write out Eqs. (30) and (31) for I, = 0 and

I, = 1 and again use Eq. (20) to eliminate the con-
tribution of a&,", we obtain the sum rule

change degeneracy and the Freund-Harari hypoth-
esis were used in inferring the properties of the
lower-lying trajectories. Although this leads to
simplifications in the calculations, it might be de-
sirable to see what happens if we weaken or modi-
fy some of these procedures. We shall see that this
can lead to a certain improvement in some of our
results.

One way of extending our duality interval is to
use a conventional finite-energy sum rule
(FESR) 5'5

S~

Q ~

~'dsQ b,.(t)v"'&'&'"

t r, =o

PSp Sg
dsimF(t, s)v" + ds( —ImF(t, s) + [a"„",(s, t)], , ——,[a'„~ (s, t)]~,)v",

(32)

where we have taken A„,=ImT, with T given by
Eqs. (16) and (17). We have also used Eq. (26) but
with s, replaced by u, so that this I, =1 linear dual-
ity average is taken over a wider interval than be-
fore. So far, we have not had to assume exchange
degeneracy or the Freund-Harari hypothesis. In-
stead of doing so, we will consider two different
models for the left-hand side of Eq. (32). The
first is to assume that it can be represented by a
single effective trajectory, while the second is
that it is dominated by a P with n~(0) =1 and a P'

» f with nz(0) = —,', but not necessarily with b~ = ~b,
as would be required by the strong form of ex-
change degeneracy. The two remaining trajectory
parameters in each case will be determined by
applying Eq. (32) with n=0 and n=1.

If we have only one effective output trajectory,
Eq. (32) can be used to calculate b(0) and n(0) for
that trajectory. Using Eqs. (10), (23), and (6),
with P = 0.6 (see Sec. V), we obtain an intercept
n(0) =0.81. This, not surprisingly, lies between
the intercepts for the physical f and P trajectories
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FIG. 6. A Hegge generalization of a general ABFST
production amplitude.

(N) = 2g lns,
Bg

(33)

where v g is a strength parameter which we as-
sociate with each of the blob's in these diagrams.
This means that we must associate g with A„„
Vg with Fig. 2(a), and g with Fig. 2(b). Equations
(30)-(33) then yield (N) = 1.02 lns. The experimen-
tal value is (N) = (1.05 + 0.15)lns."

If we next put in the actual P and f into the left-
hand side of Eq. (32) we obtain b~(0}=0.0064',
which corresponds to o„,= 13.7 mb, and bz(0)
=0.039m. The latter value is somewhat smaller
than the one given by the Lovelace-Veneziano
model, which gives bf(0) =0.066m. On the other
hand, it agrees somewhat better with experiment.
If we calculate the ratio

R„,= [b~(0)/bq(0)]A~& '
for example, where A=1 GeV', we obtain A~

(34)

and must be some kind of average between them.
Another quantity we can easily calculate in the one-
trajectory case is the multiplicity (N) for pion pro-
duction at high energies, if we assume that it is
given by the multiperipheral graphs of Fig. 6. We
then have

= 1.2, whereas the Lovelace-Veneziano prediction
with the same bz(0) would be R„,= 0.7. Now fac-
torization gives R„=R„~'/R», where R,~ and R»
are the ratio (34) for vP and PP scattering. More-
over there is a large class of models which would

give R~ = R„~= R»." Experimentally, "we have

R,~ =1.4 and R»= 1.1, which agrees fairly well
with our calculated value of R,„=1.2.

VII. NEGATIVE-MOMENT SUM RULES

Instead of using positive-moment FESR's, such
as those given by Eq. (30), we could also use nega-
tive-moment sum rules. " The simplest such sum
rule for It =0 is obtained by simply evaluating an
ordinary fixed-t dispersion relation at v = 0. This
gives

ds A(s, t)-gb, (t)v"&' v '=[T(s, t)],
Q

For It =1 one can also write an equation of this
form, but then T is no longer the true amplitude,
but rather the partial-wave sum of the even-J un-
physical "amplitudes" obtained by making a Frois-
sart-Gribov continuation from the odd-J ampli-
tudes. Higher-moment sum rules can be obtained
by again taking a fixed-t dispersion relation and
evaluating the derivatives of T at v =0. But in all
such relations we have to know something about T
as well as the absorptive part.

If we write out Eqs. (35) and (31) for I, =0 and

I, =1 and once again use Eq. (20) to eliminate the
contribution of aR,g, we obtain a, negative-moment
version of Eq. (32):

Sg

dsgb, .(0)v '~

8 g

ISO
2s[T(s, 0)] &=,'+--,' dslmE(0, s}v '

~u

pSy

dsb ImE(0, s)+[a'„', (s, 0)], , —4[a'„', (s, 0)]~ j v ',
~sp

(36)

where again, we have taken A„,=ImT, with T
given by Eqs. (16) and (17}. We have also used
the fact that the Lovelace-Veneziano model itself
satisfies negative-moment relations like (35}; in
the It = 1 state, which does not have any Pomeran-
chuk complications, we can thus write

fSX
ds[ImF(s, t) —bp(t)v""~]v ' = [T(s, t)] ~,', (37)

where we have used Eq. (17), To evaluate T on the
left-hand side of Eq. (36) we shall use PCAC. This
predicts that

[7(s, 0)],",' = 0 (38)

if we treat the pion mass as being negligible. "

Let us first check to see how well the two-tra-
jectory solution obtained in Sec. VI satisfies Eq.
(36}. With this solution we obtain a value of 3.02m

for the left-hand side and a value of 2.90m for the
right-hand side, so that the sum rule is satisfied
fairly well. Alternatively, we could require it to
be satisfied exactly, along with the n=0 version of
Eq. (32). This then gives bz(0) =0 029m and .b~(0)
= 0.0073@, which corresponds to 0'„, = 15.6 mb and
R„=1.8. These values are at least roughly the
same as those obtained in the previous section.

Actually it is not even necessary to use PCAC at
all to obtain Eq. (38), if we take n, =0.5, a value
which follows either from experiment or from an
assumption of exact semilocal linear duality, as
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we have seen in Sec. II. The I, =2 amplitude,
which does not have any Pomeranchuk contribution,
must then have a zero at v=0, t=0, as can be
seen from Eq. (18). But crossing symmetry re-
quires that

ry Ig = 0 yI g
= 2=2 (39)

at s=t=u." Since this point is essentially the
same as v = 0, t = 0, at least if we treat the square
of the pion mass as being negligible on the scale
set by e' ', we conclude that T'~=' must also have
a zero at this point.

VIII. POSSIBLE IMPROVEMENTS

AND EXTENSIONS

The most obvious way of improving our results
would be to go to higher energies. This is particu-
larly true of Type-B duality, which, as we have
seen, does not use a resonance description at all,
and involves approximating one relatively smooth
function by another. Of course, such a duality is
always likely to work best at energies where the
resonances have already smoothed out. Even at
lower energies it may work better if the partial
waves containing resonances are explicitly sub-
tracted out. However, the calculations of Sec. V
and VI both gave reasonable results, even though
Eq. (2b) was applied in a region where resonances
are still important. Moreover, these results did
not differ too much from each other, even though
the energy intervals involved were quite different.
This suggests that our approach should converge
fairly rapidly as we go up in energy.

Although Type-A duality is probably the simplest
way of calculating certain quantities, such as the
total width of the g, it should perhaps be empha-
sized that all such quantities could also be cal-
culated from the Type-B form. But since the lat-
ter only gives partial widths, we would then have
to consider more than one process simultaneously.
In the case of the g, for example, we would also
have ta consider unitary diagrams like Figs. 1(b)
or 4 for the nm- RR process. It might be interest-
ing to see how the resulting sum of partial widths
compares with the total width obtained in Sec. II.

In the calculations of the present paper we have
made extensive use of the Lovelace-Veneziano
model. The main function of this model, however,
was to provide a convenient framework for incor-
porating linear duality and exchange degeneracy
for the nm scattering amplitude. Any other model
capable of doing this would be equally acceptable.
Indeed, recent investigations of dip structure seem
to show that the resonance distribution in a Vene-
ziano-type model may not be sufficiently peripher-
al to be consistent with the data at intermediate

energies. " It may therefore be desirable to re-
peat some of our calculations in the context of a
peripheral-resonance model. Preliminary calcu-
lations seem to indicate that the resulting Pomer-
anchukon residue is not too different from the one
obtained in Sec. V, at least in the forward direc-
tion.

Instead of considering two-body scattering am-
plitudes we could also look at particle-Regge (or
even Regge-Regge amplitudes). This kind of "am-
plitude" is actually needed if we are to apply Eq.
(2b) at higher energies, where diagrams such as
Fig. 3 or Fig. 6 would come in. Recently a number
of authors have written down finite-energy sum
rules for Regge-particle "scattering, ""which
arises naturally from the Mueller analysis of in-
clusive reactions. " As in ordinary scattering am-
plitudes, linear duality does not give us any infor-
mation on Pomeranchukon residues in such ampli-
tudes, but Type-B nonlinear duality presumably
should.
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APPENDIX: Ig =0 TRAJECTORY FOR t&0

Since Eq. (32) applies at any moderate value of
t it might be interesting to see what it has to say
about the I, =0 trajectory in the physical region of
the t channel. Now the main complication here
comes from aR',~, which is difficult to evaluate for
to 0. But this term comes from Fig. 1(b), which
is an Amati-Fubini-Stanghellini-type diagram,
with an asymptptic behavior pf v " ' tp within
logarithms. We might therefore expect its contri-
bution to become progessively less important in

0
I

2
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I

2m' 3m'

FIG. 7. Effective I, =0 Regge trajectory calculated
from Eq. (32) with aI ~ =0 in the one-trajectory case,
and the Lovelace-Veneziano I, = 1 trajectory.
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Eq. (32) as we increase f, at least relative to the
other terms in the (s„s,) interval, which have a
v ~' behavior. Actually, even at 1=0 the results
are not affected all that much if we drop a'„',~.
With a single effective trajectory on the left-hand
side of Eq. (28), for example, the intercept is only
shifted from 0.81 to 0.69. We will therefore sim-
ply set aR,~

=0.
For t&0 we again have the choice of choosing

only one effective trajectory or trying to put in
both the P and the f on the left-hand side of Eq.
(32). However, in practically all models which
are currently in favor, the P is relatively flat
compared with the f. For sufficiently large f the
latter will thus give the dominant contribution in
Eq. (32).'4 For ta m~' we can therefore safely
drop the contribution of P in this equation.

If we now impose Eq. (32) for n= 0, 1 with E given

by Eq. (6), we obtain the I, =0 trajectory shown in

Fig. 7. This is compared with the I, =1 trajectory,
which, since there is no Pomeranchuk complica-
tion, continues to be given by the Lovelace-Vene-
ziano model. We see that exchange degeneracy is
broken somewhat, although not very drastically.
In particular the slopes of the trajectories are now
somewhat different, although the inclusion of a
finite aR',~ is likely to flatten the I, =0 curve some-
what and lead perhaps to better agreement with
exchange degeneracy. The position of the f' reso-
nance which we obtain is now at s = 2.3m&', which
should be compared with the Lovelace-Veneziano
value of s = 3.0m~' and the experimental value of
s 2 7m

p Perhaps it even repre sents some kind
of average of the f' and the p,„(1080)resonance, "
which has been seen at s = 2.0m~'.
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