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General structure of the graviton self-energy

F. T. Brandt and J. Frenkel
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo 05315-970, Brazil

~Received 27 January 1999; published 11 May 1999!

The graviton self-energy at finite temperature depends on 14 structure functions. We show that, in the
absence of tadpoles, the gauge invariance of the effective action imposes three non-linear relations among
these functions. The consequences of such constraints, which must be satisfied by the thermal graviton self-
energy to all orders, are explicitly verified in general linear gauges to one loop order.
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The non-linear relation imposed by gauge invariance
the thermal self-energy of gluons has been recently discu
by Weldon in an interesting paper@1#. He proved that in
QCD, the Slavnov-Taylor identities@2,3# require a non-linear
constraint among the structure functions which occur at fin
temperature. In this Brief Report, we show that a simi
behavior occurs in the gauge theory of gravity. In this ca
local gauge invariance leads to three non-linear relati
which restrict the form of the thermal self-energy of gra
tons.

The Einstein theory of gravity is described by the L
grangian density@4–6#

L5
2

k2
A2gR, ~1!

where k2532pG, G is the Newton constant andR is the
Ricci scalar. The graviton fieldhmn can be defined in term
of the metric tensor as

gmn5hmn1khmn . ~2!

Using this parametrization, the Einstein action will be inva
ant under the gauge transformation@7#

dhmn5@dm
l ]n1dn

l]m1k~hm
l ]n1hn

l]m1]lhmn!#jl

[Gmn
(0)ljl , ~3!

wherejl is an infinitesimal gauge parameter.
In this gauge theory, the corresponding identities wh

occur at finite temperature differ from those atT50 because
of the appearance of one-particle graviton functions~tad-
poles!. Their thermal contribution is purely leading, bein
proportional toT2(n11) at n-loop order. Hence, we may as
sume that the tadpoles are important, in the Ward identit
only for the leading thermal contributions to the gravit
self-energy.@To one-loop order, for example, the tadpol
can be neglected for the purpose of studying the sub-lea
T2, log(T) andT50 contributions.#

At finite temperature, the graviton self-energy may d
pend on the four-velocityua of the plasma, so that it can b
a linear combination of the 14 independent tensors give
Table I. This contains three traceless tensorsTab,mn

A , Tab,mn
B

and Tab,mn
C , which are transverse with respect to the wa

4-vectorkm . They are also, respectively, completely tran
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verse, partially transverse and longitudinal with respect
the spatial componentkW . The explicit form of these tensors i
given by Eq.~5.16! of Ref. @8# @see also Eq.~4.7! of Ref.
@11##. They depend individually on the plasma four-velocit
but their sum is a Lorentz covariant tensor which is indep
dent ofua :

~TA1TB1TC!ab,mn5
1

2
~PamPbn1PanPbm!2

1

3
PabPmn ,

~4!

wherePab5hab2kakb /k2.
In terms of this basis, which is convenient for our pu

pose, the graviton self-energy can be parametrized as

Pab,mn5PATab,mn
A 1PBTab,mn

B 1PCTab,mn
C

1(
i 54

14

P iTab,mn
i . ~5!

In the hard thermal loop approximation, which represe
a consistent high-temperature expansion@9,10#, the one loop
graviton self-energy has leading contributions proportio
to T4, and the corresponding functionsP j

( l ) are gauge invari-

TABLE I. A basis of 14 independent tensors.

Tab,mn
1,2,3 5Tab,mn

A,B,C

Tab,mn
4 5habhmn

Tab,mn
5 5umunhab1uaubhmn

Tab,mn
6 5@ub(knham1kmhan)1kb(unham1umhan)

1ua(knhbm1kmhbn)
1ka(unhbm1umhbn)]/k•u

Tab,mn
7 5@knuaubum1kmuaubun

1kbuaumun1kaubumun]/k•u
Tab,mn

8 5@kbknham1kbkmhan1kaknhbm

1kakmhbn]/k2

Tab,mn
9 5@kmknuaub1kakbumun#/k2

Tab,mn
10 5(kbua1kaub)(knum1kmun)/(k•u)2

Tab,mn
11 5@kbkmknua1kakmknub

1kakbknum1kakbkmun]/(k2k•u)
Tab,mn

12 5(kakbkmkn)/k4

Tab,mn
13 5(kmknhab1kakbhmn)/k2

Tab,mn
14 5@(knum1kmun)hab1(kbua)

1kaub)hmn]/(k•u)
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ant@8#. However, when one goes beyond this approximati
by including contributions which are sub-leading in powe
of T, this feature no longer occurs and the functionsP j

(s)

become gauge dependent@11#.
In order to investigate the structure of the exact gravi

self-energy which includes also higher loops effects, we w
make use of the Becchi-Rouet-Stora identities@12# which
reflect the underlying gauge invariance of the theory@13,14#.
A discussion of the consequences of these identities on
structure of the thermal self-energy is given in Appendix

To explain these, we will denote byǦab,mn the quadratic part
of the graviton effective action, which is the sum of the fr
kinetic energy, without the gauge fixing term, and the o
particle-irreducible graviton self-energy:

Ǧab,mn5Kab,mn
(0) 1Pab,mn . ~6!

The free-graviton kinetic energy is given, in momentu
space, by

Kab,mn
(0) ~k!5k2~hamhbn1hanhbm2habhmn!

1kmknhab1kakbhmn2~kakmhbn1kaknhbm

1kbkmhan1kbknham!. ~7!

The contributions toPab,mn are calculated according t
the usual Feynman rules, using a gauge fixing term whic
quadratic in the graviton field.~Examples of such gauge
fixing terms are provided by the covariant@11# and axial

gauges@13#.! Hence, the gauge dependence ofǦab,mn comes
only from the self-energy functions. In consequence of
Becchi-Rouet-Stora~BRS! identities, it turns out that the

leading contributions to the longitudinal part ofǦab,mn are
proportional to the tadpole terms@see Eq.~A5!#. Further-
more, in general linear gauges, the sub-leading contribut

to Ǧab,mn satisfy the following four constraints@see Eq.
~A6!#:

Ǧab
(s)mn~k!Gmn

l ~k!uh5050 for l50,1,2,3, ~8!

where the tensorGmn
l is given, to lowest order, by Eq.~3!.

Since Ǧab
(s)mn is symmetric under permutations of indice

a↔b and m↔n, it can viewed as a 10310 matrix which
must have 10 eigenvalues. Six of these are determined
namically by the equations of motion of the gravitation
field. The other four eigenvalues must be zero in con
quence of the gauge invariance as expressed by Eq.~8!. In
order to obtain zero eigenvalues, it is necessary that the

terminant ofǦab
(s)mn should vanish. These requirements le

to three distinct non-linear constraints among the exact fu
tions P j

(s) , which determine the structure of the gravito
self-energy at finite temperature. The first of these non-lin
relations, which are derived in Appendix B, can be written
follows:
12770
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2P6
(s)1P8

(s)52S k2

~k•u!2
21D ~P6

(s)!2

k21PB
(s)

. ~9!

The other general non-linear relations are given in E
~B16! and ~B17!, which involve quite lengthy expression
We shall present here, for simplicity, only the correspond
results obtained in covariant gauges, at zero temperatur
this case, the general non-linear relations simplify becaus
Eq. ~5!, P i50 for iÞ4,8,12,13. Furthermore, we have no
PA5PB5PC , since at zero temperature the only tracele
transverse tensor available is given by the sumTA1TB
1TC in Eq. ~4!. Then, the condition~B16! implies thatP8
50, and the non-linear constraint~B17! reduces to the fol-
lowing relation:

P41P1212P135
3

2k2
@P4P122~P13!

2#. ~10!

The above non-linear relations are rather interesting, si
the structure functionsP i are all gauge-dependent. In pertu
bation theory, these functions begin at least to orderk2. Con-
sequently, the linear combinations on the left-hand sides
Eqs. ~9! and ~10! must begin at orderk4. We have verified
these results to one loop order in general axial and covar
gauges, respectively, where the above linear combinat
are found to vanish.

We are grateful to CNPq and Fapesp, Brazil, for a gra
J.F. would like to thank Professor J.C. Taylor for a help
correspondence.

APPENDIX A: BRS IDENTITY

In order to derive the BRS identity for the graviton se
energy at finite temperature, we start from the effective
tion

Ǧ5hmn~0!Gmn1E d4xd4yJmn~x!Gmn
l ~x2y!Cl~y!

1
1

2E d4xd4yhab~x!Ǧab,mn~x2y!hmn~y!, ~A1!

whereGmn denotes the tadpole.Jmn(x) represents the sourc
term for the BRS transformation of the graviton field a
Cl(y) is the vector ghost field. The tensorGmn

l (x2y),
which is given to lowest order by Eq.~3!, can be expressed
diagrammatically in a loop expansion, as shown in Re
@11,13,14#.

The relevant BRS invariance for the thermal graviton se
energy can now be written, in general linear gauges, as

E d4x
dǦ

dhmn~x!

dǦ

dJmn~x!
50. ~A2!

Differentiating Eq.~A2! with respect toCl(y) and setting all
fields and sources to zero, yields in momentum space
following condition for the tadpole:
1-2
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GmnGmn
l ~k50!uh5050. ~A3!

On the other hand, differentiating Eq.~A2! with respect to
Cl(y) and hab(z), and setting the source to zero, leads
h50 to the identity

Ǧab,mn~k!Gmn
l ~k!1GmnGmn

l,ab~k!50, ~A4!

whereGmn
l,ab denotes the derivative ofGmn

l with respect to
hab . If we consider the tadpoles only for the purpose
calculating the leading contributions to the self-energy,
~A4! can be written ath50 as follows:

@Ǧab,mn~k!Gmn
l ~k!# ( l )52GmnGmn

l,ab~k!, ~A5!

@Ǧab,mn~k!Gmn
l ~k!# (s)50. ~A6!

Equation~A6! is equivalent to Eq.~8!, sinceGmn
l (k) does

not contain leading thermal contributions. The above re
tions have been verified explicitly in@11#, to one loop order.
In this case, for example, Eq.~A6! becomes~at h50)

P (s)ab,mn~k!Gmn
(0)l~k!1K (0)ab,mn~k!Gmn

(1)l~k!50.
~A7!

An important consequence of Eq.~A7!, which follows from
the fact thatKab,mn

(0) (k) in Eq. ~7! is transverse with respec
to ka , is the identity

kmkaP (s)ab,mn~k!50. ~A8!

This is analogous to the identitykmknPmn(k)50, which
holds in QCD for the exact gluon self-energy.

APPENDIX B: DERIVATION OF THE NON-LINEAR
CONSTRAINTS

In this appendix, we will derive the non-linear relation

involving the elements ofǦab
(s)mn , which result in conse-

quence of the vanishing of its determinant.@In what follows,
for simplicity of notation, we shall drop the superscripts (s).#
To this end, it is convenient to introduce a set of 10 pol
ization tensorsemn

l ( l 51, . . .,10), which constitute a basi

for the eigentensors ofǦab
mn . Two of these tensors describ

the physical graviton field, which has spin 2 and helicit
62. In terms of the transverse vectorsem

1,2, which satisfy
kmem

1,25umem
1,250, we can define the physical polarizatio

tensorsemn
1,2 as

emn
1,25

1

2
@~em

1 en
12em

2 en
2!6~em

1 en
21en

1em
2 !#, ~B1!

which are traceless and transverse with respect tokm andum .

These tensors are actually eigentensors ofǦmn
ab with the same

eigenvalue:

Ǧab
mnemn

1,25~k21PA!eab
1,2 ~B2!
12770
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which reflects the fact that the purely spatially transve
modeA describes a physical gravitational wave propagat
in the plasma.

Other two~unphysical! polarization tensors, defined as

emn
3,45kmen

1,21knem
1,22

k2

k•u
~umen

1,21unem
1,2!, ~B3!

are eigentensors ofKab,mn
(0) with the same eigenvaluek2. The

following two unphysical polarization tensors can be writt
as

emn
5,65kmen

1,21knem
1,2. ~B4!

These are eigentensors ofKab,mn
(0) with zero eigenvalues. In a

coordinate system wherekW is directed along thez-axis, they
correspond to the elements of the tensorGmn

(0)1,2(h50) de-
fined in Eq.~3!.

The next two unphysical polarization tensors can be r
resented as

emn
7 5S km

k•u
2umD kn1S kn

k•u
2unD km , ~B5!

emn
8 5umkn1unkm . ~B6!

These are also eigentensors ofKab,mn
(0) with zero eigenvalues

and correspond, in the above coordinate system, to the
ments of the tensorGmn

(0)3,4(h50). The remaining two polar-
ization tensors, which are given by

emn
9 5hmn2

kmkn

k2
~B7!

and

emn
10 5emn

9 1
3k•u

2~k•u!21k2

3S kmun1knum2
k2

k•u
umun2k•uhmnD , ~B8!

are eigentensors ofKab,mn
(0) , with eigenvalues22k2 andk2,

respectively.
Using Eqs.~B3! and ~B4!, and the properties of the ten

sorsTab,mn
i , we get the system

Ǧab
mnemn

3,45~k21PB!emn
3,412S 12

k2

~k•u!2D P6emn
5,6 ,

~B9!

Ǧab
mnemn

5,6522P6emn
3,41~4P612P8!emn

5,6. ~B10!

In order to obtain non-trivial eigentensors ofǦab
mn from the

above set of equations, we must impose the condition
the determinant involving the corresponding eigenvalu
must vanish. This leads to a quadratic equation which de
mines a set of two eigenvalues.@Because of the form of Eqs
1-3
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~B9! and~B10!, the other two eigenvalues will be degenera
with those in the first set.# The product of the eigenvalue
must therefore vanish, yielding in this way the non-line
relation given by Eq.~9!. The system~B9! and ~B10! deter-

mines altogether four eigentensors ofǦab
mn , two of which

have zero eigenvalues.
Taking into account Eq.~B2!, we have thus far a total o

six eigentensors ofǦab
mn , so that we must still find four more

eigentensors. These must be each linear combinations o
tensorsemn

l ( l 57, . . . ,10). Therequirement of non-trivial
eigentensors leads to a quartic equation for the remain
four eigenvalues, which can be written in the form of a va
ishing determinant:

UL112l L12 L13 L14

L21 L222l L23 L24

L31 L32 L3322k22l L34

L41 L42 L43 PC1k22l

U50

~B11!

whereLmn are linear combinations of the structure functio
P i ( i 54, . . . ,14). Wehave, for example,

L115
1

r ~r 11!
@r ~r 21!P422~r 21!P518rP614r 2P8

22~r 21!P91r ~r 21!P1212r ~r 21!P13#, ~B12!

L125
2~r 21!

~r 11!2
@rP41~r 21!P512r ~r 21!P62~r 11!P7

12rP81~r 21!P91r ~r 11!P111rP1212rP13

1r ~r 11!P14#, ~B13!
ys

12770
r

the

g
-

L215
2

r 11
@P412P512~113r !P612~r 11!P7

1~r 13!P812P91~r 11!2P1012~r 11!P11

1P1212P1312~r 11!P14#, ~B14!

L225
1

r 2
@rP41~r 21!P512r ~r 21!P62~r 11!P712rP8

1~r 21!P91r ~r 11!P111rP1212rP13

1r ~r 11!P14#, ~B15!

wherer[k2/(k•u)2.
As a consequence of the BRS condition given by Eq.~8!,

we must have a total of four eigentensors with zero eig
values. Since Eq.~B9! and ~B10! have already determine
two such eigentensors, it follows that Eq.~B11! must have
two vanishing roots. This yields two more non-linear re
tions among the structure functions, which can be writ
symbolically in the form

k4~L111L22!5k2L ^ L1L ^ L ^ L ~B16!

and

k4~L11L222L12L21!5k2L ^ L ^ L1L ^ L ^ L ^ L,
~B17!

whereL denotes some matrix element of Eq.~B11!.
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