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General structure of the graviton self-energy
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The graviton self-energy at finite temperature depends on 14 structure functions. We show that, in the
absence of tadpoles, the gauge invariance of the effective action imposes three non-linear relations among
these functions. The consequences of such constraints, which must be satisfied by the thermal graviton self-
energy to all orders, are explicitly verified in general linear gauges to one loop order.
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PACS numbeps): 11.15—q

The non-linear relation imposed by gauge invariance orverse, partially transverse and longitudinal with respect to

the thermal self-energy of gluons has been recently discussegle spatial componetit The explicit form of these tensors is
by Weldon in an interesting papét]. He proved that in  given by Eq.(5.16 of Ref.[8] [see also Eq(4.7) of Ref.
QCD, the Slavnov-Taylor identiti§2,3] require a non-linear  [11]]. They depend individually on the plasma four-velocity,

constraint among the structure functions which occur at finiteyyt their sum is a Lorentz covariant tensor which is indepen-
temperature. In this Brief Report, we show that a similargent ofy -
behavior occurs in the gauge theory of gravity. In this case, “
local gauge invariance leads to three non-linear relations _, . . 1 1
which restrict the form of the thermal self-energy of gravi- (Th+To+T )aﬁ,uvzi(PanPBﬁ Pavpﬂn)_gpaﬁpnw
tons. (4)
The Einstein theory of gravity is described by the La-
grangian density4—6] whereP 5= 7,5~ KKz /K.
In terms of this basis, which is convenient for our pur-

2 pose, the graviton self-energy can be parametrized as
L= 2V 9 R, @ A B c
K HQB,MV:HATaﬂ,,lLV_l—HBTaﬁ,/.LV+HCTaB,MV
where k2=327G, G is the Newton constant and is the 14 i
Ricci scalar. The graviton fieltd,, can be defined in terms +i:24 HiTa,B,,uV' 6)

of the metric tensor as

In the hard thermal loop approximation, which represents
a consistent high-temperature expangi®10], the one loop
. graviton self-energy has leading contributions proportional

Using this parametrization, the Einstein action will be invari- 4 ; () : ;
' ) T%, and th rr nding functi r invari-
ant under the gauge transformatiofi to T, and the corresponding funct oﬁlﬁ‘ are gauge inva

g,uV: 7],uV+ Kh,u,v' (2)

TABLE I. A basis of 14 independent tensors.

— A A A A
oh,,=[8,0,+ 8,0,+ k(h),a,+h}a,+d*h,,)1&

Tl23 _TABC

=GOn aBuv— | aB.uv
G,uv f)\ ) (3) Tg[g'w]: D T
whereé, is an infinitesimal gauge parameter. Tgﬁ,uv: Uty apt Ualp
In this gauge theory, the corresponding identities which ~ Tasur™ [Up(Ki7au+Ku700) +Ke(Uy 70t U, 700)
occur at finite temperature differ from thoseTat 0 because oKy, Ky 7p)

of the appearance of one-particle graviton functigtes- , +Ko(Uy 75, F Uu 7)1 K- U
polesg. Their thermal contribution is purely leading, being Tepuv=[KUoUpgu, K ugugu,

proportional toT2("*%) at n-loop order. Hence, we may as-
sume that the tadpoles are important, in the Ward identities,
only for the leading thermal contributions to the graviton
self-energy.[To one-loop order, for example, the tadpoles
can be neglected for the purpose of studying the sub-leading
T2, log(T) and T=0 contributions}

At finite temperature, the graviton self-energy may de-
pend on the four-velocity,, of the plasma, so that it can be
a linear combination of the 14 independent tensors given in
Table |. This contains three traceless ten&d}s ,,. Thy .,
and TSB, «vs Which are transverse with respect to the wave

+Kgu u,u,+Kkugu,ul/k-u
T g =L KK T+ KKy, 70+ KK,
+KK, 75, K?
=[K,K,uaug+k.Kgu,u,1/k?
= (KgU,+Kug) (K,u,+k,u,)/(K-u)?
=[Kgk,K,Uqt KoK, K,ug
+ Kk gk, U, + KK gk ,u,1/ (k2K u)
T2 = (Kakgk k) /K
Toapun= (KuKy MaptKakp7,,,) /K2
Toopoun=[(K U, FK,U,) 705+ (KpU)
+KaUp) 7,1/ (k- u)

9
Tapn
Taﬁ,,u,v
-I—ll

aB,uv

4-vectork, . They are also, respectively, completely trans
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ant[8]. However, when one goes beyond this approximation, K2 (I1Y)2
by including contributions which are sub-leading in powers 2Hgs)+H§S)=2< 5 2 0 9
of T, this feature no longer occurs and the functidi’ (k-u) k“+ 11

become gauge dependétl].

In order to investigate the structure of the exact graviton B IGhe o(tjh(eBr 1‘%?”6;]3' rr;]qn—l|r|1ear rgtlatllons tﬁre given in Egs.
self-energy which includes also higher loops effects, we Wi||( ) an ; Which Involve quite fengtny EXpressions.

make use of the Becchi-Rouet-Stora identitjag] which We shall present here, for simplicity, only the corresponding

reflect the underlying gauge invariance of the thddi3,14). re_sults obtained in covariant gauges, at zero temperature. In
A discussion of the consequences of these identities on t Is case, the general non-linear relations simplity because in

structure of the thermal self-energy is given in Appendix A. g.(9), II;=0 for i +#4,8,12,13. Furthermore, we have now

. , > ) I1,=IIgz=II;, since at zero temperature the only traceless-
To explain these, we will denote BY,,4 ., the quadratic part  ansverse tensor available is given by the sl Tg

of the graviton effective action, which is the sum of the free+-|—c in Eq. (4). Then, the conditior{B16) implies thatIT,

kine_tic e.nergy,.without _the gauge fixing term, and the one-_ o “and the non-linear constraif817) reduces to the fol-
particle-irreducible graviton self-energy: lowing relation:

[ op =K

af,uv™ NaB,uv

+11I ) 6 3
aB,uv 6) I+ 11+ 21_[13:%[1]41]12_(1]13)2]- (10)

The free-graviton kinetic energy is given, in momentum ) ) ) . )
space, by The above non-linear relations are rather interesting, since

the structure functionHl; are all gauge-dependent. In pertur-
(0) ) bation theory, these functions begin at least to ordetCon-

Kap,ulK) =K (M0t Mo g™ Napun) sequently, the linear combinations on the left-hand sides of

Egs.(9) and (10) must begin at ordek*. We have verified

+K, K, 70T KKgm = (KK, 75, KK, . ) .
wlvllap B~ (KoK 7g e these results to one loop order in general axial and covariant
KK, 700 T KKy 70,)- (7) gauges, respectiyely, where the above linear combinations

are found to vanish.

The contributions tdI,, ,, are calculated according to We are grateful to CNPq and Fapesp, Brazil, for a grant.
the usual Feynman rules, using a gauge fixing term which ig.F. would like to thank Professor J.C. Taylor for a helpful
quadratic in the graviton field([Examples of such gauge- correspondence.
fixing terms are provided by the covariaitl] and axial

gauged13].) Hence, the gauge dependencdv“gfgw comes APPENDIX A: BRS IDENTITY

only from the self-energy functions. In consequence of the

Becchi-Rouet-Stord BRS) identities, it turns out that the  In order to derive the BRS identity for the graviton self-
leading contributions to the longitudinal part Efaﬁw are  energy at finite temperature, we start from the effective ac-
proportional to the tadpole ternisee Eq.(A5)]. Further- tion

more, in general linear gauges, the sub-leading contributions

'2261;]%” satisfy the following four constraintgsee Eq. 1V“=hlw(0)1“‘“’+f d'xd’y J**(x)G}, (x—Y)Cy(y)

1J' ~
5 +5 | dxd'yh, (0T *A#(x=y)h,,(y), (A1)
L ()G, (Kh-0=0 for x=0123, (8 2 et et

wherel'#” denotes the tadpold*”(x) represents the source

where the tensoB), , is given, to lowest order, by E43).  term for the BRS transformation of the graviton field and

SinceI'}*" is symmetric under permutations of indices Cy(y) is the vector ghost field. The tens@,,(x—y),
a— B and u— v, it can viewed as a 2010 matrix which ~ which is given to lowest order by E@3), can be expressed
must have 10 eigenvalues. Six of these are determined dgliagrammatically in a loop expansion, as shown in Refs.
namically by the equations of motion of the gravitational[11,13,14.
field. The other four eigenvalues must be zero in conse- The relevant BRS invariance for the thermal graviton self-
quence of the gauge invariance as expressed by@qln  energy can now be written, in general linear gauges, as
order to obtain zero eigenvalues, it is necessary that the de-

terminant of"($}*” should vanish. These requirements lead f a0 o, (A2)
to three distinct non-linear constraints among the exact func- Sh,,(X) §3#7(x) '

tions T1{¥, which determine the structure of the graviton

self-energy at finite temperature. The first of these non-lineabifferentiating Eq.(A2) with respect tcC, (y) and setting all
relations, which are derived in Appendix B, can be written adields and sources to zero, yields in momentum space the
follows: following condition for the tadpole:
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pquxv(kzoﬂh:O:o. (A3)  Wwhich reflects the fact that the purely spatially transverse
a modeA describes a physical gravitational wave propagating
On the other hand, differentiating EA2) with respect to  in the plasma. . o .
Cy(y) andh,g(2), and setting the source to zero, leads at Other two(unphysical polarization tensors, defined as
h=0 to the identity 2
3,4 1,2 1,2 1,2 1,2

. e, =k, e +tke ~—(u,.e+tue; ), (B3
Lebav (k)G (k) + TG P(k)=0,  (A4) e *okut g
are eigentensors ¢€()) ,, with the same eigenvalué. The
following two unphysical polarization tensors can be written

whereG)# denotes the derivative d),, with respect to

h,s. If we consider the tadpoles only for the purpose of
calculating the leading contributions to the self-energy, Eq.

(A4) can be written ah=0 as follows: Gi’f= k#ei'2+ kyeﬁlt,z_ (B4)
[f“ﬁvﬂ”(k)Gzy(k)](')z —I#rGhef(k), (A5)  These are eigentensorskf) ,, with zero eigenvalues. In a
. coordinate system wheleis directed along the-axis, they
[TeBrr (k)G (k) ]®=0. (A6)  correspond to the elements of the ten&f)*qh=0) de-
fined in Eq.(3).
Equation(A6) is equivalent to Eq(8), sincery(k) does The next two unphysical polarization tensors can be rep-

not contain leading thermal contributions. The above relaresented as
tions have been verified explicitly iri1], to one loop order.

In this case, for example, EA6) becomegat h=0 7 [ K k,
P @ ) E,U-V_(m_u”“ k,ﬂ‘(m—uy kl“ (B5)
O A1) GO (k) +KO«Br(k) GM k) =0.
(A7) €, =uk,Tuk,. (B6)

An important consequence of EG\7), which follows from  These are also eigentensorskdf), ,, with zero eigenvalues
the fact thatk ) ,,(k) in Eq. (7) is transverse with respect and correspond, in the above coordinate system, to the ele-
to k,, is the identity ments of the tenso®(’)*>(h=0). The remaining two polar-
ization tensors, which are given by

K, K I *A1r(k)=0. (A8)
k, k
This is analogous to the identitig,k,I1#*(k)=0, which € ,= nw—% (B7)
holds in QCD for the exact gluon self-energy. k
and
APPENDIX B: DERIVATION OF THE NON-LINEAR
CONSTRAINTS 3K-u

10_69

(10— 7
By R 2k u) 2+ K?

In this appendix, we will derive the non-linear relations

involving the elements olv“ff)’”, which result in conse-
guence of the vanishing of its determingih what follows, X
for simplicity of notation, we shall drop the superscrips$.{

To this end, it is convenient to introduce a set of 10 polar- _ ) L 5 5
ization tensors,, (I=1,...,10), which constitute a basis &€ €igentensors dt with eigenvalues-2k* andk”,

af,uv?
. ~ ey . respectively.
for the eigentensors dff,;. Two of these tensors describe Using Egs.(B3) and (B4), and the properties of the ten-
the physical graviton field, which has spin 2 and helicitiessors—l—i we get the svstem
+2. In terms of the transverse vectcnsgz, which satisfy apouvs WO J y
k“el,’=ute;’=0, we can define the physical polarization

k2
K,u,+ kvuﬂ—muﬂuv—k unw), (B8)

. k2
1,2 pv 34_ (.2 34 _ 5,6
tensorse,;;, as Iope,= K +1lp)e,,+2| 1 (k~u)2>H6€’”'
1,2 1 1.1 2.2 1.2 1.2 (B9)
eﬂ'fz[(eﬂey—eﬂev)i(eﬂeﬁeveﬂ)], (B1)

[4hes8= —2l1ge3%+ (4llg+2[1g)e3S.  (B10)
which are traceless and transverse with respekt, @andu,, .

These tensors are actually eigentensorﬁfgﬁ with the same
eigenvalue:

In order to obtain non-trivial eigentensors bf,; from the
above set of equations, we must impose the condition that
the determinant involving the corresponding eigenvalues
T 10 must vanish. This leads to a quadratic equation which deter-
Iigen, =K +1a) €5 (B2) mines a set of two eigenvalud®ecause of the form of Egs.
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(B9) and(B10), the other two eigenvalues will be degenerate 2
with those in the first setThe product of the eigenvalues  La1= 7 [Tl4+2[1s+2(1+3r)Ilg+2(r+ DIl
must therefore vanish, yielding in this way the non-linear
relation given by Eq(9). The system(B9) and(B10) deter- +(r+3)g+ 2o+ (r+ 1)+ 2(r + )11,
mines altogether four eigentensors Bﬁg, two of which T 21T 5+ 2(r + 1) 1T 1] (B14)
have zero eigenvalues. 12 13 14l

Taking into account EqB2), we have thus far a total of

six eigentensors d?gg, so that we must still find four more 1
eigentensors. These must be each linear combinations of tI*nezZr—z[fHﬁ(f —DIs+2r(r—1)g—(r+ 1)1+ 2rllg
tensorSe'W (I=7,...,10). Therequirement of non-trivial

eigentensors leads to a quartic equation for the remaining +(r—=1)Ig+r(r+21)I+rIl,+2r15
four eigenvalues, which can be written in the form of a van-

ishing determinant: +r(r+1)I1,], (B1Y)
L=k Lo Lia Lie wherer=k?/(k-u)2.
Log Lao=N Las Lag ~0 As a consequence of the BRS condition given by @Bg.
L3 La, Lag—2k?—\  Lg, we must have a total of four eigentensors with zero eigen-
L L L Lot K2— ) values. Since Eq(B9) and (B10) have already determined
41 42 43 C

(B11) two such eigentensors, it follows that E@®11) must have
two vanishing roots. This yields two more non-linear rela-
whereL ,,, are linear combinations of the structure functionstions among the structure functions, which can be written

IT; (i=4,...,14). Wehave, for example, symbolically in the form
Lll=m[r(r—1)H4—2(r—1)H5+8rH6+4r2H8 k*(Liyt L) =kKLoL+LeLel (B16)
—2(r—=D)IIg+r(r—=1)II,+2r(r—21)I115], (B12) and
2(r—1)
e [rIly+(r=DHs+2r(r—1Is—(r+ DI, K4 (Lol oo~ Lo =K2LOLOL+LOLOLaL,
(B17)
+ 2I’H8+ (r - 1)H9+ I’(r + 1)H11+ I’H12+ 2I’H13
+r(r+1)I1,,], (B13) wherelL denotes some matrix element of E§11).
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