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S matrix for quantum charged massive scalar particles on Schwarzschild black holes

N. E. Firsova
Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia

~Received 23 November 1998; published 21 May 1999!

We study the scattering problem arising when considering the contribution of the topologically inequivalent
configurations of the massive complex scalar field on Schwarzschild black holes to Hawking radiation.
@S0556-2821~99!06310-9#

PACS number~s!: 04.20.Jb, 04.70.Dy, 14.80.Hv
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Recently there arose an interest in studying topologic
inequivalent configurations~TICs! of various fields on 4D
black holes since TICs might give marked additional con
butions to the quantum effects in 4D black hole physics,
instance, such as Hawking radiation@1–3#.

As discussed in Refs.@1–3#, TICs exist owing to the high
nontriviality of the standard topology of 4D black ho
spacetimes which is of theR23S2 form. The high nontrivi-
ality of the given topology consists in the fact that over
there exists a huge~countable! number of nontrivial real and
complex vector bundles of any rankN.1 ~for complex ones
for N51 too! and also a countable number of so-called Spc

structures. Physically the appearance of TICs should
obliged to the natural presence of the whole family of Dir
monopoles on a black hole, and as a result of the interac
with them, one or another field splits into TICs.

As a result, there arises a nontrivial problem to take
theory into account the possibilities connected with the e
tence of TICs. The first step here is to study the contribut
of TICs for a complex scalar field. This was the main fe
tures of what was done in Refs.@2,3# in the massless case fo
Schwarzschild and Reissner-Nordstro¨m metrics. The expres
sion of luminosity regarding Hawking radiation for any TIC
however, contains an element of theSmatrix connected with
some potential barrier surrounding the black hole and wh
effectively arises for the quantum scalar particle leav
black hole; so one should solve some scattering problem
the whole axis with the given potential. But the potentia
mentioned depend on both the type of black hole and
particle masses and are sufficiently complicated since t
can be described only in an implicit form. Therefore, for t
physical results to be obtained one needs to apply nume
methods. But before computing one should have informa
about the existence and qualitative behavior of the m
tionedS matrix in a form convenient to computation.

In the present paper we consider theSmatrix which arises
if we study Hawking radiation for the TICs of a massiv
complex scalar field on Schwarzschild black holes. We w
down the black hole metrics~using the ordinary set of loca
coordinatest,r ,q,w) in the form

ds25adt22a21dr22r 2~dq21sin2qdw2!, ~1!

with a512r g /r , r g52M , andM is a black hole mass.
Throughout the paper we employ the system of units w

\5c5G51, unless explicitly stated otherwise. Finally, w
shall denote byL2(F) the set of the modulo square inte
grable complex functions on any manifoldF furnished with
an integration measure.
0556-2821/99/59~12!/127502~4!/$15.00 59 1275
y

-
r

e

n

n
-
n
-

h
g
n

e
y

al
n
-

e

h

As was discussed in@1# TICs of a complex scalar field on
the chosen class of black holes are conditioned by the av
ability of a countable number of complex line bundles ov
theR23S2 topology underlying 4D black hole physics. Eac
TIC corresponds to sections of a complex line bundleE
while the latter can be characterized by its Chern numben
PZ ~set of integers!. A TIC with n50 can be calledun-
twisted, while the rest of the TICs withn5” 0 should be ref-
fered to astwisted. Using the fact that all the line bundle
mentioned can be trivilized over the chart of local coor
nates (t,r ,q,w) covering almost the whole manifold
R23S2 one can obtain a suitable wave equation on the gi
chart for TICf with massm0 and Chern numbernPZ in the
form

~hn1m0
2!f50, ~2!

where the form of the conforming wave operatorhn de-
pends on the gauge choice for connectionAm ~vector poten-
tial for the corresponding Dirac monopole! in the line bundle
with Chern numbern. We shall consider here two gauge
which are most interesting from the physical point of vie
~see below!.

As was shown in@1#, Eq. ~2! has inL2(R23S2) a com-
plete set of solutions of the form

f vml5~1/r ! eivteimwYnlm~q,w!Rv l~r !,

l 5unu,unu11, . . . , umu< l , ~3!

where the explicit form of themonopole (spherical) harmon
ics Ynlm(q,w) can be found in@1–3#.

As to the functionsRv l(r ), denoting k5r gv, y(x)
5r /r g and introducing the functions c(x,k,l )
5Rv(k) l„r (x)…, wherey(x) is a function reverse tox(y)5y
1 ln(y21) ~i.e., 2`,x,`, 1<y,`), we shall obtain
that c(x,k,l ) obeys the Schro¨dinger-like equation

@d2/dx2 1~k22m2!#c~x,k,l !5q~x,l !c~x,k,l !, ~4!

q~x,l !52
m2

y~x!
1S 12

1

y~x! D F N

y2~x!
1

1

y3~x!
G , ~5!

wherem5m0r g andN5 l ( l 11) or N5 l ( l 11)2n2 ~in both
cases l 5unu,unu11, . . . ) in dependence on the gaug
choice.

Under the circumstances the luminosityL(n) with respect
to the Hawking radiation for TICs of massive complex sca
fields with Chern numbern and massm0 is ~in usual units!
©1999 The American Physical Society02-1
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L~n!5A (
l 5unu

`

~2l 11!cl , cl5E
m/mpl

2

` G~k,l !kdk

e8pk21
, ~6!

where

A5
1

2p\ S \c3

GM D 2

'0.273 67331050 erg s21M 22

(M in g!, while mpl
2 5c\/g is the Planck mass square.

To find the barrier transparency

G~k,l !5us11~k,l !u2, ~7!

wheres11 is a transition coefficient for Eq.~4!, we should
consider the corresponding scattering problem on the wh
x axis. As will be seen below, the potential~5! at m0Þ0 is
not integrable asx→1` and we cannot calculates11 ac-
cording to the receipt for them050 case@2#. As a result, the
mentioned scattering problem for Eq.~4! should be regular-
ized. This regularization and calculation ofG(k,l ) is the sub-
ject of the present paper.

It is clear that for the total luminosityL of a black hole
with respect to the Hawking radiation concerning the co
plex scalar field with a massm0 to be obtained one shoul
sum up over alln:

L5 (
nPZ

L~n!5L~0!12(
n51

`

L~n!, ~8!

sinceL(2n)5L(n).
It is not complicated to check that asx

→2` ~i.e., r→r g or y→1) Eqs.~4!,~5! have the form

S d2

dx2
1k2D c~x,k,l !5q2~x,l !c~x,k,l !, ~9!

q2~x,l !5F12
1

y~x!GFm21
N

y2~x!
1

1

y3~x!
G . ~10!

Hence we see@2# that q2(x,l )x→2`5O(ex) and

E
2`

b

uq2~x,l !udx,C~b!, ~11!

whereC(b) is a constant depending onb.
As x→1`, we can rewrite Eqs.~4!,~5! in the form

F d2

dx2
1S k22m21

m2

x D Gc~x,k,l !5q1~x,l !c~x,k,l !,

~12!

q1~x,l !5m2F1

x
2

1

y~x!G1F12
1

y~x!GF N

y2~x!
1

1

y3~x!
G .

~13!

Under this situation

E
b

1`

uq1~x,l !udx,C~b!. ~14!
12750
le

-

To consider the scattering problem atx→1`, we should
first study the homogenous equation for Eq.~12!:

F d2

dx2
1S k22m21

m2

x D Gc0
1~x,k!50. ~15!

Transforming it we obtain, for

u~z,k!5c0
1S z

2ik1~k!
D , k1~k!5Ak22m2, ~16!

the Whittaker equation@4#

uzz9 ~z,k!1F2
1

4
2

i m̃

z
Gu~z,k!50, m̃5

m2

2k1
5

m2

2Ak22m2
.

~17!

A couple of the Whittaker functionsWi m̃,1/2(2z),
W2 i m̃,1/2(z) forms a fundamental system of solutions for E
~17! because they have asymptotic behavior as follows@4#:

Wi m̃,1/2~2z!5ez/2~2z! i m̃@11O~z21!#,

uarg~2z!u,p, z→`, ~18!

W2 i m̃,1/2~z!5e2z/2z2 i m̃@11O~z21!#,

uarg~2z!u,p, z→`. ~19!

Hence the general solution of Eq.~17! is

u~z,k!5C1
1Wi m̃,1/2~2z!1C2

1W2 i m̃,1/2~z!.

It means that the general solution of Eq.~15! has the form

c0
1~x,k!5C1

1Wi m̃,1/2~22ik1x!1C2
1Wi m̃,1/2~2ik1x! ~20!

and

Wi m̃,1/2~22ik1x!5eik1xu2k1xu i m̃epm̃/2

3F11OS 1

uk1xu
D G , x→`, ~21!

W2 i m̃,1/2~2ik1x!5e2 ik1x
1

u2k1xu i m̃
epm̃/2

3F11OS 1

uk1xu
D G , x→`. ~22!

We also introduce the functions

w6 i m̃,1/2~6z!5W6 i m̃,1/2~6z!e2pm̃/2,

which are more convenient. They form the fundamental s
tem of solutions of Eq.~15! as well. We may write the gen
eral solution of Eq.~15! as follows:

c0
1~x,k!5c1

1wi m̃,1/2~22ik1x!1c2
1w2 i m̃,1/2~2ik1x! ~23!

and
2-2
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wi m̃,1/2~22ik1x!5eik1xei m̃ lnu2k1xu@11O~ uk1xu21!#,

x→`, ~24!

w2 i m̃,1/2~2ik1x!5e2 ik1xe2 i m̃ lnu2k1xu@11O~ uk1xu21!#,

x→`. ~25!

The functionsw2 i m̃,1/2(z), wi m̃,1/2(2z) are complex con-
jugate, i.e.,wi m̃,1/2(22ik1x)5w2 i m̃,1/2(2ik1x), and their
Wronskian is equal to

@w2 i m̃,1/2~2ik1x!,wi m̃,1/2~22ik1x!#52ik1. ~26!

We denotec2(x,k,l ) the Jost-type solution of Eq.~9!
obeying the condition

c2~x,k,l !5e2 ikx1o~1!, x→2`. ~27!

Varying the constants according to the Lagrange method
usual, we obtain the integral equation equivalent to the pr
lem ~9!, ~27!:

c2~x,k,l !5e2 ikx1
1

kE2`

x

sin@k~x2t !#

3q2~ t,k,l !c2~ t,k,l !dt. ~28!

The convergence of the series of approximations for
equation follows from Eq.~11! as usual~see, e.g.,@5#!.

Differentiating Eq.~28! we obtain an expression for th
derivative:

~c2!x8~x,k,l !52 ike2 ikx1E
2`

x

cos@k~x2t !#

3q2~ t,k,l !c2~ t,k,l !dt.

A couple of functionsc2(x,k,l ), c2(x,k,l ) is the funda-
mental system of solutions for Eq.~9! and

[c2~x,k,l !,c2~x,k,l !] 52ik. ~29!

We denotec1(x,k1,l ) the Jost-type solution of Eq.~12!
obeying the condition

c1~x,k1,l !5wi m̃,1/2~22ik1x!1o~1!, x→1`. ~30!

Varying the constants in Eqs.~12!, ~23! according to the
Lagrange method, we obtain the integral equation equiva
to the problem~12!, ~30!:

c1~x,k1,l !5wi m̃,1/2
2 ~22ik1x!

1
1

2ik1Ex

1`

@w2 i m̃,1/2~2ik1t !wi m̃,1/2~22ik1x!

2wi m̃,1/2~22ik1t !w2 i m̃,1/2~2ik1x!#

3q1~ t,l !c1~ t,k1,l !dt. ~31!

The existence of the solution of this equation follows fro
Eq. ~14! as usual. Differentiating Eq.~31! we obtain an ex-
pression for the derivative:
12750
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~c1!x8~x,k1,l !522ik1wi m̃,1/2
8 ~22ik1x!

2E
x

1`

@w2 i m̃,1/2~2ik1t !wi m̃,1/2
8 ~2ik1x!

1wi m̃,1/2~22ik1t !w
2 i m̃,1/2
8 ~2ik1x!#

3q1~ t,l !c1~ t,k1,l !dt.

The pair of functionsc1(x,k1,l ), c1(x,k1,l ) is the fun-
damental system of solutions for Eq.~12! and

@c1~x,k1,l !,c1~x,k1,l !#522ik1. ~32!

We write now the decomposition of the solutionc1(x,k1,l )
to the fundamental systemc2(x,k,l ), c2(x,k,l ) and the
solution c2(x,k,l ) to the pairc1(x,k1,l ), c1(x,k1,l ).
We obtain

c2~x,k,l !5c11~k,l !c1~x,k1,l !1c12~k,l !c1~x,k1,l !,

c1~x,k1,l !5c21~k,l !c2~x,k,l !1c22~k,l !c2~x,k,l !.
~33!

We call the matrixC5$ci j % the transition matrixfor Eq. ~4!.
Let us explore its elements. From Eqs.~29!, ~32!, ~33! it
follows that

c11~k,l !5
1

2ik1
@c1~x,k1,l !,c2~x,k,l !#,

c12~k,l !5
1

2ik1
@c2~x,k,l !,c1~x,k1,l !#,

c21~k,l !5
1

2ik
@c2~x,k,l !,c1~x,k1,l !#,

c22~k,l !5
1

2ik
@c1~x,k1,l !,c2~x,k,l !#. ~34!

Let us investigate the properties of the elementsci j . For this
purpose we put Eqs.~33! one into another. Then we get

c11~k,l !c22~k,l !1c12~k,l !c21~k,l !51,

c22~k,l !c11~k,l !1c21~k,l !c12~k,l !51,

c11~k,l !c21~k,l !1c12~k,l !c22~k,l !50,

c21~k,l !c11~k,l !1c22~k,l !c12~k,l !50. ~35!

It follows from Eqs.~34! that

g~k!c11~k,l !52c22~k,l !, g~k!c12~k,l !5c21~k,l !,
~36!

whereg(k)5k1/k. From Eqs.~35!, ~36! we also get

g~k!@ uc12~k,l !u22uc11~k,l !u2#51,

g21~k!@ uc21~k,l !u22uc22~k,l !u2#51.
2-3
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These equations can be rewritten in the form

1

g~k!

1

uc12~k,l !u2
1Uc11~k,l !

c12~k,l !U
2

51,

g~k!
1

uc21~k,l !u2
1Uc22~k,l !

c21~k,l !U
2

51. ~37!

We introduce now solutionsC1(x,k1,l ), C2(x,k,l ) of Eq.
~4! satisfying the following conditions:

C1~x,k,l !5H eikx1s12~k,l !e2 ikx1o~1!, x→2`,

s11~k,l !w2 i m̃,1/2~22ik1x!1o~1!, x→1`,

C2~x,k,l !

5H s22~k,a,l !e2 ikx1o~1!, x→2`,

wi m̃,1/2~2ik1x!1s21~k,l !w2 i m̃,1/2~22ik1x!1o~1!,

x→1`.

As a result, from Eq.~33! we obtain

C1~x,k1,l !5c2~x,k,l !1s12~k,l !c2~x,k,l !

5s11~x,k,l !c1~x,k1,l !,

C2~x,k,l !5s22~k,l !c2~x,k,l !5c1~x,k1,l !

1s21~k,l !c1~x,k1,l !.

In the similar way, from Eq.~33! we get

C2~x,k,l !5
c2~x,k,l !

c12~k,l !
, s21~k,l !5

c11~k,l !

c12~k,l !
,

s22~k,l !5
1

c12~k,l !

and

C1~x,k1,l !5
c1~x,k1,l !

c21~k,l !
,

s12~k,l !5
c22~k,l !

c21~k,l !
, s11~k,l !5

1

c21~k,l !
.

.

12750
For example, for the coefficients11(k,l ) which appears in
Eq. ~7! for the barrier transparencyG(k,l ), we have a rela-
tion applicable to numerical calculations:

s11~k,l !52ik/@c2~x,k,l !,c1~x,k1,l !#,

where the Wronskian can be computed numerically with
help of integral equations~28!,~31!.

According to Eqs.~35! we get the unitarity relations fo
the matrixS5$si j %:

g21~k!us22~k,l !u21us21~k,l !u251,

g~k!us11~k,l !u21us12~k,l !u251.

It is not difficult, as usual, to show that the asymptotic b
havior is

s12~k,l !5O~k21!, s21~k,l !5O~k21!

and
G~k,l !5us11~k,l !u2511O~k21!.

Though for studying the Hawking radiation one needs o
s11, the other elements of theS matrix obtained can be im
portant in a number of the problems within 4D black ho
physics, for instance, when studying vacuum polarizat
near black holes for TICs. However, the convergence of
series in Eqs.~6!,~8! over l will be discussed elsewhere sinc
it requires knowledge of more exact asymptotics forus11u2.

We considered one of the scattering problems which
encountered in 4D black hole physics. The relations obtai
can be employed when numerically calculating the Hawk
radiation luminosity for actual charged massive scalar p
ticles, for example, forp6 andK6 mesons. OtherSmatrices
will emerge when both the type of field and the type of bla
hole vary~for example, for Reissner-Nordstro¨m @6# or Kerr
@7# black holes!. As was mentioned, the elements of the co
respondingS matrices are the important ingredients wh
calculating miscellaneous quantum effects connected w
black holes. We hope, therefore, to continue a strict study
a number of the problems mentioned within the framewo
of our further investigations.

The author is thankful to Yu. Goncharov for useful di
cussions.
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