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S matrix for quantum charged massive scalar particles on Schwarzschild black holes
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We study the scattering problem arising when considering the contribution of the topologically inequivalent
configurations of the massive complex scalar field on Schwarzschild black holes to Hawking radiation.
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Recently there arose an interest in studying topologically As was discussed irlL] TICs of a complex scalar field on
inequivalent configuration$TICs) of various fields on 4D the chosen class of black holes are conditioned by the avail-
black holes since TICs might give marked additional contri-ability of a countable number of complex line bundles over
butions to the quantum effects in 4D black hole physics, foithe R?x S? topology underlying 4D black hole physics. Each
instance, such as Hawking radiatiph-3]. TIC corresponds to sections of a complex line bunBle

As discussed in Ref§1-3], TICs exist owing to the high while the latter can be characterized by its Chern nunmber
nontriviality of the standard topology of 4D black hole 7 (set of integers A TIC with n=0 can be calledun-
spacetimes which is of thB?x S? form. The high nontrivi-  twisted while the rest of the TICs witm#0 should be ref-
ality of the given topology consists in the fact that over it fered to astwisted Using the fact that all the line bundles
there exists a hugeountablg number of nontrivial real and mentioned can be trivilized over the chart of local coordi-
complex vector bundles of any rai1 (for complex ones nates ¢,r,d,¢) covering almost the whole manifold
for N=1 too) and also a countable number of so-called Spin R?x S? one can obtain a suitable wave equation on the given
structures. Physically the appearance of TICs should behart for TIC ¢ with massu, and Chern numbere Z in the
obliged to the natural presence of the whole family of Diracform
monopoles on a black hole, and as a result of the interaction (Dn+#3)¢:01 2)
with them, one or another field splits into TICs.

As a result, there arises a nontrivial problem to take inwhere the form of the conforming wave operafay, de-
theory into account the possibilities connected with the exispends on the gauge choice for connection(vector poten-
tence of TICs. The first step here is to study the contributiortial for the corresponding Dirac monopgie the line bundle
of TICs for a complex scalar field. This was the main fea-with Chern numbemn. We shall consider here two gauges
tures of what was done in Ref2,3] in the massless case for which are most interesting from the physical point of view
Schwarzschild and Reissner-Nordstranetrics. The expres- (see below.
sion of luminosity regarding Hawking radiation for any TIC, ~ As was shown if1], Eq. (2) has inL,(R?xS?) a com-
however, contains an element of tBenatrix connected with  plete set of solutions of the form
some potential barrier surrounding the black hole and which

effectively arises for the quantum scalar particle leaving fomi=(1/r) €'e™Y (8, 0)R, (1),
black hole; so one should solve some scattering problem on
the whole axis with the given potential. But the potentials I=[n|,In|+1,..., |m|sl, (3

mentioned depend on both the type of black hole and the

particle masses and are sufficiently complicated since theyhere the explicit form of thenonopole (spherical) harmon-

can be described only in an implicit form. Therefore, for thelCS Yum(¥,¢) can be found irf1-3].

physical results to be obtained one needs to apply numerical As to the functionsR,,(r), denoting k=ryw, Yy(X)

methods. But before computing one should have informatior=r/r; and introducing the functions (x,k,l)

about the existence and qualitative behavior of the men= R, (r(x)), wherey(x) is a function reverse ta(y) =y

tioned S matrix in a form convenient to computation. +In(y—1) (i.e., —o<x<e, 1sy<o), we shall obtain
In the present paper we consider 8matrix which arises that ¢(x,k,I) obeys the Schiinger-like equation

if we study Hawking radiation for the TICs of a massive

complex scalar field on Schwarzschild black holes. We write [d2/dX® + (K2— u?) (X, kD =aq(x, D (. k1), (4

down the black hole metric&ising the ordinary set of local

coordinated,r, 9, ¢) in the form u? 1 N 1
A==t - vl aa f ma ©
d=adf—aldr2—r2(d9?+siPd9de?), (1) y(X YOOI y2(x)  y3(x)
with a=1—rg/r, ry=2M, andM is a black hole mass. whereu = uorg andN=I(1+1) orN=I(l +1)—n? (in both

Throughout the paper we employ the system of units withcases | =|n|,|n|+1,...) in dependence on the gauge
hi=c=G=1, unless explicitly stated otherwise. Finally, we choice.
shall denote byL,(F) the set of the modulo square inte-  Under the circumstances the luminodit{n) with respect
grable complex functions on any manifdidfurnished with  to the Hawking radiation for TICs of massive complex scalar
an integration measure. fields with Chern numben and massu is (in usual unit$
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To consider the scattering problem xat> +, we should

” = T'(kl)kdk
L(n)=A 2 (21+1)c, C':f L (6) first study the homogenous equation for EtR):
1=[n| p./,ulzﬂ eBWk—l
d? i
where — K-+ S =0, (19
A= L [he)? 0.27367% 10°° 5 IM 2 dx’ §
" 2ah\GM| O "9

Transforming it we obtain, for

u(z,k)=¢5’(;), kT (k)=Vk*—pu?,  (16)

2ik (k)

(M in g), while ,uf,,=cﬁ/g is the Planck mass square.
To find the barrier transparency

_ 2
Pkh=[su(k.DI%, @ the Whittaker equatiof4]

wheres;4 is a transition coefficient for Eq4), we should
consider the corresponding scattering problem on the whole ,
x axis. As will be seen below, the potentid) at uo#0 is ~ UzAZK)+
not integrable ax— +o and we cannot calculats;; ac-
cording to the receipt for they=0 casg?2]. As a result, the
mentioned scattering problem for E@) should be regular-
ized. This regularization and calculationIofk, 1) is the sub-
ject of the present paper.

It is clear that for the total luminositl of a black hole
with respect to the Hawking radiation concerning the com-
plex scalar field with a masg, to be obtained one should

/7 - M u?
————|u(z,k)=0, pu=—=—rs=—-.
4 z 2kt 2\k?— pu?
17
A couple of the Whittaker functionsW,y 1,(—2),

W_i7% 12(2) forms a fundamental system of solutions for Eq.
(17) because they have asymptotic behavior as follp#s

Wir, 1o —2) =% —2)"*[1+0(z V)],

sum up over alh:

[

L=2 L(n)=L(0)+22 L(n), (8)
neZ n=1
sinceL(—n)=L(n).
It is not complicated to check that asx
— — (i.e.,r—rqy ory—1) Egs.(4),(5 have the form

2
d—2+k2 (X, KD =q" (X, g(x,k,1), 9
dx
(xl)—[l—i 2y N, (10)
Tl T a0 v )
Hence we se€2?] thatq™ (x,1)x_,_..=0O(€*) and
Lb lg~(x,1)|dx<C(b), (11

whereC(b) is a constant depending dm
As x— +c0, we can rewrite Eqs4),(5) in the form

2
— 4
dx?

2

2=+ | | pxk)=a" DK,

(12

11
X y(x)

Nt
YA y3(x)

a*(x,l)=p?

(13

Hi-os
Y&

Under this situation

jb+oc|q+(x,l)|dx<C(b). (14)

larg —z)|<m, z—, (18)

Wiz 1) =€ 222 #[1+0(z7 1)),
larg —z)|<m, z—. (19
Hence the general solution of EQ.7) is
u(z,k)=Cy Wiz 12(—2) +Co W_i7, 112(2).
It means that the general solution of Ed5) has the form
o (X,K)=C1 Wiz, 1o( — 2ik *X) + C5 Wi, 12(2ik X)  (20)

and

Wiz 12— 2ik ") = €k |2k " x| #eh 12

X|11+0 |k+X|H, X—oo, (21)
W_; (2ik*x)=e’“‘+x—~1 em2
—iw,1/2 |2k+X|i’u
1
x| 1+0 |k+x|) . x—w. (22)

We also introduce the functions
- _ - —aul2
Wain 12 £2)=Waip 1p( £ 2)e7 ™5,

which are more convenient. They form the fundamental sys-
tem of solutions of Eq(15) as well. We may write the gen-
eral solution of Eq(15) as follows:

g (X, K)=cT W% 1o — 2k X)+ ey W_ i3 12(2ikTX) (29

and
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Wiz a2 — 2k x) = e e 2N 1 1 o[k x| ),

X— 00, (24
Wi 1a(2ik T x) = e K X2 4 o[kt x| )],
X—00, (25

The functionsw_;7, 15(2), W7 12(—2) are complex con-
jugate, i.e.,w;3 12(—2ik X)=W_;7 12(2ik"x), and their

Wronskian is equal to

[W*i;,l/Z(Zik+X)1Wi;L,l/2( - 2|k+X)] =2ik ™. (26)

We denotey™ (x,k,1) the Jost-type solution of Eq9)

obeying the condition
(XK, 1)=e"+0(1),

X— — 0,

(27)

Varying the constants according to the Lagrange method, ag,
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(M) kT ) =—2ik Tw'

iﬁ,1/2( —2ik *x)

+ oo
- L [W,i;’1,2(2ik*t)wi;’m(Zik*x)

+FWi 1 — 2ik*t)wii;‘1,2(2ik*x)]

xgt(t,DH " (t,kT,DHdt.

The pair of functionsy™ (x,k*,1), ¢ (x,k",1) is the fun-
damental system of solutions for Ed.2) and

Lo (kD) 87 (x,k™,1)]=—2ik ™. (32

We write now the decomposition of the solutigfi (x,k™,I)

to the fundamental systemi™ (x,k,1), ¢~ (x,k,I) and the
solution ¢~ (x,k,1) to the pairyg™(x,k*,1), " (x,k",1).

e obtain

usual, we obtain the integral equation equivalent to the prob-

lem (9), (27):

bk =e mesir{k(x—t)]

Xq~(tk,) g (t,k1dt. (28)

lr/li(xik!l)zcll(kll)l;[/+(ka+1|)+ClZ(k1|)Ir/,+(X1k+1l)a

l/f+(x,k+,|):Czl(k,l)l,bi(x,k,l)+C22(k,|)l//7(x,k,|).
(33

We call the matrixC={c;;} the transition matrixfor Eq. (4).

The convergence of the series of approximations for thid.et us explore its elements. From Ed&9), (32), (33 it

equation follows from Eq(11) as usualsee, e.g.[5]).

Differentiating Eq.(28) we obtain an expression for the

derivative:

(07K, )= —ike "t f cogk(x—1)]

xq(t,k, 1) g (t,k,Ddt.

A couple of functionsy™ (x,k,1), ¢~ (x,k,1) is the funda-
mental system of solutions for E¢Q) and

[~ (XK1, ¢ (x,k,1)]=2ik. (29

We denotey™ (x,k*,1) the Jost-type solution of Eq12)
obeying the condition

(kT D =W 10(—2ik T X)+0(1), X— -+, (30

Varying the constants in Eq$12), (23) according to the

Lagrange method, we obtain the integral equation equivalent

to the problem(12), (30):

P KT D =iy~ 21k X)

+

+ oo
2ik+fx W% 120 2ik )W, 1/o(—2ik FX)

_Wip,1/2( — 2ik+t)W_ip’1/2(2ik+X)]

xqt (gt (tkt,)dt. (31)

The existence of the solution of this equation follows from

Eqg. (14) as usual. Differentiating Eq31) we obtain an ex-
pression for the derivative:

follows that
i
Cll(k!|)= 2ik+[(v[/+(xak+!|)ll//7(xlkll)]u
k,I) ! (%KD, e (x kD
= X X
ClZ(’ 2|k+[l//(7, 1$(1 ’ ]1

1
CZl(k!I): m[¢7(x,k,l),w+(x,k+,l)],

1 -
sz(kJ):m[¢+(X.k+,|),lﬁ_(X,k,|)]- (34

Let us investigate the properties of the elemexts For this
purpose we put Eq€$33) one into another. Then we get

Caa(k,Dcaa(k, ) +eyp(k,eay(k, ) =1,
ok, cya(k, D)+ ok, ek, =1,
Caa(k,Dcau(k, D) +eyp(k,eaa(k,1) =0,

Coi(K,I)cqq(k, 1)+ cos(k,1)C1o(k,1)=0. (35

It follows from Egs.(34) that

y(K)cn(k,l)=—coAk,l),  y(K)ciAk,I)=cai(k,l),

(36)
where y(k) =k*/k. From Eqgs.(35), (36) we also get

y(K)[|ciak,D|2=]cia(k,D]A]=1,

y YKLl caa(k,D 2= [caa(k,[A]=1.
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These equations can be rewritten in the form

11 cu(kD|?_
Y(K) |eyk, D2 Gk D]
1 022(k1|)‘2
k = 1.
" )|c21<k,|)|2 kD) T (37)

We introduce now solution® * (x,k*,1), ¥~ (x,k,1) of Eq.
(4) satisfying the following conditions:
e+ s(k,1)e" "+ 0(1), x— —,

+ =
YD kW (- 2ik 0 +0(1), X+,

T (x,k,1)

Szz(k,a,l)efikx—i-o(l), X— — 0,
=1 Win12(2ik "x) +sp9(k,)W_7, 1 — 2ik Tx) +0(1),
X— + 0,

As a result, from Eq(33) we obtain
W (x, kT, D=y (x,k 1) +sk, D (x,k,1)
=Sll(X,k,|)l,b+(X,k+,|),
U (x,k, D) =s,0(k, Dy~ (x,k, =" (x,k*,1)
+8,(k, D (x, k™).

In the similar way, from Eq(33) we get

“(x,k, 1) cy4(k,1)
AL R T
B 1
SZZ(kll)_m
and o (XKD
X, 1
\P+(x,k+,|)=m
_ Ck,l) -~
SlZ(k’I)_Czl(kJ)’ Sll(k'l)_czl(kvl).
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For example, for the coefficiers;;(k,l) which appears in
Eq. (7) for the barrier transparendy(k,l), we have a rela-
tion applicable to numerical calculations:

Spa(k, 1) = 2ik/[ ¢~ (x,k, 1), 7 (x, k™, 1],

where the Wronskian can be computed numerically with the
help of integral equation&8),(31).

According to Eqs(35) we get the unitarity relations for
the matrixS={s;;}

Y LK) sk, D [P+ [spa(k, D [2=1,
y(K)[s1a(k, D2+ |51k, 1) [*=1.

It is not difficult, as usual, to show that the asymptotic be-
havior is

s1Ak)=0(k™),  sy(k,1)=0(k™)

and
Lk =]s;(k,D[?=1+0(k™1).

Though for studying the Hawking radiation one needs only
S11, the other elements of t®@ matrix obtained can be im-
portant in a number of the problems within 4D black hole
physics, for instance, when studying vacuum polarization
near black holes for TICs. However, the convergence of the
series in Eqs(6),(8) overl will be discussed elsewhere since
it requires knowledge of more exact asymptotics |&5]2.

We considered one of the scattering problems which are
encountered in 4D black hole physics. The relations obtained
can be employed when numerically calculating the Hawking
radiation luminosity for actual charged massive scalar par-
ticles, for example, forr™ andK* mesons. OtheB matrices
will emerge when both the type of field and the type of black
hole vary(for example, for Reissner-Nordstmo[6] or Kerr
[7] black hole$. As was mentioned, the elements of the cor-
respondingS matrices are the important ingredients when
calculating miscellaneous quantum effects connected with
black holes. We hope, therefore, to continue a strict study of
a number of the problems mentioned within the framework
of our further investigations.

The author is thankful to Yu. Goncharov for useful dis-
cussions.
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