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Conformally coupled induced gravity with gradient torsion
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It is found that conformally coupled induced gravity with gradient torsion gives dilaton gravity in Riemann
geometry. In the Einstein frame of dilaton gravity the conformal symmetry is hidden and a nonvanishing
cosmological constant is not plausible due to the constraint of the conformal coupling.
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PACS numbgs): 04.50:+h, 04.40-b, 04.62+v

I. INTRODUCTION investigate the conformal coupling in induced gravity with a
gradient torsion.

Before the success of the Weinberg-Salam model, the
weak interaction was characterized by the dimensional Fermi ||, CONFORMAL COUPLINGS IN INDUCED GRAVITY
coupling constantGg=(300 GeV) ?, far below the elec- ) ] ) o ]
troweak scale. But later it turns out that the dimensional The induced gravity action, E@l), is invariant under the
coupling constant is the low energy effective coupling whichconformal transformation
is determined by the dimensionless electroweak coupling , _ Vi
constant and the vacuum expectation value of the Higgs sca- 9, (X) = €XP(20)9,.,(X), ¢'(x)=exp(—p)¢(x), (2)
lar field through spontaneous symmetry breaking. The Weakét the conformal coupling= ¢ for a conformally invariant
ness of the weak interaction originates from the IargeScalar potential
vacuum ex'pectatlon ye}lue of the Higgs f'@d'. In Riemann-Cartan space, an extension of conformal cou-

From this lesson, it is suspected that gravity may be als

h terized b di ionl i aith ?)Iing with the torsion in induced gravity is possible. It is
characterized by a dimensioniess coupling conséa found that a minimal extension to Riemann-Cartan space is
the gravitational constariy given by the inverse square of

h i | ¢ lar field. Th K sufficient for our purpose.
€ vacuum expectalion value of a scalar field. he Weakness nq cqnformal transformation of the affine connections

of gravity can be associated with a symmetry breaking at §7_ is determined from the invariance of the tetrad postu-
very high energy scale. It has been independently proposqgtﬁ)“n
by Zee[2], Smolin [3], and Adler[4] that the Einstein- '
Hilbert action can be replaced by the induced gravity action

DaeiﬁE aaeiﬁ+ w}aejﬁ—l“yﬁaeiy=0, 3

under the following tetrade', transformations:
(€)' =exlp)e,. @

where the coupling constagtis dimensionless. The poten- The spin connectionso}a are conformally invariant like

tial V(¢) is assumed to have its minimum value @t o; other gauge fields.

then the above action is reduced to the well-known Einstein- The affine connections and the torsions which are the an-

Hilbert action with gravitational consta@y = 1/8w¢o?. tisymmetric components of the affine connections transform
In the analogy of the SU(2JU(1) symmetry of elec- as follows:

troweak interactions, we can consider a symmetry which

1 1
S= f d4xJ—_g{§§¢2R+§aM¢aﬂ¢—V<¢) RGN

may be broken through a spontaneous symmetry breaking in (I75,)" =T75,+6750,p,

the gravitational interactions. The most attractive candidate

symmetry is Weyl's conformal symmetry which rejects the (T75a)" =T g4t 633ap— 60 gp- (5)
Einstein-Hilbert action, but admits the induced gravity action

Eq. (1), with a specific conformal coupling:= 3. Therefore, the trace of the torsidit,,, effectively plays the

In Riemann space, the conformal coupling is unique withrole of a conformal gauge field. In general, the torsion can be
&= 1. However, introducing vector torsion, an extended con-decomposed into three components:
formal coupling is possible in induced gravity,6] because
the vector torsion plays the role of a conformal gauge field in T, = 2%, T A%, = 5,55+ 65S,, (6)
Riemann-Cartan spa¢8,7,9].

It is found that induced gravity at conformal coupling WhereX,5,;=0, andX, =0, A,;3,=T[.4, - The trace-
should have conformal invariance for consistef@yg]. We  less part of torsiorC%; =%, +A%; is conformally in-

variant:

*E-mail address: cem@hepth.hanyang.ac.kr (So)' =S, +dap, (Caﬁ«/)’: aﬁ«/' (7)
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Because a minimal extension to Riemann-Cartan space is ) 1
sufficient for our purpose, we impose the conformally invari- §#°G,,=|H,H,“— Zg,uVHaBHaB
ant torsionless condition:

1
CaﬁyEO. (8) - ( a,uqsav(ﬁ_ Eguv‘?aq&aaq&)
This condition is the conformally invariant extension of the 5 1 N
torsionless condition in Riemann spadéfﬁ,/zo. For this —(1-6£)¢%| S,S,— EgWSaS —(1-6¢)
minimally extended Riemann-Cartan space, the affine con-
nection can be written in terms of,, andS, : X(S,¢d,6+S,$3,¢—0,,S P, b)
¢ _ja1.ce o + &V ($3,d)+V (P, ) —g,,0¢
oV S, ,
Introducing the conformally covariant derivatii, for — 0, Vert( #;S,.,95,) +2 er( 5 gﬁ“/),
the scalar fieldp, agh”
14
D= o+ Su, (10 14
. . . V ; (')
we have an e>.<ten.ded conformal coupling of induced gravity 4V ¢( #;S, sy~ ¢(9 e”(q; Sa+95)
up to total derivatives as follow: ¢
Net( ;S ,95,) Net($;S4,95,)
§ 1 1 =2 eff a 198y A v e w198y
|=f d4x\/—g[ER(F)¢2+§DQ¢D“¢—ZHMH"‘B agh 9 v Js, ’
(15

—V( ¢)] , (11)

where all covariant derivatives are in Riemann space with
the Christoffel connectionis,9].

where we have excluded the curvature square terms. Now, The constraint, Eq(]_5) requires that the metric indepen_
the coupling¢ is a dimensionless arbitrary constant. Usingdent bare potential should be quartic in the scalar field,
Eq (9) we can rewrite this action in terms of the Riemannv0(¢):()\/41)¢4, and the deviation of the radiative|y cor-

curvature scalaR({}): rected effective potential from the quartic form is only al-
: L lowed with compensation by the metric and vector torsion
dependences of the effective potential. Because this con-
— 4., [_ > 2, = @
I_f d*x g[ ZR({})¢ * 23a¢a ¢ straint comes from the assumption that the bare action is

1 1 conformally invariant except the potential term, if we con-
_ o Lo a2 T aB sider nonconformal coupling in kinetic and interacting terms,
+(1-66)S%dad) b+ 2(1 66)S.S"¢ 4H“5H such a constraint would not appear.
Let us consider a reduction of the system. If the effective
—V( ¢)]_ (12) potential does not have the vector torsion dependence, i.e.,
Veti(#:95,), EQ. (13) allows the following conformally in-

variant reduction:
The more general form of induced gravity action can be con-

sidered[10,11], but we restrict the couplings to be confor- D,¢=0. (16)
mal. In the limit of é— %, this extended conformal coupling
is reduced to the ordinary conformal coupling in RiemannThis implies that the vector torsion is a gradient form:
space decoupled from the vector torsion.
Sa: —da ln( ¢/¢O) = =040, p= ¢Oeov (17)
lll. DILATON GRAVITY FROM INDUCED GRAVITY . . . .
WITH GRADIENT TORSION where g, is a dimensional constant, and the field strength of
the vector torsion vanisheld,, ;= 0, which is consistent with

Analyzing the equations of motion for the action, Eq. Eq. (13). In this reduction, the bare action of E(L1) be-
(12), with an effective potentiaV/e¢¢¢(#:;S,,95,) which de-  comes
pends on the metric and torsion in general, we obtain the

following two equations of motion and a constraint for the £ A
scalar potential: |=J' d4x\/—g¢ge2"{§R({ })+3§0a0§“0—m¢§62” :

Nei(6:Sa.9p,) (18)
Js, ' This is the form of the conformal factor theory of dilaton
(13 gravity [12,13. If the antisymmetric torsion term

V HAY=—(1-6£){(0"¢) p+S"¢%} +
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15C,p,C*7 is included, this action is the form of string U0p€°" = Uup (22)
gravity with some redefinition of fields except the quartic
potential term14]. the above dilaton gravity action can be written in the follow-

For the reduction of the effective action, the potentialing standard Einstein action:
term is replaced byrz"veff(%e",gaﬁ). In this reduction, a ¢ \
dimensional constanp, is introduced, but the action is in- :f 4, [Tl S 2 _ N s
variant under the global scalindx*— adx*, ¢o— ¢q/a if ! d x\/_g[ 2 $oR( ) 4! Pof 22
no conformal anomaly is introduced in the effective action. o )
However, the appearance of conformal anomaly in the conwhere the gravitational consta@i = 1/8m¢ ¢, and the cos-
formally induced gravity is not allowed due to the constraint,mological constant\ =(\/4!)(1/8w¢Gy)?. If the effective
Eq. (15), which is the requirement of conformal invariance Potential deviates from the quartic form, then there would
[9] from the consistency of equations of motion for the bare'@main an explicitr dependence on the action after this re-
and the effective action in conformally induced gravi6j. definition of the metric even though it is not plausible due to
In this reduction, the constraint which the effective potentialthe constraint, Eq(19).

should satisfy is In this Einstein frame the conformal symmetry is hidden
and the cosmological constant term has the origin of the
Netf(:95,)  _Ner($:95,) quartic potential term in the original induced gravity action.
AVei( DiGpy) — @ =2 Y, Recalling the constraint, E¢19), which the effective poten-

d Igry . . .
tial should satisfy, the nonzero coupling can be hardly

(19 expected after the radiative correction by the scalar field in

Therefore, only the metric independent quartic potential withthe original induced gravity actiofil5,16. Therefore, we
effective coupling or; Seems to be allowed. But, in general, ¢&n say that if Einstein gravity has its roots in conformally
the quantum effect by quantum fluctuation of the scalar fieldnduced gravity, the nonzero cosmological constant is not
on the classical metric and torsion backgroind,13 gives  Plausible due to the constraint from the conformal coupling.
the following corrections to the scalar mas$, the coupling In this discussion, we have not considered torsions gener-

X, and the cosmological constant, respectively[15,16; ated by matter fields because vector torsion couplings are not
expected in the standard minimal action for Dirac and gauge

SmPoehm?, SNx\2, SAcam?+b\. (20) fields[11].
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