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Trace identity in a model with broken symmetry

Daniel H. T. Franco
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, 34014 Trieste, Italy

~Received 2 February 1999; published 18 May 1999!

Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show
the validity of a trace identity—to all orders of perturbation theory—playing the role of a Callan-Symanzik
equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-
momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space
background, represented by the nonpropagating external vielbein field, we can express the conservation of the
energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the
diffeomorphisms. Our ‘‘Callan-Symanzik equation’’ then is the anomalous Ward identity for the trace of the
energy-momentum tensor, the so-called ‘‘trace identity.’’@S0556-2821~99!04512-9#

PACS number~s!: 11.10.Gh, 11.25.Db
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I. INTRODUCTION

A classical field theory is scale invariant precisely when
has the following properties: it contains no mass terms
all coupling constants are dimensionless. For a theory of
type it is possible to define an energy-momentum tensor w
a vanishing trace~see@1# for a review!. On the other hand, i
is natural to expect that the scale symmetry is broken
provide us a scale to live on. There are many different w
to break scale invariance. The most ordinary way is t
scale invariance is broken due to quantum effects.

As is well known, in the context of a renormalized pe
turbation theory, integrals associated with the Feynm
graphs are generally UV divergents. To give a proper me
ing to such expressions we have to adopt a suitable sub
tion scheme. The effect of the latter is to render the integ
convergent. The renormalization is performed through
addition of a certain number of counterterms to the init
action considered, whose coefficients are left arbitrary. Th
coefficients have however to be fixed by a set of normali
tion conditions, which are applied at a certain moment
scale. In this point, the important feature is the appearanc
a normalization parameterk; it has the dimension of a mas
and will thus cause the breaking of scale invariance. T
natural choicek5m, wherem is the physical mass, canno
be used because it leads to singularities at the massless
In this way, there is no way to preserve quantum scale
variance at the massless limit: scale invariance is anomal1

@2–6#. This is called the trace anomaly induced by radiat
corrections.

In order to get insight into this problem, a systema
study of renormalization properties can be achieved via

1Breaking of quantum scale invariance by an anomaly is q
general. Only some models remain scale invariant at the quan
level ~see for instance@7–11#!. Within perturbative theory, a nec
essary and sufficient condition to obtain the ‘‘scale invariance,’
is the vanishing to all orders of theb-functions—anomalous dimen
sions are allowed to be different of zero. The latter correspondin
field redefinitions, are physically trivial and hence vanish on
mass shell@12#.
0556-2821/99/59~12!/125017~10!/$15.00 59 1250
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Callan-Symanzik~CS! equation@3#. It describes the behavio
of the quantum theory under scale transformations, be
successfully applied in symmetric models. If the theory
broken the construction of the CS equation is more involv
@13–15#. Because of the shifts by constant amounts in cert
fields, the dilatation Ward operator does not will commu
with the Ward operator for broken symmetry. Therefore t
breaking of dilatations is not symmetric but has a cert
covariance under the symmetry transformations already
the classical level. As alluded in Ref.@14#, to identify the
breaking of dilatations with the trace of the energ
momentum tensor is thus complicated at the quantum le
In addition, in a purely physical parametrization, the effect
the breaking induces the appearance of physical m
b-functions @13–15#, a situation which asks for a deepe
understanding. Of a particular kind is the case for a reali
supersymmetric gauge field theory@15#.

The purpose of the present paper is to supplement
works of @13–15# and, exploiting the techniques develope
in @11#, to provide an alternative way of deriving the C
equation, which allows us to identify the breaking of dilat
tions with the trace of the energy-momentum tensor in
model with broken symmetry. More precisely, by couplin
the quantum field theory considered to a classical cur
space background, represented by the nonpropagating e
nal vielbein field, we can express the conservation of
energy-momentum tensor through the Ward identity wh
characterizes the invariance of the theory under the diff
morphisms. Our ‘‘Callan-Symanzik equation’’ then is th
anomalous Ward identity for the trace of the energ
momentum tensor, the so-called ‘‘trace identity.’’2 As a by-
product, the approach will allow us to bring to an end th

e
m

t

to
e

2There exist studies in the literature concerning the local dilata
properties—general coordinate transformations in the We
sheme—as discussed by Bandelloniet al. @16#, where a more diffi-
cult task was taken up: the radiative mass generation due to
trace anomaly. Even though their approach is related to ours,
instead of introducing an external dilatation field, beyond the ex
nal metric or vielbein field, we only consider the latter.
©1999 The American Physical Society17-1
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DANIEL H. T. FRANCO PHYSICAL REVIEW D59 125017
the b- andg-functions in curved space-time are the same
in flat one.

Since we are working with an external vielbein which
not necessary flat, our results hold for a curved manifold
long as its topology remains that of flatR 4, with asymptoti-
cally vanishing curvature. It is the latter two restrictio
which allow us to use the general results of renormalizat
theory, established in flat space. Indeed, we may then exp
in the powers ofēm

m5em
m2dm

m , consideringēm
m as a classica

background field in flatR 4, and thus make use of the gener
theorems of renormalization theory actually proved for fl
space-time@17,18#.

We shall consider the model of chiral fermion meson w
explicit breaking of the chiral symmetry. In contrast wi
Ref. @19#, which have considered the explicit breaking te
in order to be able to treat the massless Goldstone partic
its massless limit, we are interested in the case where
pion fields are massive. The importance of this lies in f
that the chiral fermion meson model allows for the possib
ity of a simultaneous description of the baryonic and m
sonic low energy sector in hadron physics.3 Consistency con-
ditions for chiral symmetry and scale invariance, in abse
of fermions and charged pions, were studied in@21#.4

The outline of the paper is as follows. The model in
curved Riemannian manifold described in terms of exter
vielbein and spin connection fields, is introduced in Sec.
together with its symmetries. The trace identity for the cl
sical theory is derived in Sec. III. The extension of this ide
tity to the quantum level is discussed in Sec. IV, followed
a summary. For the sake of completeness, we add two
pendices: The renormalizability of the model is sketched
Appendix A. Assuming the limit of flat space-time, the C
equation is derived in Appendix B.

II. GENERALITIES OF THE MODEL

In this section, we give a brief description of the model
a curved space-time. The chiral fermion meson model
volves a fermionic isodoublet,c, of zero mass, a scala
sigma field, s, and a triplet of charged pseudscalar pi
fields,pa. Because fermions are represented by spinor fie
which are subjected to the Lorentz group—and not to
diffeomorphisms group—we must refer these fields to
tangent frame and treat the fermions as scalars with res
to the diffeomorphisms. We achieve this with the help of t
vierbein. Space-time is a 4-dimensional Riemannian ma
fold M, with coordinatesxm, m50,1,2,3. It is described by
a vierbein fieldem

m(x) and its inverseem
m(x), m being a

world index andm a tangent space index. The spin conne
tion vm

mn(x) is not an independent field, but depends on
vierbein due to the vanishing torsion condition:v lmn

3See e.g.@20# for current study of the model in a somewhat ph
nomenological basis when temperature effects are considere
absence of fermions.

4I thank Professor R. Jackiw for drawing these works to my
tention.
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2(Vlmn1Vmnl2Vnlm), with V lmn5el

mem
n (]menn2]nemn).

The metric tensor readsgmn(x)5hmnem
m(x)en

n(x); hmn

being the tangent space flat metric. We denote bye the de-
terminant ofem

m . As explained in the Introduction, we as
sume the manifoldM to be topologically equivalent toR 4

and asymptotically flat.
We shall take into account the physically interesting ca

when the chiral symmetry is broken adding a linear term
the action. The linear breaking term implies that the quant
s field has a nonvanishing vacuum expectation value^s&
5v. If one wishes to interpret the theory in terms of pa
ticles, it is necessary to perform a field translations→s
1v such thatdS/dsus5v50. As an effect the mass degen
eracy between fieldss andpa disappears and the fermioni
isodoubletc acquires a mass.

The corresponding action in a curved manifold is giv
by

S5E d4xeH c̄ igmDmc1
1

2
~]ms]ms1]mpa]mpa!

2
1

2
m2

„~s1v !21papa
…2

1

4
l„~s1v !21papa

…

2

2gc̄„~s1v !1 ig5tapa
…c1csJ , ~1!

with gm5em
mgm, wheregm are the Dirac matrices in the tan

gent space.g andl are the pion-fermion and pion-pion cou
pling constants, respectively. The covariant derivative is
fined by

Dmc~x![S ]m1
1

2
vm

mn~x!VmnDc~x!, ~2!

with V [mn] acting onc(x) as an infinitesimal Lorentz matrix
in the appropriate representation.

The masses arising from the action~1! for c, pa and s
are given by

mc5gv,

mp
2 5m21lv2, ~3!

ms
25m213lv2.

Moreover, from the Born approximation to the vacuu
expectation value@22#, we obtain

c5v~m21lv2!5vmp
2 . ~4!

The isospin, chiral, diffeomorphisms and local Loren
transformations read as follows.

~i! Isospin:

d isos50, d isoc52 i
aata

2
c,

d isop
a5eabcabpc, d isoc̄5 i c̄

aata

2
. ~5!

in

-
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~ii ! Chiral:

dchirals52aapa, dchiralc52 i
aata

2
g5c,

dchiralp
a5aa~s1v !, dchiralc̄52 i c̄g5

aata

2
. ~6!

~iii ! Diffeomorphisms:

ddiff
(«)em

m5L«em
m5«l]lem

m1~]m«l!el
m ,

ddiff
(«)F5L«F5«l]lF, F5s,pa,c, ~7!

whereL« is the Lie derivative along the vector field«m(x)
— the infinitesimal parameter of the transformation.

~iv! Local Lorentz transformations

dLorentz
(l) F5

1

2
lmnV

mnF, F5any field, ~8!

with infinitesimal parametersl@mn#.
The Ward identities corresponding to the isospin, chi

diffeomorphisms and local Lorentz symmetries for the act
~1! can be expressed introducing the functional differen
Ward operators, as given below:

Wiso
a S5E d4xS eabcpb

d

dpc
1 i c̄

ta

2

d

dc̄
2 i

dQ

dc

ta

2
c D S50,

~9!

Wchiral
a S5E d4xS ~s1v !

d

dpa
2pa

d

ds
2 i c̄g5

ta

2

d

dc̄

2 i
dQ

dc

ta

2
g5c D S5Dclass

a , ~10!

where

Dclass
a 52E d4xecpa ~11!

is the breaking term which, being linear in the quantum fi
pa, will not be renormalized, i.e., it will remain a classic
breaking@23#:

WdiffS5E d3x(
F

ddiff
(«)F

dS

dF
50, ~12!

and

WLorentzS5E d3x(
F

dLorentz
(l) F

dS

dF
50, ~13!

where the summations run over all quantum and exte
fields.

Finally, the classical action~1! is constrained, besides th
Ward identities~9!, ~10!, ~12! and ~13! by a set of discrete
12501
l,
n
l

d

al

symmetries, i.e., parityP and charge conjugationC, whose
action on the fields is given as below.

~i! Parity P:

x→
P

~x0,2xW !,

c→
P

g0c,

c̄→
P

c̄g0, ~14!

pa→
P

2pa,

s→
P

s.

~ii ! Charge conjugationC:

c→
C

cc5Cc̄ t,

c̄→
C

c̄c52c tC21,

p1,3→
C

p1,3, ~15!

p2→
C

2p2,

s→
C

s,

whereC5 i g0 g2 is the charge conjugation matrix.
Ultraviolet dimensions of all fields are collected in Tab

I.5

III. TRACE IDENTITY FOR THE CLASSICAL THEORY

From now on we change from unphysical parametrizat
(m2,l,g,c) to physical one (mp

2 ,ms
2 ,mc ,v), with the

change of variables given by Eqs.~3! and ~4!. In this way,
the classical action~1! takes the form

5The ultraviolet dimensions determine the ultraviolet pow
counting. If there are massless fields in the theory, one should
special care of the infrared convergence@24#.

TABLE I. Ultraviolet dimensiondF .

c s pa em
m

dF 3/2 1 1 0
7-3
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S5E d4xeH c̄ igmDmc1
1

2
~]ms]ms1]mpa]mpa!

2
~3mp

2 2ms
2 !

4
„~s1v !21papa

…2
~ms

22mp
2 !

8v2
„~s1v !2

1papa
…

22
mc

v
c̄„~s1v !1 ig5tapa

…c1mp
2 vsJ . ~16!

For a given field theory the energy-momentum tenso
defined as the functional derivative:

Ql
m5e21el

m dS

dem
m

. ~17!

The conservation of the energy-momentum tensorQl
m is a

consequence of the diffeomorphism Ward identity~12! and
of the definition~17!, yielding the following equation:

E d4x «~x!„e¹mQl
m~x!2wl~x!S…50, ~18!

where¹m is the covariant derivative with respect to the d
feomorphisms, with the differential operatorwl(x) acting on
S representing contact terms:

wl~x!5 (
s,p,c

~¹lF!
d

dF
~19!

~becoming the translation Ward operator in the limit of fl
space!.

The integral of the trace of the tensorQl
m ,

E d4xeQm
m5E d4xem

m dS

dem
m

[NeS, ~20!

turns out to be an equation of motion, up to soft breakings
which means thatQl

m is the improved energy-momentum
tensor. This follows from the identity, which is easi
checked by inspection of the classical action

NeS5S 3

2
Nc1NF

hom1ms

]

]ms
1mp

]

]mp
1mc

]

]mc

1v
]

]v DS, ~21!

whereNe is the counting operator of the vierbeinem
m . Nc

andNF are counting operators defined by

Nc5E d4xS c̄
d

dc̄
1

dQ

dc
c D , ~22!

NF
hom5E d4xS s

d

ds
1pa

d

dpaD . ~23!

NF
hom is the unshifted counting operator for scalar fields.
12501
s

t

It is interesting to note that Eq.~21! is nothing but the
Ward identity for rigid Weyl symmetry@25#—broken by the
mass terms and dimensionful couplings.

Our classical ‘‘trace identity’’ is defined by

WtraceS5L, ~24!

where

Wtrace5Ne2
3

2
Nc2NF

hom, ~25!

and

L5E d4xeS 2ms
2s22mp

2 papa2mcc̄c

2
~ms

22mp
2 !

2v
s~s21papa! D . ~26!

The latter is the effect of the breaking of scale invarian
due to the dimensionful parameters. The dimension ofL—
the dimensions ofmp

2 , ms
2 , mc andv not being taken into

account—is lower than four: it is a soft breaking.
In order to make the connection between the trace iden

and the dilatational Ward identity — which is just the scali
Ward identity—let us consider a while the limit of flat spac
where rigid dilatation symmetry makes sense. In this lim
~18! holds with e51 and¹m5]m . The classical dilatation
currentS m can now be defined as

S m~x!5xlQl
m~x!. ~27!

It obeys the conservation identity

]mS m5Qm
m1xl]mQl

m

5S 3

2
1x•] DncS1~11x•]!nF

homS

1L~x!, ~28!

where L(x) is the integrand of Eq.~26!. nc and nF
hom are

local operators given by

nc~x!5S c̄
d

dc̄
1

dQ

dc
c D ,

nF
hom~x!5S s

d

ds
1pa

d

dpaD .

Integrating Eq.~28! we get the broken dilatation War
identity for the classical theory:

WDS5E d4x (
F5s,pa,c

@~dF1x•]!F#
dS

dF
5L, ~29!

wheredF is the dimension of the fieldF ~see Table I!.
The trace Ward operator defined in Eq.~24!, together with

the operators~9!, ~10!, ~12! and ~13! satisfy the algebra
7-4
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@Wtrace,Wchiral
a #F5E d4xv

dF
dpa

, ~30!

@Wtrace,WX#F50, X5 iso, Lorentz, diff, ~31!

whereF is an arbitrary functional.

IV. TRACE IDENTITY FOR THE QUANTUM THEORY

We have now to extend the construction of the preced
section to all orders of perturbation theory. As a start
point, we must be able to write the breaking of scale inva
ance ~26! in form of a differential operator. This will be
possible with the help of additional external fieldsh andr,
which transform invariantly under isospin and chir
symmetries—P- and C-even—introducing the new classic
action

S\5S1E d4xe~arQ inv13mp
2 vhs!, ~32!

with

Q inv5~s1v !21papa,

an invariant polynomial of dimension two. The ultraviol
dimension ofh andr is 2.

Following along the lines of@14#, note that

F E d4xS v
d

ds
1

d

dh
1a

d

dr D ,Wchiral
a GF5E d4xv

dF
dpa

.

~33!

Taking into account~30! and ~33!, for F5S\ ~setting at
the endh5r50), one finds

Wchiral
a WtraceS\uh5r50

5Wchiral
a XE d4xS v

d

ds
1

d

dh
1a

d

dr DS\uh5r50C
5Wchiral

a L. ~34!

Therefore, in the tree approximation one gets the exp
sion

L5E d4xS v
d

ds
1

d

dh
1a

d

dr DS\uh5r50 , ~35!

with

a5
~ms

223mp
2 !

2
, ~36!

determined by the normalization conditions.
We now define the ‘‘symmetrized’’ form of the classic

trace identity
12501
g
g
i-

s-

ŴtraceS\uh5r50

5XWtrace2E d4xS v
d

ds
1

d

dh
1a

d

dr D CS\uh5r5050.

~37!

With the new operatorŴtrace, we have

@Ŵtrace,Wchiral
a #F50,

@Ŵtrace,WX#F50, ~38!

where X5 iso, Lorentz, diff.
Let us note that

Wchiral
a S\5Dclass

\a , ~39!

where

Dclass
\a 52E d4xe~113h!mp

2 vpa, ~40!

is a breaking term which stays linear in the quantum fieldpa,
and will remain a classical breaking@23#. Thus, the proof of
the renormalizability for Eq.~32! remains the same as th
one sketched in Appendix A.

The corresponding quantum theory is described introd
ing the new vertex functional

G\5S\1O~\!. ~41!

In this way, the trace identity~37! takes the form

ŴtraceG\uh5r505D•G\uh5r505D1O~\!. ~42!

The insertion in the right-hand side represents the break
due to the effect of the radiative corrections we want
study, andD is their lowest order contribuition. From quan
tum action principle~QAP! @17#, D is an integrated field
polynomial compatible with ultraviolet dimension 4 an
even under the parityP and charge conjugationC.

According also to the QAP, applying the algebraic stru
ture ~38! to the vertex functional, one gets

Wchiral
a ŴtraceG\uh5r505Wchiral

a D50,

WXŴtraceG\uh5r505WXD50 ~43!

with X5 iso, Lorentz diff.
For that reason,D is an invariant insertion which can b

expanded in a suitable basis. It is remarkable that, in per
bation theory, any such basis of renormalized insertion
completely characterized by the corresponding classical b
@23#. Such a basis is given in the classical approximation
Eq. ~A4!—see Appendix A. An appropriate quantum exte
sion of this basis is obtained through the introduction of a
of symmetric differential operators acting onG\—setting at
the endh5r50—and in one-to-one correspondence to t
7-5
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DANIEL H. T. FRANCO PHYSICAL REVIEW D59 125017
basis of integrated polynomials in Eq.~A4!. We define a
symmetric operator as an operator¹ which satisfies the con
dition

@¹,WX#50, X5 iso, chiral, Lorentz, diff. ~44!

The set

H E d4xa
d

dr
,v

]

]v
,mc

]

]mc
,NF ,NcJ , ~45!

with Nc given by Eq.~22! and

NF5E d4xS ~s1v !
d

ds
1pa

d

dpaD , ~46!

forms a basis for the symmetric operators of the model, t
ing into account the physical parametrization.

Thus, the expansion ofD in the basis~45!, we have just
constructed, yields the quantum trace identity in the cur
space-time:

E d4xeQm
m
•G\uh5r50

5Xbmc
mc

]

]mc
1bvv

]

]v
1S 3

2
2gcDNc

1~12gF!NF
hom1~12bv2gF!E d4xv

d

ds

1~11d!E d4xa
d

dr
1~11bv!E d4x

d

dh
CG\uh5r50

1terms vanishing in the flat limit, ~47!

whereNF
hom is an unshifted counting operator.

In the flat space, Eq.~47! is equivalent to the Callan
Symanzik equation, which is the Ward identity for anom
lous dilatation invariance—see Appendix B. It is worthwh
to note that this result allows us to conclude which t
b-functions and anomalous dimensions in curved space
the same as in flat space. The presence of thebmc

-function
corresponds to renormalization of the physical mass of
mionic fields, with the consequence that the hard breakin
dilatations depends on the normalization point also in
asymptotic region.

V. SUMMARY

In this paper, we show—by using the techniques dev
oped in@11#—as directly to identify the breaking of dilata
tions with the trace of the energy-momentum tensor in
model with explicitly broken symmetry. This is not a trivia
task due the shifts by constant amounts in certain fields:
dilatational operator does not commute with the Ward ope
tor for broken symmetry, but has a certain covariance un
the symmetry transformations already at the classical le
Most remarkable is the presence of theb-function associated
with the physical mass of fermions. According Becchi@13#, a
12501
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‘‘true’’ CS equation does not exist in such situation. B
‘‘true’’ it should be understood an equation which does n
containb-functions belonging to the physical mass differe
tial operators. In any case this requires an analysis. This
fort is essential if one aims at having contact with pheno
enology. In particular, this is the case for a realis
supersymmetric gauge field theory@15#. The reader may con
vince himself that our algorithm also works for the case
spontaneous symmetry breaking. In this case, due to
eventual appearance of Goldstone modes, infrared anom
may be picked up, and in higher order have to be proven
be absent@14#. As a by-product, the approach has allowed
to conclude that theb-functions and the anomalous dime
sions in curved space are the same as in flat space —
dently this is valid for a class of curved manifolds with t
pology remains that of flatR 4 and with asymptotically
vanishing curvature. It is only in this case we can use
general results of renormalization theory, established in
space.
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APPENDIX A: ALGEBRAIC PROOF OF
RENORMALIZABILITY

In this appendix, we sketch a proof of renormalizability
the chiral fermion meson model on the light of th
regularization-independent algebraic method.6

In the first step, we study the stability of the classic
action. For the quantum theory the stability corresponds
the fact that the radiative corrections can be reabsorbed
redefinition of the initial parameters of the theory. Next, o
computes the possible anomalies through an analysis of
Wess-Zumino condition, then one checks if the possi
breakings induced by radiative corrections can be fine-tu
by a suitable choice of non-invariant local counterterms.

1. Stability

In order to study the stability of the model under radiati
corrections, we introduce an infinitesimal perturbation in t
classical actionS by means of a integrated local function
S̃ that satisfies the constraint of a quantum correction

6In fact, this has already been considered in@13# via Bogoliubov-
Parasiuk-Hepp-Zimmermann~BPHZ! renormalization scheme an
recently in@26# via ‘‘algebraic’’ renormalization for the theory in
flat space only. The generalization to curved space is straigh
ward.
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S→S1eS̃, ~A1!

wheree is an infinitesimal parameter.
The perturbed action must satisfy, to the ordere, the same

equations asS:

WX~S1eS̃!5WX~S!1eWXS̃1O~e2!50,

Wiso
a ~S1eS̃!5Wiso

a ~S!1eWiso
a S̃1O~e2!50,

Wchiral
a ~S1eS̃!5Wchiral

a ~S!1eWchiral
a S̃1O~e2!

5Dclass
a , ~A2!

with X5Lorentz, diff.
To first order ine, one obtains

WXS̃50, Wiso
a S̃50, Wchiral

a S̃50, ~A3!

consequently all counterterms required by renormaliza
have to be symmetric.

Let us look for the most general invariant countertermS̃,
i.e., the most general field polynomial of UV dimension<4,
respecting parity and charge conjugation symmetries and
conditions~A3!. An explicit computation, shows thatS̃ can
be written in the following way:

S̃5E d4xe(
i 51

5

aiPi~x!, ~A4!

where

P15c̄ igmDmc, P25~]ms]ms1]mpa]mpa!,

P35„~s1v !21papa
…, P45„~s1v !21papa

…

2,

P55c̄„~s1v !1 ig5tapa
…c,

with a1 , . . . ,a5 arbitrary coefficients. We have neglecte
terms such as*d4eR(s21papa), which do not contribute
in the limit of flat space.

The arbitrary coefficients are fixed in such a way that th
hold order by order in perturbation theory by normalizati
conditions. Considering the physical parametrization adop
in the main text and since we will have a particle interpre
tion only if the vaccum expectation value of the fields va
ish, we impose the following nonsingular system of norm
ization conditions:

Gs50,
]

]p2
GssU

p25k

51,
]

]p”
Gc̄cU

p”5k

51,

Gssup25m
s
250, Gc̄cup”5mc

50, ~A5!

wherek is a energy scale andp(k) some reference set o
4-momenta at this scale.mp

2 is determined through the chira
Ward identity~10!. With the normalization conditions~A5!,
the most general action becomes identical to the action~16!.
12501
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-

2. Anomalies

Because the classical stability does not imply in gene
the possibility of extending the theory to the quantum lev
our second task is to infer for possible anomalies. Then
generating functional for vertex functions,G, is constructed

G5S1O~\!, ~A6!

such that

WXG50, Wiso
a G50, Wchiral

a G5Dclass
a . ~A7!

The validity to all orders of the Ward identities of diffeo
morphisms and local Lorentz will be assumed in the follo
ing. In fact, in the absence of gauge fields, these anoma
can exist only in D54k12 dimensions, with (k
50,1,2, . . . ), represented by a local polynomial in the cu
vature only~see@27# and references cited therein!.7

It remains now to show the possibility of implementin
the isospin and chiral Ward identities for the vertex fun
tional G. The proof is recursive. We shall admit the assum
tion that there exists a vertex functionalG (n21) obeying the
Ward identities~A7! until the ordern21 in \,

Wiso
a G (n21)5O~\n!, ~A8!

Wchiral
a G (n21)5Dclass

a 1O~\n!. ~A9!

As a result of QAP@17#, the forms~A8! and~A9! will be
broken at then-order as follows:

Wiso
a G (n21)5\nD•G5\nD iso

a 1O~\n11!, ~A10!

Wchiral
a G (n21)5Dclass

a 1\nD•G

5Dclass
a 1\nDchiral

a 1O~\n11!, ~A11!

whereD iso
a and Dchiral

a , are integrated local functionals wit
UV dimension<4.

Because of the invariance under parityP and charge con-
jugation C, the Ward operators and the quantum breakin
satisfy the following properties.

~i! Parity P:

Wiso
a →

P

Wiso
a , D iso

a →
P

D iso
a ,

Wchiral
a →

P

2Wchiral
a , Dchiral

a →
P

2Dchiral
a . ~A12!

~ii ! Charge conjugationC:

7See e.g.@28# where the authors study the cohomology problem
the overall local symmetry group of theories with external gravi
including diffeomorphisms, local Lorentz and gauge transform
tions, in order to determine all possible anomalies.
7-7
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Wiso
1,3→

C

2Wiso
1,3, D iso

1,3→
C

2D iso
1,3,

Wiso
2 →

C

Wiso
2 , D iso

2 →
C

D iso
2 ,

Wchiral
1,3 →

C

Wchiral
1,3 , Dchiral

1,3 →
C

Dchiral
1,3 ,

Wchiral
2 →

C

2Wchiral
2 , Dchiral

2 →
C

2Dchiral
2 . ~A13!

Using the commutation relation@ta,tb#52i eabctc, it is
easy to check that the Ward operators obey the follow
commutation rules of the Lie algebra:

@Wiso
a ,Wiso

b #F52eabcWiso
c F,

@Wiso
a ,Wchiral

b #F52eabcWchiral
c F,

~A14!

@Wchiral
a ,Wchiral

b #F52eabcWiso
c F,

with F an arbitrary functional.
Applying the algebraic structure above displayed to

vertex functional, we obtain the Wess-Zumino consisten
conditions@29#

Wiso
a D iso

b 2Wiso
b D iso

a 52eabcD iso
c ,

Wiso
a Dchiral

b 2Wchiral
b D iso

a 52eabcDchiral
c ,

~A15!

Wchiral
a Dchiral

b 2Wchiral
b Dchiral

a 52eabcD iso
c .

Solving constraints such as Eq.~A15! is technically
known as a problem of Lie algebra cohomology. Its solut
can always be written as a sum of a trivial cocyc
Wiso(chiral)

a D, and of nontrivial elements belonging to the c
homology ofWiso(chiral)

a :

D iso(chiral)
a 5Aiso(chiral)

a 1Wiso(chiral)
a D. ~A16!

As it is well known the theory will be anomaly free
conditions~A15! admit only the trivial solution

D iso(chiral)
a 5Wiso(chiral)

a D, ~A17!

with D an integrated local functional even under parity a
charge conjugation. On the other hand, nontrivial cocyc
i.e.,

Aiso(chiral)
a ÞWiso(chiral)

a D, ~A18!

cannot be reabsorbed as local counterterms and represe
obstruction in order to have an invariant quantum ver
functional.

A direct inspection shows that there is no such a fu
tional satisfying Eqs.~A12! and ~A13! for D iso

a . Hence, its
cohomology is empty. On the other hand, the chiral bre
ing, Dchiral

a , can be expanded in the basis
12501
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E d4xe~pa,pas2,pas3,]mpa]ms,c̄g5tac,pac̄c!,

~A19!

parity and charge conjugation being taken into account.
The consistency conditions~A15! reduce this basis to

E d4xe~pa,c̄g5tac!. ~A20!

Such a basis can be obtained by applyingWchiral
a to

E d4xe~s,c̄c!, ~A21!

i.e., it can be reabsorbed as local counterterms.
Denoting the latter field monomials byD i , we can write

~A11! as

Wchiral
a G (n21)5Dclass

a 1\nD•G

5Dclass
a 1\nWchiral

a D1O~\n11!, ~A22!

whereD5( i 51
2 r iD i .

Defining S (n21) the action, with all its couterterms unt
the ordern21, which leads to the functionalG (n21), then
replacing the actionS (n21) by the new action

S (n)5S (n21)2\nD, ~A23!

lead to the new vertex functional

G (n)5G (n21)2\nD1O~\n11!. ~A24!

Thus, with the results obtained above, we get

Wiso
a G (n)5O~\n11!, ~A25!

Wchiral
a G (n)5Dclass

a 1O~\n11!, ~A26!

which is the next order Ward identities we wanted to pro

APPENDIX B: CALLAN-SYMANZIK EQUATION

In this appendix we wish to derive the CS equation. T
allows us to identify the coefficientsb andg of the expres-
sion ~47! with those of the CS equation, when we take t
limit of flat space-time. Our starting point is Eq.~29!, the
broken dilatation Ward identity, withS replaced byS\

WDS\uh5r505E d4x (
F5s,pa,c

@~dF1x•]!F#
dS\

dF U
h5r50

5L. ~B1!

With the help of Eq.~35!, we can define the ‘‘symme
trized’’ form of Eq. ~B1!

XWD2E d4xS v
d

ds
1

d

dh
1a

d

dr D CS\uh5r5050.

~B2!

Applying QAP one derives from Eq.~B2! that the dilata-
tions in higher order are broken by
7-8
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XWD2E d4xS v
d

ds
1

d

dh
1a

d

dr D CG\uh5r50

5D•G\uh5r505D1O~\!, ~B3!

where G\ is the vertex functional defined in Eq.~41!. D
represents the breaking in the lowest order.

According to the fact that the left-hand side of Eq.~B3! is
symmetric with respect to isospin and chiral symmetries,
gets

Wiso
a D5Wchiral

a D50. ~B4!

The invariant insertionD can be expanded in a suitab
basis of symmetric operators of the theory—parity a
charge conjugation being taken into account. Assuming
physical parametrization, this basis is given by set of ope
tors ~45!, yielding

XWD2E d4xS v
d

ds
1

d

dh
1a

d

dr D CG\uh5r50

5S bmc
mc

]

]mc
1bvv

]

]v
2gcNc2gFNF

2bvE d4xv
d

ds
1dE d4xa

d

dr

1bvE d4x
d

dh DG\uh5r50 , ~B5!
m
M

e
b
e

,

ys

12501
e

d
e

a-

whereNc andNF are counting operators given by Eqs.~22!
and ~46!, respectively.

The latter can be rewritten in a more explicit form wi
the help of the dimensional analysis identity

~D1WD!G\uh5r5050, ~B6!

where

D5 (
m5k,v,ms ,mp ,mc

m
]

]m
, ~B7!

with k the mass scale at which the normalization conditio
defining the parameters of the quantum theory are taken

This yields the Callan-Symanzik equation

SD1bmc
mc

]

]mc
1bvv

]

]v
2gcNc2gFNF

homDG\uh5r50

5S 2~12bv2gF!E d4xv
d

ds
2~11d!E d4xa

d

dr

2~11bv!E d4x
d

dh DG\uh5r50 , ~B8!

whereNF
hom is given by Eq.~23!.
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