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Trace identity in a model with broken symmetry

Daniel H. T. Franco
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Beirut 2-4, 34014 Trieste, ltaly
(Received 2 February 1999; published 18 May 1999

Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show
the validity of a trace identity—to all orders of perturbation theory—playing the role of a Callan-Symanzik
equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-
momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space
background, represented by the nonpropagating external vielbein field, we can express the conservation of the
energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the
diffeomorphisms. Our “Callan-Symanzik equation” then is the anomalous Ward identity for the trace of the
energy-momentum tensor, the so-called “trace identify50556-282(199)04512-9

PACS numbgs): 11.10.Gh, 11.25.Db

I. INTRODUCTION Callan-SymanziKC$S) equatior 3]. It describes the behavior
of the quantum theory under scale transformations, being
A classical field theory is scale invariant precisely when itsuccessfully applied in symmetric models. If the theory is
has the following properties: it contains no mass terms antbroken the construction of the CS equation is more involved
all coupling constants are dimensionless. For a theory of thif13—15. Because of the shifts by constant amounts in certain
type it is possible to define an energy-momentum tensor withields, the dilatation Ward operator does not will commute
a vanishing tracésee[1] for a review. On the other hand, it with the Ward operator for broken symmetry. Therefore the
is natural to expect that the scale symmetry is broken tgyreaking of dilatations is not symmetric but has a certain
provide us a scale to live on. There are many different waygoyariance under the symmetry transformations already at
to break scale invariance. The most ordinary way is thafhe classical level. As alluded in RefL4], to identify the
scale invariance is broken due to quantum effects. breaking of dilatations with the trace of the energy-
As is well known, in the context of a renormalized per- o, entm tensor is thus complicated at the quantum level.

turbation  theory, mtegrals associated V.V'th the Feynmal?n addition, in a purely physical parametrization, the effect of
graphs are generally UV divergents. To give a proper meary,

. ) ) he breaking induces the appearance of physical mass
ing to such expressions we have to adopt a suitable subtra -functions [13—15, a situation which asks for a deeper
tion scheme. The effect of the latter is to render the integral . ’ ; L per
convergent. The renormalization is performed through thémderstandmg_. Of a part_|cular kind is the case for a realistic
addition of a certain number of counterterms to the initialSUPErsymmetric gauge field thedds].
action considered, whose coefficients are left arbitrary. These "€ Purpose of the present paper is to supplement the
coefficients have however to be fixed by a set of normaliza¥orks of[13—13 and, exploiting the techniques developed
tion conditions, which are applied at a certain momentuni [11], to provide an alternative way of deriving the CS
scale. In this point, the important feature is the appearance @fduation, which allows us to identify the breaking of dilata-
a normalization parametex; it has the dimension of a mass tions with the trace of the energy-momentum tensor in a
and will thus cause the breaking of scale invariance. Thénodel with broken symmetry. More precisely, by coupling
natural choicex=m, wherem is the physical mass, cannot the quantum field theory considered to a classical curved
be used because it leads to singularities at the massless lim$pace background, represented by the nonpropagating exter-
In this way, there is no way to preserve quantum scale innal vielbein field, we can express the conservation of the
variance at the massless limit: scale invariance is anomialousnergy-momentum tensor through the Ward identity which
[2—6]. This is called the trace anomaly induced by radiativecharacterizes the invariance of the theory under the diffeo-
corrections. morphisms. Our “Callan-Symanzik equation” then is the
In order to get insight into this problem, a systematicanomalous Ward identity for the trace of the energy-
study of renormalization properties can be achieved via thehomentum tensor, the so-called “trace identityAs a by-
product, the approach will allow us to bring to an end that

!Breaking of quantum scale invariance by an anomaly is quite
general. Only some models remain scale invariant at the quantum?There exist studies in the literature concerning the local dilatation
level (see for instancg7—11])). Within perturbative theory, a nec- properties—general coordinate transformations in the Weyl's
essary and sufficient condition to obtain the “scale invariance,” itsheme—as discussed by Bandellehal [16], where a more diffi-
is the vanishing to all orders of th@functions—anomalous dimen- cult task was taken up: the radiative mass generation due to the
sions are allowed to be different of zero. The latter corresponding térace anomaly. Even though their approach is related to ours, here
field redefinitions, are physically trivial and hence vanish on theinstead of introducing an external dilatation field, beyond the exter-
mass shel[12]. nal metric or vielbein field, we only consider the latter.
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the - and y-functions in curved space-time are the same as=3(Qymn+ Qma—Qnim), With Qjn=ef‘er(d,€,n—39,€.n).
in flat one. The metric tensor readg,,,(X) = 7m€(X)€(X); 7mn

Since we are working with an external vielbein which is being the tangent space flat metric. We denoteeliye de-
not necessary flat, our results hold for a curved manifold, agerminant ofe™. As explained in the Introduction, we as-
long as its topology remains that of fl&t*, with asymptoti-  syme the manifold\t to be topologically equivalent t& *
cally vanishing curvature. It is the latter two restrictions gng asymptotically flat.
which allow us to use the general results of renormalization \we shall take into account the physically interesting case
theory, established in flat space. Indeed, we may then expaRghen the chiral symmetry is broken adding a linear term to
in the powers ok=e}'— &}, consideringe}; as a classical the action. The linear breaking term implies that the quantum
background field in flaR 4, and thus make use of the general o field has a nonvanishing vacuum expectation valug
theorems of renormalization theory actually proved for flat=v. If one wishes to interpret the theory in terms of par-
space-timg 17,18 ticles, it is necessary to perform a field translatien- o

We shall consider the model of chiral fermion meson with+v such thats/do|,-,=0. As an effect the mass degen-
explicit breaking of the chiral symmetry. In contrast with eracy between fields and = disappears and the fermionic
Ref.[19], which have considered the explicit breaking termisodoublety acquires a mass.
in order to be able to treat the massless Goldstone particle in The corresponding action in a curved manifold is given
its massless limit, we are interested in the case where thgy
pion fields are massive. The importance of this lies in fact
that the chiral fermion meson model allows for the possibil-
ity of a simultaneous description of the baryonic and me-
sonic low energy sector in hadron physid@8onsistency con-
ditions for chiral symmetry and scale invariance, in absence
of fermions and charged pions, were studied2a].*

The outline of the paper is as follows. The model in a
curved Riemannian manifold described in terms of external wy i 5_a_a
vielbein and spin connection fields, is introduced in Sec. Il, gy((lotv) +iy s my+ CU]’ @)
together with its symmetries. The trace identity for the clas- ) ) _
sical theory is derived in Sec. Ill. The extension of this iden-With ¥*=efy™, wherey™ are the Dirac matrices in the tan-
tity to the quantum level is discussed in Sec. 1V, followed bygent spaceg and\ are the pion-fermion and pion-pion cou-
a summary. For the sake of completeness, we add two aling constants, respectively. The covariant derivative is de-
pendices: The renormalizability of the model is sketched irfined by
Appendix A. Assuming the limit of flat space-time, the CS

— 1
2=j d“xe( Yiy*D, i+ E((?#a'(?"a'-l- d,maoHm?)

1 1
— E,uz((()'-i—v)z-l- mia?®)— Z)\((U-I-v)z-i- mer)?

g ; ) . 1
equation is derived in Appendix B. D p(x)=| 0, + szn(xmmn) WX, )
Il. GENERALITIES OF THE MODEL with QI™7 acting ony(x) as an infinitesimal Lorentz matrix

in the appropriate representation.
In this section, we give a brief description of the model in  The masses arising from the acti¢h for , 72 and o
a curved space-time. The chiral fermion meson model inare given by
volves a fermionic isodoublety, of zero mass, a scalar

sigma field, o, and a triplet of charged pseudscalar pion m,=guv,

fields, w2. Because fermions are represented by spinor fields ) ) )

which are subjected to the Lorentz group—and not to the mz=pup+Av7, (€)
diffeomorphisms group—we must refer these fields to the 2 5 )

tangent frame and treat the fermions as scalars with respect m,=u+3\v".

to the diffeomorphisms. We achieve this with the help of the M f the B imation to th
vierbein. Space-time is a 4-dimensional Riemannian mani- oreover, from the born approximation to the vacuum
fold M, with coordinatexx*, ©=0,1,2,3. It is described by expectation valug22], we obtain

a vierbein fielde;‘(x) and its inverseef(x), u being a c=v(,u2+)\v2)=vmf7. (4)
world index andm a tangent space index. The spin connec-

tion w;m(x) is not an independent field, but depends on the The isospin, chiral, diffeomorphisms and local Lorentz
vierbein due to the vanishing torsion conditiom,, transformations read as follows.

(i) Isospin:
aTa

3See e.g[20] for current study of the model in a somewhat phe- 0isc0=0, Sigoth=—1 > ¥,
nomenological basis when temperature effects are considered, in
absence of fermions. aa

4 ; : — —a°T

| thank Professor R. Jackiw for drawing these works to my at- :
tention. 9 y Biso = EabcabTrc' Sisotf =1 2 5
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(ii) Chiral: TABLE I. Ultraviolet dimensiondg, .
a?7? W o - em
Ochiral0 = — @®m®,  Scpirah=—1 2 75‘/’1 £
de 3/2 1 1 0
o ot
. a: a . —_ — 1 5
Oetia™ = (0¥ 0), Seniralh= 1975 (6) symmetries, i.e., parit and charge conjugatio@, whose
action on the fields is given as below.
(iii) Diffeomorphisms: (i) Parity P:
siel=L.ell=e"o,el+(9,eM)el, b
x— (X%, =X),
=L d=c"9, 0, b=0,7%¢, 7)
where L, is the Lie derivative along the vector fiekd(x) (/l_P) VO
— the infinitesimal parameter of the transformation. '
(iv) Local Lorentz transformations o
1 b=y, (14)
SN P = )\mnﬂmntb ® =any field, €S))
P
with infinitesimal parameters - =7,
The Ward identities corresponding to the isospin, chiral,
diffeomorphisms and local Lorentz symmetries for the action P
(1) can be expressed introducing the functional differential o—0.
Ward operators, as given below:
(ii) Charge conjugatioe:
Wa S = Jd“x €2PCrb +|ET—ai—|i—az// =0
c 2 5y OY 2 ' ¢ e
9) b—y¢"=Cyr,
s — .16 —C—
2 = 4 + —a_ 5. c= _ytc 1,
hiral de (o+v)— (o iy 2 50 [/ U
< c
65 7 13 .13
527 w)zﬂz.ass, 10 o 15
c
where 2y — 2
8= — f d*xecm? (11 c
og—0,

is the breaking term which, being linear in the quantum field

2, will not be renormalized, i.e.,
breaking[23]:

53,
W2 = J d3x§) S 5(1)—0, (12)

and

62
Wiorent = J dsxg 5(L}<\))rentz®5#{):01 (13

it will remain a classical WhereC=i y° y? is the charge conjugation matrix.

Ultraviolet dimensions of all fields are collected in Table
1.5

Ill. TRACE IDENTITY FOR THE CLASSICAL THEORY

From now on we change from unphysical parametrization
(#?\,0,c) to physical one ifZ,m%,m,,v), with the
change of variables given by Eq®) and (4). In this way,
the classical actiolil) takes the form

where the summations run over all quantum and external

fields.

SThe ultraviolet dimensions determine the ultraviolet power-

Finally, the classical actiofl) is constrained, besides the counting. If there are massless fields in the theory, one should take

Ward identities(9), (10), (12) and (13) by a set of discrete

special care of the infrared convergeried].
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It is interesting to note that Eq21) is nothing but the
Ward identity for rigid Weyl symmetry25]—broken by the

mass terms and dimensionful couplings.
Our classical “trace identity” is defined by

— 1
3= f d4xe[ Yiy'D, g+ 5(&#0'19”0'4- d,m ot m?)

(3m2—m?) s e (mi-md) ,
_T((U+U) +r 77)_8—1)2((0'+U) Wiraces — A (24)
where
a_a2_ My— i 5 _a_a 2
+ mia?) —T¢((U+v)+ly7'ﬂ')¢+mwvo' . (16 3
W= N — SN =N hom (25)
For a given field theory the energy-momentum tensor is
defined as the functional derivative: and
Ar=g1 m5_ 1 4 2 2 2 _a_a m
{=e ey —.. 17 A= | d*e| —mio®—m_mlm?—m iy
M
. . 2 2
The conservation of the energy-momentum terefris a _ (mz—m2) (024 77 (26)
consequence of the diffeomorphism Ward idenfitp) and 2v '

of the definition(17), yielding the following equation: . ] ] )
The latter is the effect of the breaking of scale invariance

due to the dimensionful parameters. The dimension ef

18 the dimensions ofn2, m? m,, andv not being taken into

account—is lower than four: it is a soft breaking.

In order to make the connection between the trace identity
and the dilatational Ward identity — which is just the scaling
Ward identity—let us consider a while the limit of flat space,

where rigid dilatation symmetry makes sense. In this limit

f d*x e(x)(eV ,04(x) — W, (X)%)=0,
whereV , is the covariant derivative with respect to the dif-
feomorphisms, with the differential operatwg (x) acting on
3 representing contact terms:

)
=2 (V) 5g (19

(becoming the translation Ward operator in the limit of flat

space.
The integral of the trace of the tenser’,

62
f d4xe®ﬁzf dx ITWENEE’ (20)
€u

turns out to be an equation of motion, up to soft breakings —

which means tha®{ is the improved energy-momentum
tensor. This follows from the identity, which is easily
checked by inspection of the classical action

3 Jd d
hom
=| N, + + + +
N2 2/\&,, Na m,,am(r m”ﬁmw m¢am¢
0
+v£ 3, (21)

where \; is the counting operator of the vierbe&] . N,
and Ny are counting operators defined by

N, —f d4x(_i+i ) 22)
v sy oY)
Nhom=f d*x (ri-i-ﬂ'a o (23
@ So Smal

N™is the unshifted counting operator for scalar fields.

(18) holds withe=1 andV ,=4,. The classical dilatation
currentS* can now be defined as

SH(X)=x"OH(x).

(27)
It obeys the conservation identity

— 1’3 A 1%
9,8"=0 +x"3,0/

3

=|5+x-9|n, S+ (1+x-9)nP"S
2
+A(X), (28)

where A(x) is the integrand of Eq(26). n, and ni°™ are

local operators given by

(=5 5
ny(X)= ¢5—E+5—¢ :

6

a

T :
5773)

Integrating Eq.(28) we get the broken dilatation Ward
identity for the classical theory:

1)
ne™(x) = ( o5+

WDE = d4X E

O=0,7% ¢

0%
[(dq,+x-§)¢>]%=A, (29

wheredg is the dimension of the field (see Table)l
The trace Ward operator defined in E84), together with
the operatorg9), (10), (12) and (13) satisfy the algebra
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SF WIrac§h _
[Wtrace,Wghiral]}—:f d4XU§, (30) |77 p=0

)E " | ﬂ:p:OZO.
(37

— (Wtrace_ f d*x| v i+ i _,_ai
6o o7 op

[WraeW, ]F=0, X=iso, Lorentz, diff, 31

where F is an arbitrary functional. ] R
With the new operatoW® we have

IV. TRACE IDENTITY FOR THE QUANTUM THEORY [Wtrace,\/vghiral]}—: 0,
We have now to extend the construction of the preceding

section to all orders of perturbation theory. As a starting [Wacew, JF=0, (39)

point, we must be able to write the breaking of scale invari-

ance(26) in form of a differential operator. This will be where X=iso, Lorentz, diff.

possible with the help of additional external fielgsand p, Let us note that
which transform invariantly under isospin and chiral
symmetries—P- and C-even—introducing the new classical Wa 2 = AR (39
action
where
2h=2+f d*xe(apQ ™+ 3miv no), (32

Aglgss: - j d4xe(l+ 37) qurv e, (40)

with

is a breaking term which stays linear in the quantum field
Q™= (g+v)2+ 7278, and will remain a classical breakifg3]. Thus, the proof of
the renormalizability for Eq(32) remains the same as the

an invariant polynomial of dimension two. The ultraviolet ON€ sketched in Appendix A.

dimension ofy andp is 2. The corresponding quantum theory is described introduc-
Following along the lines of14], note that ing the new vertex functional
bt
, 5 5 5 . . oF '=3%"4+0(#). (41
d Xlv——+—+a— y Wehiral F: d Xv . . . .
éd o6y Op S In this way, the trace identit{37) takes the form
(33

WS | _o=A-T*|,_,_o=A+O0(h). (42

Taking into account30) and (33), for F=3" (setting at
the endn=p=0), one finds The insertion in the right-hand side represents the breaking
due to the effect of the radiative corrections we want to

Shira WS | study, andA is their lowest order contribuition. From quan-

=p=0
T tum action principle(QAP) [17], A is an integrated field
—WA (J d4x<v iJr i+ai 2q| _ polynomial compatible with ultraviolet dimension 4 and
chiral do 6n op 7=p=0 even under the parit and charge conjugatio@.
WA AL (34) According also to the QAP, applying the algebraic struc-
chiral ture (38) to the vertex functional, one gets
Sio‘lr;herefore, in the tree approximation one gets the expres W?hiraNV"acTh|n=p=o=W2hira A=0,
S S S Wx\fv"aC‘T " | n=p=0=WxA=0 43
A=fd4x(u—+—+a— E”|n=p=o, (35
éo on dp with X=iso, Lorentz diff.
. For that reason) is an invariant insertion which can be
with expanded in a suitable basis. It is remarkable that, in pertur-
9 2 bation theory, any such basis of renormalized insertions is
_ (m;—3mz) (36) completely characterized by the corresponding classical basis
2 ’ [23]. Such a basis is given in the classical approximation by
Eqg. (A4)—see Appendix A. An appropriate quantum exten-
determined by the normalization conditions. sion of this basis is obtained through the introduction of a set
We now define the “symmetrized” form of the classical of symmetric differential operators acting & —setting at
trace identity the endn=p=0—and in one-to-one correspondence to the

125017-5



DANIEL H. T. FRANCO PHYSICAL REVIEW D59 125017

basis of integrated polynomials in EGA4). We define a  “true” CS equation does not exist in such situation. By
symmetric operator as an operatomwhich satisfies the con- “true” it should be understood an equation which does not
dition containB-functions belonging to the physical mass differen-
tial operators. In any case this requires an analysis. This ef-
[V,Wx]=0, X=iso, chiral, Lorentz, diff. ~ (44)  fort is essential if one aims at having contact with phenom-
enology. In particular, this is the case for a realistic
supersymmetric gauge field thedys]. The reader may con-
s 4 J vince himself that our algorithm also works for the case of
[J' d*xa—=,0—,m,— Np va//]v (450  spontaneous symmetry breaking. In this case, due to the
Sp’ v amy, eventual appearance of Goldstone modes, infrared anomalies
may be picked up, and in higher order have to be proven to
be absenf14]. As a by-product, the approach has allowed us
) to conclude that thgg-functions and the anomalous dimen-

The set

with V,, given by Eq.(22) and

(46)  sions in curved space are the same as in flat space — evi-
dently this is valid for a class of curved manifolds with to-
pology remains that of flaiR* and with asymptotically

forms a basis for the symmetric operators of the model, takvanishing curvature. It is only in this case we can use the

ing into account the physical parametrization. general results of renormalization theory, established in flat
Thus, the expansion af in the basig45), we have just  space.
constructed, yields the quantum trace identity in the curved
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+(1+ 5)] d*xa—+(1+ )f d4x—)l““ .
op L on [=p=0 APPENDIX A: ALGEBRAIC PROOF OF

+terms vanishing in the flat limit, (47) RENORMALIZABILITY

hom - ) ] In this appendix, we sketch a proof of renormalizability of
where/ ™" is an unshifted counting operator. the chiral fermion meson model on the light of the
In the flat space, Eq(47) is equivalent to the Callan- regularization-independent algebraic metfiod.
Symanzik equation, which is the Ward identity for anoma- |n the first step, we study the stability of the classical
lous dilatation invariance—see Appendix B. It is worthwhile action. For the quantum theory the stability corresponds to
to note that this result allows us to conclude which thethe fact that the radiative corrections can be reabsorbed by a
B-functions and anomalous dimensions in curved space af@definition of the initial parameters of the theory. Next, one
the same as in flat space. The presence ofgefunction  computes the possible anomalies through an analysis of the
corresponds to renormalization of the physical mass of ferWess-Zumino condition, then one checks if the possible
mionic fields, with the consequence that the hard breaking dfreakings induced by radiative corrections can be fine-tuned
dilatations depends on the normalization point also in théby a suitable choice of non-invariant local counterterms.
asymptotic region.
1. Stability

V. SUMMARY In order to study the stability of the model under radiative
corrections, we introduce an infinitesimal perturbation in the

In this paper, we show—by using the techniques devel ) ; . .
oped in[11]—as directly to identify the breaking of dilata- ElaSSICa| actior®, by means of a integrated local functional

tions with the trace of the energy-momentum tensor in g that satisfies the constraint of a quantum correction
model with explicitly broken symmetry. This is not a trivial

task due the shifts by constant amounts in certain fields: the

dilatational operator does not commute with the Ward opera- ¢, fact, this has already been considered1g] via Bogoliubov-

tor for broken symmetry, but has a certain covariance undeparasiuk-Hepp-ZimmermaniBPHZ) renormalization scheme and
the symmetry transformations already at the classical levetecently in[26] via “algebraic” renormalization for the theory in
Most remarkable is the presence of fdunction associated flat space only. The generalization to curved space is straightfor-
with the physical mass of fermions. According Becld8], a  ward.
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EHE+€E, (A1)

wheree is an infinitesimal parameter.
The perturbed action must satisfy, to the orédethe same
equations a&:

Wy (S +€3) =Wy (3) + eWyS +O(€?) =
|so(2 + Ez) W|50(2) + EW 02 + 0(62) 0

Wohiral( S + €2) = Waiia 3) + €Wdhia + O(€2)

a
class

(A2)

with X=Lorentz, diff.
To first order ine, one obtains
WXE 0, Wi OE 0,

Wzlhirali =0, (A?’)

consequently all counterterms required by renormahzauoqh

have to be symmetric.

Let us look for the most general invariant countert&m
i.e., the most general field polynomial of UV dimensist,

PHYSICAL REVIEW D 59 125017

2. Anomalies

Because the classical stability does not imply in general
the possibility of extending the theory to the quantum level,
our second task is to infer for possible anomalies. Then, a
generating functional for vertex functions, is constructed

'=3+0(#), (AB)

such that

WXFZO* W%orzov chlralr AcIaSS' (A7)
The validity to all orders of the Ward identities of diffeo-
morphisms and local Lorentz will be assumed in the follow-
ing. In fact, in the absence of gauge fields, these anomalies
can exist only in D=4k+2 dimensions, with K
=0,1,2...), represented by a local polynomial in the cur-
vature only(see[27] and references cited thergih
It remains now to show the possibility of implementing
e isospin and chiral Ward identities for the vertex func-
tional I". The proof is recursive. We shall admit the assump-
tion that there exists a vertex functiorlai"~ ) obeying the
Ward identities(A7) until the ordermm—1 in #,

respecting parity and charge conjugation symmetries and the

conditions(A3). An explicit computation, shows th& can
be written in the following way:

5
S= f d“xe_Zl aPi(x), (A4)

where
Pr=yiy" Dy, Po=(d,00 o+ d,m0 77,
Pa=((o+v)?+727®), Pu=((0+v)*+mn?)?,
Ps=y((o+v) +i9° 727,

with aq, ... ,as arbitrary coefficients. We have neglected

terms such a§d4eR(az+ m37%), which do not contribute
in the limit of flat space.

WA T (-D=0(#"), (A8)

hlralr (== class O(hn) (A9)

As a result of QAH17], the forms(A8) and(A9) will be
broken at then-order as follows:

WA (" D=4"A.T=4"A2 +O(A"*1), (A10)
chlrall—‘(n V= clas_*'ﬁnA r
Aclass ﬁnAahlral+o(hn+l) (All)

whereAL and A%, are integrated local functionals with
UV dimension=<4.
Because of the invariance under paffityand charge con-

The arbitrary coefficients are fixed in such a way that theyjugation C, the Ward operators and the quantum breakings

hold order by order in perturbation theory by normalizationsatisfy the following properties.
conditions. Considering the physical parametrization adopted (i) Parity P:
in the main text and since we will have a particle interpreta-

tion only if the vaccum expectation value of the fields van- P

ish, we impose the following nonsingular system of normal- Wi — W, AEOHAEO,
ization conditions:
P P P
I'.=o0, r 1, — v =1, WghiraIH Wchlral! AghiraIH_Aghiral- (A12)
Y P " o ",
P (i) Charge conjugatiolt:
1—‘(To'|p2:m2:0! ngﬂlﬁ:m./,:ol (AS)

where « is a energy scale anp(«) some reference set of
4-momenta at this scalm is determined through the chiral
Ward identity(10). With the normalization condition§A5),
the most general action becomes identical to the agtién

"See e.g[28] where the authors study the cohomology problem of
the overall local symmetry group of theories with external gravity,
including diffeomorphisms, local Lorentz and gauge transforma-
tions, in order to determine all possible anomalies.
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c c — _
WL, —wid  AL3 AL f d*xe( 72, Waoz,waas,&ﬂwaﬁ”(r,(ﬁysralﬂ, T2h),
(A19)
c c . : . : .
W2 W2 A2 A2 parity and charge conjugation being taken into account.
S0 e S0 s The consistency condition@15) reduce this basis to
c c _
\/\/gh&i}ral—> gh:i;ral’ A gh:i;ral—> A gﬁ?ral ' f d4X e( Wa' ¢y5 7 'r/f) ' (AZO)
, © ) , © , Such a basis can be obtained by applyi,;, to
Wchiral*) _Wchiral! Achiral*> - Achiral' (A13) .
. . , . o d*xe(a,yih), A21
Using the commutation relatiofr®, 7°]=2i €2°%7°, it is f xe(o,4) (A21)

easy to check that the Ward operators obey the foIIowinq e

. . it can be reabsorbed as local counterterms.
commutation rules of the Lie algebra:

Denoting the latter field monomials hy;, we can write
[W%O!Wibso]f: _ 6abwfso7:, (All) as

Wah_ lr(n—l): al +#"A-T

[Wiiovwghiral]f: — e chiratF o :ass mp/a n+1

(A14) = class+h WchiralA+O(h ), (AZZ)

52 i
[W, o WOl F= — €2POWE 7, whereA=37_r'A;.

chiral? " ehira s Defining 3"~V the action, with all its couterterms until

with 7 an arbitrary functional. the ordern—1, which leads to the functiond!™™ 1), then
Applying the algebraic structure above displayed to thereplacing the actiot ("% by the new action

vertex functional, we obtain the Wess-Zumino consistency (M _~(-1)_ zn
conditions[29] 2M=% R7A, (A23)

WA AD Wb AR = _ caboxc lead to the new vertex functional

iso=tiso iso=tiso™ iso’

rMW=r0"Y_z"A+O(H"L). (A24)
a Ab  _\ab a _ _ _abcpc
Wisof chira~ Wenirafiso™ ~ € Achiral: (AL5) Thus, with the results obtained above, we get
W I M=0(A"*1), (A25)
WshirarAghiral_ WghiralA?hiraF - fabcAicso- sl
Wghiralr(n): glass”' O(ﬁn+1): (AZG)

Solving constraints such as E@A15) is technically
known as a problem of Lie algebra cohomology. Its solution
can always be written as a sum of a trivial cocycle
Wiso(chiranf ang of nontrivial elements belonging to the co-
homology OfWiso(chiral):

which is the next order Ward identities we wanted to prove.

APPENDIX B: CALLAN-SYMANZIK EQUATION

a a - In this appendix we wish to derive the CS equation. This
iso(chirah= “Aiso(chira T Wiso(chiran (A16)  allows us to identify the coefficient and y of the expres-
sion (47) with those of the CS equation, when we take the
limit of flat space-time. Our starting point is E(R9), the
broken dilatation Ward identity, wit® replaced bys."

As it is well known the theory will be anomaly free if
conditions(A15) admit only the trivial solution

Ao (chiral™= Wiso(chiran/ (A17)

with A an integrated local functional even under parity and

831
WDEN|7]:p:0:J'd4X > [(dq>+x'ﬁ)‘b]ﬁ
b=

U',’JTa, =pn=
charge conjugation. On the other hand, nontrivial cocycles, ' et
ie., =A. (B1)

Asochiral® Wiso(chiral» (A18) With the help of Eq.(35), we can define the “symme-
trized” form of Eq. (B1)
cannot be reabsorbed as local counterterms and represent an
obstruction in order to have an invariant quantum vertex S S
functional. (Wo—f d4X(U%+ satas, )Eun—p—ozo-
A direct inspection shows that there is no such a func- K p (B2)

tional satisfying Eqs(A12) and (A13) for A% . Hence, its
cohomology is empty. On the other hand, the chiral break- Applying QAP one derives from EqB2) that the dilata-
ing, A, can be expanded in the basis tions in higher order are broken by

125017-8



TRACE IDENTITY IN A MODEL WITH BROKEN SYMMETRY
o 1)
v—t+—t+ta—

_ 4
(WD fdx( 50 5n " %

=A-TH,_,_o=A+0(#),

)F h | n=p=0
(B3)

whereT'" is the vertex functional defined in Eg41). A
represents the breaking in the lowest order.
According to the fact that the left-hand side of EB3) is

PHYSICAL REVIEW D 59 125017

where,, and Vg, are counting operators given by E¢82)
and (46), respectively.

The latter can be rewritten in a more explicit form with
the help of the dimensional analysis identity

symmetric with respect to isospin and chiral symmetries, onavhere

gets
\NioA = \Nf:lhiralA =0. (B4)

The invariant insertioml\ can be expanded in a suitable

(D+Wp)I'*|,_,-0=0, (B6)
D= > ’ (B7)
_M=K'U'mzrvmﬂ"m¢; ILL&IU’,

basis of symmetric operators of the theory—parity and

charge conjugation being taken into account. Assuming th&/!t /
gdefining the parameters of the quantum theory are taken.

physical parametrization, this basis is given by set of oper
tors (45), yielding

(WD— f d*x

0 0
= ( Bmwm;pm By YNy YoNo

o 1) o
vV -+t —ta—

i
oo  On Sp )F |’7:’J:O

-8B fd4xvi+5f d“xai
v oo 6p

4,9 |1
+ B, dx5_7lr |72:p:0’ (B5)

ith « the mass scale at which the normalization conditions

This yields the Callan-Symanzik equation

Ftl|7]=p=0

J J
(D+ Bmme_rm, B YoNy— Yo N
= -(1-8,— Jd4 5—1+5Jd4 i
(B8)

o
—(1+BU)J d4x5—7])1“"|,,_p_0,

where NP is given by Eq.(23).
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