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Effective action and quantum gauge transformations
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Department of Theoretical Physics, St. Petersburg University, 198904 St. Petersburg, Russia
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The local symmetry transformations of the quantum effective action for general gauge theory are found.
Additional symmetries arise under consideration of background gauges. Together with ‘‘trivial’’ gauge trans-
formations, vanishing on mass shell, they can be used for the construction of simple gauge generators. For
example, for the Yang-Mills theory the classically invariant effective action is obtained, reproducing DeWitt’s
result. For rank one theories a natural generalization is proposed.@S0556-2821~99!05810-5#

PACS number~s!: 11.15.2q, 11.30.Ly
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I. INTRODUCTION

The concept of symmetry was and remains a very pow
ful tool for the construction of the quantum field theory. O
of its main virtues is that the symmetry restricts a form of t
action, which lies in the ground of the theory. Consequen
of the classical symmetry play a crucial role for the ren
malizability of quantum theory. And in the investigation
this problem the effective action takes a prominent place@1#.
In addition, it is the only quantum object in which the sym
metry should be reflected by the same way as in the clas
action also restricting the number of available structures.
it is natural to find this quantum realization of the symmet
i.e., the symmetry transformations of the effective action
an explicit form.

One of the first steps in this direction was taken by D
Witt in his construction of the classically gauge invaria
effective action for the Yang-Mills theory@2#. This work
gave rise to a number of papers devoted to this problem@3#.
But all of them do not go beyond linear gauge transform
tions and background gauges of a certain kind. This is a v
strong limitation on the physical theory. As we know th
Hamiltonian forms of gravity, supersymmetry theories, a
many others require nonlinear transformations. So an inv
tigation of general gauge theories from the point of view
the quantum gauge symmetry is needed.

The following breakthrough is connected with the conc
of the effective average action or Vilkovisky-DeWitt actio
@4–6#. Its gauge invariance and gauge independence are
attractive properties. However its actual construction in a
trary gauge and for arbitrary gauge theory is an enormou
hard task because the connection on the frame bundle o
space of histories is needed. Besides the effective ave
action is connected to the ordinary generating functional
the one-particle-irreducible Green functions in a nontriv
way. So we simply bypass the subject and consider the
fective action constructed in the usual way as Legen
transformation.

The common approach to the symmetry properties of
effective action for general gauge theories is investigation
the Ward identities~see for example@7,8#!. They are the
reflection of the global Becchi-Rouet-Stora-Tyutin~BRST!
symmetry which replaces the gauge symmetry in path in
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gral quantization@9#. This symmetry plays a leading role i
quantization of general gauge theories being the basis
Hamiltonian Batalin-Fradkin-Vilkovisky~BFV! @10# and La-
grangian BV @11# quantization schemes. Within these a
proaches global symmetry transformations of the effect
action, which are called quantum BRST transformations,
easily be found@12–15#. Here we are interested in their loca
counterparts which are realized on the physical fields on
Explicit formulas for them, to our knowledge, are absent
the literature and our aim is to fill in this gap. In addition, w
discuss the symmetry transformations in presence of ba
ground fields and apply the obtained results to the rank
theory.

Our consideration is based on the Hamiltonian form
BRST quantization. An alternative strategy is to follow th
BV formalism. Some remarks on this point are given in S
VI.

The paper is organized as follows. In Sec. II the BF
quantization is reviewed and for completeness and to fix
notations the quantum BRST transformations are obtain
In the subsequent section the gauge transformations of
effective action in terms of quantum averages are found
the ‘‘trivial’’ transformations and the symmetry algebra a
discussed. In Sec. IV it is shown that introduction of bac
ground fields results in appearance of additional symmet
which can be combined with initial ones. This is used in S
V to construct the symmetry, which is reduced to the clas
cal gauge transformations in the case of the Yang-M
theory reproducing DeWitt’s result and gives a generali
tion for nonlinear transformations. In the last section so
problems and perspectives are outlined.

Our condensed notations correspond to DeWitt’s ones
troduced in@16#. This may lead to confusion when they a
applied, for example, in an expression for the classical
tion. In such cases all tensors must be understood as l
what results in locality of the whole expression. In this co
nection it is convenient to extend the definition of the Po
son brackets on variables depending on different moment
time. We demand$qs,pr%5d r

s , i.e., an unsimultaneous com
mutator vanishes. This provides locality and keeps unity
the notations. All derivatives with respect to Grassmann v
ables are left and for simplicity we restrict ourselves to t
case of even classical fields only.

II. PRELIMINARIES

Let us survey the Hamiltonian BFV quantization follow
ing the review@17#.
©1999 The American Physical Society16-1
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Consider a gauge theory with phase space variablezA

5(qs,ps), HamiltonianH0(q,p), and first class constraint
Ga . Let na be the Lagrange multipliers associated with t
constraintsGa , and pa be the canonically conjugate mo
menta. The action is given by

S~q,p,n!5q̇sps2H02naGa , ~1!

whereas the gauge transformations aredwa5Ga
a(w)«a,

wherewa5(qs,ps ,na) and

Ga
(zA)5$zA,Ga%, Ga

(nb)5da
b] t1ngCag

b 2Va
b ~2!

with Cab
g ,Va

b defined through the relations$Ga ,Gb%
5Cab

g Gg and $H0 ,Ga%5Va
bGb . The extended phase spa

is defined by introducing extra ghost and antighost fie
(ba,c̄a ,ca,b̄a) obeying the following nonvanishing ant
brackets:

$ba,c̄b%152db
a ,$ca,b̄b%152db

a .

ca,c̄a are real, whereasba,b̄a are imaginary. It is convenien
to define an additional structure on the extended phase sp
that of ‘‘ghost number.’’ This is done by attributing the fo
lowing ghost number to the canonical variables:ca,ba have
ghost number one,c̄a ,b̄a have ghost number minus one. A
other variables have ghost number zero.

On this space one can construct a BRST generatorV and
a BRST invariant HamiltonianH. They are determined by
the following conditions:~a! V is real and odd,~b! V has
ghost number one, ~c! V52 ibapa1caGa
1 ‘ ‘ higher ghost terms, ’ ’ and ~d! $V,V%150; ~a! H is
real and even,~b! H has ghost number zero,~c! H coincides
with H0 up to higher ghost terms, and~d! $H,V%50.

The BRST generator is fully defined by structure fun
tions of the constraint algebra:

V52 ibapa1 (
n>0

can11
•••ca1Ua1•••an11

(n)b1•••bnb̄bn
•••b̄b1

.

~3!

For n50 and n51 they areUa
(0)5Ga ,Uab

(1)g52 1
2 Cab

g .
Higher order structure functions are defined through repe
Poisson brackets of the constraints. The HamiltonianH in
the first orders in ghosts has the form

H5H01caVa
bb̄b1•••. ~4!

The quantization is based on the generating functional
the Green functions which is represented in the form

Z@J#5e( i /\)W(J)5E Dc8e( i /\)[Se f f(c8)1Jic8 i ] , ~5!

where

Se f f5q̇sps1ṅapa1 ċab̄a1ḃac̄a2He f f ,

He f f5H2$C,V%1 . ~6!
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Here C is an odd and imaginary function which has gho
number minus one and plays a role of gauge fixing functi
c5„w,p,h5(c,b),h̄5( c̄,b̄)…. wa are just the physica
fields of the theory. From properties ofH andV the invari-
ance under the global BRST transformations follow
$Se f f ,V%52*dt(d/dt)V50.

We choose

C5b̄ana1 i c̄axa. ~7!

Substituting Eqs.~3! and ~7! in Eq. ~6! one obtains@15#:

Se f f5q̇sps1ṅapa1 ċab̄a1ḃac̄a2H

2 (
n>0

~n11!nan11can
•••ca1Ua1•••an11

(n)b1•••bnb̄bn
•••b̄b1

2paxa1 ibab̄a2ba
dxb

dna
c̄b

1 i (
n>0

can11
•••ca1$Ua1•••an11

(n)b1•••bn,xg%b̄bn
•••b̄b1

c̄g .

~8!

This action gives rise to the BRST extended effective act

Ge f f~c!5W~J!2Jic
i ,

dW~J!

dJi
5c i~J!. ~9!

Let us obtain its symmetry transformations.~The following
results can be found for instance in@15#.! The condition that
some transformation is a symmetry of the effective act
can be written as

dGe f f~c!

dc i
dc i52Jidc i50. ~10!

Thus the Ward identities homogeneous on the sources
needed. They are immediately obtained from the path in
gral ~5!. Because of the BRST invariance of the actionSe f f
the change of variablesc8 i→c8 i1V i«, where V i(c)
5$c i ,V%, in the first order in« leads to the equality

JiV
i~c!uc→\d/ idJZ~J!50⇔JiL

i50, ~11!

where

L i~c!5e(2 i /\)W(J)V i~c!uc→\d/ idJe
( i /\)W(J). ~12!

The functionalL i(c) is just the quantum BRST transforma
tion of the effective action. This result means that the qu
tum transformation is a vacuum average of T product of
classical one in the external field, i.e.,

d (q)c i5^T$dc i uc5ĉ%&J(c) . ~13!

~This result holds also in the BV formalism@14,18#.! In this
connection it is convenient to introduce the following not
tion: ^ f (c)&5^T$ f (ĉ)%&J(c) . Then one can write the simpl
equality
6-2
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L i~c!5^V i~c!&. ~14!

It is useful to emphasize that quantum corrections to
classical transformation arise from second and higher der
tives of W(J).

III. THE QUANTUM GAUGE TRANSFORMATIONS

In the previous section we have obtained the global qu
tum symmetry of the effective action. To find correspondi
local transformations it is necessary to return to the phys
fields at quantum level.

It is easy to see~see for example@15#! that with the choice
~7! the following conditions reduce Eq.~8! to Eq. ~1!

h5h̄50, p50. ~15!

The gauge transformations~2! are restored with help o
dwa5(d/dca)$wa,V%«a, the conditions ~15! and
dSe f f /db̄a50. ~The latter condition must be used before d
ferentiation overca. Without it there is only the weak invari
ance under independent transformations generated byGa
andpa .)

Having in mind this classical situation one can impose
conditions ~15! on the average fields to extract the gau
invariant effective action. Define

G5Ge f fuh5h̄50
p50

, L (0)
i 5@L i # lg , ~16!

where the subscript ‘‘lg’’ means a linear on ghost part. Fro
Eqs.~3! and ~14! one obtains the explicit expressions:

L (0)
(h)5^$h,V%1& lg50, L (0)

( c̄a)
5^$c̄a ,V%1& lg5 ipa ,

L (0)
(pa)

5^$pa ,V%& lg50, L (0)
(na)5^$na,V%& lg52 iba.

~17!

The first equality is obtained due to conservation of the gh
number. Then the ‘‘lg’’ part of Eq.~11! with the condition
p50 yields

dG~w!

dwa
L (0)

(wa)5@J(b̄)
a

# lgL (0)
(b̄a). ~18!

Evidently, @J(b̄)
a

# lg52d2Ge f f /dcbdb̄auh5h̄50cb

2d2Ge f f /dbbdb̄auh5h̄50bb. So the condition@J(b̄)
a

# lg50
can be viewed as a connection of the parameters of l
gauge transformations the role of which is played by gho
ca andba. From Eq.~18! these transformations are found
be

dc
(1)zA5L (1)a

(zA) ca, dc
(1)na50,

db
(2)zA5L (2)a

(zA) ba, db
(2)na52 iba,

~19!

where
12501
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(zA) 5

d

dca
^$zA,V%&uh5h̄50

p50
,

L (2)a
(zA) 5

d

dba
^$zA,V%&uh5h̄50

p50
. ~20!

Thus, provided@J(b̄)
a

# lg50⇒ba5ba(c), G(w) is the effec-
tive action invariant under the following quantum gau
transformations:

d (q)wa5d«
(1)wa1db(«)

(2) wa5Qa
a~w!«a. ~21!

The closed expression forQa
a can be obtained from Eqs

~19!, ~20!, and~3! and the expressions for ghost propagato
The analogy of the above mentioned weak invarian

@i.e., the invariance under the transformations~19!# comes

again from Eq.~18!. For existing of this symmetryL (0)
(b̄a)

should vanish. This can be done by demanding

dG

dna
1 i

dG

dzA
L (2)a

(zA) 50. ~22!

The left-hand side of Eq.~22! is an analogy of the classica
constraintsGa and Eq.~22! should be interpreted as a wea
equality. Note that in general case the contribution ofq andp
to this expression does not vanish. So in some sense the
a mixing between the phase space variablesqs,ps and the
Lagrange multipliersna due to quantum effects.

Apart from the quantum gauge transformations~21! one
can obtain other symmetry transformations of the effect
action. Let j a[J(wa) are sources for the physical fields. A
by the operatorT̂a, . . .

b, . . .5Ta, . . .
b, . . . (w,p)u(w,p)→(\d/ id j ,\d/ idJ(p))

on the identity~11!, take the ‘‘lg’’ part and impose the con
ditions p50 and@J(b̄)

a
# lg50. Then we come to the follow-

ing equation:

j a

d

dcl
~ T̂a, . . .

b, . . .L (0)
(wa)!5 i\

d

dcl S dT̂a, . . .
b, . . .

dwa
L (0)

(wa)D
2 i

d@J( c̄)
g

# lg

dcl
T̂a, . . .

b, . . .pg~ j !. ~23!

The demand that the contraction of the right-hand side of
~23! with some matrixMb

l vanishes gives rise to new sym
metry transformations:

dwa5Mb
l

d

dcl
~ T̂a, . . .

b, . . .L (0)
(wa)!«a5Q̃a

a~w!«a. ~24!

Note that we cannot reject the last term in Eq.~23! be-
causep is differentiated and the result is not proportional
it. ~Vanishing ofp makes sources dependent and cannot
done before differentiation.! Having in mind this remark one
can clarify the sense of these additional transformations
the conditionp50 is not hardly used for making the righ
6-3



e
w

ug
an
tio
ul

fo
e
th
o

fo
h
d
e-

th
t t

It
tu
.
t
g
i
v
th
ck
ft
th
th
ru

of
er
pr
ian

ve
ns
m

ra

ted

the
a-

ry.

d

n-
sses

nd
-

ion
e. It
und
ons

ills

n,
.

tion

ure
e

S. ALEXANDROV PHYSICAL REVIEW D 59 125016
hand side of Eq.~23! zero differentiation with respect toj a

gives Q̃a
a52 j b(dQ̃a

b /d j a). Thus new transformations ar
‘‘trivial’’ ones vanishing on mass shell. Nevertheless, as
shall see, they play a certain role.

Finally, let us discuss the algebra of the quantum ga
transformations. Here we cannot give any positive result
we are compelled to restrict ourselves to general descrip
of the situation. For derivation of the algebra one sho
consider

Qa
b d

dwb
Qb

a2Qb
b d

dwb
Qa

a , ~25!

whereQa
a is some quantum average. On the other hand

extract the classical algebra, which is first approximation
the quantum algebra, it is necessary to write down the
pression~25! as one quantum average. It can be done but
average of the classical commutator will be only one
many arising terms. So the quantum algebra will be a de
mation of the classical one. However in contrast with t
usual deformed symmetries, where the algebra is close
its enveloping algebra, there are additional ‘‘trivial’’ symm
tries which can contribute to Eq.~25!. Of course, on mass
shell they must disappear. The situation is similar for
quantum BRST transformation. There is no reason for i
be nilpotent.

IV. BACKGROUND GAUGES

Now we introduce in the formalism background fields.
can be done in two ways. First, one can split the quan
fields c into the classical partF and quantum fluctuations
Second, one can take the gauge fixing function dependen
them. We shall not go by the first way for the followin
reason. It implies that quantum fluctuations are small
some sense and one can demand their vanishing as an in
ant condition under gauge transformations. As a result
gauge invariant effective action depending only on ba
ground fields can be obtained. In our case however a
subtraction of the classical part from an average field
result will not be transformed homogeneously under
quantum gauge transformations and the one field const
tion fails.

Thus we work with the full average fieldsc and depen-
dence on the background fieldsF comes only from the func-
tion C. The effective action is a functional of variables
two types, one of them playing a role of external paramet
Since the above-stated considerations do not depend on
ence of such parameters the effective action is still invar
under Eq.~14! or Eq. ~21!.

It is proved that the presence of background fields gi
rise to a new local symmetry including their transformatio
Namely, any variation of the background fields can be co
pensated by an appropriate transformation of the ave
fields. Indeed, a variationdF leads to

dW~J,F!5
i

\
^$dC~c,F!,V%1&. ~26!
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On the other hand the BRST transformation of integra
variables in^dC& gives

^$dC,V%&5
i

\
^JiV

idC&. ~27!

Comparing these two equalities, it is easy to see that
effective action is invariant under the following transform
tions:

dF i5« i , dc i5
i

\ K $c i ,V%
dC

dF j L e j5L j
(F) i« j . ~28!

Now one can return to the physical sector of the theo
For this nullifies all ghosts andp in the symmetry equation
for Ge f f . Then one obtains

dG~w,F!

dF a
1

dG~w,F!

dwb
Qa

(F)b50, ~29!

where Qa
(F)b5La

(F)buh5h̄50
p50

and throughout backgroun

fields are introduced for the physical fields only. This ide
tity means that the gauge invariant effective action posse
the additional local symmetry

dF i5« i , dwa5Qb
(F)a«b. ~30!

As a result we have the set of local symmetries ofG: the
quantum gauge transformations~21!, the ‘‘trivial’’ symme-
tries ~24! and the transformations induced by backgrou
fields ~30!. Since any their linear combination is also a sym
metry transformation, one can try to find such combinat
which has some standard form, for example, classical on
is clear that it cannot be achieved without use of backgro
fields. So it is natural to consider the gauge transformati
of the following kind:

dF a5Ga
a~F!«a,

dwa5„Qb
(F)aGa

b~F!1Qb
aXa

b~w,F!1Q̂b
aYa

b~w,F!…«a

5Qa
(tot)a«a. ~31!

As we shall see it is possible for the case of the Yang-M
theory to find the coefficientsXa

b ,Ya
b ~and the functionC),

which reduce Eq.~31! to the classical gauge transformatio
what reproduces known DeWitt’s result in our formalism
For more general rank one theories the natural generaliza
also is possible.

V. RANK ONE THEORY

Let us consider the rank one theory in which the struct
functions U (n) vanish for n>2 and the expansion of th
BRST invariant Hamiltonian contains only two terms~4!.
Choose the gauge fixing function in the form~7! with

xa5
a

2
„g~F!21

…

abpb1] tn
a1ja~w,F!. ~32!
6-4
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Then Eq.~8! reads

Se f f5S~q,p,n!2
a

2
~g21!abpapb2paja1 ċab̄a1 ibab̄a2ba

djb

dna
c̄b2caVa

bb̄b1cangCag
b b̄b1 ica$Ga ,jb%c̄b

1
i

2
cacb$Cab

g ,jl%b̄gc̄l . ~33!

Integration overb,b̄ andp in Eq. ~5! gives

Z~ j ,Jp ,Jh,Jh!5E DwDpDcDc̄ expH i

\ S S~w!1
1

2a
gab~ja2J(p)

a !~jb2J(p)
b !

1 j awa1 i c̄bFa
bca1„Ja

(c)1 iJb
(b)~da

b] t1ngCag
b 2Va

b!…ca2 c̄bS J( c̄)
b

2 i
djb

dna
J(b̄)

a D
1 iJa

(b)J(b̄)
a

1
1

2
Jg

(b)c̄l$Cab
g ,jl%cacb1

1

2

djd

dng
c̄dc̄l$Cab

g ,jl%cacbD J , ~34!

where

Fa
b5$jb,Ga%1

djb

dng
~da

g] t1nlCal
g 2Va

g !5
djb

dwa
Ga

a ~35!

and we omit factors dependent only on background fields since they are canceled by normalization.
Impose the conditions on the gauge:$Cab

g ,jl%(djd/dng)50 anddja/dnb does not depend onw. Due to this the term of
fourth order in ghosts in Eq.~34! disappears and we can find expressions for the quantum gauge transformations w
ghosts. Note that from Eq.~34! it follows that

ca52 i K ~F21!b
aS J( c̄)

b
2 i

djb

dng
J(b̄)

g
1

1

2
$Cgd

l ,jb%cgcdJl
(b)D L

lg

52 i FJ( c̄)
b

2 i
djb

dng
J(b̄)

g G
lg

^~F21!b
a&0 . ~36!

Here we introduced the notation^•&0[^•&uh5h̄50. With this equality one obtains

L (0)
(zA)5 K ca$zA,Ga%1

1

2
cacb$zA,Cab

g %b̄gL
lg

52 i FJ( c̄)
b

2 i
djb

dng
J(b̄)

g G
lg

^~F21!b
a$zA,Ga%&02

1

2 Fe2( i /\)W$zA,Cab
g %uw→\d/ id j

\d

idJ(b̄)
g ~F21!t

aS J( c̄)
t

2 i
djt

dnl
J(b̄)

l D
3~F21!s

bS J( c̄)
s

2 i
djs

dnd
J(b̄)

d D e( i /\)WG
lg

5S ^~F21!b
g$zA,Gg%&02 i\^~F21!b

g$zA,Cgl
t %~F21!s

l&0

djs

dnt D ~^F21&0
21!a

bca, ~37!

L (0)
(na)52 iba5^~db

a] t1ngCbg
a 2Vb

a!cb& lg1FJ(b̄)
a

2
i

2
^ c̄l$Cbg

a ,jl%cbcg&G
lg

5

@J
(b̄)

a
] lg50

„^~F21!b
g~dg

a] t1nlCgl
a 2Vg

a!&02 i\^~F21!b
g$Cgl

a ,js%~F21!s
l&0…~^F

21&0
21!t

bct. ~38!

Since the condition@J(b̄)
a

# lg50 was not used in Eq.~37! we haveL (2)a
(zA) 50. So in this case there is not a mixing between

Lagrange multipliers and the phase space variables, and the weak invariance of the effective action is guarantee
standard equationdG/dna50. This is a direct consequence of the above imposed conditions on the gauge fixing func

The transformations~37!,~38! can be incorporated into one expression:
125016-5
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Qa
a5S ^~F21!b

gGg
a&02 i\^~F21!b

g$wa,Cgl
t %~F21!s

l&0

djs

dnt
1 i\K ~F21!b

gH js,
dGg

a

dnl J ~F21!s
l L

0
D ~^F21&0

21!a
b

5S ^~F21!b
gGg

a&02 i\K ~F21!b
g d

dnl
~$wa,Fg

s%2$js,Gg
a%!~F21!s

l L
0
D ~^F21&0

21!a
b . ~39!

To obtain the ‘‘trivial’’ gauge transformations let us take

Ta
b~w,p!52

a

2
„Cag

b ~F!~g21!gl2~g21!bgCag
l ~F!…pl , Mb

l5^~F21!b
l&0 . ~40!

It is easy to see that due to Eq.~36! the contraction of the right-hand side of Eq.~23! with M vanishes. Thus the ‘‘trivial’’
gauge transformations are given by

Q̃a
a5

1

2 S ^~F21!b
gGg

a~jr2J(p)
r !&02 i\K ~F21!b

g d

dnl
~$wa,Fg

s%2$js,Gg
a%!~F21!s

l~jr2J(p)
r !L

0
D

3„Car
b ~F!2~g21!btCat

d ~F!gdr…

5
1

2 S ^~F21!b
gGg

ajr&02 i\K ~F21!b
g d

dnl
~$wa,Fg

s%2$js,Gg
a%!~F21!s

ljrL
0
D „Car

b 2~g21!btCat
d gdr…

2
1

2
Qg

a^~F21!b
g&0„Car

b 2~g21!btCat
d gdr…^j

r&0 . ~41!

In the last equality the conditionpa5(1/a)gab(J(p)
b 2^jb&)50 was used.

The transformations induced by background fields are found from Eq.~28! to be

Qb
(F)a5

1

\ K $wa,V%c̄bS a

2
~g21!bt

dgts

dF b
~g21!slpl2

djb

dF bD L
0

52K ~F21!b
gGg

aS 1

2
~g21!bt

dgtl

dF b
~jl2J(p)

l !1
djb

dF bD L
0

1 i\K ~F21!b
g d

dnl
~$wa,Fg

s%2$js,Gg
a%!

3~F21!s
lS 1

2
~g21!bt

dgtr

dF b
~jr2J(p)

r !1
djb

dF bD L
0

. ~42!

Suppose the following covariance conditions are satisfied:

dgab

dF a
Gg

a~F!52gblCga
l ~F!2galCgb

l ~F!, ~43!

dja

dwa
Gb

a~w!1
dja

dF a
Gb

a~F!5Cbg
a ~F!jg. ~44!

The latter is a generalization of the well known condition for the gauge fixing function for the Yang-Mills theory. It doe
look very natural, but it just gives the more or less natural expression for the symmetry transformation of the effective
From Eqs.~42!, ~39!, and~41! we have
125016-6
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Qb
(F)aGa

b~F!5K S ~F21!b
gGg

a2 i\~F21!b
g d

dnl
~$wa,Fg

s%2$js,Gg
a%!~F21!s

l D S djb

dwb
Ga

b2
1

2
„Car

b ~F!

2~g21!btCat
d ~F!gdr…j

r1
1

2
~g21!bt

dgtr

dF b
^jr&0D L

0

5^Ga
a&02 i\K d

dnl
~$wa,Fa

b%2$jb,Ga
a%!~F21!b

l L
0

2Q̃a
a2Qb

a^~F21!g
b&0Cal

g ^jl&0 . ~45!
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Thus if we shall choose in Eq. ~31! Xa
b

5^(F21)g
b&0Cal

g ^jl&0 and Ya
b5da

b then the total quantum
gauge transformation reads

Qa
(tot)a5^Ga

a&02 i\K d

dnl
~$wa,Fa

b%2$jb,Ga
a%!~F21!b

l L
0

.

~46!

In the case of the Yang-Mills theory the second term
absent, and sinceGa

a is linear in the fields the quantum tran
formation is reduced to the classical one:Qa

(tot)a5Ga
a , i.e.,

G(w,F) is the classically gauge invariant effective action.
more general case the natural generalization isQa

(tot)a

5^Ga
a&0, that corresponds to the case of a global symme

~14!. This result can be achieved by vanishing of the sec
term. One needs two additional conditions on the gauge
ing function:dja/dnb50 and$ja,Cbg

l %50. They are very
strong if the structure constants depend on all coordin
and momenta. As an example of such theory the Ashte
gravity can be pointed out@19#. On the other hand in the
Arnowitt-Deser-Misner~ADM ! gravity @20# the conditions
forbid gauges on momenta only.

It may seem that the second term in Eq.~46! vanishes due
to a renormalization procedure. If all operators are local
contraction ofl andb would result in appearance ofd(0),
which in the dimensional regularization should be put ze
However the presence of the ghost propagator (F21)b

l can
give rise to nonlocality and the reasoning fails.

Finally we consider the problem ofd gauges, i.e., gauge
leading tod functions. They are obtained from Eq.~32! in
the limit a→0. It is easy to see that in this limit the effectiv
action is also invariant under the transformations~46! under
the same conditions on the gauge fixing functionja. How-
ever the question can arise: does the propagatord2W/dJdJ
remain nondegenerate? Note that the argument ofd function
is always nonhomogeneous due to appearance ofJ(p) . Its
presence is meaningful since it just guarantees nonde
eracy. So the limit tod gauge is well defined.

It opens new possibilities for simplification of the qua
tum gauge transformations. Usingd gauges one can mak
the ghost propagatorFa

b independent on fields. Then pro
vided the second term in Eq.~39! vanishes we come toQa

a

5^Ga
a&0, that gives the classical symmetry for the Yan

Mills theory without use of background fields. In this ca
12501
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the result can be achieved with help of such noncovar
gauges asj5A3 or j5A0 ~hereAm is the gauge potential!.

VI. CONCLUSIONS AND DISCUSSION

In this article we have considered symmetry properties
the effective action for general gauge theories. By taking a
basis the Hamiltonian BRST formalism and the path integ
quantization we have found the quantum gauge transfor
tions in terms of quantum averages. Moreover there are
ditional symmetry transformations of the effective action: t
‘‘trivial’’ symmetries, which vanish on mass shell, and th
gauge transformations induced by background fields.~We do
not identify background fields with average fields so that
effective action is a functional of these two variables.! Fi-
nally we have shown that combining all these symmetr
one can obtain more simple form of the transformations.
example, for the rank one theory under some conditions
the gauge fixing function the gauge transformations are r
resented as an average of the classical ones. For Yang-M
theory, in which the gauge transformations are linear in
fields, it gives the classical result for the quantum symme
also.

Unfortunately this generalization for the rank one theo
is very weak because of the covariance conditions~44!. Their
solution is a problem and maybe the result is not worth
efforts. As we have seen this is only the attempt to find so
simple form of the symmetry, so there is no need to int
duce new difficulties. On the other hand, this formalis
translates the problem of search for the~classically! invariant
effective action to the problem of solving of equations.

We did not concern ourselves with the renormalizati
problem. It becomes complicated due to that composite
erators enter into expressions for the quantum gauge tr
formations. However, this is the standard difficulty for inve
tigations which deal with the Ward identities. So we suppo
that in real calculations all expressions should be renorm
ized taking into account a mixing of operators.

Of course, such calculations should be carried out w
help of expansion in\. Each order together with previou
ones gives restrictions to the corresponding order of exp
sion of the effective action. It is worth noticing that the fir
nontrivial correction to the classical transformations is fu
defined by the classical action since it is proportion
;\(d2W/dJdJ);\(d2G/dcdc)21;\(d2S/dcdc)21.

The consideration of this article can be translated to
6-7
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Lagrangian BV formalism. The proof of its equivalence
the Hamiltonian BFV formalism can be found for instance
@21#. Within this framework all symmetry properties of th
effective action are contained in the Zinn-Justin equat
@22# (G,G)50, where (,) is the antibracket andG is a func-
tional of fields and antifields@11,14,15#. Since it has the
same form as the classical master equation (S,S)50 one can
define a BRST structure associated withG @23#. However
there are small difficulties similar to difficulties in the Ham
tonian approach. Whereas for the proper solutionS ghost
number considerations allow to conclude thatS0 is the local
invariant classical action, we cannot maintain this forG0.
~Here the subscript 0 means vanishing all ghosts and a
fields.! This is because in the quantum case to fix the ga
we must introduce auxilary fields. The antifieldC̄a* for one
of them has ghost number zero@14#. So G0 will be local
invariant only on the surface (]G/]C̄a* )050. It should be
.

ay
.

J

12501
n

ti-
e

viewed as an equation on the auxilary fieldp̄a which plays a
role of momentum conjugated to Lagrange multiplier a
has ghost number zero. This corresponds to necessity o
moval all auxiliary fields and gives the concrete way for th
Our choice of the Hamiltonian formalism is connected
wish to avoid the problem of solution of the quantum mas
equation@11,14,15#. However notice that in the BV approac
the quantum algebra may be simpler than in our case@8,13#.

Another progress can be connected with an application
quantum groups. It is just the structure that should man
the quantum symmetry that is a deformation of the class
one.
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