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Effective action and quantum gauge transformations
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The local symmetry transformations of the quantum effective action for general gauge theory are found.
Additional symmetries arise under consideration of background gauges. Together with “trivial” gauge trans-
formations, vanishing on mass shell, they can be used for the construction of simple gauge generators. For
example, for the Yang-Mills theory the classically invariant effective action is obtained, reproducing DeWitt's
result. For rank one theories a natural generalization is proppS6856-282199)05810-3

PACS numbss): 11.15~q, 11.30.Ly

[. INTRODUCTION gral quantizatiorf9]. This symmetry plays a leading role in
quantization of general gauge theories being the basis for
The concept of symmetry was and remains a very powerHamiItonian Batalin-Fradkin-ViIkovisk;(BFV) [10] and La-
ful tool for the construction of the quantum field theory. Onedrangian BV[11] quantization schemes. Within these ap-
of its main virtues is that the symmetry restricts a form of thepro.aches _global symmetry transformations of the .effecnve
action, which lies in the ground of the theory. Consequenceggts'ﬁ;’b\gr;g:l:]nzrlezcalngquéjrzn\}vuemag?ir?t-le—rteritneséc?;n:ﬁgmgégfn
of the c_Ir?lssmaI symmetry play a cru_C|aI ro!e for .the.renor'counterparts which are realized on the physical fields only.
malizability of quantum theory. And in the investigation of

; . . ; Explicit formulas for them, to our knowledge, are absent in
this problem the effective action takes a prominent p[dde P g

ddition. it is th | biect in which th the literature and our aim is to fill in this gap. In addition, we
In addition, it Is the only quantum object in which the sym- qi5¢ 55 the symmetry transformations in presence of back-

metry should be reflected by the same way as in the classicglound fields and apply the obtained results to the rank one
action also restricting the number of available structures. Sgneqry.

it is natural to find this quantum realization of the Symmetry, Our consideration is based on the Hamiltonian form of
i.e., the symmetry transformations of the effective action, inBRST quantization. An alternative strategy is to follow the
an explicit form. BV formalism. Some remarks on this point are given in Sec.
One of the first steps in this direction was taken by De-vI.
Witt in his construction of the classically gauge invariant The paper is organized as follows. In Sec. Il the BFV
effective action for the Yang-Mills theor§2]. This work  quantization is reviewed and for completeness and to fix the
gave rise to a number of papers devoted to this profEm notations the quantum BRST transformations are obtained.
But all of them do not go beyond linear gauge transformadn the subsequent section the gauge transformations of the
tions and background gauges of a certain kind. This is a vergffective action in terms of quantum averages are found and
strong limitation on the physical theory. As we know the the “trivial” transformations and the symmetry algebra are
Hamiltonian forms of gravity, supersymmetry theories, anddiscussed. In Sec. IV it is shown that introduction of back-
many others require nonlinear transformations. So an inveground fields results in appearance of additional symmetries
tigation of general gauge theories from the point of view ofWhich can be combined with |n|t|e_1l ones. This is used in Seq.
the quantum gauge symmetry is needed. V to construct the symmetry, which is reduced to the cIasg-
The following breakthrough is connected with the concepttcal gauge transformat|ons’ in the case of the Yang-Mills
of the effective average action or Vilkovisky-DeWitt action _heory repro_ducmg Dewitt's r_esult and gives a ge_nerahza-
[4—6]. Its gauge invariance and gauge independence are veF n for nonlinear transformatlons. I_n the last section some
attractive properties. However its actual construction in arbi roblems and perspectives are outlined. - .
trary gauge and for arbitrary gauge theory is an enormousl Our co_ndensed notations correspond to DeWitl’'s ones in-
hard task because the connection on the frame bundle on t ré)dgced in[16]. This may lead to confusmn when thgy are
space of histories is needed. Besides the effective averag plied, for example, in an expression for the classical ac-
action is connected to the ordinary generating functional fo fon. In such_cases_all tensors must be un(_jerstood_as local
the one-particle-irreducible Green functions in a nontriviaIWhaF re;u!ts In Iocal_lty of the whole expression. In this con-
way. So we simply bypass the subject and consider the efiection it is convenient to extend.the def|.n|t|0n of the Pois-
fective action constructed in the usual way as LegendréOn brackets on variables dependmg on qm‘erent moments of
transformation. time. We demandq®,p,}= &7, i.e., an unsimultaneous com-

The common approach to the symmetry properties of th&nutator \_/anishes. T_his _provid_es locality and keeps unity o_f
effective action for general gauge theories is investigation of'€ notations. All derivatives with respect to Grassmann vari-
the Ward identities(see for exampld7,8]). They are the ables are left and f_or S|_mpI|C|ty we restrict ourselves to the
reflection of the global Becchi-Rouet-Stora-TyutiBRST) ~ ¢a@se of even classical fields only.
symmetry which replaces the gauge symmetry in path inte- Il PRELIMINARIES
Let us survey the Hamiltonian BFV quantization follow-
*Email address: alexand@snoopy.phys.spbu.ru ing the review[17].
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Consider a gauge theory with phase space variattes Here ¥ is an odd and imaginary function which has ghost
=(q°% ps), HamiltonianHy(q,p), and first class constraints number minus one and plays a role of gauge fixing function,
G,. Letn® be the Lagrange multipliers associated with the = (¢, 7, = (c,b), =(c,b)). ¢? are just the physical
constraintsG,,, and 7, be the canonically conjugate mo- fields of the theory. From properties bf and Q) the invari-

menta. The action is given by ance under the global BRST transformations follows:
- {Sets,Q}=—[dt(d/dt)2=0.
S(4,p,n)=0°ps—Ho—n“G,, (N We choose
whereas the gauge transformations afe®=G32(¢)e?, \I,:Hana+ic_tlxa' @

where o?=(g° ps,n%) and
N 5 Substituting Eqs(3) and(7) in Eq. (6) one obtaing15]:
GI)={AG,), G{7=8a+nCl —VE (2 . L
Set1=9°ps+n*m,+c*b,+b*,—H

with CC{B,VB defined through the relationgG,,Gg}
=CJ,G, and{H,G,}=VAG,. The extended phase space — > (n+1)n@n+1can. .. coaayMPr Aoy by
is defined _by introducing extra ghost and antighost fields n=0 #1771 !
(b?, c ,c%, a) obeying the following nonvanishing anti- Sy
brackets: — o x*+ib%, bai{ﬂ

. . on“

{b%,cg}y=—6p,{c% bgh =—35. I
i ant1. .. cerfyMPrBn oy .. b C.

c“,c, are real, whereds®,b,, are imaginary. It is convenient Jrlné:o et MU g, aa X108y DO
to define an additional structure on the extended phase space, ®)

that of “ghost number.” This is done by attributing the fol-
lowing ghost number to the canonical variable$;b* have  This action gives rise to the BRST extended effective action

ghost number one,, ,b,, have ghost number minus one. Al
other variables have ghost number zero. Tor( ) =W(J) =, ( ) = yi(J). 9)
On this space one can construct a BRST genefatand €

a BRST invariant Hamiltoniatd. They are determined by o . .
the following conditionsia) € is real and odd(b)  has Let us obtain its symmetry transformatiori$he following
ghost number one, (c) Q=—ib%%r +coG results can be found for instance[itb].) The condition that

+“higher ghost termg’ and (d) {Q,Q},=0; (@ H is some transformation is a symmetry of the effective action
+

real and evenib) H has ghost number zer@;) H coincides can be written as
with Hg up to higher ghost terms, ar{d) {H,Q}=0. ST )
The BRST generator is fully defined by structure func- L(w i— _ 380/ =
) : — S Jiéy'=0. (10
tions of the constraint algebra: oY

o N ary (VBB — Thus the Ward identities homogeneous on the sources are
Q=-ib 7Ta+nzo conit..cU, T, TTbg D, needed. They are immediately obtained from the path inte-
- (3) gral (5). Because of the BRST invariance of the actiy;
the change of variables)’'—¢''+Q'e, where Q'(y)
For n=0 andn=1 they areU?=G, U{"=-1c?,. ={¢'Q}, in the first order ine leads to the equality
Higher order structure functions are defined through repeated

Poisson brackets of the constraints. The Hamiltortin IV (W) y-nan52(3) =02 JA'=0, (11)
the first orders in ghosts has the form where
H=Ho+c*Vibg+ - . & Al(y) =MW ()], 51506V (12)
The quantization is based on the generating functional forhe functionalA'(¢) is just the quantum BRST transforma-
the Green functions which is represented in the form tion of the effective action. This result means that the quan-
tum transformation is a vacuum average of T product of the
Z[J]ze(i/ﬁ)W(J)zf Dd/,e(i/h)[seff(¢')+ai¢fi]’ 5) classical one in the external field, i.e.,
VY =(T{6Y' 4= h)aw) - (13
where
(This result holds also in the BV formalisfi4,18.) In this
Sett=Q°Ps+ N¥7r,,+C%D,+b%C,— Hers, connection it is convenient to introduce the following nota-
tion: (f(w)):<T{f(f//)})J(¢) . Then one can write the simple
Heri=H—{W¥,Q}. . (6) equality
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Al(y)=(Q' (). (14 A S
AEi)ZF _a<{ZA,Q}>| n=71=01
It is useful to emphasize that quantum corrections to the oc 7=0
classical transformation arise from second and higher deriva-
tives of W(J). A 6
o= 5 (F 2Dl y=7m0. (20

lll. THE QUANTUM GAUGE TRANSFORMATIONS

In the previous section we have obtained the global quan! "US: Provided J ;14 =0=b%=b"(c), I'(¢) is the effec-

tum symmetry of the effective action. To find correspondingtive action invariant under the following quantum gauge
local transformations it is necessary to return to the physicafansformations:
fields at quantum level.
- . . (@) pa= s(1) Ha 2) ,a_a
It is easy to se¢see for examplEL5]) that with the choice SV =0, 9"+ 5@(5)99 Qule)e®. (21

(7) the following conditions reduce E8) to Eq. (1) The closed expression fd@2% can be obtained from Egs.

n=7=0, m=0 (15) (19), (20), and(3) and the expressions for ghost propagators.
' | The analogy of the above mentioned weak invariance
The gauge transformation€) are restored with help of [i.e., the invariance under the transformatidd9)] comes
5(pa=(5_/5ca){(pa,ﬂ}8a, the conditions (15 and again from Eq.(18). For existing of this symmetry\%’
8Sq¢¢/ b, =0. (The latter condition must be used before dif- should vanish. This can be done by demanding
ferentiation overc®. Without it there is only the weak invari-
ance under independent transformations generateds by sr o' a
+i—AB) =
and Ty ) Sne 6ZA (2)a
Having in mind this classical situation one can impose the

conditions (15) on the average fields to extract the gaugeTne |eft-hand side of Eq22) is an analogy of the classical

0. (22)

invariant effective action. Define constraintsG,, and Eq.(22) should be interpreted as a weak
=T B Al 16 equality. Note that in general case the contributioq ehdp
=Ter 7=7=0" ©~=[Ag. (16) to this expression does not vanish. So in some sense there is

a mixing between the phase space varialgp, and the
where the subscript “Ig” means a linear on ghost part. FromLagrange multipliers1* due to quantum effects.

Egs.(3) and(14) one obtains the explicit expressions: Apart from the quantum gauge transformatid@$) one
can obtain other symmetry transformations of the effective

A= (7.0} 0=0, AGY=({c, 0} Yg=im,, ~ 2ction- Letia=J are sources for the physical fields. Act
by the operatorT, = =Ty ..,(‘Pa'”')|(<p,'n-)a(h§/i6j,ﬁ5/i5J(7T))
A(wa):<{w O1),,=0 A(n“):<{na Q}),= —ib® on the identity(11), take the “Ig” part and impose the con-
(0) ar Ig ' 0 ' Ig : . @
(17) ditions w=0 and[J(g)]|g=0. Then we come to the follow-
ing equation:
The first equality is obtained due to conservation of the ghost

number. Then the “Ig” part of Eq(11) with the condition 6 <5 (o ) 5‘?5’ L ed
7=0 yields la@(TaI AG) ):'h@ 5o? A
ol'(¢) a b, e
Al =137 AL 18 03 lig. _
Sp? © =L (b)]lg (0) (18) —i ;—ng; (). (23
Evidently, [JE%)]@,: — 8T o511 56P8b,l ,=7-0¢"  The demand that the contraction of the right-hand side of Eq.

— 67T g1/ 80P 8b,| = 7-ob?. So the condition[J(“g)],g=0 (23) with some matrixM’; vanishes gives rise to new sym-
can be viewed as a connection of the parameters of locdnetry transformations:
gauge transformations the role of which is played by ghosts

c* andb®. From Eq.(18) these transformations are found to o . a. . = N
be S¢" =M (T2 A[)e=Qi(e)e™. (24
A
sA=Af)e,  sPn=0, Note that we cannot reject the last term in E23) be-
causerr is differentiated and the result is not proportional to
5@2)ZA=A§§/;)Qb“, 55)2)n“: —ibe, it. (Vanishing of w makes sources dependent and cannot be

(199  done before differentiationHaving in mind this remark one
can clarify the sense of these additional transformations. If
where the conditionT=0 is not hardly used for making the right-
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hand side of Eq(23) zero differentiation with respect tp,  On the other hand the BRST transformation of integrated

gives Q2= —j,(5Q%/8j,). Thus new transformations are Variables in(s¥) gives
“trivial” ones vanishing on mass shell. Nevertheless, as we i
shall see, they play a certain role. {8T,0})= g(JiQiN>' 27)

Finally, let us discuss the algebra of the quantum gauge

transformations. Here we cannot give any positive result an?% ina th i lt it i that th
we are compelled to restrict ourselves to general descriptio omparing these two equaities, 1t 1s easy 1o see that ihe
ffective action is invariant under the following transforma-

of the situation. For derivation of the algebra one shoulaﬁ ns:
consider ons:

N SFi=¢l, 5¢i=;—<{¢i,9}£> d=ADigl (28)
Qaé—(PbQ,g—Qﬁé—(Pan, (25) SF!

Now one can return to the physical sector of the theory.
where Q% is some quantum average. On the other hand tdor this nullifies all ghosts and in the symmetry equation
extract the classical algebra, which is first approximation forfor I'y¢;. Then one obtains
the quantum algebra, it is necessary to write down the ex-

pression(25) as one quantum average. It can be done but the Sl (@, F) OI(
average of the classical commutator will be only one of
many arising terms. So the quantum algebra will be a defor-
mation of the classical one. However in contrast with th (Ab_ A (Ab] _

usual deformed symmetries, where the algebra is clo.'sedei\pl’here Q™ =Ad |ZZ()’=O and throughout background

its enveloping algebra, there are additional “trivial” symme- fields are introduced for the physical fields only. This iden-
tries which can contribute to E@25). Of course, on mass tity means that the gauge invariant effective action possesses
shell they must disappear. The situation is similar for thethe additional local symmetry

guantum BRST transformation. There is no reason for it to o )
be nilpotent. SFi=¢l, 8p2=Q(%P . (30)

As a result we have the set of local symmetried’othe
quantum gauge transformatiof®l), the “trivial” symme-

Now we introduce in the formalism background fields. It tries (24) and the transformations induced by background
can be done in two ways. First, one can split the quantunﬁiems (30). Since any their linear combination is also a sym-
fields ¢ into the classical parF and quantum fluctuations. Metry transformation, one can try to find such combination
Second, one can take the gauge f|X|ng function dependent dthlCh has some standard form, for example, classical one. It
them. We shall not go by the first way for the following IS clear that it cannot be achieved without use of background
reason. It implies that quantum fluctuations are small infields. So it is natural to consider the gauge transformations
some sense and one can demand their vanishing as an inva@f-the following kind:
ant condition under gauge transformations. As a result the a_ ~a N
gauge invariant effective action depending only on back- SF=Ga(He,
ground fields can be obtained. In our case however after .
subtraction of the classical part from an average field the 9¢*=(QF2G2(F) +Q3X5(0,7) +QEYE (¢, F))e”
result will not be transformed homogeneousl_y under the _ Qttovaga (31)
guantum gauge transformations and the one field construc- a :
tion fails.

Thus we work with the full average fields and depen-

QD!f) (FAb_
SFa 5P Qz’"=0, (29)

IV. BACKGROUND GAUGES

As we shall see it is possible for the case of the Yang-Mills

; theory to find the coefficientX?,Y# (and the function¥),

Sce)gcqej O$gzee?faezla%r:l;';(tji;'nelfgo;ﬂﬁitg:glfgn\]/;?izglljgsc'of which reduce Eq(31) to the classical gauge transformation,
: what reproduces known DeWitt's result in our formalism.

two types, one of them pIaymg a rqle of external parametersFor more general rank one theories the natural generalization
Since the above-stated considerations do not depend on PreSso is possible

ence of such parameters the effective action is still invariant
under Eq.(14) or Eq. (21).

It is proved that the presence of background fields gives
I‘ise to a new |Oca| Symmetry inCIUding their transformations. Let us Consider the rank one theory in Wh|Ch the structure
Namely, any variation of the background fields can be comfynctions U™ vanish forn=2 and the expansion of the
pensated by an appropriate transformation of the averaggrsT invariant Hamiltonian contains only two termé).
fields. Indeed, a variatiod leads to Choose the gauge fixing function in the foli® with

V. RANK ONE THEORY

WP = (VW PL0L). (@29 X =5 (A Y Pmgton + (o7 (32)
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Then Eq.(8) reads

@ -1\aB ay R~ T aégﬁ_ a\/Bh a BhH Licw Bl
Seff=S(q,p,n)—§(y )P, mp— T+ D, +ib%,— b %cﬁ—c Vibgtc nVCaybﬂ-HC 1G,.&P}cg

+2c “ch{Cl,, & 1b,cy - (33
Integration ovetb,b and 7 in Eq. (5) gives

i 1
. a__ _ ﬁ
Z(J,J,,,JW,J,,)——fDgoDchDcexp'—ﬁ S(@)+ 5 Vap(£7= I (8= I0)

_ — S5&P
+j3paticgFher+ P +iIQ(8Eg,+n"CE —VE))cr— cﬁ( I —i iJ")

(c) Sn¢ (b)
(b) 1 b~ 1Y A B 1 556 Y A B
+iJ;, J(b) 2\17 c\{Clg.€Mhc e +§5—05C)\{C 2 €hetc (39
where
5¢P S5¢B
F£={§ﬂ,Ga}+i(6gat+n)‘Cl)\—V 0= : (35
on” Sp?

and we omit factors dependent only on background fields since they are canceled by normalization.
Impose the conditions on the gauqegﬁ,gk}((sgﬁ/&m):o and5£¢/ énP does not depend o@. Due to this the term of

fourth order in ghosts in Eq.34) disappears and we can find expressions for the quantum gauge transformations without
ghosts. Note that from Ed34) it follows that

5P
B _-_ i
—i[ g J(b)

1 '5§ﬂ Byc7cd3(b)
c“ (F )ﬁ (C) % Z{C Rl g }C C ‘J

<(F_1)Z>o- (36)
Ig

Here we introduced the notatidn)o=(-)|,--0. With this equality one obtains

A(Z)—< czAG }+1c ach{z” CY }b>
(0) @ ap

Ig

SEP

—.{Jﬂ —iiﬁ

1
<(F 1)5{2 Ga}>0 € (I/h)W{Z C [3}|(p~>ﬁ5/l5]

Ig

587,
- r (i1h)W
X(F™ (J(c) n 6‘](b))

(©) (b)

ho o0&
Lya| 97 _; A
oy ( 'an»%)

Ig

6 g
= ( (FHHZAG o= ih((FH KA CHLIF Do ;) ((F ™o Hhee, (37)

@ iha X [ o a I N a
AEB)):—m =<(5ﬁat+nycﬁy—vﬁ)cl3>|g+ ‘](E)_§<C)‘{Cﬁy1§)\}cﬁcy>

Ig

= ((F Y8 a+mCH =V~ ifi((F HHCHEHF HRI(F Hohee. (38)
[35)ig =0
Since the conditiorﬂ\]z)‘g)],g=0 was not used in Eq37) we haveAg)L—O. So in this case there is not a mixing between the

Lagrange multipliers and the phase space variables, and the weak invariance of the effective action is guaranteed by the
standard equatiodl’/6n“=0. This is a direct consequence of the above imposed conditions on the gauge fixing function.
The transformation$37),(38) can be incorporated into one expression:
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a -1\yr~a ; —1\ys,.a F-1 o¢” 1 5Gi; —1\A -1\-1\8

Qa=| (FT )G~ ((F~ ) e CHF )g>0_+'ﬁ (F7HE) €% ey (F95) JKF Do a

0
é
=(<<F-1>gG;‘>o—iﬁ<(F*)gﬁqw.F‘;}—{g%G“;})(F—1)2> )<<F‘1>51>§- (39
0
To obtain the “trivial” gauge transformations let us take

(¢, W)———(CB APy D™=y HPICL(FNmy, Mp=((F H})o. (40)

It is easy to see that due to E@6) the contraction of the right-hand side of E§3) with M vanishes. Thus the “trivial”
gauge transformations are given by

1
Q§:§(<(Fl),§6 —J(m))o~ |ﬁ<(F 1)3 C{e O —{E7.GD(F (f”—J(w))> )
0

X (CE(F) = (v HPCL(F)vsy)

(((F Y36 §p>o—lﬁ<(F 1)B—({¢ FR—{&GIH(F ! §> (C,—(y HPCovs)

0

1
= 5 QU(F N Do(CL,~ (v HFTCLy ). (42)

In the last equality the conditionr, = (1/a) yaﬁ(\](ﬂ) (€P))=0 was used.
The transformations induced by background fields are found fron{Z8y.to be

Q=7 1% 00c, 5 T T
b 7\ P B Y 5]__b7 KDY SFb .

_ a 1 _ 7.577')\ 5§B . — o T a
—<<F 1)gey(§<y R I R >O+m<<F 1)% ~({¢%F2—{&,G%)
Y 507 5P
X(F l)?,(Ew D)+ )>0 (42

Suppose the following covariance conditions are satisfied:

0Ya

M’* (F)=—YeCl(F) = yarCh4(F), (43)
O&* O&*
;ae;‘;ww ;ae,%m:cgmfr (44)
)

The latter is a generalization of the well known condition for the gauge fixing function for the Yang-Mills theory. It does not
look very natural, but it just gives the more or less natural expression for the symmetry transformation of the effective action.
From Egs.(42), (39), and(41) we have
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é S¢P 1
Qéf)aGﬂ(f)=< ((F1)zei—ih(F1>g§<{<pa,F$}—{§”,Gi})<F1)3) (%Gi—imépm

1 5v.
—(r VICL (P v+ Ewlwﬂ@%) >
0

o -
=(Go—ifi{ —({e®FA —{££,GIH(F 1)) —Q5—QX(F HE)CL(EMo- (45)
Snt o

Thus if we shall choose in Eq. (31) Xf the result can be achieved with help of such noncovariant
=((F 1%)oCL\(&")o and YE= 5% then the total quantum gauges ag=A; or §=A, (hereA, is the gauge potential
gauge transformation reads

VI. CONCLUSIONS AND DISCUSSION

QSOt)az(Gf})o—ih<i({<pa,F§}—{§ﬁ,GZ})(F1)g> _ In this _article_we have considered symmetry prope_rties of

ént 0 the effective action for general gauge theories. By taking as a
(46)  basis the Hamiltonian BRST formalism and the path integral

guantization we have found the quantum gauge transforma-

In the case of the Yang-Mills theory the second term istions in terms of quantum averages. Moreover there are ad-
absent, and sindg82 is linear in the fields the quantum trans- ditional symmetry transformations of the effective action: the
formation is reduced to the classical ol@{°93=G? , i.e., “trivial” symmetries, which vanish on mass shell, and the

T'(¢,7) is the classically gauge invariant effective action. In 9auge transformations induced by background fighd& do
more general case the natural generalizationQg°)? not identify background fields with average fields so that the

=(G?%),, that corresponds to the case of a global symmetrfffﬁcnve ﬁctlon 'ﬁ a futnhctltonal %f t_hese”tvtvf? variablesi- i
(14). This result can be achieved by vanishing of the secong 2y We nhave shown that combining af these Symmetries

term. One needs two additional conditions on the gauge fixONne can obtain more simple form of the transformations. For

) L epa) sf— @ (N1 example, for the rank one theory under some conditions on
N9y fun(_:t|on. 8¢%/6n"=0 and{¢®,Cg,}=0. They are VeY  the gauge fixing function the gauge transformations are rep-

gravity can be pointed oJtl9]. On the other hand in the
Arnowitt-Deser-Misner(ADM) gravity [20] the conditions
forbid gauges on momenta only.

It may seem that the second term in E46) vanishes due

fields, it gives the classical result for the quantum symmetry
also.

Unfortunately this generalization for the rank one theory
is very weak because of the covariance conditi@ds. Their
%olution is a problem and maybe the result is not worth the
efforts. As we have seen this is only the attempt to find some
1 simple form of the symmetry, so there is no need to intro-
However the presence of the ghost propagafori) can  yce new difficulties. On the other hand, this formalism
give rise to nonlocality and the reasoning fails. translates the problem of search for teassically invariant

Finally we consider the problem @f gauges, i.e., gauges gtfactive action to the problem of solving of equations.
leading to s functions. They are obtained from E2) in We did not concern ourselves with the renormalization
the limit «— 0. It is easy to see that in this limit the effective problem. It becomes complicated due to that composite op-
action is also invariant under the transformati¢46) under  grators enter into expressions for the quantum gauge trans-
the same conditions on the gauge fixing functih How-  fomations. However, this is the standard difficulty for inves-
ever the question can arise: does the propagédt/ 6363  tigations which deal with the Ward identities. So we suppose
remain nondegenerate? Note that the argumeatfahction  that in real calculations all expressions should be renormal-
is always nonhomogeneous due to appearanc&.gt Its  jzed taking into account a mixing of operators.
presence is meaningful since it just guarantees nondegen- of course, such calculations should be carried out with
eracy. So the limit ta5 gauge is well defined. help of expansion irfi. Each order together with previous

It opens new possibilities for simplification of the quan- gnes gives restrictions to the corresponding order of expan-
tum gauge transformations. Usinfjgauges one can make sjon of the effective action. It is worth noticing that the first
the ghost propagatdf” independent on fields. Then pro- nontrivial correction to the classical transformations is fully
vided the second term in E€39) vanishes we come tQ%  defined by the classical action since it is proportional
=(G2),, that gives the classical symmetry for the Yang- ~#(5°W/8383)~h(8°T 1 Sydy) " 1~h(82SI Sypdp) L.
Mills theory without use of background fields. In this case The consideration of this article can be translated to the

contraction ofA and 8 would result in appearance &{0),
which in the dimensional regularization should be put zero
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Lagrangian BV formalism. The proof of its equivalence to viewed as an equation on the auxilary fietg which plays a

the Hamiltonian BFV formalism can be found for instance in role of momentum Conjugated to Lagrange mu|t|p||er and
[21]. Within this framework all symmetry properties of the has ghost number zero. This corresponds to necessity of re-
effective action are contained in the Zinn-Justin equationnoval all auxiliary fields and gives the concrete way for this.
[22] (I",I) =0, where (,) is the antibracket aidis a func-  Qur choice of the Hamiltonian formalism is connected to
tional of fields and antifield$11,14,13. Since it has the wijsh to avoid the problem of solution of the quantum master
same form as the classical master equatli®)=0 one can  equatior[11,14,15. However notice that in the BV approach
define a BRST structure associated with[23]. However  the quantum algebra may be simpler than in our ¢&stg).
there are small difficulties similar to difficulties in the Hamil- Another progress can be connected with an app”cation of
tonian approach. Whereas for the proper solut®ghost  quantum groups. It is just the structure that should manage
number considerations allow to conclude tBgtis the local  the quantum symmetry that is a deformation of the classical
invariant classical action, we cannot maintain this gy  one.
(Here the subscript 0 means vanishing all ghosts and anti-
fields) This is because in the quantum case to fix the gauge
we must introduce auxilary fields. The antifigld™* for one

of them has ghost number zeft4]. SoI'y will be local The author is very grateful to D.V. Vassilevich and V.A.
invariant only on the surfaced['/9C**),=0. It should be Franke for helpful and valuable discussions.
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