PHYSICAL REVIEW D, VOLUME 59, 125011

Relativistic Wigner function approach to neutrino propagation in matter
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In this work we study the propagation of massive Dirac neutrinos in matter with flavor mixing, using
statistical techniques based on relativistic Wigner functions. First, we consider neutrinos in equilibrium within
the Hartree approximation, and obtain the corresponding dispersion relations and effective masses. After this,
we analyze the same system out of equilibrium. We verify that, under the appropriate physical conditions, the
well-known equations for the MSW effect are recovergaD556-282199)05712-4

PACS numbe(s): 14.60.Pq, 05.20.Dd, 26.65t

[. INTRODUCTION way. In order to obtain covariant equations, one has to obtain
the corresponding dispersion relations, which are the in-
Neutrino propagation in matter becomes an important isiedium analogous to the simple on-mass-shell condition
sue in some astrophysical scenarios, such as supernova¥,=m? of free particles. Such dispersion relations can be
neutron stars during the Kelvin-Helmholtz epoch, and theobtained starting from the Lagrangian and deriving the cor-
solar neutrino problerfil,2]. The first two cases correspond responding equations of motig@20—22.
to compact stars, where densities a few times the nuclear Dispersion relations of neutrinos interacting with different
saturation density are reached. To describe neutrino prop®ackgrounds have also been investigated2®,24. In this
gation in the dense core of such compact objects, aside @fpproach, dispersion re,Iatlons appear as the poles of the neu-
production and absorption ratesne is mostly interested in N0 Propagator(Green’s function, evaluated at the one-
the neutrino cross section with surrounding matter, which igoop approximation. . N .
in turn related to the imaginary part of the forward ampli- On the other hand, one has astrophysical situations in

tude, due to the optical theorem. In the case of solar neutri\fvhICh the contribution of neutrinos to macroscopic magni-

tudes, such as the energy, pressure, etc. becomes important
nos (and also for the “atmosphere” of compact starthe gy, P P

N . i . (this is the case in a supernova collap3¢ or in the early
possibility of neutrino oscillations and flavor conversion aP-niverse. In these cases, one has to introduddisdribution

pears. In the standard picture, these oscillations are asso;ncion for neutrinos to describe the number of neutrinos
ated with the real part of the forward scattering amplitude thaving a given momentum. It is then desirable to develop
massive neutrinos with the background. . evolution equations for these functions in the case where
The effects of the surrounding medium can also be imporneytrino oscillations are present, which implies that distribu-
tant for neutrinos in the early Univer$é]. This is especially  tion functions become nondiagonal matrices in flavor space.
true if one considers sterile neutrinos, in addition to standargeveral works have implemented this in different ways. In
ones, since the effects produced on big-bang nucleosynthes®ef. [25], use is made of the techniques describefR# to
can be used to put bounds on the oscillation parametersbtain the kinetic equations for nonrelativistic Wigner distri-
[5-10]. Another interesting scenario appears when the initiabution functions of neutrinos. Alternatively, in Ref27,28
lepton asymmetry is not small. In this case, neutrino oscillait is derived the time evolution of a neutrino density majsix
tions might lead to an amplification of such asymmétry].  constructed as macroscopic averages of generalized occupa-

In this paper we will be concerned about matter effects on;g, numbers, defined aﬁi'(ﬁ):@i'(ﬁ)), where IBi'(ﬁ)
neutrino masses and neutrino oscillations. Since the seminal ' J J

papers of Wolfensteifi12,13, and Mikheyev and Smirnov faf(p)ai(p), and af.(p)(ai.(p)) 'S.the creatlon(destru*c-
[14—16], there have been many papers which have exploreon) operator of neutrinos with flavg(i) and momentunp.
the physics of in-medium neutrinos, especially in connectiortiere, one starts directly from Heisenberg's equation
with the solar neutrino problertfor a review, see for ex-
ample[17-19,1,2). Different techniques have been used to igp=[p,H] 1)
approach this problem. The simplest one consists in describ-
ing the matter effect by aeffective potentialas in Wolfen-  with a HamiltonianH = Ho+H;,, WhereH, is the free
stein’s papers which will be added to the mass matrix t0 Hamiltonian ancH,, is the interaction piece. Equatiéh) is
give aneffective Hamiltoniann the SChrdinger'S equation. then expanded perturbative«gfter macroscopic averagihg
Although this approach will suffice for most purposes, it iswyith this at hand, the authors have studied the possibility of
clear that it does not describe matter effects in a Covariarﬂa\/or conversion in a supernova Co('gee the references
above for more details
Both procedures give rise to an expansion in powers of

Un this work we will concentrate on medium effects in neutrino the Fermi’s coupling constai@g . The first term in this ex-
propagation, and will not discuss production and absorption mechadPansion(proportional toGg) contains the modifications to
nisms. For these processes, the reader may want to c¢8%ult the mass matrix due to the interaction, while the secGﬁj,
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term, is the generalization of the Boltzmann collision integralHartree approximation, and we extend the results of Appen-
to the case of flavor mixing. However, because both methoddix A to the construction of the corresponding Wigner func-
are based on noncovariant techniques, one does not obtaion. Finally, we show in Appendix C how our formalism
relativistic dispersion relations for the neutrinos. could be extended to include the interactions of propagating
In this paper, we make use @#lativistic Wigner functions  neutrinos with a neutrino background.
[29,3Q to describe propagation of neutrinos with flavor mix-  In this work the metric ig#”=diag(1-1,—1,—1). We
ing in dense media. As we will show, using Wigner function take the chiral representation for Dirac matrices, and natural
techniques allows us to obtain dispersion relatiand evo-  units (A =c=1) are used.
lution equations for distribution functions in a consistent
}ﬁ?ﬁ:{ Schematically, we arrive to an equation which has the Il. EQUATIONS FOR WIGNER FUNCTIONS
In this section we derive the equations of motion for neu-
(p?—M?)f+iDf =0, (2)  trino Wigner functions. Neutrinos are assumed to propagate
on a matter background in equilibrium, an hypothesis which
wheref is the distribution function of neutrinodVl is the ~ ¢@n be adopted, at least as a first approximation, in the sce-
effective massa nondiagonal matrix, in the general case N&rios mentioned in the introduction. _
and D is the space-time evolution operator. In the simple N order to simplify the equations as much as possible, we
case of one generation, E€) implies (p>—M?)f=0 and consider only two neutrino flavorgnamely electron and

Df=0, which correspond to the simplified on-shell condi-MUoN neutrinos Our treatment can be generalized in a
tion and evolution equation, respectively. straightforward way to include more neutrino flavors. Also,

Relativistic Wigner functions have been successfully use®Ur main concern is neutrino oscillations and flavor conver-

to incorporate finite density and temperature effects 'O which are given by charged-current |nteractlor_15_W|th

nuclear matter[31—-33. They provide an alternative to electrons. Therefore, we c0n3|_derabackground consisting on
Green’s functions in a way which is well adopted to the €lectrons, although we take into accognt both neutral and
development of kinetic equations. In addition to this, tem-charged currents. As before, the formalism can be extended
perature effects are incorporated in a unique way, contrarilf® @ccount for a more general situation, such as neutral-
to the situation of Green’s functions. We also need to intro-CUTeNt inteéractions on protons and neutrons. _

duce correlation functions among neutrinos and the back- It is also p0_53|ble to incorporate the interaction of_ neutri-
ground. These correlations, as discussed later, will take int§S Propagating on a neutrino background. This self-
account for the residual interaction of neutrinos and electronftéraction can be important in some environments like the

beyond the mean-field approximation. We will obtain, in the®&'y universe or a collapsing supernotghen neutrino

next section, the equations of motion for these functions{/@PPing densities are reacheth these cases, the neutrino
ensity represents a sizable fraction of the total density

under the assumption that the interacting background is in afl | X o )
equilibrium state. (moreover, the self-interaction contribution to the effective

Next, we will consider some particular situations. In Sec.Potential is nondiagonal in flavbrin Appendix C we briefly

Ill, we examine the case when neutrinos are in equilibriumd'scuss how neutrino self-interactions might be incorporated

and correlations are neglected. The dispersion relations rd2 the Wigner function formalism. However, the solution to
produce, in this case, the expected effective masses and 1€ €volution equations becomes more complicated in this

matter mixing angles. This result supports our statement th&t2S€ Since propagating particles also form a part of the back-
neglecting correlations is equivalent to a mean-field treat9round and, correspondingly, the evolution equations be-
ment of surrounding matter. come non-linear. This effect has been investigated in a num-

In Sec. IV we examine some departure from the above®' Of paper$34—38,24. _ o .
simple situation, by keeping spatial and/or time variations in_ ! thiS paper, we treat neutrinos as massive Dirac particles
the kinetic equationgwith correlations still neglectédand ' the simplest model for massive neutrinos, i.e. we treat

we consider propagation on a density-varying medium. If7€m the same way as all other fermiofigptons and
Sec. V we examine with more detail a particular case, corduarks. Within this minimal extension of the standard elec-

responding to a small effective potential and macroscopi(t,roweak theory, the conserved charge of the neutrino field is

inhomogeneities which are large enough. This is the situatiof'® ot@l lepton numbe =L.+L . On the other hand, as
encountered when dealing with solar neutrinos. By makingV€ Will deal with low energy neutrinogwith energies of the
the appropriate approximations, we recover the well-knowrPrder of a few Mey, we will take an effective contact inter-
formulas for the MSW effect. This shows the ability of &Ction of neutrinos with the matter backg_rou’*nd. _ ,
Wigner function techniques to correctly reproduce both rela- N What follows, neutrino magnitudes without a prime will
tivistic dispersion equations and transport equations on thifldicate flavor states, and primes will be used free mass
same footing. We end in Sec. VI by summarizing our main€igenstatesin the next sections and in the Appendixes, a
results and making some remarks. Some auxiliary resuliiilde will be used forinteracting eigenstatelavors, as well
will be given in the appendixes. The construction of the

Wigner function in the case of free neutrinos is showed in

Appendix A. In Appendix B we analyze the neutrino disper- 2In the early universe, however, one has to consider the effect
sion relations and effective masses which appear within tharising from the finite mass of intermediate bosf23|.
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as mass eigenstates, will be labeled by latin superindicethe interaction piece. In E49) M is the free mass matrix
such asa andb. Spin subindexes will be generally omitted. flavor spacé From the above Lagrangian one readily ob-
When needed, we use indices suchigsk, ... tolabel tains the equations of motion for the neutrinos:
them. Lorentz indices will be labeled by Greek letters.

Since we deal with two neutrino species, it is convenient _ . . G -~ = .
to introduce vectors and matrices in flawor mass space. iy 9, v(X) =M p(X)— TQ”V(X)G(X)MME(X)
We therefore define the neutrino and antineutrino vector 2
fields? Ge

V2

ARD(X)e(X)N,&(x)=0, (11)

Ve

)), V()= (2 () VH(x)). 3)

VH(X)

;(x)s(

- . - GF-L o ~
These neutrino fields are related to the mass eigenstates ~ “x?(X)17*+v()M+ EV(X)QMe(X)wMe(X)

via
~ ~ G - R
v(x)=Ur'(x), 4 + —;V(X)A“e(x))\ﬂe(x)zo. (12

whereU is an unitary matrix\which can be defined as or- _ o
thogonal, in the case of two Dirac neutrino generations We now introduce the neutring/igner operator
We also introduce the following matrices in flavor space:

Iif}b(”)(x,p)=(27r)’4j d4ye’ipy:?(x+y/2);?(x—y/2).

a0 ° 5
“lo ya-m) © 13
N yM(1=%5) 0 and the electron Wigner operator
au=| " . ©)
BPp)=(2m) [ diye Wy x-yi2).
and the notation
(14)
NE=y#(gy—0ga7), 7 : "
Y0y 0a7) D From Eq.(13) one can easily show that the Hermitian con-
o ' oate s aiven b
"=y (Gy— 7). (g lugateis given by
Here, the constary= — % + 2 sirfé (ga= — 3) correspond FEPOT(x,p) = YFra® (x.p) vy (15

to the vector(axial) contribution of weak neutral currents,

6, is the Weinberg's angle, while the constargs= "} Here, and hereafter, summation over repeated indices is

. ~ 4 understood. With the help of Eq$¢ll) and (12) one can
+2 sirf6y, andga=7 arise from neutral plus charged cur- o equations of motion satisfied by the neutrino

rents. g
: . : Lo : Wigner operators. After some algebra, we get
With these notations, the Lagrangian density is written as g P g 9

20 =Lu(x)+ 2o(x)+ 21(%) Y OF P (x,p)— 2ipFM(x,p)]+ 2iIMF )(x,p)

with 2e(x) the Lagrangian of free electrons, = _Z'GF(ZW)—4J d4yrd4k[ﬂé(y1)wé(yr)

V2

+ A&y )Ne(y ) JFM(x,p—k/2)ek' ), (16)

L) =2(X)i a0, v(x) — ()M (X) ©)

the corresponding Lagrangian of free neutrinos, and
[9F ) (x,p)+2ipF ) (x,p)]y—2IMF )(x,p)

- Gra A s R
L(x)=— —=v(X) Q*v(X)e(X) w ,&(X) .
| f M =2I\/C;F(277)4J d4yrd4k"F(y)(X,p_k/2)
_ T;?(X)AM;(X)é(X))\#Ae(X) (10 X[Q&(Y Yooy )+ A&y )Ne(y’)]e k' 1),

17

3The symbol™ on top of a magnitude means that we are dealing
with a quantum operator. This will be used to distinguish this mag- “If flavor mixing exists,M is nondiagonal, its eigenvalues being
nitude from statisical averages. the masses of free mass eigenstates.
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One could also derive the corresponding equations for the Here, the symbojA) means the average of a given quan-

electron Wigner operatof{{’(x,p). However, we will ot tym operatorA over a basis of quantum states which are
need these equations under the approximations discussed dBmpatible with the macroscopical knowledge of the system.

this Paper, and Fherefore we will omit them. Of course, i O"Crhe latter determines a given density matrix operq?ior
wants to investigate the next order to these approximatio hus the averaging is performed according to

the whole system of equations has to be taken into account.
We are now interested in introducing statistical averages

from the quantum operators defined above. These statistical

averages are calledigner functiong39|, and are the analo- ~ .

gous to the distribution functions we need to describe many- (A)=Sp[pA}, (20

particles systems. These are, in general, complex functions,

and also contain a Lorentz structure which will be discussed

later. The electron and neutrino Wigner functions are de-

fined, respectively, as where Sp means the trace performed over the quantum basis.

. Taking into account Eq15) one immediately obtains

FiP0o,p)=(FP(x,p))

—(2m) 4| diye PY(e (x+yl2)e(x—y/2)),
" J ‘e > FOT(x,p)=y°FM)(x,p)»°, (21)
(18

i (x,p)=(F§(x,p))
i i which implies thatF((x,p) is an Hermitian matrix with
=(277)_4J dye PY(pP(x+y/2) v} (x—yl2)).  respect to generation indices.
By performing the average on Eqgl6) and (17) one
(19 arrives at the following equations:

i 2 . . .
[y(9—2ip)+2iIM]FM)(x,p)=— '(C;Ff;f diyd*kd*k’ e*O=9[(Q Tr(oF©(y,k")FP(x,p—k/2))
a
+(ATrOF®@(y,k"))EP (x,p—k/2))], (22
_ _ iGEv2 . )
FM(x,p)[y(d+2ip)—2iM]= 2 )4f d*yd*kd*k’' e kv X)[(F(V)(x,p—k/Z)Q Tr(wF(e)(y,k’))>
v

F(EW(x,p— KA TEOE (y k)] @3

In the latter equations, the symbol Tr means the trace in spin indices. From these equations one can show that, although
Wigner functions do not behave as scalars, they obey equations of motion which are invariant under Lorentz transformations.

Let us now introduce the electron-neutridd® and neutrino-electroB®” correlation functions:
AGDP06x .’ ) =(FP2P(x,p) FP (X ,p")) = F(20(x, p)FP(x,p"), (24)
B{ED30(x,x",p,p") = (ED(x,p) ER(x",p')) — F P (x,p) F*(x",p'). (25
Then Egs(22) and(23) can be rewritten as

iGey2

2 )
2 )4f d*yd*kd*k’e* [ A Tr(AB(y,x,k’,p—k/2))+ Q Tr(wB(y,x,k",p—k/2))
ar

+ A TrONF@O(y k" ))FM(x,p—k/2) + Q Tr(wF @ (y,k")FM(x,p—k/2)], (26)

[y(a—2ip)+2iMFM)(x,p)=—
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iGgv2 :
F(V)(x,p)[y(0+2ip)—2iM]=(ZL\)CJ dAyd*kd*k’ e KOO Tr(A(X,y,p—k/2 Kk )N)A+ Tr(A(X,y,p—k/i2K") 0)Q
o

+FM(x,p—k/2)A TIONF©O(y, k") +FM(x,p—k/2)Q Tr(wF©(y,k"))]. (27)

The two-point correlation functions defined above are not

G
independent. In fact, one can prove that they are related by py—M-— \/—EJ’ d*k’ (A TIAF® (k)]

(Ve)ab*

Ijk| (x,x",p,p")= YlpVJrB(%Vr)sba(X X, p’ p)?’qk')’sw
(28)

+Q T wF® k)] [FP(p)

which can be written, in a short way,’as G
=—Ff d*kd*k'[A TrOABC) (k. k', p+k/2))
AlOT(x,x",p,p") =B (X", x,p’,p). (29 V2
+Q Tr(wB®)(k,k',p+k/2))], (34)
This implies that Eq(27) is actually the Hermitian conjugate
of Eq. (26).
F®(p)

py— M——J d*k’ (TIAF@ (k')A

Ill. SYSTEM IN EQUILIBRIUM.

HARTREE APPROXIMATION
+ T wF@(k')]Q)

In order to obtain some insight into the physical meaning
of the neutrino Wigner function we will, in this section, in-
vestigate the situation when both the electrons and neutrinos :&f d4kd4k’[Tr(N"e)(k p+k/I2K' )N)A
are in equilibrium, which we characterize by all statistical ’ ’
magnitudes as being time-space translationally invariant. _

This means that one-point functions cannot dependx,on +Tr(AC®(k,p+k/2k") w)Q]. (35)
while two-point correlation functions can only depend on the

difference of coordinates, i.e., we assume that As before, Eq(35) turns out to be the Hermitian conju-

gate of Eq.(34). This set of equations is obviously not com-

plete, and one should add the equations which are satisfied

FO(x,p)=F©(p), (30) by the correlation functions in looking for such a complete
set. However, in doing so there automatically appbsaee-

FO(x,p)=F™(p) (31 point correlation functions. This procedure can be infinitely
continued, so that one obtains, instead of a closed set, an

infinite hierarchy similar to the BBGKY (after Bogoliubov-

and X . .
Born-Green-Kirkwood-Yvoh hierarchy of classical systems

[40,41). For classical systems, one usually truncates this in-

AUI(x,x',p,p") = A (x=x',p,p"), finite chain by neglecting correlations of order higher than a

given one, usually by showing that higher orders correspond
BE)(x,x",p,p’)=BE)(x—x",p,p’). (32)  to more rapid variations in space and time. The next step
consists then in incorporating perturabatively the next-order

By defining the Fourier transform

correlations. We will use here the analogy with the classical
situation, and will first examine the situation at the lowest

order, i.e., when all kind of correlations are neglected. Such

% (ve) N 4 4y o ikx A (v€) , approximation is commonly referred to as tHartree ap-
AT (k.p.p")=(2m) f dxe ATE(x,p,p") (33 proximation.As we will show, the neutrino dispersion rela-

tions which arise from this approximation correspond to
(analogously foB(¢")), we obtain the equilibrium equations modifications of the neutrino propagator at the one-loop

for the neutrino Wigner function: evel.

The Wigner function of electrons in equilibrium can be

calculated using standard techniques. Follow#®] one has

SFor a matrix having both spin indices and generation indices, its F(e)(p)=(27r)_35(p2— mé)[&(po)fg(p)
Hermitian conjugate is obtained by interchanging the generation Ove
indices and then taking the Hermitian conjugate in spin space. +0(=p ) fe (p)](yp+me), (36)
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with m, the electron mass° the timelike component of the =3(1++°). With the help of these two projectors, one can

electron four-momentunp and 6(x) the step function(a

define the following components of the neutrino Wigner

similar calculation is shown in Appendix A in the case of function:

neutrinos. The functionsf_ (p) and f_ (p) are the Fermi-
Dirac occupation numbers of electrons and positrons, respec-
tively, with definite momentum and polarization. In the

frame where the matter fluid is at rest, they reall as

fo(p)= (37)

eB(EIF’e) +1

[whereE= \/52+ mg, e iS the electron chemical potential

FL=P.FPg,
Fr=PrFP,,
FrL=PgrFPg,
F r=P.FP_. (42

If we apply P, andPg on the left and right of Eq41) we

and B the inverse temperatur@ve set the Boltzmann con- arrive at the set of equations:

stantkg=1)]. We can nowcalculate the traces and integrals
appearing in Eqs(34),(35). After some algebra, it is easily

obtained

Trf d*kN°F(®(k)=g,n,
Trf d*kAF® (k)=

Trf d*kN'F®(k)=0, i=1,2,3.

(39)

Analogously
Trf d*ka®F©(k)=g,n,

Tr f d*kw*F @) (k)=
Trf d*ke'F®(k)=0, i=1,2,3.

(39
Let us now define the matrifn flavor spacg
v o 0
= y 4
0V, (40)

where V,,=\2Ggg,n is the effective potential for neutral
currents, and/= \2Ggg,n the corresponding potential for

charged plus neutral currents, with=4/d*k(27) 35(k?
—m2)(6(p°) £ (k) + 6(—p°) f, (k))k°=n,—ng the electron

YPFrL—MF_ =0,
YPFLr—MFg— y’®F g=0,
YPFr—MF =0,
ypFL—MFg — y°®F =0, (43
By combining the above equations, one finally arrives at
(p*=M?=ypy°®)F (p)=0,

(p?—=M?=ypyMOM ~HFg(p)=0.

(44)
(49

An important remark must be made. We are here consid-
ering a hypothetical situation where neutrinos had time
enough to equilibrate with the matter background. Under this
assumption, right-handed neutrinos can be produced by dif-
ferent mechanisms, such as spin-flip or pair production.
However, production rates are suppressed by a faoidE,
whereE is the neutrino energy anah, its mass. In the as-
trophysical scenarios we are considering, the production rate
of right-handed neutrinos is small, and therefore they can be
neglected. We then will concentrate on the left-handed com-
ponentF (p). Consistently with this approximation, neutri-
nos will be treated under the extreme relativistic limit
m,/E<1. This will imply that the neutrino field can be con-
sidered, approximately, as consisting on negative-helicity

(minus .positrom number density. With these notations, and neutrinos and positive-helicity antineutrinos. For Wigner
neglecting correlations, E@34) can be cast under the form functions, this is shown in Appendix B, where the Wigner

1
YP=M=9"5(1=y*)®|F(p)=0 (42)

(since electrons have been integrated out, the neutrino sup
script in Wigner functions will be omitted in what follows, in
order to make the notations simplelt is easily recognized
in Eq. (41) the appearance of the left-handed chirality pro-
jector P =3(1—v°), as a consequence of left-handed inter-
actions. Let us also introduce the right-handed projeBter

function will be explicitly calculated in the noninteracting
case.

The dispersion relation obtained from E@4) can be
diagonalized, and one obtains the well-known expressions

$or masses and mixing angles in matteee Appendix B

IV. NONEQUILIBRIUM SYSTEM.
TRANSPORT EQUATION

In this section, we investigate the evolution of neutrinos
when deviations from equilibrium situations arise. More pre-
cisely, we will consider that neutrinos are created and propa-

SMaking the hypothesis that matter is at rest is equivalent to congate through the matter background. This implies that Egs.
sidering a particular Lorentz frame such that the fluid four-velocity (30)—(32) will not be imposed, and therefore time and spatial
is u#=(1,0,0,0). Results in other frames can be obtained by restorvariations have to be considered. This represents an addi-

ing the four-velocityu*, as discussed if30].

tional difficulty in solving the system of equations for
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Wigner and correlation functions. For the moment, we will 1 . R . 1.

only consider a simple case, where correlations are ne- —ZDf|_+(p2—Mz)fn_—CD(X)(POfL+ pfd)+ 5V

glected. This will serve us to investigate the possibilities of

Wigner function techniques in deriving neutrino transport . O B -

equations, and will allow in the future to study more com- X(POOTIPLd L= 5 2 (POOTL)

plicated frameworks. As we will see in this section, the equa-

tions arising in this context are appropriate to deal with neu- i on . - s

trino propagation and flavor conversion in the Sun. +SV(@X)FD)+iIP)pxf =0. (50)
We return to Eq(26), and assume that electrons can be

locally characterized by their temperature and chemical po- Equations(49) and(50) are the basic transport equations

tential, in such a way that E¢36) is still valid. to be solved on a general situation, with the help of appro-
By performing the same procedure as in E4f}), we can  priate boundary conditions. We will investigate the conse-
derive an equation foF (x,p), which is now guences of this set of equations in a future work. For the
moment, as a test, we will show that, under the circum-

[O—4(p2—M?2)—4ip,d“+2i®(x) y*¥%3,, stances usually considered when the MSW is studied, we

o o reproduce the known equations for this effect.
+AD(X) y*p,y + 21 (9, P (X)) Y IFL(X- p)=0.

(46) V. MSW EFFECT

_ _ _ We consider neutrinos moving along a straight liifer
The next step is achieved by decomposing the completexample, the radial direction of the staAccording to this,

Wigner functionF(x.p) into the Dirac algebra. By using the ;e assume thaft, is parallel top. This allows us to write
chirality projectors, as in Eq42) one can writeF | (x,p)

under the form fLOuP)=Pf(x.p), (50
1 wheref(x,p) is a new function. We also introduce, for con-
FLX,P)=5 (1= y5)fLu(Xp) ", (47)  venience,
floxp)=[plg(x.p). (52

wheref ,(x,p) is a matrix in flavor spacéand transforms
as a Lorentz vector. If the left-handed projecRyr is used  Next, we assume that neutrinos are ultra-relativistic, and that
again, we see thdt ,(x,p) can be expressed as the effective potential¥ andV, in Eq. (40) satisfy

~ O |F
(E20p) = STHF(x,P) ] VPRI eV 9
The last condition will concern the characteristic scale of
spatial and time variations of the neutrino distribution func-
tion. This scale has a macroscopic ket least of the order
of 1 Km, or even mordin the case of the resonant zone in

1 ) R 1
=_ —4 ] qiyeipy( P Z
2(277) f d%ye <vL(x+ 2y

~a 1 the Sun, for examp)eln this case, we can make the follow-
X YRV x= 35y (48 ing estimate:
. A, i
In the latter equationy, is the left-handed component of I fo_’“|~ﬁ- (59
the neutrino field. We next analyze the equation of motion of
fL.(x,p). In order to do this, we su_bstitute E@J_) into Eq. WhenR=1 Km, then 1R~10"16 MeV. If we are inter-
(46). After some algebra, we obtain the equations ested on variations of the distribution function on the s&le

then, together with hypothesis E&3) we can simplify Eqgs.
1 . (49 and(50) to give
- 70+ (PP =M - () (p°f+p- L)

. _ [p?=M?=(p°+ [P () ](f+g)+ip,d*(f+g)=0,
[ i "
+ip ) — = — (@) )+ sV(®(x)-f)=0, - :
Pudfle= g g (POTO* 3 L (P2 M2 (p°— BB (X)I(f @) +ip,.(~g) =0,
(49) (55
In the latter equationd(x,p) andg(x,p) areHermitian ma-
trices (in flavor spacg We can perform docal transforma-
"We notice, as a consequence of ER1), that f_,(x,p) is a  tion for each of them in such a way that both become diag-

Hermitian matrix. onal (and therefore real In this way, one can easily check
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that two possibilities are open for the system &) to have
nontrivial solutions. The two possibilities are

Thus the equation of motion reads

i9"p,,T(x,p)+ (p>—M2(x))T(x,p)

defp®~M?—(p°+|p|)®(x)]=0. (56) . ;
—i[f(x,p),Un(x)p,#*Un(x)]=0. (64)
We recognize in Eq(56) the dispersion relations for neutri-
nos and antineutrinos, as described in Appendix B within the et us write explicitly the matrice"fs(x,p) andU,(x) by
Hartree equilibrium hypothesis. However, quantities in thedefining

latter equation depend on the coordinatel'his means that

the neutrino mass eigenstates can be obtained locally from CoSOpy(X) —sinfy(x)

the Hartree approximatiofiwhich gives the same as the Un(x)= SinBy(x)  cosfy(x) |’ (65
Mikheyev-Smirnov-Wolfenstein(MSW) effeci]. We then M M

have, for neutrinos, dgh?—M?2—(p°+|p|)®(x)]=0. This Tiixp) F2x,p)

implies the conditionf(x,p)=g(x,p). Therefore,ff(x,p) ?(X,p)5(~21 ' - ) ) 66
=|p|f(x,p)=p°f(x,p), and we conclude that f=xp) 1790x.p)

where the functiond*(x,p) and T?4(x,p) are real, while

T1%(x,p) andf?(x,p) are the complex conjugate of one an-
other. After substituting Eq962), (65), and (66) into Eq.
(64), one obtains

f'(x,p)=p*f(x,p) (57

within the same approximation. Finally, we have for E&j7)

1
FL(x,p)=5(1—- “f(x,p), 58 ~ ~ ~
LRI =3 (1779 YT OGP) 59 ip#,T4(x,p) + (p?— MZ(x))F (x,p)

where f(x,p), for ultrarelativistic neutrinos, obeys the fol- —ip'“(?MHM(X)(’flz(X,p) +~f21(x,p))=0, (67)

lowing equation of motion:

[p?—MZ— 2 (x)p°]f +ip ,a“f=0. (59) ip#a,T1(x,p) + (p>~ MI(x))F*(x,p)

We have discussed above the possibility of making a local +ip*9, 00 (FH(x,p) —T24x,p))=0,  (68)
transformation which diagonalize§(x,p). We have ex-
ploited the fact that, under these circumstances, it becomes a
real matrix. However, from the physical point of view, it is
more convenient to introduce a different local transforma-
tion, in such a way that the factor inside the brackets in the
latter equation becomes diagonal; i.e., we consider a unitary
transformation given by the matrid,(x)

ip~a,T24(x,p) + (p?— M3(x)T?(x,p)
+ipﬂﬁM6M(X)(Tflll(X1p) _722(X!p)):01 (69)
ip~d,T22(x,p) + (p?— M3(x))T#(x,p)

~ +ip#d, o) (F2(x,p) +T2(x,p))=0.  (70)
f=Ulfuy (60)

such that

UL ([ (p2—M?2) = 2d(x)p°]U y(x) = p?— M%(x),
(61)

whereM?(x)=U{,(x)[M2+2d(x) p°]Uw(x) is a diagonal
matrix, which contains the local mass eigenvalties:

M%(x) O

M2(x) =
) 200

(62

On the other hand, one finds

UL 0 0#p . f(X,p))U(X)

=i0*p,F(x,p)~[F(x,p),UY(¥)id*p, Un(x)]. (63)

A remark is in order. As can be seen from the above
equations, it is not possible, in a general situation out of
equilibrium, to perform a transformation that makes both the
neutrino Wigner functionand the mass matrix diagonal.
However, local mass eigenstates can be used as a useful
physical basis to simplify the equations, as done in this sec-
tion.

We can write the latter system of equations in a more
familiar way. By taking the real part on the first and last one,
we readily arrive at the conditions

[p2—M2(x)]T(x,p)=0,
[p2—M3(x)]T%(x,p)=0, (72)

which imply that T*(x,p)[T?(x,p)] is nonvanishing only
when p?=M?2(x) [p?=M3(x)]. Similarly, from the two re-
maining equations it can be easily deduced that the functions
T14x,p) andT?(x,p) have to vanish unless the condition

8We use a tilde to represent magnitudes in the interacting eigerP>=3[ M{(x) + M35(x)] is fulfilled. Therefore, in the equa-
states basis, as mentioned in Sec. Il.

tions of motion for these functions we can substitute
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~ 1 which implies that the total number of electron plus muon
pZ—Mf(x)—>§A(x), neutrinos is conserved during the propagation, as expected.
We can then writef ®¢(x,t) + f“#(x,t) =K, whereK is con-
5 1 stant during the propagatiomK=0. By manipulating the
p2—M g(x)—> — =A(X), (72 equations, one can also derive a third-order differential equa-
2 tion for f¢(x,t), which reads as

where A(x)=M2(x)—M?2(x) is the in-medium neutrino aDee(x,1) — o' D2Fe(x,1) + da( @+ B2 DX 1)
mass difference. Furthermore, in the ultrarelativistic case, we ' ' '

can approximate the operatptd, in all the Eqs.(67)—(70 K
o pp peratptd,, gs(67)—(70) —4a’,6’2<fee(x,t)—§)=0, -
p#(9#2|5| %+|5| ;=|5|D. (73  wherea’=(d/dx)«. The latter equation coincides with the
X

one derived by Mikheyev and Smirn¢¥5] to describe the
evolution of the survival probability of an electron neutrino
in a nonconstant density medium. This agrees with our inter-
pretation off®§(x,t) as giving the distribution functiofpro-
portional to the number density for a given momentuh
CNF - ™ electron neutrinos, and analogously fdé(x,t) as the dis-
IDTO=[F(x1),HOO]. (74 tribution function of muon neutrinos. All known results for
Here the MSW effect within the situation considered here can be
reproduced from the above equations.
A(X) ) Equation(77) defines the evolution of flavor distribution
—= ~ioy(x) functions, and can be compared to the corresponding results
4p| o e
(75)  derived from other treatments. As we mentioned in the intro-
A(x) duction, there are(to our knowledge two different ap-
m proaches to neutrino propagation in dense media which make
use of some kind of distribution functions. Both methods are
is the effective Hamiltonianin the mass eigenstates basis, based on perturbation techniques, assuming that the Hamil-
and 6;,(x) = (d/dx) 8y (x). Equation(74) can also be written tonian can be separated into two terris=Ho+ Hiy, with
in the flavor basis, if we undo the transformation introducedHin; considered as a small perturbation. They both arrive to
in Eq. (60), with the definitions an equation with a term which is second orderGp and
corresponds to a nontrividl.e., nondiagonal in flavgBolt-
~ + zmann collision integral of neutrinos interacting with other
UnOOF(X,HUp(X). particles in the background. This second-order term is absent
(76) in our approach, at least when correlations are neglected.
Within this approximation, and neglecting small derivative
After a straightforward calculation, we arrive to the equa-terms? the evolution equations of Ref25] coincides with

We have defined = d/dt+ dl Ix. After some manipula-
tions, Egs.(67)—(70) can be cast under the simple matrix
form

H(x)=
o) —

fee(x,t)  fe*(x,t) B

FOO= fuex by frexty | =

tion Eq. (77). A similar comparison can be made using the results
derived in[27,28.
D =[F(x,0),H(O], 77 127,29
where VI. CONCLUSIONS
a(X) 8 In_this paper we hav_e st_udiec_i propagation _of two neutrino
H(x)= (78 species with flavor oscillations in dense media. We used an
B —a(x) scheme which is based on the introduction of relativistic
is the Hamiltonian in the flavor basis, and we introduced the'V19ner functions and correlation functions. Our aim is to

develop relativistic kinetic equations, and to analyze the pos-
sibility that such approach will correctly describe both the

a(x)=(Aocos2t9—A(x))/4|5|, relativistic dispersio_n relation_s of in-m_edium neutrin_os, as
well as the appropriate evolution equations for neutrino dis-

tribution functions. This allows us to treat in-medium neu-

trino masses and kinetic equations on an equal footing.

By writing the equations of motion for Wigner operators,

notations

B=Agsin 26/4|p|. (79

Here, A(x) =2|p|V2Ggn(x) is the induced mass due to
charged currents),=m3—mj is the vacuum neutrino mass
difference and the vacuum mixing angle.

From the system of equatiorig7), we first obtain that °As discussed if25], these terms should only be kept in the
equations when strong inhomogeneities of dizare present, such
iD[fe8(x,t)+ f#*(x,t)]=0, (80)  that|p|L~1. See als¢43] and[44].
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and taking statistical averages, one arrives to an infiniteand compare with results obtained by other authors using
chain of equations of the Bogoliubov-Born-Green- different techniquef34—38,24. This will be the subject of a
Kirkwood-Yvon (BBGKY) hierarchy-type. This infinite separate work.

chain has to be broken at some level in order to obtain a

solution, and we have considered here the lowest-level of ACKNOWLEDGMENTS

approximation, which consists in neglecting correlatithe )

so-called Hartree approximatipnWe have first examined ~ We are grateful for comments by S. Pastor. This work has
the situation in equilibrium, which reproduces the well- been partially supported by Spanish DGES Grant PB97-1432
known results for relativistic dispersion relatiof2s]. Next, ~and CICYT AEN96-1718.

we assumed that the electron background is in equilibrium,

although its density needs not to be constant, and neutrinos APPENDIX A: FREE SYSTEM WITH ONE

propagate out of equilibrium. This gives rise to a set of ki- AND TWO GENERATIONS

netic equations which have to be solved by taking the appro-

priate boundary conditions In this appendix we give explicit formulas for the non-

In order to obtain some insight into the above eqlJ<,:1,[ionsinteracting neutrino Wigner functions. We first consider the

we have considered with some detail the usual MSW scec@Se with only one generation, and we will generalize these

nario, in which neutrinos are ultrarelativistic, and the scale o{eSUItS to the case of two neutrino generations with a nondi-

space-time variations in distribution functions have macro—agJonal mass matrix. Neutrinos are assumed to be in equilib-

scopic valuegsuch as flavor conversion in the Sun or newly- ;ﬁgég{ncog?s% ebqulilllct))r:ngaCr]a?rggt ::1 ee rgasci?f;ignntr\)vehgfen'a
born neutron stajs In this case, our system of equations 9 ’ 9

reduce to the results obtained by other authors with pertur\-'ery weak interaction is added in order for the system to

bation technique25,27 when only the first-order correc- reach equilibrium. This hypothetical interaction can then be

tion is considered. However, none of these methods has beéwned off without changing the equilibrium properties of the
' System.

showed to incorporate the correct neutrino dispersion rela> . . . . -
P P We start with one generation of free neutrinos in equilib-

tions. . ) . p .
Now the question which arises is wether the inclusion of 1Um- The Wigner function then verifies the equations

correlations into our scheme will lead to the same results as (yp—m)F®(p)=0

in the previous references also for the second-order terms. ’

Indeed, this seems to be the case, since correlations turn out FO(p)(yp—m)=0, (A1)

to be proportional to the coupling consta®g, and substi-
tution into the BBGKY hierarchy will giVe corrections of the wherem is the neutrino mass arﬁ(")(p) the equ”ibrium

OrdeerZ, as one can see from Eq26) and(27). A more  wigner function. As in previous cases, the above equations
detailed study of the kinetic equations developed here wilare the Hermitian conjugate of one another. We next multi-

elucidate this question and, perhaps, give rise to new phesly the first one by ¢p+m), which gives
nomena in the physics of neutrinos in dense media.

Another possible future application of the formalism de- (p2—m>)FM(p)=0 (A2)
veloped here is the inclusion of neutrino self-interactions,
mentioned in Sec. II. Because of the close analogy of equaand this implies that the Wigner function vanishes whenever
tions of motion to Boltzmann-like equations, it represents dhe conditionp?~m?=0 is not fulfilled. We introduce the
suggestive alternative to usual methods. As we already mergrand canonical density matrix operator
tioned, however, there exists a problem to find a consistent ~ A A
solution to these equations, since propagating particles are p=2"lte AH-ub) Z=Tre AH-xL) (A3)
also in the background itself. Following the perturbative cor- R R
relation scheme discussed above, one should be able to imhereH is the HamiltonianL the lepton number angd the
corporate the correct dispersion relations in both the kinetieieutrino chemical potential.
equations and evaluation of the neutrino effective masses, We obtain, after quantization of the neutrino field

Fi(j”)(p)=(27r)_4J d*ye  PY(p;(x+y/2) vi(x—y/2))
=(27T)’4f d“ye"py(Zw)*sf B, [(R,(R)YUNR)UNK)ER — (Ny (K)o (K)w (K e~ ]
A=+
=(2m)? f 0% 3[R (KU} RN 8(p—k) = (Ny (K)o} (K)o (K a(p+K)], (A4)
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where N)\(IZ) [|\£|)\(|2)] is the number operator for neutrinos By performing the sum over helicities, we flna"y arrive at
(antineutrinoy with momentumk and helicity.1° The no- the expression

tations u*(k),v™(k), ... for spinors anca(k),a,(K), . .. FO(p)=(yp+m)fu(p), (A14)
for creation and destruction operators have their usual mean-

ing. The above averages can be calculated using standawhere the scalar functiofy(p) is given by

techniques, giving

1
SN T AT A (BN = fw(p)=-—TIF®
(N (R) =Tr(pal (R (k)= g === =T(K), w(P)= Z-TTF"(p)]
(A5) _ _
=(2m)28(p?—m?)[6(p°)f(p) + 6(—p°)f(p)].
(NA(R) = Trpb] ()b, (K)) = e —=T(K), (AL5)

(A6) The generalization of the above formulas to more than
one neutrino flavor is done by using mass eigenstates as an
intermediate step. As defined in Sec. Il, we use a prime to

with Ev= Vm2+K2. Let us define the matrices represent such states. In the case of noninteracting neutrinos,
k ' they arise from diagonalization of the free mass malfix
MRy =N ROuM Kk The equation of motion for the neutrino Wigner function is
it =uikurck, now, in the flavor basis
3K = —v (=K} (k). (A7)

o . . . -M)F")(p)=0. Al6
More explicitly, if we introduce a coordinate system in (P JF(P) (A16)

such a way thak=Kk(sin §cos¢,sindsin ¢,cosf) one has The free mass eigenstates are related to the flavor states

1 m —E,—k through a matrix
o b .
37 (K) ZEk( Btk m )M(k), (A8)
’ (cose —sin 0) AL
o 1 m _Ek+ N = 3
“(K)= — sing cosé
37(K) ZEk( ek m PR (A9)
S R)= | Ek_k) (K wo
T 2E\Eg+k m M) () =U(x) (A18)
and one has
A B A Y M=UM'U" A19
27 ( )_Z_Ek E—k m p(K), (Al11) = ; (A19)
whereM’ is the eigenvalues matrix
where
0 1 :
— Zgj —i¢ m; O
) co§2 5 sinde M’=< 1 ) (A20)
p(k)= p (A12) 0 m
§Si”99'¢ 5"‘25 The Wigner function in the mass eigenstates basis,
F')(p) is related toF (*)(p) through
andp(IZ)=,u(—IZ). By substituting into Eq(A4) we obtain,
after some algebra, EM(p)=UF' W(p)uT (A21)
F(v)(p):(zﬂ)—SZEpg(pZ_ m?) E [g(po)f(p)zk(ﬁ) and will satisfy the diagonal equation
==
+0(—pOf(p)ZM(p)]. (A13) (p2—M'2)F' () (p)=0. (A22)

By quantizing the massive fields' 2(x)(a=1,2 for two
0perators will be considered in normal order. generationswe obtain the result
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F/(28(p)=(2m) f d*ye PV P (x+yI2) v/ A(x—y/I2))

~2m da'i; LRI R () 5(p k)

— (N2 M K EMK) S(p+K) 18,y ab=1,2, (A23)

with similar notations as before. The superscegtas been 1 _
added to label different mass eigenstates. In this basis, then, de{ yP—m— 705(1— YV

the Wigner function is diagonal, as expected from &22).

The Wigner functions appearing in the latter equation are =[p3—p§—m2—(pz+ Po)V]
given by

2_ A2 a2 _ \/
F/OT(p) = (2m) 62~ M) A(p)(p) XLPo= Pz (P POV (2

— By equating to zero this determinant, and solving fgr
+6(—p)fa(p)1(yp+my),

one obtains four solutions,=E, , pop=E_, pg= —E+ and

F'(I2(p) = (2m) 28(p2~m3)[ 0(p°)fo(p) Po=—E., where
_ nOVE v V
+0(-p)(P)I(yprmy)  (A24) =24 .y ©3)
and we introduced the notations
_ \7 V 2
fa(p)= ————, (A25) E-=2%Viz +pz o, (B4)
BBy~ 41
1 V + (B5)
— m i
fa(p)= FE L1 (A26)
. a 2, 22 : : = \7 v : 2
(a=1,2) with Ej=+vmg+p*“. We notice that the chemical E =- §+ §+pZ m<. (B6)

potential is the same for both generations of neutrinos in Eq.

(A25). This is so because, in our model, there is only a

gmﬁ:rrvc?:mcr?]ggpiatgebilerﬁggz ?ngzgrn‘;n ;iﬁ)ifenu?rlijnnc;gerléq 1) and use the projection operators to obtain an equation
. na L ' =%or F{(*)(p), as in Sec. lIl. One then arrives at

(A26). The Wigner function in the flavor basis is then ob- L"(P)

tained from Eq.(A21).

In order to identify the above results, we start from Eq.

(p?=m?=ypy*V)F{"(p)=0 (B7)
APPENDIX B: NEUTRINO MASSES AND WIGNER We take into account the following identity:
FUNCTIONS IN THE HARTREE APPROXIMATION
0. = -
We now discuss with some detail the dispersion relations Dy0— ptp-o 0 (89)
and neutrino masses which arise from the equations of mo- Y 0 po—ﬁ ol

tion of the Wigner function within the Hartree approxima-

tion. In order to simplify the notations as much as possibleThis means that the positive-helicity componé&it(p) has
and to obtain insight into the problem as well, we start withto satisfy the relationship

one neutrino flavoftlet us consider electron neutrino3hen,

Eq. (41) takes the simpler form [p?—m2—V(po—|p)IF, (p)=0. (B9)
yp—m-— 705(1_ YV [F(p)=0. (B1) The solutions for the dispersion relatiqr? —m?—V(p,
2 —|p))=0 are given byp,=E. and p,=—E, . One can
Dispersion relations are the necessary conditions for EqaISO make an analogous study [ (p), which givesp,
(B1) to have solutions other than the trivial oR&)(p)=0.  =E— andpo=—E_ as possible solutions. This allows us to
One can compute the determinant for this equation by settintterpret Eqs.(B3)—(B6) as corresponding to neutringk)
pP=(po,0,0p,). The result then is and antmeutrmos&) of positive and negative helicitisub-
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indexes+ and —, respectively. We now concentrate on The above results can be generalized to the case of two
ultrarelativistic neutrinos, and consider densities as occur imeutrino flavors in a straightforward way. Let us start from

normal or compact stars. Under these conditions, we cakq. (44) and transform it to the mass eigenstates basis in
neglect terms such ag|5| and m? by comparison td 5|z vacuum, as discussed in Appendix A for the noninteracting

and, in this way, the dispersion relations give us the neutric@S€- We then arrive at the following equation:

nos effective masses for each degree of freedom, which are (p2—M'2— ,yp,yOq)r)Fl’_(V)(p):O_ (B14)

M3= m?, (B10) Following the discussion we made above for one genera-
o tion, we readily obtain the equation for the negative-helicity

M2 =m?+2V|p|, (B11)  componeniwe replacep, to E_ for neutrino$
M2 =m2— 2V, (B12) (p?~M"?—(E_+|ph®")F_ “(p)=0. (B15)
— ) The latter equation suggests us to definetiective mass
M= =m?". (B13  matrix M_ as follows:

We used the same notations as for the energies. In these MZ_EM’2+(E_+||5|)<IJ’. (B16)

equations we see that positive polarization neutrinos and
negative polarization antineutrinos behave, approximately, a§ flavor mixing exists, this matrix is nondiagonal. More ex-

free particles. plicitly, we find
|
, (Vo+Vcog0)(E_+|p))+m?  —Vsingcoso(E_+|p|) ©17)
M= R R . Bl
—Vsinf#cosH(E_+|pl|) (Vo+Vsirf6)(E_+|p|)+m3
|
The corresponding dispersion relation is then . AZsir2 26
SIf 26y = T (B21)
det(p?— M2)=0. (B18) (Agcos 20— A)2+ A sir? 26
EquationgB16) and(B18) can be used to obtain tilexact IS then reproduced. _ _
energy levels of neutrinond antineutringsas a function ~ The procedure discussed in Appendix A can be extended
of the neutrino momentum. In the ultrarelativistic limit, one iN order to construct the neutrino Wigner functions in the
can approximate equilibrium state described by the Hartree approximation.
We will only give the final result. As before, it is illustrative
A0 Acofo+m?2  —Asindcosd to consider first the case of one generatidor example,
M2_2< " ) + _ ! _ ) electron neutrings One obtains
0 A, —Asingcosf  Asirf+ms
(B19 FO(p)=F (p)+F (P +F ()+F'(p), (822

Here,A=2|p|V is the induced mass due to charged currentsyhere

and AnEZ|5|Vn the analogous magnitude for neutral cur- )
rents. We first consider the first term on the second hand of F*(p)=(2w)*32Ep5(p2— M2)f(p)=~(p), (B23
Eq. (B19) in order to find the eigenvalues g#> (following

the notations intrf)ducgd in Sec. Il, we represent the diago.nal F+(p)=(277)_32Ep5(p2— Mi)f(p)2+(5),
form of M_ by M). Since neutral currents are diagonal in (B24)
flavor, they can be added at the end. After some trivial alge-
bra, the mass eigenvaluét, andM, are given by F(p)=(2m) 32E,8(p>—M2)f(p)S~(p),
(B25)
M2 :E(A+2)IE[(AOcosZH—A)2+Azsin220]1’2+A — VERY TS
b2 2 ° " F'(p)=(2m) *2E,8(p*~M3)f(p)2 " (p),
(B20) (B26)

where3 =m3+m? and A,=m5—mZ. One can also obtain, and the effective masses are defined in E§10)—(B13).
by diagonalizingM? the in-medium mixing angl®,,. The  The chiral left-handed componeRf”(p), as defined in Eq.
well-known result (42) can be approximated by
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,:(Lv)(p)zF[(pHEf(p) with a,b=1,2. The functiond ,(p) andf_a(p) are the same
, , , . functions defined in EqgA25) and (A26), but with the re-
=(2m) 2B [ 6(p*=MI)f(p)X (p) placementm,—M,. The two terms in the latter equation

+8(p~M TP, (P)] (B2y ~ °PeY the eduations

We have introduced the following definitions: C e
(yp—=M*)F *(p)=0,

- - 0 0| .
2[(p>EPL2<p>PR:—(1 O)p(m, (B28)
— - — . 0 0, . (yp—M=)F2(p)=0, (B31)
EE(D)EPLE*(p)PR:(l O)M(p),
Ef(ﬁ)EPLEJr(ﬁ)PR:O whereM?2P and ﬁabare the(diagona) effective masses ma-

trices for neutrinos and antineutrinos, and the matrices

f{(ﬁ)EpL§*(5)pR:0_ 3. (p) and3, (p) have been given above. In order to con-
struct the Wigner function in the flavor space, we perform an
The latter approximation holds for ultrarelativistic neutrinos.unitary transformationJ,, that is defined by the mixing
Thus, in this approximation the field only contain two de- angle in matem,, . In this way we have, for example,
grees of freedom: neutrinos with negative helicity and an-
tineutrinos with positive helicity.
We now go to the case of two neutrino generations. As in —ee/ \_ =11 : =-22
the free case, the Wigner function will be diagonal if consid- FLop)=cos'(0u)FL(p) + Si(O)F L *(p),
ered in the interaction eigenstates basis

FL*(p)=F_*(p)

=sin(y)cog o) [FL M(p)—FL #(p)],

Ftp) 0

0 ﬁ“)zz(p)) -

T:Mab(p):(

Moreover, each one of the diagonal components can be eas-

ily obtained by taking into account the corresponding disper- . _

sion relations. One then arrives to a set of equations similar ~ F “*(p)=sirf(6y)F ! (p) +co(oy)F L ?Ap).

to Eqgs.(B22),(B23) for each one of the two diagonal com- (B32)
ponents of the Wigner function. As in the case of one gen-

eration, we concentrate on the chiral left-handed component,

which is finally approximated by APPENDIX C: NEUTRINO SELF-INTERACTIONS
- - ~ In this appendix we briefly discuss how to incorporate
FL(M30(p)=F () +F**(p) neutrino self-interactions into our formalism based on
3 s 2 . Wigner functions. We consider a neutrino field consisting on
=(2m) " "2ESap[ 8(p*— M) fa(p)2 () two (electron and muonneutrino generations, and we as-
) Spe Ty sume that this field only interacts with itself.
+(p =MD fa(P)Z (P)], (B30) The Lagrangian is, therefore,

L00=7(X)1 740,50 ~ SOMp(x) - f—éﬁx)nﬂ?/(x)??(x)nﬁ(x)

Gp ~

Cr Zﬁv(x)ﬂl‘;(x);—(x)/\#;(x), (CY

Z‘Rx)AM;(x)T(x)AM;(x)—

442

with the same notation as introduced in Sec. Il. The equations of motion then read as
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R R Ge - ~ . Gp— . . Ge . ~ .
0, v(X) = MP(X) — W%my(x) V() Q, b(X) WFEV(X)Q“V(X)QMV(X)— W%A”v(x) V) A, ¥(X)
—&;T(X)A”;(X)A ;(x)—&Q“;(x)?(x)A P(X) = ——=p(x) Q*H(X) A, »(x) =0 (C2)
4\/5 u 2\/5 Iz 2\/5 Iz
and
- . Gea -~ . Gra . = Gpe -~ .
3, v(X)iyH+ v(x)M+4\/§v(x)Q"v(x)Qﬂv(x)+4\/§v(x)Q“v(x)v(x)Qﬂ+ 4\/§v(x)A”v(x)AMv(x)
+ GF?(x)M;(x)?T(x)A +&§7(x)m77(x)/\ P(X) + GF?(x)m;(x)?(x)A =0 (C3
42 “o2\2 g 242 o

One obtains the following equation for the neutrino Wigner operator:
. . 4 _1Gg A - -
YL9F (x,p)—2ipF(x,p)]+2IMF (x,p)=—(2m) 4ﬁf d*y’d*ke” O YILQF (x,p—ki2)v(y )P r(y’)

+u(y Doy YAE(x,p—kI2)+ v(y" ) Q oy ) QE(x,p—kI2) + AE(x,p
—Kki2) (Y ) AM(Y")] (C4

and for its adjoint equation

[9F(x,p)+2ipF(x,p)]y—2iF (x,p)M
= (277)—4'2%f dy d4ke Yy YT 2y ) E(x, p—kI2)Q + E(x,p—kI2) A (y ) D i(y')

+E(x,p—k2)Qu(y ) Qu(y")+ vy ) A (Y E(x,p—kI2)A], (C5)

where we defined the matricas=Q+2A and®=2Q+A.
From this, one can take statistical averages to obtain the equations motion for Wigner functions, which turn out to be

[y(3—2ip)+2iM]F(x,p)= —(2@‘“%] d*y’ d*kd*k’ e K=Y (QF (x,p—ki2) Tr¥F(y’ k"))
H(TrwE(y’ kK )AE(x,p—k/2))+(Tr QF(y’ k) QF(x,p—k/2))

+(AF(x,p—k/2)Tr AF(y',k'))] (C6)
and the adjoint equation
i : “IGF [ ayr gt i eik(x—y’ £ £
F(x,p)[ y(d+2ip)—2iM]=(2m) EJ diy'd*kd*k’ e CYI(TrwF(y’ k") F(x,p—k/2)Q)
+(F(x,p—kI2A Tr¥F(y’ k")) +(F(x,p—ki2Q TrQF(y’ k'))
+H(TrAF(y' K )F(x,p—k/2)A)]. (C7)
The above equations contain the neutrino Wigner function in a highly nonlinear way. Physically, this corresponds to the fact

that the propagating particlggeutrinog also participate in the environment. However one can, in principle, follow the

approach depicted in Sec. Il for this problem.
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