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Relativistic Wigner function approach to neutrino propagation in matter
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~Received 13 October 1998; published 14 May 1999!

In this work we study the propagation of massive Dirac neutrinos in matter with flavor mixing, using
statistical techniques based on relativistic Wigner functions. First, we consider neutrinos in equilibrium within
the Hartree approximation, and obtain the corresponding dispersion relations and effective masses. After this,
we analyze the same system out of equilibrium. We verify that, under the appropriate physical conditions, the
well-known equations for the MSW effect are recovered.@S0556-2821~99!05712-4#

PACS number~s!: 14.60.Pq, 05.20.Dd, 26.65.1t
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I. INTRODUCTION

Neutrino propagation in matter becomes an important
sue in some astrophysical scenarios, such as supern
neutron stars during the Kelvin-Helmholtz epoch, and
solar neutrino problem@1,2#. The first two cases correspon
to compact stars, where densities a few times the nuc
saturation density are reached. To describe neutrino pr
gation in the dense core of such compact objects, asid
production and absorption rates,1 one is mostly interested in
the neutrino cross section with surrounding matter, which
in turn related to the imaginary part of the forward amp
tude, due to the optical theorem. In the case of solar ne
nos ~and also for the ‘‘atmosphere’’ of compact stars!, the
possibility of neutrino oscillations and flavor conversion a
pears. In the standard picture, these oscillations are as
ated with the real part of the forward scattering amplitude
massive neutrinos with the background.

The effects of the surrounding medium can also be imp
tant for neutrinos in the early Universe@4#. This is especially
true if one considers sterile neutrinos, in addition to stand
ones, since the effects produced on big-bang nucleosynth
can be used to put bounds on the oscillation parame
@5–10#. Another interesting scenario appears when the ini
lepton asymmetry is not small. In this case, neutrino osci
tions might lead to an amplification of such asymmetry@11#.

In this paper we will be concerned about matter effects
neutrino masses and neutrino oscillations. Since the sem
papers of Wolfenstein@12,13#, and Mikheyev and Smirnov
@14–16#, there have been many papers which have explo
the physics of in-medium neutrinos, especially in connect
with the solar neutrino problem~for a review, see for ex-
ample@17–19,1,2#!. Different techniques have been used
approach this problem. The simplest one consists in desc
ing the matter effect by aneffective potential~as in Wolfen-
stein’s papers!, which will be added to the mass matrix t
give aneffective Hamiltonianin the Schro¨dinger’s equation.
Although this approach will suffice for most purposes, it
clear that it does not describe matter effects in a covar

1In this work we will concentrate on medium effects in neutri
propagation, and will not discuss production and absorption me
nisms. For these processes, the reader may want to consult@3#.
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way. In order to obtain covariant equations, one has to ob
the corresponding dispersion relations, which are the
medium analogous to the simple on-mass-shell condi
p25m2 of free particles. Such dispersion relations can
obtained starting from the Lagrangian and deriving the c
responding equations of motion@20–22#.

Dispersion relations of neutrinos interacting with differe
backgrounds have also been investigated in@23,24#. In this
approach, dispersion relations appear as the poles of the
trino propagator~Green’s function!, evaluated at the one
loop approximation.

On the other hand, one has astrophysical situations
which the contribution of neutrinos to macroscopic mag
tudes, such as the energy, pressure, etc. becomes impo
~this is the case in a supernova collapse@3#, or in the early
universe!. In these cases, one has to introduce adistribution
function for neutrinos to describe the number of neutrin
having a given momentum. It is then desirable to deve
evolution equations for these functions in the case wh
neutrino oscillations are present, which implies that distrib
tion functions become nondiagonal matrices in flavor spa
Several works have implemented this in different ways.
Ref. @25#, use is made of the techniques described in@26# to
obtain the kinetic equations for nonrelativistic Wigner dist
bution functions of neutrinos. Alternatively, in Refs.@27,28#
it is derived the time evolution of a neutrino density matrixr
constructed as macroscopic averages of generalized occ
tion numbers, defined asr i j (pW )5^r̂ i j (pW )&, where r̂ i j (pW )
5aj

1(pW )ai(pW ), and aj
1(pW )(ai(pW )) is the creation~destruc-

tion! operator of neutrinos with flavorj ( i ) and momentumpW .
Here, one starts directly from Heisenberg’s equation

i ] tr̂5@ r̂,H# ~1!

with a Hamiltonian H5H01Hint , where H0 is the free
Hamiltonian andHint is the interaction piece. Equation~1! is
then expanded perturbatively~after macroscopic averaging!.
With this at hand, the authors have studied the possibility
flavor conversion in a supernova core~see the reference
above for more details!.

Both procedures give rise to an expansion in powers
the Fermi’s coupling constantGF . The first term in this ex-
pansion~proportional toGF) contains the modifications to
the mass matrix due to the interaction, while the second,GF
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M. SIRERA AND A. PÉREZ PHYSICAL REVIEW D59 125011
term, is the generalization of the Boltzmann collision integ
to the case of flavor mixing. However, because both meth
are based on noncovariant techniques, one does not o
relativistic dispersion relations for the neutrinos.

In this paper, we make use ofrelativistic Wigner functions
@29,30# to describe propagation of neutrinos with flavor mi
ing in dense media. As we will show, using Wigner functi
techniques allows us to obtain dispersion relationsand evo-
lution equations for distribution functions in a consiste
way. Schematically, we arrive to an equation which has
form

~p22M2! f 1 iD f 50, ~2!

where f is the distribution function of neutrinos,M is the
effective mass~a nondiagonal matrix, in the general cas!
and D is the space-time evolution operator. In the simp
case of one generation, Eq.~2! implies (p22M2) f 50 and
D f 50, which correspond to the simplified on-shell cond
tion and evolution equation, respectively.

Relativistic Wigner functions have been successfully u
to incorporate finite density and temperature effects
nuclear matter@31–33#. They provide an alternative to
Green’s functions in a way which is well adopted to t
development of kinetic equations. In addition to this, te
perature effects are incorporated in a unique way, contra
to the situation of Green’s functions. We also need to int
duce correlation functions among neutrinos and the ba
ground. These correlations, as discussed later, will take
account for the residual interaction of neutrinos and electr
beyond the mean-field approximation. We will obtain, in t
next section, the equations of motion for these functio
under the assumption that the interacting background is in
equilibrium state.

Next, we will consider some particular situations. In Se
III, we examine the case when neutrinos are in equilibri
and correlations are neglected. The dispersion relations
produce, in this case, the expected effective masses an
matter mixing angles. This result supports our statement
neglecting correlations is equivalent to a mean-field tre
ment of surrounding matter.

In Sec. IV we examine some departure from the abo
simple situation, by keeping spatial and/or time variations
the kinetic equations~with correlations still neglected!, and
we consider propagation on a density-varying medium.
Sec. V we examine with more detail a particular case, c
responding to a small effective potential and macrosco
inhomogeneities which are large enough. This is the situa
encountered when dealing with solar neutrinos. By mak
the appropriate approximations, we recover the well-kno
formulas for the MSW effect. This shows the ability o
Wigner function techniques to correctly reproduce both re
tivistic dispersion equations and transport equations on
same footing. We end in Sec. VI by summarizing our m
results and making some remarks. Some auxiliary res
will be given in the appendixes. The construction of t
Wigner function in the case of free neutrinos is showed
Appendix A. In Appendix B we analyze the neutrino dispe
sion relations and effective masses which appear within
12501
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Hartree approximation, and we extend the results of App
dix A to the construction of the corresponding Wigner fun
tion. Finally, we show in Appendix C how our formalism
could be extended to include the interactions of propaga
neutrinos with a neutrino background.

In this work the metric isgmn5diag(1,21,21,21). We
take the chiral representation for Dirac matrices, and nat
units (\5c51) are used.

II. EQUATIONS FOR WIGNER FUNCTIONS

In this section we derive the equations of motion for ne
trino Wigner functions. Neutrinos are assumed to propag
on a matter background in equilibrium, an hypothesis wh
can be adopted, at least as a first approximation, in the
narios mentioned in the introduction.

In order to simplify the equations as much as possible,
consider only two neutrino flavors~namely electron and
muon neutrinos!. Our treatment can be generalized in
straightforward way to include more neutrino flavors. Als
our main concern is neutrino oscillations and flavor conv
sion, which are given by charged-current interactions w
electrons. Therefore, we consider a background consistin
electrons, although we take into account both neutral
charged currents. As before, the formalism can be exten
to account for a more general situation, such as neut
current interactions on protons and neutrons.

It is also possible to incorporate the interaction of neu
nos propagating on a neutrino background. This s
interaction can be important in some environments like
early universe or a collapsing supernova~when neutrino
trapping densities are reached!. In these cases, the neutrin
density represents a sizable fraction of the total den
~moreover, the self-interaction contribution to the effecti
potential is nondiagonal in flavor!. In Appendix C we briefly
discuss how neutrino self-interactions might be incorpora
in the Wigner function formalism. However, the solution
the evolution equations becomes more complicated in
case, since propagating particles also form a part of the b
ground and, correspondingly, the evolution equations
come non-linear. This effect has been investigated in a n
ber of papers@34–38,24#.

In this paper, we treat neutrinos as massive Dirac partic
in the simplest model for massive neutrinos, i.e. we tr
them the same way as all other fermions~leptons and
quarks!. Within this minimal extension of the standard ele
troweak theory, the conserved charge of the neutrino fiel
the total lepton numberL5Le1Lm . On the other hand, a
we will deal with low energy neutrinos~with energies of the
order of a few MeV!, we will take an effective contact inter
action of neutrinos with the matter background.2

In what follows, neutrino magnitudes without a prime w
indicate flavor states, and primes will be used forfree mass
eigenstates. In the next sections and in the Appendixes,
tilde will be used forinteracting eigenstates.Flavors, as well

2In the early universe, however, one has to consider the ef
arising from the finite mass of intermediate bosons@23#.
1-2
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RELATIVISTIC WIGNER FUNCTION APPROACH TO . . . PHYSICAL REVIEW D 59 125011
as mass eigenstates, will be labeled by latin superind
such asa andb. Spin subindexes will be generally omitte
When needed, we use indices such asi , j ,k, . . . to label
them. Lorentz indices will be labeled by Greek letters.

Since we deal with two neutrino species, it is conveni
to introduce vectors and matrices in flavor~or mass! space.
We therefore define the neutrino and antineutrino vec
fields:3

n̂~x![S n̂e~x!

n̂m~x!
D , n̂̄~x![„n̂̄e(x) n̂̄m(x)…. ~3!

These neutrino fields are related to the mass eigens
via

n̂~x!5U n̂8~x!, ~4!

whereU is an unitary matrix~which can be defined as or
thogonal, in the case of two Dirac neutrino generations!.

We also introduce the following matrices in flavor spac

Lab,m[S 0 0

0 gm~12g5!
D , ~5!

Vab,m[S gm~12g5! 0

0 0D ~6!

and the notation

lm[gm~gV2gAg5!, ~7!

vm[gm~ g̃V2g̃Ag5!. ~8!

Here, the constantgV52 1
2 12 sin2uW (gA52 1

2 ) correspond
to the vector~axial! contribution of weak neutral currents
uW is the Weinberg’s angle, while the constantsg̃V5 1

2

12 sin2uW and g̃A5 1
2 arise from neutral plus charged cu

rents.
With these notations, the Lagrangian density is written

L̂~x!5L̂e~x!1L̂n~x!1L̂I~x!

with L̂e(x) the Lagrangian of free electrons,

L̂n~x!5 n̂̄~x!igm]mn̂~x!2 n̂̄~x!M n̂~x! ~9!

the corresponding Lagrangian of free neutrinos, and

L̂I~x!52
GF

A2
n̂̄~x!Vmn̂~x!eC ~x!vmê~x!

2
GF

A2
n̂̄~x!Lmn̂~x!eC ~x!lmê~x! ~10!

3The symbol̂ on top of a magnitude means that we are deal
with a quantum operator. This will be used to distinguish this m
nitude from statisical averages.
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the interaction piece. In Eq.~9! M is the free mass matrixin
flavor space.4 From the above Lagrangian one readily o
tains the equations of motion for the neutrinos:

igm]mn̂~x!2M n̂~x!2
GF

A2
Vmn̂~x! ê̄~x!vmê~x!

2
GF

A2
Lmn̂~x! ê̄~x!lmê~x!50, ~11!

]mn̂̄~x!igm1 n̂̄~x!M1
GF

A2
n̂̄~x!Vm ê̄~x!vmê~x!

1
GF

A2
n̂̄~x!Lm ê̄~x!lmê~x!50. ~12!

We now introduce the neutrinoWigner operator

F̂ i j
ab(n)~x,p!5~2p!24E d4ye2 ipyn̂̄ j

b~x1y/2!n̂ i
a~x2y/2!.

~13!

and the electron Wigner operator

F̂ i j
(e)~x,p![~2p!24E d4ye2 ipyê̄j~x1y/2!êi~x2y/2!.

~14!

From Eq.~13! one can easily show that the Hermitian co
jugate is given by

F̂ i j
ab(n)†~x,p!5g jk

0 F̂kq
ba(n)~x,p!gqi

0 . ~15!

Here, and hereafter, summation over repeated indice
understood. With the help of Eqs.~11! and ~12! one can
obtain the equations of motion satisfied by the neutr
Wigner operators. After some algebra, we get

g@]F̂ (n)~x,p!22ipF̂ (n)~x,p!#12iMF̂ (n)~x,p!

5
22iGF

A2
~2p!24E d4y8d4k@VeC ~y8!vê~y8!

1LeC ~y8!lê~y8!#F̂ (n)~x,p2k/2!eik(y82x), ~16!

@]F̂ (n)~x,p!12ipF̂ (n)~x,p!#g22iMF̂ (n)~x,p!

5
2iGF

A2
~2p!24E d4y8d4kF̂(n)~x,p2k/2!

3@VeC ~y8!vê~y8!1LeC ~y8!lê~y8!#e2 ik(y82x).

~17!

g
- 4If flavor mixing exists,M is nondiagonal, its eigenvalues bein
the masses of free mass eigenstates.
1-3
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One could also derive the corresponding equations for
electron Wigner operatorF̂ i j

(e)(x,p). However, we will not
need these equations under the approximations discuss
this paper, and therefore we will omit them. Of course, if o
wants to investigate the next order to these approximat
the whole system of equations has to be taken into acco

We are now interested in introducing statistical avera
from the quantum operators defined above. These statis
averages are calledWigner functions@39#, and are the analo
gous to the distribution functions we need to describe ma
particles systems. These are, in general, complex functi
and also contain a Lorentz structure which will be discus
later. The electron and neutrino Wigner functions are
fined, respectively, as

Fi j
(e)~x,p![^F̂ i j

(e)~x,p!&

5~2p!24E d4ye2 ipy^eC j~x1y/2!êi~x2y/2!&,

~18!

Fi j
ab(n)~x,p![^F̂ i j

ab(n)~x,p!&

5~2p!24E d4ye2 ipy^nC j
b~x1y/2!nC i

a~x2y/2!&.

~19!
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Here, the symbol̂Â& means the average of a given qua

tum operatorÂ over a basis of quantum states which a
compatible with the macroscopical knowledge of the syste

The latter determines a given density matrix operatorr̂.
Thus the averaging is performed according to

^Â&[Sp$r̂Â%, ~20!

where Sp means the trace performed over the quantum b
Taking into account Eq.~15! one immediately obtains

F (n)†~x,p!5g0F (n)~x,p!g0, ~21!

which implies thatF̂ (n)(x,p) is an Hermitian matrix with
respect to generation indices.

By performing the average on Eqs.~16! and ~17! one
arrives at the following equations:
although
mations.
@g~]22ip !12iM #F (n)~x,p!52
iGFA2

~2p!4 E d4yd4kd4k8eik(y2x)@^V Tr„vF̂ (e)~y,k8!…F̂ (n)~x,p2k/2!&

1^L Tr„lF̂ (e)~y,k8!…F̂ (n)~x,p2k/2!&#, ~22!

F (n)~x,p!@g~]12ip !22iM #5
iGFA2

~2p!4 E d4yd4kd4k8e2 ik(y2x)@^F̂ (n)~x,p2k/2!V Tr„vF̂ (e)~y,k8!…&

1^F̂ (n)~x,p2k/2!L Tr„lF̂ (e)~y,k8!…&#. ~23!

In the latter equations, the symbol Tr means the trace in spin indices. From these equations one can show that,
Wigner functions do not behave as scalars, they obey equations of motion which are invariant under Lorentz transfor

Let us now introduce the electron-neutrinoA(ne) and neutrino-electronB(en) correlation functions:

Ai jkl
(ne)ab~x,x8,p,p8!5^F̂ i j

(n)ab~x,p!F̂kl
(e)~x8,p8!&2Fi j

(n)ab~x,p!Fkl
(e)~x8,p8!, ~24!

Bi jkl
(en)ab~x,x8,p,p8!5^F̂ i j

(e)~x,p!F̂kl
(n)ab~x8,p8!&2Fi j

(e)~x,p!Fkl
(n)ab~x8,p8!. ~25!

Then Eqs.~22! and ~23! can be rewritten as

@g~]22ip !12iM #F (n)~x,p!52
iGFA2

~2p!4 E d4yd4kd4k8eik(y2x)@L Tr„lB~y,x,k8,p2k/2!…1V Tr„vB~y,x,k8,p2k/2!…

1L Tr„lF (e)~y,k8!!F (n)~x,p2k/2!1V Tr„vF (e)~y,k8!…F (n)~x,p2k/2!], ~26!
1-4
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F (n)~x,p!@g~]12ip !22iM #5
iGFA2

~2p!4 E d4yd4kd4k8e2 ik(y2x)@Tr„A~x,y,p2k/2,k8!l…L1Tr„A~x,y,p2k/2,k8!v…V

1F (n)~x,p2k/2!L Tr„lF (e)~y,k8!…1F (n)~x,p2k/2!V Tr„vF (e)~y,k8!…#. ~27!
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The two-point correlation functions defined above are
independent. In fact, one can prove that they are related

Ai jkl
(ne)ab* ~x,x8,p,p8!5g lp

0 g j r
0 Bpqrs

(en)ba~x8,x,p8,p!gqk
0 gsi

0 ,
~28!

which can be written, in a short way, as5

A(ne)†~x,x8,p,p8!5B(en)~x8,x,p8,p!. ~29!

This implies that Eq.~27! is actually the Hermitian conjugat
of Eq. ~26!.

III. SYSTEM IN EQUILIBRIUM.
HARTREE APPROXIMATION

In order to obtain some insight into the physical mean
of the neutrino Wigner function we will, in this section, in
vestigate the situation when both the electrons and neutr
are in equilibrium, which we characterize by all statistic
magnitudes as being time-space translationally invari
This means that one-point functions cannot depend onx,
while two-point correlation functions can only depend on t
difference of coordinates, i.e., we assume that

F (e)~x,p!5F (e)~p!, ~30!

F (n)~x,p!5F (n)~p! ~31!

and

A(ne)~x,x8,p,p8!5A(ne)~x2x8,p,p8!,

B(en)~x,x8,p,p8!5B(en)~x2x8,p,p8!. ~32!

By defining the Fourier transform

Ã(ne)~k,p,p8!5~2p!24E d4xe2 ikxA(ne)~x,p,p8! ~33!

~analogously forB(en)), we obtain the equilibrium equation
for the neutrino Wigner function:

5For a matrix having both spin indices and generation indices
Hermitian conjugate is obtained by interchanging the genera
indices and then taking the Hermitian conjugate in spin space.
12501
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F pg2M2
GF

A2
E d4k8„L Tr@lF (e)~k8!#

1V Tr@vF (e)~k8!#…GF (n)~p!

5
GF

A2
E d4kd4k8@L Tr„lB̃(en)~k,k8,p1k/2!…

1V Tr„vB̃(en)~k,k8,p1k/2!…#, ~34!

F (n)~p!F pg2M2
GF

A2
E d4k8„Tr@lF (e)~k8!#L

1Tr@vF (e)~k8!#V…G
5

GF

A2
E d4kd4k8@Tr„Ã(ne)~k,p1k/2,k8!l…L

1Tr„Ã(ne)~k,p1k/2,k8!v…V#. ~35!

As before, Eq.~35! turns out to be the Hermitian conju
gate of Eq.~34!. This set of equations is obviously not com
plete, and one should add the equations which are satis
by the correlation functions in looking for such a comple
set. However, in doing so there automatically appearthree-
point correlation functions. This procedure can be infinite
continued, so that one obtains, instead of a closed set
infinite hierarchysimilar to the BBGKY~after Bogoliubov-
Born-Green-Kirkwood-Yvon! hierarchy of classical system
@40,41#. For classical systems, one usually truncates this
finite chain by neglecting correlations of order higher than
given one, usually by showing that higher orders corresp
to more rapid variations in space and time. The next s
consists then in incorporating perturabatively the next-or
correlations. We will use here the analogy with the classi
situation, and will first examine the situation at the lowe
order, i.e., when all kind of correlations are neglected. Su
approximation is commonly referred to as theHartree ap-
proximation.As we will show, the neutrino dispersion rela
tions which arise from this approximation correspond
modifications of the neutrino propagator at the one-lo
level.

The Wigner function of electrons in equilibrium can b
calculated using standard techniques. Following@42# one has

F (e)~p!5~2p!23d~p22me
2!@u~p0! f e

1~p!

1u~2p0! f e
2~p!#~gp1me!, ~36!

ts
n
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M. SIRERA AND A. PÉREZ PHYSICAL REVIEW D59 125011
with me the electron mass,p0 the timelike component of the
electron four-momentump and u(x) the step function~a
similar calculation is shown in Appendix A in the case
neutrinos!. The functionsf e

1(p) and f e
2(p) are the Fermi-

Dirac occupation numbers of electrons and positrons, res
tively, with definite momentum and polarization. In th
frame where the matter fluid is at rest, they read as6

f e
6~p!5

1

eb(E7me)11
~37!

@whereE5ApW 21me
2, me is the electron chemical potentia

and b the inverse temperature~we set the Boltzmann con
stantkB51)]. We can nowcalculate the traces and integral
appearing in Eqs.~34!,~35!. After some algebra, it is easil
obtained

Tr E d4klmF (e)~k!5H Tr E d4kl0F (e)~k!5gvn,

Tr E d4kl iF (e)~k!50, i 51,2,3.

~38!

Analogously

Tr E d4kvmF (e)~k!5H Tr E d4kv0F (e)~k!5g̃vn,

Tr E d4kv iF (e)~k!50, i 51,2,3.

~39!

Let us now define the matrix~in flavor space!:

F5S Ṽ 0

0 Vn
D , ~40!

where Vn5A2GFgvn is the effective potential for neutra
currents, andṼ5A2GFg̃vn the corresponding potential fo
charged plus neutral currents, withn54*d4k(2p)23d(k2

2me
2)„u(p0) f e

1(k)1u(2p0) f e
2(k)…k0[ne2nē the electron

~minus positron! number density. With these notations, a
neglecting correlations, Eq.~34! can be cast under the form

Fgp2M2g0
1

2
~12g5!FGF~p!50 ~41!

~since electrons have been integrated out, the neutrino su
script in Wigner functions will be omitted in what follows, i
order to make the notations simpler!. It is easily recognized
in Eq. ~41! the appearance of the left-handed chirality p
jector PL5 1

2 (12g5), as a consequence of left-handed int
actions. Let us also introduce the right-handed projectorPR

6Making the hypothesis that matter is at rest is equivalent to c
sidering a particular Lorentz frame such that the fluid four-veloc
is um5(1,0,0,0). Results in other frames can be obtained by res
ing the four-velocityum, as discussed in@30#.
12501
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51
2(11g5). With the help of these two projectors, one c

define the following components of the neutrino Wign
function:

FL5PLFPR ,

FR5PRFPL ,

FRL5PRFPR ,

FLR5PLFPL . ~42!

If we applyPL andPR on the left and right of Eq.~41! we
arrive at the set of equations:

gpFRL2MFL50,

gpFLR2MFR2g0FFLR50,

gpFR2MFLR50,

gpFL2MFRL2g0FFL50. ~43!

By combining the above equations, one finally arrives

~p22M22gpg0F!FL~p!50, ~44!

~p22M22g0pgMFM 21!FR~p!50. ~45!

An important remark must be made. We are here con
ering a hypothetical situation where neutrinos had ti
enough to equilibrate with the matter background. Under t
assumption, right-handed neutrinos can be produced by
ferent mechanisms, such as spin-flip or pair producti
However, production rates are suppressed by a factormn /E,
whereE is the neutrino energy andmn its mass. In the as-
trophysical scenarios we are considering, the production
of right-handed neutrinos is small, and therefore they can
neglected. We then will concentrate on the left-handed co
ponentFL(p). Consistently with this approximation, neutr
nos will be treated under the extreme relativistic lim
mn /E!1. This will imply that the neutrino field can be con
sidered, approximately, as consisting on negative-heli
neutrinos and positive-helicity antineutrinos. For Wign
functions, this is shown in Appendix B, where the Wign
function will be explicitly calculated in the noninteractin
case.

The dispersion relation obtained from Eq.~44! can be
diagonalized, and one obtains the well-known expressi
for masses and mixing angles in matter~see Appendix B!.

IV. NONEQUILIBRIUM SYSTEM.
TRANSPORT EQUATION

In this section, we investigate the evolution of neutrin
when deviations from equilibrium situations arise. More p
cisely, we will consider that neutrinos are created and pro
gate through the matter background. This implies that E
~30!–~32! will not be imposed, and therefore time and spat
variations have to be considered. This represents an a
tional difficulty in solving the system of equations fo

-

r-
1-6
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Wigner and correlation functions. For the moment, we w
only consider a simple case, where correlations are
glected. This will serve us to investigate the possibilities
Wigner function techniques in deriving neutrino transp
equations, and will allow in the future to study more com
plicated frameworks. As we will see in this section, the eq
tions arising in this context are appropriate to deal with n
trino propagation and flavor conversion in the Sun.

We return to Eq.~26!, and assume that electrons can
locally characterized by their temperature and chemical
tential, in such a way that Eq.~36! is still valid.

By performing the same procedure as in Eq.~44!, we can
derive an equation forFL(x,p), which is now

@h24~p22M2!24ipm]m12iF~x!gmg0]m

14F~x!gmpmg012igm
„]mF~x!…g0#FL~x•p!50.

~46!

The next step is achieved by decomposing the comp
Wigner functionF(x.p) into the Dirac algebra. By using th
chirality projectors, as in Eq.~42! one can writeFL(x,p)
under the form

FL~x,p!5
1

2
~12g5! f Lm~x,p!gm, ~47!

where f Lm(x,p) is a matrix in flavor space,7 and transforms
as a Lorentz vector. If the left-handed projectorPL is used
again, we see thatf Lm(x,p) can be expressed as

f L
m,ab~x,p!5

1

2
Tr@FL

ab~x,p!gm#

5
1

2
~2p!24E d4ye2 ipyK nC L

bS x1
1

2
yD

3gmn̂L
aS x2

1

2
yD L . ~48!

In the latter equation,n̂L is the left-handed component o
the neutrino field. We next analyze the equation of motion
f Lm(x,p). In order to do this, we substitute Eq.~47! into Eq.
~ 46!. After some algebra, we obtain the equations

2
1

4
h f L

01~p22M2! f L
02F~x!~p0f L

01pW • fWL!

1 ipm]m f L
02

i

2

]

]t
„F~x! f L

0
…1

i

2
¹W „F~x!• fWL…50,

~49!

7We notice, as a consequence of Eq.~21!, that f Lm(x,p) is a
Hermitian matrix.
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2
1

4
h fWL1~p22M2! fWL2F~x!~p0fWL1pW f L

0!1
1

2
¹W

3„F~x! fWL…ipm]m fWL2
i

2

]

]t
„F~x! fWL…

1
i

2
¹W „F~x! f L

0
…1 iF~x!pW 3 fWL50. ~50!

Equations~49! and ~50! are the basic transport equation
to be solved on a general situation, with the help of app
priate boundary conditions. We will investigate the cons
quences of this set of equations in a future work. For
moment, as a test, we will show that, under the circu
stances usually considered when the MSW is studied,
reproduce the known equations for this effect.

V. MSW EFFECT

We consider neutrinos moving along a straight line~for
example, the radial direction of the star!. According to this,
we assume thatfWL is parallel topW . This allows us to write

fWL~x,p![pW f ~x,p!, ~51!

where f (x,p) is a new function. We also introduce, for con
venience,

f L
0~x,p![upW ug~x,p!. ~52!

Next, we assume that neutrinos are ultra-relativistic, and
the effective potentialsṼ andVn in Eq. ~40! satisfy

Ṽ,Vn!p0;upW u;1 MeV. ~53!

The last condition will concern the characteristic scale
spatial and time variations of the neutrino distribution fun
tion. This scale has a macroscopic sizeR, at least of the order
of 1 Km, or even more~in the case of the resonant zone
the Sun, for example!. In this case, we can make the follow
ing estimate:

] f L
m

]t
;u¹W f L

mu;
f L

m

R
. ~54!

WhenR51 Km, then 1/R;10216 MeV. If we are inter-
ested on variations of the distribution function on the scaleR,
then, together with hypothesis Eq.~53! we can simplify Eqs.
~49! and ~50! to give

@p22M22~p01upW u!F~x!#~ f 1g!1 ipm]m~ f 1g!50,

@p22M22~p02upW u!F~x!#~ f 2g!1 ipm]m~ f 2g!50.
~55!

In the latter equations,f (x,p) andg(x,p) areHermitianma-
trices ~in flavor space!. We can perform alocal transforma-
tion for each of them in such a way that both become di
onal ~and therefore real!. In this way, one can easily chec
1-7
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that two possibilities are open for the system Eq.~55! to have
nontrivial solutions. The two possibilities are

det@p22M22~p06upW u!F~x!#50. ~56!

We recognize in Eq.~56! the dispersion relations for neutr
nos and antineutrinos, as described in Appendix B within
Hartree equilibrium hypothesis. However, quantities in
latter equation depend on the coordinatex. This means that
the neutrino mass eigenstates can be obtained locally f
the Hartree approximation@which gives the same as th
Mikheyev-Smirnov-Wolfenstein~MSW! effect#. We then
have, for neutrinos, det@p22M22(p01upW u)F(x)#50. This
implies the conditionf (x,p)5g(x,p). Therefore, f L

0(x,p)

5upW u f (x,p).p0f (x,p), and we conclude that

f L
m~x,p!.pm f ~x,p! ~57!

within the same approximation. Finally, we have for Eq.~47!

FL~x,p!5
1

2
~12g5!pmgm f ~x,p!, ~58!

where f (x,p), for ultrarelativistic neutrinos, obeys the fo
lowing equation of motion:

@p22M222F~x!p0# f 1 ipm]m f 50. ~59!

We have discussed above the possibility of making a lo
transformation which diagonalizesf (x,p). We have ex-
ploited the fact that, under these circumstances, it becom
real matrix. However, from the physical point of view, it
more convenient to introduce a different local transform
tion, in such a way that the factor inside the brackets in
latter equation becomes diagonal; i.e., we consider a uni
transformation given by the matrixUM(x)

f̃ 5UM
† f UM ~60!

such that

UM
† ~x!@~p22M2!22F~x!p0#UM~x!5p22M̃2~x!,

~61!

whereM̃2(x)[UM
† (x)@M212F(x)p0#UM(x) is a diagonal

matrix, which contains the local mass eigenvalues:8

M̃2~x!5S M̃1
2~x! 0

0 M̃2
2~x!

D . ~62!

On the other hand, one finds

UM
† ~x!„i ]mpm f ~x,p!…UM~x!

5 i ]mpm f̃ ~x,p!2@ f̃ ~x,p!,UM
† ~x!i ]mpmUM~x!#. ~63!

8We use a tilde to represent magnitudes in the interacting eig
states basis, as mentioned in Sec. II.
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Thus the equation of motion reads

i ]mpm f̃ ~x,p!1„p22M̃2~x!… f̃ ~x,p!

2 i @ f̃ ~x,p!,UM
† ~x!pm]mUM~x!#50. ~64!

Let us write explicitly the matricesf̃ (x,p) andUM(x) by
defining

UM~x![S cosuM~x! 2sinuM~x!

sinuM~x! cosuM~x!
D , ~65!

f̃ ~x,p![S f̃ 11~x,p! f̃ 12~x,p!

f̃ 21~x,p! f̃ 22~x,p!
D , ~66!

where the functionsf̃ 11(x,p) and f̃ 22(x,p) are real, while
f̃ 12(x,p) and f̃ 21(x,p) are the complex conjugate of one a
other. After substituting Eqs.~62!, ~65!, and ~66! into Eq.
~64!, one obtains

ipm]m f̃ 11~x,p!1„p22M̃1
2~x!… f̃ 11~x,p!

2 ipm]muM~x!„ f̃ 12~x,p!1 f̃ 21~x,p!…50, ~67!

ipm]m f̃ 12~x,p!1„p22M̃1
2~x!… f̃ 12~x,p!

1 ipm]muM~x!„ f̃ 11~x,p!2 f̃ 22~x,p!…50, ~68!

ipm]m f̃ 21~x,p!1„p22M̃2
2~x!… f̃ 21~x,p!

1 ipm]muM~x!„ f̃ 11~x,p!2 f̃ 22~x,p!…50, ~69!

ipm]m f̃ 22~x,p!1„p22M̃2
2~x!… f̃ 22~x,p!

1 ipm]muM~x!„ f̃ 12~x,p!1 f̃ 21~x,p!…50. ~70!

A remark is in order. As can be seen from the abo
equations, it is not possible, in a general situation out
equilibrium, to perform a transformation that makes both
neutrino Wigner functionand the mass matrix diagonal
However, local mass eigenstates can be used as a u
physical basis to simplify the equations, as done in this s
tion.

We can write the latter system of equations in a mo
familiar way. By taking the real part on the first and last on
we readily arrive at the conditions

@p22M̃1
2~x!# f̃ 11~x,p!50,

@p22M̃2
2~x!# f̃ 22~x,p!50, ~71!

which imply that f̃ 11(x,p)@ f̃ 22(x,p)# is nonvanishing only
whenp25M̃1

2(x) @p25M̃2
2(x)#. Similarly, from the two re-

maining equations it can be easily deduced that the funct
f̃ 12(x,p) and f̃ 21(x,p) have to vanish unless the conditio
p25 1

2 @M̃1
2(x)1M̃2

2(x)# is fulfilled. Therefore, in the equa
tions of motion for these functions we can substitute

n-
1-8



w

ix

is

e

a

th

o
s

on
ted.

ua-

e

o
ter-

r
be

n
ults

ro-

ake
re
mil-

to

er
sent
ted.
ve

lts

ino
an

tic
to
os-
he
as
is-
u-

s,

e

RELATIVISTIC WIGNER FUNCTION APPROACH TO . . . PHYSICAL REVIEW D 59 125011
p22M̃1
2~x!→

1

2
D~x!,

p22M̃2
2~x!→2

1

2
D~x!, ~72!

where D(x)[M̃2
2(x)2M̃1

2(x) is the in-medium neutrino
mass difference. Furthermore, in the ultrarelativistic case,
can approximate the operatorpm]m in all the Eqs.~67!–~70!
by

pm]m.upW u
]

]t
1upW u

]

]x
5upW uD. ~73!

We have definedD5]/]t1]/]x. After some manipula-
tions, Eqs.~67!–~70! can be cast under the simple matr
form

iD f̃ ~x,t !5@ f̃ ~x,t !,H̃~x!#. ~74!

Here

H̃~x!5S D~x!

4upW u
2 iuM8 ~x!

iuM8 ~x! 2
D~x!

4upW u
D ~75!

is the effective Hamiltonianin the mass eigenstates bas
anduM8 (x)5(d/dx)uM(x). Equation~74! can also be written
in the flavor basis, if we undo the transformation introduc
in Eq. ~60!, with the definitions

f ~x,t ![S f ee~x,t ! f em~x,t !

f me~x,t ! f mm~x,t ! D 5UM~x! f̃ ~x,t !UM
† ~x!.

~76!

After a straightforward calculation, we arrive to the equ
tion

iD f ~x,t !5@ f ~x,t !,H~x!#, ~77!

where

H~x!5S a~x! b

b 2a~x!
D ~78!

is the Hamiltonian in the flavor basis, and we introduced
notations

a~x!5„D0cos 2u2A~x!…/4upW u,

b5D0sin 2u/4upW u. ~79!

Here, A(x)52upW uA2GFn(x) is the induced mass due t
charged currents,D05m2

22m1
2 is the vacuum neutrino mas

difference andu the vacuum mixing angle.
From the system of equations~77!, we first obtain that

iD @ f ee~x,t !1 f mm~x,t !#50, ~80!
12501
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which implies that the total number of electron plus mu
neutrinos is conserved during the propagation, as expec
We can then writef ee(x,t)1 f mm(x,t)5K, whereK is con-
stant during the propagation:DK50. By manipulating the
equations, one can also derive a third-order differential eq
tion for f ee(x,t), which reads as

aD3f ee~x,t !2a8D2f ee~x,t !14a~a21b2!D f ee~x,t !

24a8b2S f ee~x,t !2
K

2 D50, ~81!

wherea85(d/dx)a. The latter equation coincides with th
one derived by Mikheyev and Smirnov@15# to describe the
evolution of the survival probability of an electron neutrin
in a nonconstant density medium. This agrees with our in
pretation off ee(x,t) as giving the distribution function~pro-
portional to the number density for a given momentum! of
electron neutrinos, and analogously forf mm(x,t) as the dis-
tribution function of muon neutrinos. All known results fo
the MSW effect within the situation considered here can
reproduced from the above equations.

Equation~77! defines the evolution of flavor distributio
functions, and can be compared to the corresponding res
derived from other treatments. As we mentioned in the int
duction, there are~to our knowledge! two different ap-
proaches to neutrino propagation in dense media which m
use of some kind of distribution functions. Both methods a
based on perturbation techniques, assuming that the Ha
tonian can be separated into two terms:H5H01H int , with
H int considered as a small perturbation. They both arrive
an equation with a term which is second order inGF and
corresponds to a nontrivial~i.e., nondiagonal in flavor! Bolt-
zmann collision integral of neutrinos interacting with oth
particles in the background. This second-order term is ab
in our approach, at least when correlations are neglec
Within this approximation, and neglecting small derivati
terms,9 the evolution equations of Ref.@25# coincides with
Eq. ~77!. A similar comparison can be made using the resu
derived in@27,28#.

VI. CONCLUSIONS

In this paper we have studied propagation of two neutr
species with flavor oscillations in dense media. We used
scheme which is based on the introduction of relativis
Wigner functions and correlation functions. Our aim is
develop relativistic kinetic equations, and to analyze the p
sibility that such approach will correctly describe both t
relativistic dispersion relations of in-medium neutrinos,
well as the appropriate evolution equations for neutrino d
tribution functions. This allows us to treat in-medium ne
trino masses and kinetic equations on an equal footing.

By writing the equations of motion for Wigner operator

9As discussed in@25#, these terms should only be kept in th
equations when strong inhomogeneities of sizeL are present, such

that upW uL;1. See also@43# and @44#.
1-9
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and taking statistical averages, one arrives to an infi
chain of equations of the Bogoliubov-Born-Gree
Kirkwood-Yvon ~BBGKY! hierarchy-type. This infinite
chain has to be broken at some level in order to obtai
solution, and we have considered here the lowest-leve
approximation, which consists in neglecting correlations~the
so-called Hartree approximation!. We have first examined
the situation in equilibrium, which reproduces the we
known results for relativistic dispersion relations@23#. Next,
we assumed that the electron background is in equilibriu
although its density needs not to be constant, and neutr
propagate out of equilibrium. This gives rise to a set of
netic equations which have to be solved by taking the app
priate boundary conditions.

In order to obtain some insight into the above equatio
we have considered with some detail the usual MSW s
nario, in which neutrinos are ultrarelativistic, and the scale
space-time variations in distribution functions have mac
scopic values~such as flavor conversion in the Sun or new
born neutron stars!. In this case, our system of equatio
reduce to the results obtained by other authors with per
bation techniques@25,27# when only the first-order correc
tion is considered. However, none of these methods has
showed to incorporate the correct neutrino dispersion r
tions.

Now the question which arises is wether the inclusion
correlations into our scheme will lead to the same results
in the previous references also for the second-order te
Indeed, this seems to be the case, since correlations turn
to be proportional to the coupling constantGF , and substi-
tution into the BBGKY hierarchy will give corrections of th
order GF

2 , as one can see from Eqs.~26! and ~27!. A more
detailed study of the kinetic equations developed here
elucidate this question and, perhaps, give rise to new p
nomena in the physics of neutrinos in dense media.

Another possible future application of the formalism d
veloped here is the inclusion of neutrino self-interactio
mentioned in Sec. II. Because of the close analogy of eq
tions of motion to Boltzmann-like equations, it represent
suggestive alternative to usual methods. As we already m
tioned, however, there exists a problem to find a consis
solution to these equations, since propagating particles
also in the background itself. Following the perturbative c
relation scheme discussed above, one should be able t
corporate the correct dispersion relations in both the kin
equations and evaluation of the neutrino effective mas
12501
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and compare with results obtained by other authors us
different techniques@34–38,24#. This will be the subject of a
separate work.
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APPENDIX A: FREE SYSTEM WITH ONE
AND TWO GENERATIONS

In this appendix we give explicit formulas for the non
interacting neutrino Wigner functions. We first consider t
case with only one generation, and we will generalize th
results to the case of two neutrino generations with a non
agonal mass matrix. Neutrinos are assumed to be in equ
rium. Of course, equilibrium cannot be reached in the n
interacting case, but one can imagine a situation wher
very weak interaction is added in order for the system
reach equilibrium. This hypothetical interaction can then
turned off without changing the equilibrium properties of t
system.

We start with one generation of free neutrinos in equil
rium. The Wigner function then verifies the equations

~gp2m!F (n)~p!50,

F (n)~p!~gp2m!50, ~A1!

where m is the neutrino mass andF (n)(p) the equilibrium
Wigner function. As in previous cases, the above equati
are the Hermitian conjugate of one another. We next mu
ply the first one by (gp1m), which gives

~p22m2!F (n)~p!50 ~A2!

and this implies that the Wigner function vanishes whene
the conditionp22m250 is not fulfilled. We introduce the
grand canonical density matrix operator

r̂5Z21e2b(Ĥ2mL̂); Z5Tr e2b(Ĥ2mL̂), ~A3!

whereĤ is the Hamiltonian,L̂ the lepton number andm the
neutrino chemical potential.

We obtain, after quantization of the neutrino field
Fi j
(n)~p!5~2p!24E d4ye2 ipy^nC j~x1y/2!n̂ i~x2y/2!&

5~2p!24E d4ye2 ipy~2p!23E d3kW (
l56

@^N̂l~kW !&ū j
l~kW !ui

l~kW !eiky2^NC l~kW !&v̄ j
l~kW !v i

l~kW !e2 iky#

5~2p!23E d3kW (
l56

@^N̂l~kW !&ū j
l~kW !ui

l~kW !d~p2k!2^NC l~kW !&v̄ j
l~kW !v i

l~kW !d~p1k!#, ~A4!
1-10
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where N̂l(kW ) @NC l(kW )# is the number operator for neutrino
~antineutrinos! with momentumkW and helicityl.10 The no-
tations ul(kW ),vl(kW ), . . . for spinors andâ†(kW ),âl(kW ), . . .
for creation and destruction operators have their usual m
ing. The above averages can be calculated using stan
techniques, giving

^N̂l~kW !&5Tr„r̂âl
†~kW !âl~kW !…5

1

eb(Ek2m)11
[ f ~k!,

~A5!

^NC l~kW !&5Tr„r̂b̂l
†~kW !b̂l~kW !…5

1

eb(Ek1m)11
[ f̄ ~k!,

~A6!

with Ek5Am21kW2. Let us define the matrices

S i j
l ~kW !5ū j

l~kW !ui
l~kW !,

S̄l~kW !52 v̄ j
l~2kW !v̄ i

l~2kW !. ~A7!

More explicitly, if we introduce a coordinate system
such a way thatkW5k(sinu cosf,sinu sinf,cosu) one has

S1~kW !5
1

2Ek
S m 2Ek2k

2Ek1k m Dm~kW !, ~A8!

S2~kW !5
1

2Ek
S m 2Ek1k

2Ek2k m D r~kW !, ~A9!

S̄1~kW !5
1

2Ek
S m Ek2k

Ek1k m Dm~kW !, ~A10!

S̄2~kW !5
1

2Ek
S m Ek1k

Ek2k m D r~kW !, ~A11!

where

m~kW !5S cos2
u

2

1

2
sinue2 if

1

2
sinueif sin2

u

2

D ~A12!

andr(kW )5m(2kW ). By substituting into Eq.~A4! we obtain,
after some algebra,

F (n)~p!5~2p!232Epd~p22m2! (
l56

@u~p0! f ~p!Sl~pW !

1u~2p0! f̄ ~p!S̄l~pW !#. ~A13!

10Operators will be considered in normal order.
12501
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By performing the sum over helicities, we finally arrive
the expression

F (n)~p!5~gp1m! f W~p!, ~A14!

where the scalar functionf W(p) is given by

f W~p!5
1

4m
Tr@F (n)~p!#

5~2p!23d~p22m2!@u~p0! f ~p!1u~2p0! f̄ ~p!#.

~A15!

The generalization of the above formulas to more th
one neutrino flavor is done by using mass eigenstates a
intermediate step. As defined in Sec. II, we use a prime
represent such states. In the case of noninteracting neutr
they arise from diagonalization of the free mass matrixM.
The equation of motion for the neutrino Wigner function
now, in the flavor basis

~gp2M !F (n)~p!50. ~A16!

The free mass eigenstates are related to the flavor s
through a matrix

U[S cosu 2sinu

sinu cosu D ~A17!

in the way

n̂~x!5U n̂8~x! ~A18!

and one has

M5UM 8U†, ~A19!

whereM 8 is the eigenvalues matrix

M 85S m1 0

0 m2
D . ~A20!

The Wigner function in the mass eigenstates ba
F8(n)(p) is related toF (n)(p) through

F (n)~p!5UF8(n)~p!U† ~A21!

and will satisfy the diagonal equation

~p22M 82!F8(n)~p!50. ~A22!

By quantizing the massive fieldsn̂8a(x)(a51,2 for two
generations! we obtain the result
1-11



M. SIRERA AND A. PÉREZ PHYSICAL REVIEW D59 125011
Fi j8
(n)ab~p!5~2p!24E d4ye2 ipy^nC j8

b~x1y/2!n̂ i8
a~x2y/2!&

5~2p!23E d3kW (
l56

@^N̂l
a~kW !&ū j

a,l~kW !ui
a,l~kW !d~p2k!

2^NC l
a~kW !&v̄ j

a,l~kW !v i
a,l~kW !d~p1k!#da,b a,b51,2, ~A23!
he

ar

l
E

r.
E
b-

on
m
a-
le
ith

E

tin

q.
tion

to
with similar notations as before. The superscripta has been
added to label different mass eigenstates. In this basis, t
the Wigner function is diagonal, as expected from Eq.~A22!.
The Wigner functions appearing in the latter equation
given by

F8(n)11~p!5~2p!23d~p22m1
2!@u~p0! f 1~p!

1u~2p0! f̄ 1~p!#~gp1m1!,

F8(n)22~p!5~2p!23d~p22m2
2!@u~p0! f 2~p!

1u~2p0! f̄ 2~p!#~gp1m2! ~A24!

and we introduced the notations

f a~p!5
1

eb(Ep
a

2m)11
, ~A25!

f̄ a~p!5
1

eb(Ep
a

1m)11
~A26!

(a51,2) with Ep
a[Ama

21pW 2. We notice that the chemica
potential is the same for both generations of neutrinos in
~A25!. This is so because, in our model, there is only
conserved current: the electron plus muon lepton numbe
similar comment can be made regarding antineutrinos,
~A26!. The Wigner function in the flavor basis is then o
tained from Eq.~A21!.

APPENDIX B: NEUTRINO MASSES AND WIGNER
FUNCTIONS IN THE HARTREE APPROXIMATION

We now discuss with some detail the dispersion relati
and neutrino masses which arise from the equations of
tion of the Wigner function within the Hartree approxim
tion. In order to simplify the notations as much as possib
and to obtain insight into the problem as well, we start w
one neutrino flavor~let us consider electron neutrinos!. Then,
Eq. ~41! takes the simpler form

Fgp2m2g0
1

2
~12g5!ṼGF (n)~p!50. ~B1!

Dispersion relations are the necessary conditions for
~B1! to have solutions other than the trivial oneF (n)(p)50.
One can compute the determinant for this equation by set
p5(p0,0,0,pz). The result then is
12501
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g

detFgp2m2g0
1

2
~12g5!ṼG

5@p0
22pz

22m22~pz1p0!Ṽ#

3@p0
22pz

22m21~pz2p0!Ṽ#. ~B2!

By equating to zero this determinant, and solving forp0,
one obtains four solutionsp05E1 , p05E2 , p052Ē1 and
p052Ē2 , where

E1[
Ṽ

2
1AS Ṽ

2
2pzD 2

1m2, ~B3!

E2[
Ṽ

2
1AS Ṽ

2
1pzD 2

1m2, ~B4!

Ē1[2
Ṽ

2
1AS Ṽ

2
2pzD 2

1m2, ~B5!

Ē2[2
Ṽ

2
1AS Ṽ

2
1pzD 2

1m2. ~B6!

In order to identify the above results, we start from E
~B1! and use the projection operators to obtain an equa
for FL

(n)(p), as in Sec. III. One then arrives at

~p22m22gpg0Ṽ!FL
(n)~p!50. ~B7!

We take into account the following identity:

gpg05S p01pW •sW 0

0 p02pW •sW
D . ~B8!

This means that the positive-helicity componentFL
1(p) has

to satisfy the relationship

@p22m22Ṽ~p02upW u!#FL
1~p!50. ~B9!

The solutions for the dispersion relationp22m22Ṽ(p0

2upW u)50 are given byp05E1 and p052Ē1 . One can
also make an analogous study forFL

2(p), which givesp0

5E2 andp052Ē2 as possible solutions. This allows us
interpret Eqs.~B3!–~B6! as corresponding to neutrinos~E!

and antineutrinos (Ē) of positive and negative helicity~sub-
1-12
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indexes1 and 2, respectively!. We now concentrate on
ultrarelativistic neutrinos, and consider densities as occu
normal or compact stars. Under these conditions, we
neglect terms such asṼupW u and m2 by comparison toupW u2
and, in this way, the dispersion relations give us the neu
nos effective masses for each degree of freedom, which

M 1
2 5m2, ~B10!

M 2
2 5m212ṼupW u, ~B11!

M̄ 1
2 5m222ṼupW u, ~B12!

M̄ 2
2 5m2. ~B13!

We used the same notations as for the energies. In t
equations we see that positive polarization neutrinos
negative polarization antineutrinos behave, approximately
free particles.
e

nt
r-

d

n
in
ge

,
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The above results can be generalized to the case of
neutrino flavors in a straightforward way. Let us start fro
Eq. ~44! and transform it to the mass eigenstates basis
vacuum, as discussed in Appendix A for the noninteract
case. We then arrive at the following equation:

~p22M 822gpg0F8!FL8
(n)~p!50. ~B14!

Following the discussion we made above for one gene
tion, we readily obtain the equation for the negative-helic
component~we replacep0 to E2 for neutrinos!

„p22M 822~E21upW u!F8…FL
28(n)~p!50. ~B15!

The latter equation suggests us to define aneffective mass
matrixM2 as follows:

M2
2 [M 821~E21upW u!F8. ~B16!

If flavor mixing exists, this matrix is nondiagonal. More e
plicitly, we find
M2
2 5S ~Vn1V cos2u!~E21upW u!1m1

2 2V sinu cosu~E21upW u!

2V sinu cosu~E21upW u! ~Vn1V sin2u!~E21upW u!1m2
2D . ~B17!
ded
he
on.
e

The corresponding dispersion relation is then

det~p22M2
2 !50. ~B18!

Equations~B16! and~B18! can be used to obtain theexact
energy levels of neutrinos~and antineutrinos! as a function
of the neutrino momentum. In the ultrarelativistic limit, on
can approximate

M2
2 .S An 0

0 An
D 1S A cos2u1m1

2 2A sinu cosu

2A sinu cosu A sin2u1m2
2 D .

~B19!

Here,A[2upW uV is the induced mass due to charged curre
and An[2upW uVn the analogous magnitude for neutral cu
rents. We first consider the first term on the second han
Eq. ~B19! in order to find the eigenvalues ofM2

2 ~following
the notations introduced in Sec. II, we represent the diago
form ofM2 by M̃ ). Since neutral currents are diagonal
flavor, they can be added at the end. After some trivial al
bra, the mass eigenvaluesM̃1 andM̃2 are given by

M̃1,2
2 5

1

2
~A1S!7

1

2
@~D0 cos 2u2A!21D0

2 sin2 2u#1/21An ,

~B20!

whereS[m2
21m1

2 and D0[m2
22m1

2. One can also obtain
by diagonalizingM2

2 the in-medium mixing angleuM . The
well-known result
s

of

al

-

sin2 2uM5
D0

2 sin2 2u

~D0 cos 2u2A!21D0
2 sin2 2u

~B21!

is then reproduced.
The procedure discussed in Appendix A can be exten

in order to construct the neutrino Wigner functions in t
equilibrium state described by the Hartree approximati
We will only give the final result. As before, it is illustrativ
to consider first the case of one generation~for example,
electron neutrinos!. One obtains

F (n)~p!5F2~p!1F1~p!1F̄2~p!1F̄1~p!, ~B22!

where

F2~p!5~2p!232Epd~p22M 2
2 ! f ~p!S2~pW !, ~B23!

F1~p!5~2p!232Epd~p22M 1
2 ! f ~p!S1~pW !,

~B24!

F̄2~p!5~2p!232Epd~p22M̄ 2
2 ! f̄ ~p!S̄2~pW !,

~B25!

F̄1~p!5~2p!232Epd~p22M̄ 1
2 ! f̄ ~p!S̄1~pW !,

~B26!

and the effective masses are defined in Eqs.~B10!–~B13!.
The chiral left-handed componentFL

(n)(p), as defined in Eq.
~42! can be approximated by
1-13
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FL
(n)~p!.FL

2~p!1F̄L
1~p!

5~2p!232Ep@d~p22M 2
2 ! f ~p!SL

2~pW !

1d~p22M̄ 1
2 ! f̄ ~p!S̄L

1~pW !#. ~B27!

We have introduced the following definitions:

SL
2~pW ![PLS2~pW !PR.2S 0 0

1 0D r~pW !, ~B28!

S̄L
1~pW ![PLS̄1~pW !PR.S 0 0

1 0Dm~pW !,

SL
1~pW ![PLS1~pW !PR.0,

S̄L
2~pW ![PLS̄2~pW !PR.0.

The latter approximation holds for ultrarelativistic neutrino
Thus, in this approximation the field only contain two d
grees of freedom: neutrinos with negative helicity and
tineutrinos with positive helicity.

We now go to the case of two neutrino generations. As
the free case, the Wigner function will be diagonal if cons
ered in the interaction eigenstates basis

F̃ (n)ab~p!5S F̃ (n)11~p! 0

0 F̃ (n)22~p!
D . ~B29!

Moreover, each one of the diagonal components can be
ily obtained by taking into account the corresponding disp
sion relations. One then arrives to a set of equations sim
to Eqs.~B22!,~B23! for each one of the two diagonal com
ponents of the Wigner function. As in the case of one g
eration, we concentrate on the chiral left-handed compon
which is finally approximated by

F̃L
(n)ab~p!.F̃L

2ab~p!1 F̃̄L
1ab~p!

5~2p!232Epdab@d~p22M̃a
2! f a~p!SL

2~pW !

1d~p22 M̃̄ a
2! f̄ a~p!S̄L

1~pW !#, ~B30!
12501
.
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with a,b51,2. The functionsf a(p) and f̄ a(p) are the same
functions defined in Eqs.~A25! and ~A26!, but with the re-

placementma→M̃a . The two terms in the latter equatio
obey the equations

~gp2M̃ab!F̃L
2ab~p!50,

~gp2 M̃̄ ab! F̃̄L
1ab~p!50, ~B31!

whereM̃ab and M̃̄ abare the~diagonal! effective masses ma
trices for neutrinos and antineutrinos, and the matri

SL
2(pW ) and S̄L

1(pW ) have been given above. In order to co
struct the Wigner function in the flavor space, we perform
unitary transformationUM that is defined by the mixing
angle in materuM . In this way we have, for example,

FL
2ee~p!5cos2~uM !F̃L

211~p!1sin2~uM !F̃L
222~p!,

FL
2em~p!5FL

2me~p!

5sin~uM !cos~uM !@ F̃L
211~p!2F̃L

222~p!#,

FL
2mm~p!5sin2~uM !F̃L

211~p!1cos2~uM !F̃L
222~p!.

~B32!

APPENDIX C: NEUTRINO SELF-INTERACTIONS

In this appendix we briefly discuss how to incorpora
neutrino self-interactions into our formalism based
Wigner functions. We consider a neutrino field consisting
two ~electron and muon! neutrino generations, and we a
sume that this field only interacts with itself.

The Lagrangian is, therefore,
L̂~x!5 n̂̄~x!igm]mn̂~x!2 n̂̄~x!M n̂~x!2
GF

4A2
n̂̄~x!Vmn̂~x!n̂̄~x!Vmn̂~x!

2
GF

4A2
n̂̄~x!Lmn̂~x!n̂̄~x!Lmn̂~x!2

GF

2A2
n̂̄~x!Vmn̂~x!n̂̄~x!Lmn̂~x!, ~C1!

with the same notation as introduced in Sec. II. The equations of motion then read as
1-14
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igm]mn̂~x!2M n̂~x!2
GF

4A2
Vmn̂~x!n̂̄~x!Vmn̂~x!2

GF

4A2
n̂̄~x!Vmn̂~x!Vmn̂~x!2

GF

4A2
Lmn̂~x!n̂̄~x!Lmn̂~x!

2
GF

4A2
n̂̄~x!Lmn̂~x!Lmn̂~x!2

GF

2A2
Vmn̂~x!n̂̄~x!Lmn̂~x!2

GF

2A2
n̂̄~x!Vmn̂~x!Lmn̂~x!50 ~C2!

and

]mn̂̄~x!igm1 n̂̄~x!M1
GF

4A2
n̂̄~x!Vmn̂̄~x!Vmn̂~x!1

GF

4A2
n̂̄~x!Vmn̂~x!n̂̄~x!Vm1

GF

4A2
n̂̄~x!Lmn̂̄~x!Lmn̂~x!

1
GF

4A2
n̂̄~x!Lmn̂~x!n̂̄~x!Lm1

GF

2A2
n̂̄~x!Vmn̂̄~x!Lmn̂~x!1

GF

2A2
n̂̄~x!Vmn̂~x!n̂̄~x!Lm50. ~C3!

One obtains the following equation for the neutrino Wigner operator:

g@]F̂~x,p!22ipF̂~x,p!#12iMF̂ ~x,p!52~2p!24
iGF

2A2
E d4y8d4ke2 ik(x2y8)@VF̂~x,p2k/2!n̂̄~y8!Cn̂~y8!

1 n̂̄~y8!Fn̂~y8!LF̂~x,p2k/2!1 n̂̄~y8!Vn̂~y8!VF̂~x,p2k/2!1LF̂~x,p

2k/2!n̂̄~y8!Ln̂~y8!# ~C4!

and for its adjoint equation

@]F̂~x,p!12ipF̂~x,p!#g22i F̂ ~x,p!M

5~2p!24
iGF

2A2
E d4y8d4keik(x2y8)@ n̂̄~y8!Cn̂~y8!F̂~x,p2k/2!V1F̂~x,p2k/2!Ln̂̄~y8!Fn̂~y8!

1F̂~x,p2k/2!Vn̂̄~y8!Vn̂~y8!1 n̂̄~y8!Ln̂~y8!F̂~x,p2k/2!L#, ~C5!

where we defined the matricesC5V12L andF52V1L.
From this, one can take statistical averages to obtain the equations motion for Wigner functions, which turn out t

@g~]22ip !12iM #F~x,p!52~2p!24
iGF

A2
E d4y8d4kd4k8e2 ik(x2y8)@^VF̂~x,p2k/2!Tr CF̂~y8,k8!&

1^Tr CF̂~y8,k8!LF̂~x,p2k/2!&1^Tr VF̂~y8,k8!VF̂~x,p2k/2!&

1^LF̂~x,p2k/2!Tr LF̂~y8,k8!&# ~C6!

and the adjoint equation

F~x,p!@g~]12ip !22iM #5~2p!24
iGF

A2
E d4y8d4kd4k8eik(x2y8)@^Tr CF̂~y8,k8!F̂~x,p2k/2!V&

1^F̂~x,p2k/2!L Tr CF̂~y8,k8!&1^F̂~x,p2k/2!V Tr VF̂~y8,k8!&

1^Tr LF̂~y8,k8!F̂~x,p2k/2!L&#. ~C7!

The above equations contain the neutrino Wigner function in a highly nonlinear way. Physically, this corresponds to
that the propagating particles~neutrinos! also participate in the environment. However one can, in principle, follow
approach depicted in Sec. II for this problem.
125011-15
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