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Discontinuous behavior of perturbative Yang-Mills theories in the limit of dimensionsD˜2
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We calculate inD521e dimensions and in the light-cone gauge~LCG! the perturbativeO(g4) contribution
to a rectangular Wilson loop in the (t,x) plane coming from diagrams with a self-energy correction in the
vector propagator. In the limite→0 the result is finite, in spite of the vanishing of the triple vector vertex in
LCG, and provides the expected agreement with the analogous calculation in the Feynman gauge.
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I. INTRODUCTION

SU(N) Yang-Mills ~YM ! theories exhibit peculiar and
interesting features in 111 dimensions (D52). The reduc-
tion from four to lower dimensions entails indeed treme
dous simplifications, so that many problems can be fac
and often exactly solved@1–3#. For instance exact evalua
tions of vacuum to vacuum amplitudes of Wilson loop o
erators, that, for a suitable choice of contour and in a p

ticular limit, provide the potential between a staticqq̄ pair
@4–6#, can be obtained.

YM theories without fermions in 111 dimensions are
considered free theories, apart from topological effects. T
feature looks apparent when choosing an axial gauge. H
ever, either when matter fields are introduced, or in Wils
loop calculations, the perturbative (111)-dimensional
theory exhibits dramatic infrared~IR! singularities which
need to be regularized. Unfortunately the results appear t
dependent on such regularization procedures, even w
they concern gauge invariant quantities@7#.

In the light cone gauge~LCG! the ~IR! singular behavior
is particularly apparent in the vector propagator, where
gauge pole conspires with the usual Feynman singularit
produce a double pole@8#.

A Cauchy principal value~CPV! prescription for this IR
singularity has often been advocated@9#. It emerges quite
naturally if the theory is quantized on the light cone surfa
x150 @10#.

On the other hand, such a recipe is at odds with Wic
rotation. In Ref.@11# a causal prescription for the doub
pole has been proposed, which is nothing but the one s
gested years later by Mandelstam and Leibbrandt~ML ! @12#,
when restricted to 111 dimensions. This prescription fol
lows from equal-time quantization@13# and is mandatory in
order to renormalize the theory in 113 dimensions@14,10#.

In view of the above-mentioned results and of the fact t
‘‘pure’’ YM theories do not immediately look free in Feyn
man gauge, a systematic investigation has been undert
to clarify their properties when the two dimensional pictu
0556-2821/99/59~12!/125005~6!/$15.00 59 1250
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is reached starting from higher dimensions.
Since no exact solutions are available beyondD52, the

investigation has been focused on perturbative calculatio
looking for consistency checks, in particular testing t
gauge invariance of the theory which holds order by orde
the coupling constant expansion.

Recalling that perturbativeS-matrix elements cannot b
consistently defined in non-Abelian gauge theories, owing
their ~IR! singular mass-shell behavior, the natural gauge
variant quantities to be considered are Wilson loops.

A first test of gauge invariance in 113 dimensions has
been performed in Refs.@15,16# by calculating atO(g4),
both in Feynman and in light-cone gauge with ML prescr
tion, a rectangular Wilson loop with lightlike sides, directe
along the vectorsnm5(T,2T), nm* 5(L,L) and param-
etrized according to the equations

C1 :xm~ t !5n* mt,

C2 :xm~ t !5n* m1nmt,

C3 :xm~ t !5nm1n* m~12t !,

C4 :xm~ t !5nm~12t !, 0<t<1. ~1!

In order to perform the test, dimensional regularizati
(D52v) was used for both UV and IR singularities. Fu
consistency between Feynman and light-cone gauge with
ML prescription was obtained.

Since results in 2v dimensions were available, in view o
the peculiar features of Yang-Mills theories in 2 dimensio
mentioned above, the interest arose in knowing the outco
of the check in the limitv→1. The following unexpected
results were obtained in@17#.

The O(g4) perturbative loop expression ind511(D
21) dimensions isfinite in the limit D→2. The loop expres-
sion is a function only of the arean•n* for any dimensionD
and exhibits also a dependence onCA , the Casimir constan
of the adjoint representation.
©1999 The American Physical Society05-1
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In LCG this dependence comes from two sources: d
grams with two crossed propagators@color factor CF(CF
2CA/2), CF being the Casimir constant of the fundamen
representation#; a genuine contribution to the Wilson loo
proportional toCFCA coming from the one-loop correctio
to the vector propagator~self-energy diagram!.

We shall concentrate our interest on the contribution d
to this self-energy diagram. At a first sight, it is surprisin
since, in 111 dimensions, there is no triple vector vertex
axial gauges. What happens is that the vanishing streng
the vertex atD52 matches the self-energy loop singularit
eventually producing a finite result. Feynman diagrams w
a triple vertex but no loops tend instead smoothly to z
when inserted in the Wilson contour.

We notice that no ambiguity affects theO(g4) gauge in-
variant result, which is finite; in addition the presence ofCA
cannot be reabsorbed by a redefinition of the coupling, t
while unjustified on general grounds, would also turn out
be dependent on the area of the loop.

In order to clarify whether the appearance ofCA in the
maximally non-Abelian term is indeed a pathology, o
should examine the potentialV(2L) between a ‘‘static’’qq̄
pair in the fundamental representation, separated by a
tance 2L. Therefore in Ref.@18# we have considered a dif
ferent Wilson loop,viz a rectangular loop with one sid
along the space direction and one side along the time di
tion, of length 2L and 2T, respectively. Eventually the limi
T→` at fixedL is to be taken: the potentialV(2L) between
the quark and the antiquark is indeed related to the valu
the corresponding Wilson loop amplitudeW(L,T) through
the equation@19#

lim
T→`

W~L,T!5const3e22iTV(2L). ~2!

The crucial point to notice in Eq.~2! is that dependence
on the Casimir constantCA should cancel at the leading o
der whenT→` in any coefficient of a perturbative expan
sion of the potential with respect to coupling constant. T
criterion has often been used as a check of gauge invari
@10#.

In Ref. @18# the calculation has been performed in Fey
man gauge, obtaining the following results.

For D.2 theO(g4) perturbative expression of the loo
depends, besides on the area, also on the ratiob5L/T. As
we are eventually interested in the large-T behavior, we have
always considered the regionb,1; moreover we have cho
senD521e with a smalle.0.

As long asD.2, agreement with Abelian-like time ex
ponentiation~ALTE! occurs in the limitT→`, with a pure
CF dependence in the leading coefficient. Consistency o
previous results@10# in higher dimensions is thus reesta
lished.

The limit D→2 for b50 exactly reproduces the gaug
invariant result obtained in Ref.@17# for a loop of the same
area with lightlike sides; thereby we enforce the argum
that in two dimensions a pure area behavior is expected
matter the orientation and the shape of the loop. What m
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be surprising is that the term, which in LCG corresponds
the self-energy correction, exhibits, in the limit, a pure ar
dependence on its own.

However, in two dimensions atO(g4), a CA dependence
is definitely there and agreement with ALTE is lost. Actua
this behavior atD52 persists at any order ofg and affects
the sum of the perturbative series@20,3#.

A peculiar feature of the light-cone gauge in 2 dimensio
is that individual Wilson loop diagrams do not exhibit an
singularity; hence there is no need of dimensional regular
tion.

In Ref. @21#, aO(g4) perturbative calculation of the Wil-
son loop in LCG with ML prescription, for a rectangula
loop with sides 2T32L lying in the x03x1 axes, was per-
formed atD52. No agreement occurs with the result o
finds in Ref.@18# when taking the limitD→2. The source of
such a discrepancy is rooted in the mentioned self-ene
diagram contribution, which is obviously missing atD52,
but provides a finite term in the limitD→2, thereby produc-
ing a discontinuity in the theory@17#.

The purpose of this paper is to check explicitly this pro
erty by evaluating in LCG the relevant discontinuity for th
Wilson loop of Ref.@21#. We confirm that the missing term
comes from the diagram with a self-energy corrected pro
gator, evaluated atD521e, when eventually taking the
limit e→0. We thereby reproduce for a space-time conto
the phenomenon in LCG found in Ref.@17# for a contour
with lightlike sides. Actually, from the computation of th
self-energy diagram atD.2, we find, as an extra bonus, th
its contribution vanishes fore.0 in the limit T→` with the
same ‘‘universal’’ factorT424v we have obtained in Ref
@18# for the maximally non-Abelian contributions@22#.

The limits T→` ande→0 do not commute.

II. THE CALCULATION

We recall some basic notions and notations. We consi
as in Ref.@18#, the closed pathg parametrized by the fol-
lowing four segmentsg i :

g1 :g1
m~s!5~sT,L !,

g2 :g2
m~s!5~T,2sL!,

g3 :g3
m~s!5~2sT,2L !,

g4 :g4
m~s!5~2T,sL!, 21<s<1 ~3!

describing a~counterclockwise-oriented! rectangle centered
at the origin of the plane (x1,x0), with length sides (2L,2T),
respectively.

The perturbative expansion of the Wilson loop is

Wg~L,T!511
1

N (
n52

`

~ ig !n

3 R
g
dx1

m1
••• R

g
dxn

mnu~x1.•••.xn!

3Tr@Gm1•••mn
~x1 ,•••,xn!#, ~4!
5-2
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DISCONTINUOUS BEHAVIOR OF PERTURBATIVE . . . PHYSICAL REVIEW D 59 125005
where Gm1•••mn
(x1 , . . . ,xn) is the Lie algebra valued

n-point Green function, and the Heavysideu functions order
the pointsx1 , . . . ,xn along the integration pathg.

It is easy to show that the perturbative expansion ofWg is
an even power series in the coupling constant, so that we
write

Wg~L,T!511g2W21g4W41O~g6!. ~5!

To have a sensitive check of gauge invariance, one ha
consider at least the orderg4, ~i.e., one has to evaluateW4),
as this is the lowest order where genuinely non-Abel
CFCA contributions may appear. In turn, in the calculation
W4, only the so-called maximally non-Abelian contributio
W 4

na need to be evaluated, that in our case comes from
terms proportional toCFCA . The Abelian contribution, pro-
portional toCF

2 , can be easily obtained thanks to the Abeli
exponentiation theorem@22#.

The diagrams contributing toW 4
na can be grouped into

three families:~a! crossed diagrams (C( i j )(kl)), with a double
gluon exchange in which the two~crossed! propagators join
the sides (i j ) and (kl) of the contourg; ~b! spider diagrams
(Si jk), which are obtained by attaching a three point Gre
function at the tree level to the sides (i jk ) of the loop;~c!
bubble diagrams (Bi j ), that are single exchange diagrams
which the gluon propagator, corrected by a self-energy te
joins the sides (i j ) of the contour.

In arbitrary dimensions, the calculation of the Wilso
loop is much more awkward in LCG than in covariant gau
due to a more complicated form of the vector propaga
However, when considering theD→2 limit, diagrams in
LCG have much better analyticity properties inv than the
ones in Feynman gauge. The vector propagator in LCG w
ML prescription is a tempered distribution atD52, at odds
with the one in Feynman gauge. Moreover it is summa
along the~compact! loop contour.

Due to this property, we can conclude that all the ma
mally non-Abelian contributions arising from diagrams wi
crossed propagators sum to an expression that, in the
D→2, reproduces the result of Ref.@21#, namely,
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~LT!2

3
. ~6!

Now we consider the contributionW bub coming from
bubble diagrams. In LCG and on the planex03x1, the only
nonvanishing component of the two point Green functi
Dmn at the orderO(g2) is D11(x)[D(x), that reads, at
x'50 @16#,

D~x!52
g2

8p2v
CA

~x2!2

~2x21 i«!2v22
f ~v!, ~7!

f ~v!5
1

~22v!3 FG2~32v!G~2v23!

G~522v!

2
G~v21!G~v!~10v2219v110!

4~2v23!~2v21! G . ~8!

Following the notations of Ref.@18#, there are 10 topologi-
cally inequivalent bubble diagrams. However, due to
symmetry of the Green function and to the symmetric cho
of the contour, only six of them are independent, and
O(g4) contribution to the Wilson loop arising from bubbl
diagrams can be written as

W bub52~B111B221B131B2412B1212B14!, ~9!

where each single contributionBi j can be calculated by re
placing Eqs.~3!, ~7! in the formula

Bi j 52
1

2
g2CFE

21

1

dsE
21

1

dtDmn„g i~s!2g j~ t !…ġ i
m~s!ġ j

n~ t !,

~10!

where the dot denotes derivative with respect to the varia
parametrizing the segment.

The calculation being standard, we shall report only
final result
W bub5
CFCA

p2v
f ~v!~LT!2~2L !424vH e22ipvb4v26F 1

~724v!~824v!
„12~824v!2F1~2v22,2v27/2;2v25/2;b2!

1~724v!~12b2!322v
…2

1

~322v!~422v!
„12~12b2!422v

…1
522v

~624v!~422v!
„12~12b2!322v

…G
1e22ipvb4v24F ~12b2!322v

~322v!~422v!
2

2F1~2v22,2v25/2;2v23/2;b2!

~524v!
22F1~2v22,1/2;3/2;b2!G

1 ib
Ap~v22!G~2v27/2!

G~2v22!
2e22ipv

b4v22

3 2F1~2v22,3/2;5/2;b2!1
b2

~724v!J , ~11!
5-3
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whereb5L/T.
Some comments are here in order. First of all there i

dependence on the dimensionless ratiob, besides the area, a
variance with the analogous result in LCG for the rectan
of lightlike sides. However, in the equation above, one c
easily check that the quantityW bub/(LT)2 is not singular for
b→0. Actually Eq. ~11! exhibits, for v.1, the expected
damping factorT424v in the large-T limit.

In the limit v→1 the dependence onb disappears and th
pure area law is recovered:W bub5CFCA(LT/p)2. This is
exactly the ‘‘missing’’ term to be added to the expression
Ref. @21# to obtain the final result for the maximally non
Abelian contribution to the perturbativeO(g4) Wilson loop
in the limit D→2,

W 4
na5CFCAS LT

p D 2F11
p2

3 G . ~12!

Equation~12! is in full agreement not only with Ref.@18#,
where an anologous Wilson loop was calculated in Feynm
gauge, but also with Ref.@17#, where the loop was oriente
in a different direction. Moreover, in LCG, different familie
of diagrams~‘‘crossed’’ and ‘‘bubble’’ diagrams! give the
same contribution@CFCA„(LT)2/3… and CFCA(LT/p)2 re-
spectively# no matter the orientation of the loop: remarkab
invariance under area-preserving diffeomorphisms is rec
ered in the limitD→2, even when the Wilson loop is firs
evaluated in higher dimensions, and then the limitD→2 is
taken.

In turn the result above implies that ‘‘spider’’ diagram
namely diagrams with a triple vector vertex, cannot contr
ute in the limit D→2. This is not surprising, as the sam
phenomenon occurred in Ref.@17#, although for a different
contour~contour with lightlike sides!.
h

o
e
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In order to support this conclusion, we show that the r
evant three point Green function atO(g), vanishes whenD
→2.

To this aim, let us consider the three point Green funct
Vmnr(x,y,z). Because of the LCG choice, its only nonva
ishing component when considering the loop in thex03x1

plane isV(x,y,z)5V111(x,y,z); up to an irrelevant multi-
plicative constant, it is given by

V~x,y,z!5E d2vz
]

]za F ]

]xa

]

]y1 2
]

]ya

]

]x1G
3F~x2z!F~y2z!G~z2z!1cycl. perm.$x,y,z%

[~V12V2!1cycl. perm.$x,y,z%. ~13!

Here the indexa runs over the transverse components a
the functionsG andF are the following Fourier transforms

G~x!5E d2vp
eipx

p21 i«
52pvG~v21!S 2

x2

4
1 i« D 12v

,

~14!

F~x!5E d2vp
eipx

~p21 i«!~p11 i«p2!

52 ipvG~v21!E
0

x1

drS x'
2 22x2r

4
1 i« D 12v

.

~15!

Let us consider, for instance, the first term in Eq.~13!,
that we call V1. Using standard Feynman integrals tec
niques, integrations over momenta and over the intermed
point z can be performed, so thatV1 can be rewritten, after
some convenient change of variables, as
V15
ipv~4p!3v

8
G~2v21!~v21!E

0

1

djdhdmh@m~12m!#v21

3E
0

`

dt
@11t„mj1h~12m!…#2v25

~11t!v

@~x2z!11th~12m!~x2y!1#@~y2z!11tmj~y2x!1#2

@2mj~x2z!22h~12m!~y2z!22tjhm~12m!~x2y!21 i«#2v21
. ~16!
e-

in
or is

or,
-
. It
een
a

SinceV1 has an explicit zero atv51, if we show that the
integral in Eq.~16! is convergent when evaluated atv51,
we have proved that the three point Green function vanis
at D52. Integral~16! is discussed in the Appendix.

III. CONCLUSIONS

A peculiar feature of the light-cone gauge formulation
Yang-Mills theories is that they can be consistently defin
in two dimensions: contrary to the covariant Feynman gau
the light-cone gauge propagator with ML prescription for t
spurious pole is a tempered distribution atD52. In particu-
lar, the largeT behavior of the Wilson loop can be evaluat
es

f
d
e,

without the need of introducing any regulator; the finite r
sult has been presented in Ref.@21#. This result, however,
cannot be compared with the result one would obtain
Feynman gauge, as in the latter case, the free propagat
not a tempered distribution atD52. In Feynman gauge the
best one can do is to evaluate the Wilson loop inD dimen-
sions, and to take eventually the limitD→2.

In so doing one obtains again a finite result@18# that,
however, isdifferent from the one of Ref.@21#. In LCG the
diagram with a self-energy correction in the propagat
which only exists inD.2, makes the difference. It is pre
cisely the contribution we have evaluated in this paper
provides us with the missing term to get agreement betw
Refs.@21# and@18#, i.e., to recover gauge invariance. Such
5-4
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DISCONTINUOUS BEHAVIOR OF PERTURBATIVE . . . PHYSICAL REVIEW D 59 125005
phenomenon was not unexpected in the light of Ref.@17#.
Perturbative Yang-Mills theory in LCG looks indeed disco
tinuous in the limitD→2; actually, starting from a vanishin
coupling atD52, it exhibits a kind of ‘‘instability’’ with
respect to a change of dimensions.

On one hand our result clarifies the nature of the disc
tinuity of Yang-Mills theories in two dimensions, on th
other it raises new interesting questions for future investi
tions.

While in any dimensionD.2 perturbativeWilson loop
calculations are in agreement with Abelian-like time exp
nentiation, as allCA dependent terms turn out to be d
pressed in the large-T limit, at D52 neither the result in Ref
@21# nor the one in@18# share this property, as they bo
exhibit an explicitCA dependence in the coefficient of th
leading term whenT→`. At D52 exponentiation in terms
of CF occurs perturbatively only in light-front formulatio
~Ref. @8#!; in equal-time quantization, exponentiation r
quires full resummation of genuine nonperturbative contri
tions ~instantons! @3#.

The difference between the formulations above~and their
related vacua! as well as the reason why this phenomen
seems to be crucial only atD52 are under active investiga
tion.

APPENDIX

In this appendix we show that the three point Green fu
tion tends to zero whenD→2. As explained in the main text
e

12500
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-

n

-

it is sufficient to prove that the integral in Eq.~16!, with the
constant containing the simple zero (v21) factorized out, is
convergent when evaluated atv51. Such an integral, afte
the change of variablesa5mj, b5h(12m) and after ex-
plicit integration overdm, reads

I 5E
0

1

dadbu~12a2b!H 12a2b

12a
1b log

~12b!~12a!

ab J
3E

0

` dt

~11t!

@~x2z!11bt~x2y!1#

@11t~a1b!#3

3
@~y2z!11at~y2x!1#2

@2a~x2z!22b~y2z!22abt~x2y!21 i e#
, ~A1!

u being the Heavyside function. The most delicate region
this integral isa;b;0, so that in order to check conve
gence of Eq.~A1! we can restrict ourselves to the case wh
the curly bracket is replaced by one. After this replaceme
we seta5rs andb5r(12s). In the expression obtaine
after this change of variables, we rescaleg5rt at fixed t.
The integral over thet variable can be factorized providing
factor log(111/g). Finally, renamingr51/g, Eq. ~A1! with
the curly bracket replaced by one can be equivalently writ
as
I52E
0

1

dsE
0

`dr

r

log~11r!

~11r!3

@r~x2z!1~12s!~x2y!#1@r~y2z!1s~y2x!#1
2

@rs~x2z!21r~12s!~y2z!21s~12s!~x2y!22 i e#
. ~A2!
pa-
of
Dividing the r integration domain as@0,1#ø@1,̀ ), we split
I asI11I2. In I1 , rP@0,1# and therefore we can use th
following majorations: log(11r),r and (11r)23,1.
Thus, integration indr is straightforward, providing us with
the estimate

I1.2E
0

1

ds
~x2z!1~y2z!1

2

s~x2z!21~12s!~y2z!22 i e

3F1

3
1

1

2
~A2C!1~B2C!21B12AB

2AC1~A2C!~B2C!2logS 11C

C D G , ~A3!

whereA, B andC are defined as

A5~12s!~x2y!1 /~x2z!1 ,

B5s~x2y!1 /~z2y!1 ,
C5s~12s!~x2y!2/@s~x2z!2

1~12s!~y2z!22 i e#. ~A4!

In this form, it is manifest that integration overs is conver-
gent. The explicit result goes beyond the purpose of the
per, but it can be easily evaluated providing combinations
rational functions, logarithms and dilogarithms.

In I2, ther integration domain is@1,̀ ) and therefore we
can use (11r)23,r23. Thus, ther dependent part of the
integrand can be approximated by

~r1A!~r1B!2

~r1C!

log~11r!

r4

5
log~11r!

r~r1C!
1

A~r1B!21r~B212rB!

~r1C!r3

log~11r!

r
.

~A5!
5-5



an
r

-
e,

A. BASSETTO, R. BEGLIUOMINI, AND G. NARDELLI PHYSICAL REVIEW D59 125005
To check convergence, in the second term of the right-h
side we can replace log(11r)/r by 1. Then, integration ove
r becomes straightforward and the second term in Eq.~A5!
provides integrals overds of the same kind of those inI1,
where convergence can be easily checked. The first term
the right-hand side of Eq.~A5! is more delicate. Here the
majoration log(11r),r is too strong as it would spoil con
vergence in ther integration. An explicit integration overr
of this term gives
12500
d

in

I 2
f irst.E

0

1

ds
~x2z!1~y2z!1

2

s~x2z!21~12s!~y2z!22 i e

1

C FLi S C

C21D
1Li ~2C!2 log 2 logS 11C

12CD2Li S 2C

C21D G , ~A6!

Li( z) being the dilogarithm function. Although cumbersom
integration overs is finite.
ys.

G.
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