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Discontinuous behavior of perturbative Yang-Mills theories in the limit of dimensionsD— 2
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We calculate irD =2+ e dimensions and in the light-cone gau¢€G) the perturbative)(g*) contribution
to a rectangular Wilson loop in the,&) plane coming from diagrams with a self-energy correction in the
vector propagator. In the limg— 0 the result is finite, in spite of the vanishing of the triple vector vertex in
LCG, and provides the expected agreement with the analogous calculation in the Feynman gauge.
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I. INTRODUCTION is reached starting from higher dimensions.
Since no exact solutions are available bey@nd 2, the

SU(N) Yang-Mills (YM) theories exhibit peculiar and investigation has been focused on perturbative calculations,
interesting features in+1 dimensions D=2). The reduc- looking for consistency checks, in particular testing the
tion from four to lower dimensions entails indeed tremen-gauge invariance of the theory which holds order by order in
dous simplifications, so that many problems can be facedhe coupling constant expansion.
and often exactly solvefil—3]. For instance exact evalua- ~ Recalling that perturbativ&matrix elements cannot be
tions of vacuum to vacuum amplitudes of Wilson loop Op_cor!S|stentI_y defined in non-Abelian gauge theories, owing to
erators, that, for a suitable choice of contour and in a parth€ir (IR) singular mass-shell behavior, the natural gauge in-

. - . . — . variant quantities to be considered are Wilson loops.
ticular limit, provide the potential between a staq pair A first test of gauge invariance in+13 dimensions has
[4—6], can be obtained.

. i . ) , ) been performed in Refd15,16 by calculating atO(g*),
YM theories without fermions in +1 dimensions are 4 in Feynman and in light-cone gauge with ML prescrip-

considered free theories, apart from topological effects. Thigign 4 rectangular Wilson loop with lightlike sides, directed

feature looks apparent when choosing an axial gauge. HOV‘éilong the vectorsn,=(T,—T), n*=(L,L) and param-

ever, either when matter fields are introduced, or in Wilsongtyized according toﬂthe equationsM

loop calculations, the perturbative +11)-dimensional

theory exhibits dramatic infraredR) singularities which CyXH(t)=n*#t,
need to be regularized. Unfortunately the results appear to be
dependent on such regularization procedures, even when C,oixH(t) =n*#+nht,

they concern gauge invariant quantit/&g.

In the light cone gaug€.CG) the (IR) singular behavior
is particularly apparent in the vector propagator, where the
gauge pole conspires with the usual Feynman singularity to

Ca:x™(t)=n*+n**(1-1),

produce a double polgs]. CyixH(t)=n(1-t), Ost<l. (1)

A Cauchy principal valu¢CPV) prescription for this IR
singularity has often been advocatg®. It emerges quite In order to perform the test, dimensional regularization
naturally if the theory is quantized on the light cone surface(D=2w) was used for both UV and IR singularities. Full
x*=0[10]. consistency between Feynman and light-cone gauge with the

On the other hand, such a recipe is at odds with Wick’sML prescription was obtained.
rotation. In Ref.[11] a causal prescription for the double  Since results in @ dimensions were available, in view of
pole has been proposed, which is nothing but the one sudhe peculiar features of Yang-Mills theories in 2 dimensions
gested years later by Mandelstam and Leibbrdktlt) [12], = mentioned above, the interest arose in knowing the outcome
when restricted to +1 dimensions. This prescription fol- of the check in the limitw—1. The following unexpected
lows from equal-time quantizatigri3] and is mandatory in results were obtained ifl7].
order to renormalize the theory inr+13 dimensiong14,10. The O(g*) perturbative loop expression id=1+ (D

In view of the above-mentioned results and of the fact that-1) dimensions idinite in the limit D—2. The loop expres-
“pure” YM theories do not immediately look free in Feyn- sion is a function only of the area n* for any dimensiorD
man gauge, a systematic investigation has been undertakend exhibits also a dependence ©@g, the Casimir constant
to clarify their properties when the two dimensional pictureof the adjoint representation.
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In LCG this dependence comes from two sources: diabe surprising is that the term, which in LCG corresponds to
grams with two crossed propagatdmolor factor Ce(Cg the self-energy correction, exhibits, in the limit, a pure area
—C,a/2), Cg being the Casimir constant of the fundamentaldependence on its own.
representatio a genuine contribution to the Wilson loop ~ However, in two dimensions &b(g*), a C, dependence
proportional toCrC, coming from the one-loop correction is definitely there and agreement with ALTE is lost. Actually
to the vector propagatdself-energy diagraim this behavior aD =2 persists at any order @f and affects

We shall concentrate our interest on the contribution dug¢he sum of the perturbative serigz0,3].
to this self-energy diagram. At a first sight, it is surprising, A peculiar feature of the light-cone gauge in 2 dimensions
since, in 1+1 dimensions, there is no triple vector vertex in is that individual Wilson loop diagrams do not exhibit any
axial gauges. What happens is that the vanishing strength singularity; hence there is no need of dimensional regulariza-
the vertex aD =2 matches the self-energy loop singularity, tion.
eventually producing a finite result. Feynman diagrams with  In Ref.[21], aO(g*) perturbative calculation of the Wil-

a triple vertex but no loops tend instead smoothly to zercson loop in LCG with ML prescription, for a rectangular
when inserted in the Wilson contour. loop with sides X 2L lying in the x°xx! axes, was per-

We notice that no ambiguity affects tii&(g*) gauge in- formed atD=2. No agreement occurs with the result one
variant result, which is finite; in addition the presenceCgf  finds in Ref.[18] when taking the limiD — 2. The source of
cannot be reabsorbed by a redefinition of the coupling, thasuch a discrepancy is rooted in the mentioned self-energy
while unjustified on general grounds, would also turn out todiagram contribution, which is obviously missing @t=2,
be dependent on the area of the loop. but provides a finite term in the limb — 2, thereby produc-

In order to clarify whether the appearance®f in the ing a discontinuity in the theorj17].
maximally non-Abelian term is indeed a pathology, one The purpose of this paper is to check explicitly this prop-
should examine the potenti®l(2L) between a “static’qq ~ €rty by evaluating in LCG the relevant discontinuity for the
pair in the fundamental representation, separated by a did¥ilson loop of Ref[21]. We confirm that the missing term
tance 2. Therefore in Ref[18] we have considered a dif- comes from the diagram with a self-energy corrected propa-
ferent Wilson loop,viz a rectangular loop with one side gator, evaluated ab=2+e¢, when eventually taking the
along the space direction and one side along the time diredimit e—0. We thereby reproduce for a space-time contour
tion, of length 2. and 2T, respectively. Eventually the limit the phenomenon in LCG found in RdfL7] for a contour
T— o at fixedL is to be taken: the potentis(2L) between ~ With lightlike sides. Actually, from the computation of the
the quark and the antiquark is indeed related to the value d¥elf-energy diagram 42>2, we find, as an extra bonus, that

the corresponding Wilson loop amplitud®(L,T) through its contribution vanishes far>0 in the limit T— o with the
the equatiorf19] same “universal” factorT*~4® we have obtained in Ref.

[18] for the maximally non-Abelian contribution22].

. ' The limits T—c and 0 do not commute
lim W(L,T)=constxe 2 TV(L), 2 - N

T—x

Il. THE CALCULATION

The crucial point to notice in Eq2) is that dependence We recall some basic notions and notations. We consider,
on the Casimir constar@, should cancel at the leading or- &S in Ref.[18], the CIOS_Ed pathy parametrized by the fol-
der whenT— in any coefficient of a perturbative expan- 10Wing four segmentsy; :

sion of the potential with respect to coupling constant. This “y(s)=(sT,L)
criterion has often been used as a check of gauge invariance 1N T
[10]. B (S) = (T —
In Ref.[18] the calculation has been performed in Feyn- v2:72(8)=(T.~sb),
man gauge, obtaining the following results. y3:y4(s)=(—sT,~L),
For D>2 the O(g*) perturbative expression of the loop
depends, besides on the area, also on the @&tid/T. As Ya:vi(s)=(—-T,sL), —1<s<1 ®)

we are eventually interested in the lar§dsehavior, we have o
always considered the regigs 1; moreover we have cho- describing a(counterclockwise-orientedectangle centered

senD =2+ e with a smalle>0. at the origin of the planex,x°), with length sides (R,2T),
As long asD>2, agreement with Abelian-like time ex- respectively. _ _ _
ponentiation(ALTE) occurs in the limitT—oe, with a pure The perturbative expansion of the Wilson loop is
Cr dependence in the leading coefficient. Consistency of all o
previous result§10] in higher dimensions is thus reestab- Wy(L,T):lJri E (ig)"
lished. N =2
The limit D—2 for =0 exactlyreproduces the gauge
invariar)t re_sult_obtai_ned in Ref17] for a loop of the same % % dxfl. . 4; dX“N9(xy> - - - >X,)
area with lightlike sides; thereby we enforce the argument y y "

that in two dimensions a pure area behavior is expected, no
matter the orientation and the shape of the loop. What may XTHGy, o (Xas e Xn) ], @
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where GMlA.AMn(xl, ...Xy) is the Lie algebra valued o (LT)?
n-point Green function, and the Heavysiédunctions order W™ =CaCr 3 6)
the pointsx,, ... X, along the integration pat.

It is easy to show that the perturbative expansiomgfis Now we consider the contributiom’®"® coming from
an even power series in the coupling constant, so that we cah bble diagrams. In LCG and on the plaxfe<x?, the only

write nonvanishing component of the two point Green function
A,, at the orderO(g?) is A, ,(x)=A(X), that reads, at
W,(L,T)=1+g"W,+g*W,+O(g°). (5)  x,=0[18],
To have a sensitive check of gauge invariance, one has to 9° (x7)?
consider at least the ordgf, (i.e., one has to evaluaid/,), A(x)=— f(w), (7)

.. A . 8772(» A(_X2+i8)2w72
as this is the lowest order where genuinely non-Abelian

CrC, contributions may appear. In turn, in the calculation of

W,, only the so-called maximally non-Abelian contribution 1 I'’(3—w)l'(2w—3)

W3 need to be evaluated, that in our case comes from the f(w)= (2—w)° T(5—2w)

terms proportional t€€C, . The Abelian contribution, pro-

portional toCﬁ , can be easily obtained thanks to the Abelian I'w—1)T(0)(10w?>— 190+ 10)
exponentiation theoreif22]. - 420-3)(2w—1) - ®

The diagrams contributing tdV},* can be grouped into

three familiesi(a) crossed diagrams’{j;)q)), with a double | joing the notations of Ref18], there are 10 topologi-

gluon exchange in which the tw@rossedl propagators join ¢4y inequivalent bubble diagrams. However, due to the
the sidesij) and (I) of the contoury; (b) spider diagrams gy mmeiry of the Green function and to the symmetric choice
(Sijk), which are obtained by attaching a three point Greenys the contour, only six of them are independent, and the

function at the tree level to the sidegK) of the loop;(c)  ((g*) contribution to the Wilson loop arising from bubble
bubble diagramsf;), that are single exchange diagrams in diagrams can be written as

which the gluon propagator, corrected by a self-energy term,
joins the sidesi() of the contour. bub_

In arbitrary dimensions, the calculation of the Wilson W 2(But Byt Bigt Boat 217+ 2B14), ©
loop is much more awkward in LCG than in covariant gauge, . I
due to a more complicated form of the vector propagator?"’he.re each single .Comr'bu“dﬁii can be calculated by re-
However, when considering thB—2 limit, diagrams in placing Eqs(3), (7) in the formula
LCG have much better analyticity propertiesdnthan the
ones in Feynman gauge. The vector propagator in LCG withg _ _ Egzc Jl dle Gt (7(S)— 7 (D) 5(8) (D)

ML prescription is a tempered distribution Bt=2, at odds ~ ©  2° )1 )M Y YRRV
with the one in Feynman gauge. Moreover it is summable (10
along the(compact loop contour.

Due to this property, we can conclude that all the maxi-where the dot denotes derivative with respect to the variable
mally non-Abelian contributions arising from diagrams with parametrizing the segment.
crossed propagators sum to an expression that, in the limit The calculation being standard, we shall report only the
D—2, reproduces the result of R¢R1], namely, final result

CeC | 1
yybub— Z=Z2 f(w)(LT)2(2L)44“’{ ez'mﬁ“w‘{ T w8 aa) (L™ (B 4@)F1(20-2,20—712,20=5/2,47)
T

+(7—40)(1- 232 6 dw)d 2] (1—(1—B2)32“’)}

(1-(1-p)* )+

(3—2w)(4—2w)

(1-8%)372°  LF1(20—2,20—5/2;20—3/2;8?)

+e—2i77w184w—4|: —2F1(2w—2,1/2,3/2,32)}

(3-2w)(4—2w) (5—4w)
- Nm(0-2TQw-72 g2 . B2
T (2w-2) —e? 3 2F1(2w_2,3/2,5/2,82)+(7_—4w)], (11
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where3=L/T. In order to support this conclusion, we show that the rel-
Some comments are here in order. First of all there is @&vant three point Green function &(g), vanishes whei
dependence on the dimensionless rgtjdesides the area, at —2.
variance with the analogous result in LCG for the rectangle To this aim, let us consider the three point Green function
of lightlike sides. However, in the equation above, one caiV,,,(x,y,z). Because of the LCG choice, its only nonvan-
easily check that the quantiiy®“?/(LT)? is not singular for  ishing component when considering the loop in #fe x*
B—0. Actually Eg.(11) exhibits, for w>1, the expected plane isV(x,y,z)=V, ,.(X,Y,Z); up to an irrelevant multi-
damping factofT*~4® in the largeT limit. plicative constant, it is given by
In the limit w— 1 the dependence ghdisappears and the

; bub_ 2 o J Ja 4d Jd d
pure area law is recoveredy®"’=CrC,(LT/m)*. This is V(X,y,Z)=f d2e¢

exactly the “missing” term to be added to the expression of az%| ax® gyt gy“ ax*

Ref. [21] to obtain the final result for the maximally non- Y E(x—)VF(v—)G(z— &)+ cvel. permix.v.z

Abelian contribution to the perturbativ@(g*) Wilson loop (x=OF(y=0)6(z= ) +cycl. permix.y.zj

in the limit D—2, =(V1— V) +cycl. perm{x,y,z}. (13)

LT\2 2 Here the indexx runs over the transverse components and
Whe= CFCA(7 1+ 3 (12)  the functionsG andF are the following Fourier transforms:
. o . eipx X2 1-w

Equation(12) is in full agreement not only with Ref18], G(X)= f d?ep =— 7T (w— 1)( ——+ie ,

where an anologous Wilson loop was calculated in Feynman p’+ie 4

gauge, but also with Ref17], where the loop was oriented 14

in a different direction. Moreover, in LCG, different families ,

of diagrams(*“crossed” and “bubble” diagrams give the F(x)—f 420 e'Px

same contributior[CFCA((IfT)2/3_) and CeCA(LT/7)? re- - p(p2+i8)(p++isp_)

spectively no matter the orientation of the loop: remarkably, 5 1w

invariance under area-preserving diffeomorphisms is recov- S g —1)fx+d XT—2X_p 4

ered in the limitD—2, even when the Wilson loop is first e o P 4 €

evaluated in higher dimensions, and then the libit-2 is (15)

taken.

In turn the result above implies that “spider” diagrams, Let us consider, for instance, the first term in Ef3),
namely diagrams with a triple vector vertex, cannot contrib-that we call V;. Using standard Feynman integrals tech-
ute in the limitD—2. This is not surprising, as the same niques, integrations over momenta and over the intermediate
phenomenon occurred in RéfL7], although for a different point  can be performed, so thay can be rewritten, after

contour(contour with lightlike sides some convenient change of variables, as
ime(4)3e 1 .
Vi=——5T'(2e0-1)(0—1) fo dédndun[pu(1—p)]”

XJ"”dT[H T(ué+ p(1-w)?* "% [(x=2) s+ 71— w)(X=Y) (Y= 2)+ + Té(y —X) 4 ]2 16
0

(1+7) [— pé(x—2)%— p(1— pu)(y—2)?— répu(l—p)(x—y)?+ie]?o "1

SinceV; has an explicit zero ab=1, if we show that the without the need of introducing any regulator; the finite re-
integral in Eq.(16) is convergent when evaluated @=1,  sult has been presented in RE21]. This result, however,
we have proved that the three point Green function vanishegannot be compared with the result one would obtain in
atD=2. Integral(16) is discussed in the Appendix. Feynman gauge, as in the latter case, the free propagator is
not a tempered distribution &=2. In Feynman gauge the
best one can do is to evaluate the Wilson looimlimen-
Ill. CONCLUSIONS sions, and to take eventually the linit— 2.
In so doing one obtains again a finite resul8] that,

A peculiar feature of the light-cone gauge formulation of however, isdifferentfrom the one of Ref[21]. In LCG the
Yang-Mills theories is that they can be consistently defineddiagram with a self-energy correction in the propagator,
in two dimensions: contrary to the covariant Feynman gaugeyhich only exists inD>2, makes the difference. It is pre-
the light-cone gauge propagator with ML prescription for thecisely the contribution we have evaluated in this paper. It
spurious pole is a tempered distributionCat=2. In particu-  provides us with the missing term to get agreement between
lar, the largeT behavior of the Wilson loop can be evaluated Refs.[21] and[18], i.e., to recover gauge invariance. Such a
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phenomenon was not unexpected in the light of R&T). it is sufficient to prove that the integral in E(L6), with the

Perturbative Yang-Mills theory in LCG looks indeed discon- constant containing the simple zere £ 1) factorized out, is

tinuous in the limitD — 2; actually, starting from a vanishing convergent when evaluated at=1. Such an integral, after

coupling atD=2, it exhibits a kind of “instability” with  the change of variables= ¢, B=7(1—u) and after ex-

respect to a change of dimensions. plicit integration overdu, reads

On one hand our result clarifies the nature of the discon-

tinuity of Yang-Mills theories in two dimensions, on the

other it raises new interesting questions for future investiga- fl 1-a—p (1-B)(1—a)
¢

tions. | = dadﬂﬁ(l—a—ﬂ){ﬁ‘f‘ﬁb

While in any dimensiorD >2 perturbativeWilson loop 0 ap
calculations are in agreement with Abelian-like time expo-
nentiation, as allC, dependent terms turn out to be de- xfw d7 [(x=2)+ +B7(X—Y)+]
pressed in the larg&-limit, at D=2 neither the result in Ref. o(1+7)  [1+7(at+p)]’
[21] nor the one in[18] share this property, as they both
exhibit an explicitC, dependence in the coefficient of the [(y—2)star(y—x).]?
leading term whem — . At D=2 exponentiation in terms [—a(x—2)%—B(y—2)°— aBr(x—y)?+ie]’ (A1)

of Cg occurs perturbatively only in light-front formulation

(Ref. [8]); in equal-time quantization, exponentiation re-

quires_ full resummation of genuine nonperturbative contribu-, being the Heavyside function. The most delicate region of
tions (instantons [ 3]. this integral isa~8~0, so that in order to check conver-

reI;—tr(]e?:i C\I/I;fglze)ar;zevsgltlwaese?hg]?;gggrl:lsjkonfh?sboiiaeig:ﬁgnongence of Eq(A1) we can restrict ourselves to the case when
. y this pii : the curly bracket is replaced by one. After this replacement,
seems to be crucial only & =2 are under active investiga-

. we seta=po and B=p(1l— o). In the expression obtained
tion. . : )
after this change of variables, we rescate p at fixed 7.
The integral over the variable can be factorized providing a
factor log(1+1/y). Finally, renamingo= 1/y, Eq. (A1) with

In this appendix we show that the three point Green functhe curly bracket replaced by one can be equivalently written
tion tends to zero wheB — 2. As explained in the main text, as

APPENDIX

1 (=dplog(1+p) [p(x=2)+(1=a)(x=y)];[p(y—2)+a(y—x)]%
I:_ dO' — 3 — 7 — — 2 — — 2_: . (A2)
0 o p (1+p)° [po(x=2)"+p(l=-0)(y—2)*+o(l-0)(x~Yy) ~i€]
|
Dividing the p integration domain ag0,1]U[1,%), we split C=0(1-0)(x—y)?*[o(x—2)?
Z asZi+7Z,. In Z;, pe[0,1] and therefore we can use the ,
following majorations: log(*p)<p and (1+p) 3<1. +(1-o)(y—2)"—ie]. (A4)

Thus, integration irdp is straightforward, providing us with

the estimate . . . . . .
In this form, it is manifest that integration overis conver-

L B 2 gent. The explicit result goes beyond the purpose of the pa-
Toe _J do (x=2),(y-2)3 . per, but it can be easily evaluated providing combinations of
. o o(x—2)°+(1-0)(y—2)°—ie rational functions, logarithms and dilogarithms.
In Z,, the p integration domain i§1,0) and therefore we
can use (¥ p) 3<p 3. Thus, thep dependent part of the
integrand can be approximated by

1 1
X|=+ =(A—C)+(B—C)>+B+2AB

3 2

1+C
—AC+(A—C)(B—C)2|og(T”, (A3)
(p+A)(p+B)? log(1+p)

whereA, B andC are defined as (p+C) P
log(1+p) A(p+B)2+p(B?+2pB) log(1+p)
A=(1-0)(x— [(x—2),, = .
(1= x=y), Hx=2), p(p+C) (p+C)p* p
B=o(x=y): (z=Y)+, (A5)

125005-5



A. BASSETTO, R. BEGLIUOMINI, AND G. NARDELLI

To check convergence, in the second term of the right-hand

side we can replace log{lp)/p by 1. Then, integration over
p becomes straightforward and the second term in(BE§)
provides integrals ovedo of the same kind of those iff;,

where convergence can be easily checked. The first term in

the right-hand side of EqIA5) is more delicate. Here the
majoration log(3-p)<p is too strong as it would spoil con-
vergence in the integration. An explicit integration over
of this term gives

PHYSICAL REVIEW D59 125005

e

LI(a)
, 1+C| [ 2C
+L|(—C)—IogzIog{l_c)—u(c_l”, (A6)

Li( z) being the dilogarithm function. Although cumbersome,
integration overo is finite.

first__ 1 (X_Z)+(y_z)3_ 1
7= fo dU(T(X—Z)ZJr(l—cr)(y—z)z—ie C
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