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Compactification in the lightlike limit
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We study field theories in the limit that a compactified dimension becomes lightlike. In almost all cases the
amplitudes at each order of perturbation theory diverge in the limit, due to strong interactions among the
longitudinal zero modes. The lightlike limit generally exists nonperturbatively, but is more complicated than
might have been assumed. Some implications for the matrix theory conjecture are discussed.
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I. INTRODUCTION

Matrix theory @1# is a promising proposal for the funda
mental degrees of freedom and Hamiltonian of M theo
The further proposal@2# of Susskind, which gives a physica
interpretation to the finite-N matrix model, appears to be
major step forward. This proposal states that

finite N matrix model

5discrete light cone quantization ofM theory.

~1.1!

The left-hand side of this equation has a precise definitio
terms of supersymmetric quantum mechanics, at least w
the transverse dimensions are noncompact. It is the mea
of the right-hand side that we wish to address.

Discrete light cone quantization~DLCQ! @3# refers to
compactification on a lightlike circle,

~x1,x2,xi !>~x1,x212pR,xi !, ~1.2!

with fixed nonzerop25n/R. For the purpose of the conjec
ture ~1.1!, we believe that this must be understood as a li
of compactification on spacelike circles. This point of vie
has also been taken in some very recent papers,@4–9#.

We should note that most of the literature on DLCQ is n
directed toward the above conjecture, but toward provid
an infrared regulator for light-cone quantized field theori
In this case the discrete theory has no physical significa
of its own, and the only physical criterion it must satisfy is
give the correct infinite volume limit. But for conjectur
~1.1! to be meaningful, the right-hand side must have a na
ral and unique definition, and the limiting procedure provid
this. If instead the DLCQ of M theory is something differen
the conjecture loses much of its content and becomes m
of a definition. Further, it implies that matrix theory has
whole new moduli space of vacua, the discrete light-co
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vacua, disconnected from all previously known mod
spaces. We think that this is unlikely to be true.

If our interpretation of the conjecture is correct, it raises
curious point. The finite-N matrix theory is interpreted a
one more limit of M theory. But we already know man
limits of M theory: the various string theories, and eleve
dimensional supergravity. Why should one more limit ge
erate great excitement? Presumably the answer is that w
matrix theory is a limit of M theory, it is hoped that the fu
M theory can also be obtained as a limit of matrix theo
namely the limit of largeN: taking N→` at fixed R is
Lorentz-equivalent to takingR→` holding the frame of an
experiment fixed.

In this paper we will address not the second limiting pr
cedure but the first: does it make sense to put a quan
system in a lightlike box, in the limiting sense that we a
sume? Our study in this paper is limited toquantum field
theory, rather than string or M theory. The purpose is in p
to develop some intuition in this simpler setting, but it is al
of interest in its own right. Lightlike compactification is on
of the few limits in which field theories dramatically sim
plify, and therefore is a tool that should be developed furth

We find that the situation is somewhat complicated. If w
consider perturbation theory, the limit of lightlike compac
fication does not exist. That is, individual Feynman grap
diverge due to the infamous zero modes. In retrospect
problem is rather obvious. The zero modes are describe
a field theory in one fewer dimension, interacting with fixe
degrees of freedom representing the particles with nonz
p2 . We are holding fixed the parameters in the higher
mensional theory, so the couplingg2 of the reduced theory
scales asRs

21 with Rs being the invariant length of the com
pact dimension. One would therefore expect every lo
graph to diverge. The only theories that have smooth lim
order-by-order are certain supersymmetric theories where
zero modes interact with the fixed degrees of freedom
not with each other.

However, if we consider the full theory, then it is likel
that the limit does exist, at least if the original field theo
itself exists in the sense of being asymptotically free in
ultraviolet. The lightlike limit is governed by aninfrared
fixed point, and in simple cases the zero modes simply
©1999 The American Physical Society02-1
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come massive and cause no further trouble. While the li
appears to exist in most cases, our work points up the
that it is more complicated than expected.

We should note that there are various discussions of z
modes in the DLCQ literature, for example the recent pa
@10#. However, because the orthodox interpretation of DLC
differs from ours, there seems to be little relation betwe
the treatments of the zero modes. In particular, the stan
DLCQ appears to treat them essentially classically.1

Although our work is not specifically applicable to M
theory, we include in the conclusion some further discuss
of recent work.

II. SCALAR FIELD THEORY

We start with a complex scalar field theory ind dimen-
sions with quartic self-interaction. We will denote the tim
coordinate byt, the periodic coordinate byx2, and the re-
mainder byxi for i 53,...,xd. The metric and periodicity are

ds2522dtdx21e2dx2dx21dxidxi ,

~t,x2,xi !>~t,x212pR,xi !. ~2.1!

The invariant length of the compact dimension is

Rs52peR. ~2.2!

The timet is related to light-cone timex1 by

t5x11
e2

2
x2, ~2.3!

becoming identical in the limite→0.
The action is

S52E ddxS ]mf* ]mf1M2f* f1
g2

4
~f* f!2D .

~2.4!

We leaved unspecified; a perturbatively well-defined theo
requires d<4, a nonperturbatively well-defined theoryd
<3.

Expanding

f~t,x2,xi !5~2pR!21/2 (
n52`

`

fn~t,xi !einx2/R, ~2.5!

the kinetic term is

(
n52`

` E dtdd22xi S e2]tfn* ]tfn1
2in

R
fn* ]tfn

2] ifn* ] ifn2M2f* f D . ~2.6!

1For this reason we should perhaps introduce a new acron
such as L3 for the lightlike limit, and restate the conjecture~1.1! as
‘‘finite N matrix model5L3 of M theory.’’
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i

e2pt
212npt /R2pipi2M2

5
i

e2pv
2 2n2/e2R22pipi2M2

, ~2.7!

wherepv[pt1n/e2R.
Now consider the one loop amplitude in Fig. 1,

g4

4p2R2 (
n52`

` E dqtd
d22qi

~2p!d21
~e2qv

2 2n2/e2R2

2qiqi2M2!21~e2qv8
22n2/e2R22qi8qi82M2!21. ~2.8!

Here qm8 5qm1km , wherekm is the exchanged momentum
We have taken the dangerous casek250. The problematic
term is n50, where both lines in the loop have vanishin
longitudinal momenta. Whene50, the integrand is indepen
dent ofqt and the integral diverges. The integral is propo
tional to e21 and diverges in the limit of lightlike compacti
fication.

One way to understand this is in coordinate space. In
lightlike limit of e50, the kinetic term~2.6! for the zero
modes has nox1 ~time! derivative and so the propagator
proportional tod(x1). A closed loop of zero modes the
involves d(x1)2}d(0). We canalso understand the diver
gence from dimensional reduction. The effective loop exp
sion parameter in the dimensionally reduced zero m
theory is

g825
g2

2pRe
. ~2.9!

Leaving the external lines fixed and summing over all grap
with internal zero mode lines reproduces the full complic
tion of the dimensionally reduced field theory, interacti
with fixed sources representing the external lines. In
lightlike limit the coupling in this theory diverges.

Now let us examine the cased53, where the original
theory is weakly coupled in the UV and should exist nonp
turbatively. The effective dimensionless coupling at lengtl
in the zero mode theory isg2l 2/Re. At the cutoff distance
l 5Re this actually goes to zero in the lightlike limit, so th
theory should be well-defined. However, it diverges at a
fixed l . In fact, one expects a mass gap at

l'e1/2R1/2/g ~2.10!

,

FIG. 1. One loop scalar graph. Lines are labeled byp2R, flow-
ing in the direction of the arrow. The dangerous term isn50.
2-2
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where the effective coupling becomes strong. Thus the z
mode dynamics cures itself: at any fixed distance, the ze
modes decouple whene is taken to zero. However, ampli-
tudes with vanishingp2 exchange will be very different
from their form in the noncompact theory, due to the gap

This same kind of analysis should apply to any theory th
is asymptotically free in the UV, such as four dimension
nonsupersymmetric or supersymmetric gauge theory. If t
IR fixed point has massless fields, then some residue of
zero mode dynamics will survive.

Finally let us remark on thenÞ0 terms in the amplitude
~2.8!. At large e these take the form

ig4e2R

16p2n3 E dd22qi

~2p!d22
~11e2qiqiR

2/n2!23/2. ~2.11!

At fixed qi this vanishes ase→0, consistent with the analy-
sis of Weinberg@11#: for either time-ordering of the vertices
in Fig. 1, there is a particle with negativep2 . The integrated
amplitude also vanishes ind,4, but ind54 it scales ase0.
Further it is proportional ton21 so the sum diverges. This
just reflects the fact that the nonzero modes renormalize
coupling to the scaleRs .

III. THE 120 MODEL

In the course of this investigation we did find one theo
whose light-cone limit is finite order-by-order. This is a to
model inspired by our eventual interest inN54 gauge theo-
ries. It is a supersymmetric model with three chiral supe
fields and superpotential

W5gF1F2F0. ~3.1!

We also introduce nondynamical ‘‘Wilson lines,’’ so that th
compact momenta forF6 are shifted,

p25
r

R
, r PZ6n. ~3.2!

Heren is an arbitrary noninteger constant. The point is th
the fields inF6 do not have zero modes, so the effectiv
zero mode theory is free.

The absence of divergences is still nontrivial, because
zero modes interact with the external states. Thus Fig. 2~a!
has the same divergence as Fig. 1. Now, however, it is c
celed by the fermion loop of Fig. 2~b!. More generally, any
closed loop of bosonic zero modes, generalizing Fig. 2~a! to

FIG. 2. ~a! A divergent scalar graph. Lines are labeled byp2R
and by the superfield. Other divergent graphs are obtained by
placing a pair of1 superfields with2. ~b! Canceling fermion loop.
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2M external lines, will give one netd~0!. The divergence is
canceled by a corresponding fermion loop.

Rather than show the graphical calculations explicitly
give an argument based on supersymmetry. The zero m
theory lives at a single light-cone time, so to first appro
mation we can ignore thex1-dependence of the externa
lines. The supersymmetry transformations that close
translation ofx1 are then unbroken by the external lines, a
guarantee net vanishing of the loop amplitude~again, to
leading order ine!.

Let us see this explicitly. We write out in components t
relevant terms in the Lagrangian, using the conventions
notations of Wess and Bagger@12#, except that we denote
scalars byf:

L52e2]tf0* ]tf02] if0* ] if0

2 i c̄0S s̄1]t1
1

2
e2s̄2]t1s̄ i] i Dc0

2 i c̄ r S s̄1]t1
1

2
e2s̄2]t1 i s̄2rR211s̄ i] i D

3c r22L rc2rc02H.c.24L r* L rf0* f0 . ~3.3!

We have kept only fields that contribute to the loop grap
In particular, the scalars with nonzerop2 do not appear, but
the fermions with nonzerop2 appear in Fig. 2~b!. All terms
are quadratic in the quantum fields. We have adopted a ra
condensed notation. The subscript labeling the superfield
omitted, because thep2 moding is sufficient to distinguish
these. The indexr runs over the values~3.2! for both 6n,
thus implying also a sum over the superfields6. The cou-
pling and backgrounds are joined in

L r5gf r . ~3.4!

To make thee→0 limit clear we redefinet5et, and
make a Lorentz boost on the spinor indices so that

s1→es1, s2→e21s2. ~3.5!

The Lagrangian becomes

L52] tf0* ] tf02] if0* ] if0

2 i c̄0S s̄1] t1
1

2
s̄2] t1s̄ i] i Dc0

2 i c̄ r S s̄1] t1
1

2
s̄2] t1 i e21s̄2rR211s̄ i] i Dc r

22L rc2rc02H.c.24L r* L rf0* f0 . ~3.6!

The action acquires an overalle from dt, which implies the
loop counting factor ofe21. Otherwise,e appears only in
one term, where it causes one component ofc r to decouple.
The surviving component, designated by a prime, satisfie

s̄2c r850, s2s̄1c r852c r8 . ~3.7!

The Lagrangian finally comes to the form

e-
2-3
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L52] tf0* ] tf02] if0* ] if0

2 i c̄0S s̄1] t1
1

2
s̄2] t1s̄ i] i Dc02 i c̄ r8s̄

1] tc r8

22L rc2r8 c02H.c.24L r* L rf0* f0 . ~3.8!

To leading order ine, the background is invariant under th
supersymmetry whose parameterj8 satisfies Eq.~3.7!. Cor-
respondingly the action~3.8! is invariant under

df05&j8c0 ,

dc05& is i j̄8] if01 i&s1j̄8] tf0 ,

dc r8522&j8L2r* f0 . ~3.9!

This acts linearly on the quantum fields, and so guaran
cancellation of the leadinge21 term in the one loop ampli-
tude.

IV. DISCUSSION

Our work points out that for rather simple dimension
reasons, the limit of lightlike compactification leads to
strong coupling problem in almost any field theory. This m
reduce the promise of this idea as a means of studying
theory dynamics: DLCQ is not a free lunch.

To conclude, we comment on some very recent paper
matrix theory, in particular one that seems to derive the m
trix model @5# and one@6# that seems to show that it i
incorrect. Other very recent papers@7–9# discuss related is
sues.

Roughly speaking, the recent paper by Seiberg@5# ob-
serves that compactification on a nearly lightlike circle
Lorentz-equivalent to compactification on a circle of sm
spacelike radiusRs . The latter compactification of M theor
gives the IIA string, but now in a sector with nonzero D
brane chargep25n/R. Taking Rs→0 while holding dis-
tances fixed in units of the eleven-dimensional Planck sc
one retains just the open string ground states, which are
deed described by the matrix theory. This approach allo
one to understand the increase in the number of degree
freedom when several coordinates are periodically identifi
from additional light states that survive the limiting proce
Similar arguments are made by Sen@7#.

Dine and Rajaraman@6# calculate a three-graviton t
three-graviton process in eleven-dimensional supergra
and obtain a result that is not in agreement with the co
sponding two-loop matrix theory calculation.2 Is this in di-
rect contradiction with the derivation in Ref.@5#? Does the
argument in that paper actually imply the previous succes
tests of matrix model scattering, and therefore that the ma

2The paper@8# of Douglas and Ooguri also reports a contradictio
This in the context of a compactification of matrix theory, but
likely closely related to the result@6#. The paper@13# of Ganor,
Gopakumar, and Ramgoolam also reports a contradiction, but
case may be connected with the subtleties of compactification.
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model and supergravity calculations in Ref.@6# must agree?
We do not see why this should be so. The established ra
of validity for the supergravity calculation is eleven larg
dimensions, while the derivation of the matrix theory de
with M theory compactified on a circle small compared
the eleven-dimensional Planck scale. Without some ad
tional physical input, mere boosts of coordinate systems
uniform rescaling of units of length will not turn one regim
into the other.

We could try to provide the additional input as follow
Consider the supergravity scattering process in eleven la
dimensions, but in a frame~which can always be chosen fo
few enough particles! where thep2 components are intege
multiples of some lengthR, assumed to be greater than th
eleven-dimensional Planck length. One could then cons
the same process in a spacetime with the null identifica
~1.2!. Actually let us consider first an identification that
almost null, with invariant periodicityRs much less than the
Planck scale, and then take a limit. By the argument in R
@5#, the resulting physics is indeed described by the ma
theory Hamiltonian. The one nontrivial step would then se
to be the periodic identification: should we expect this
leave the amplitude invariant?

It is certainly not obvious that this should be so. O
effect of the compactification is that loop momenta are qu
tized, leading as we have seen to strong coupling effects.
compactified theory then breaks down at longer distance,
ten-dimensional rather than eleven-dimensional Planck sc
A second effect is the introduction of winding sectors, in th
case winding membranes which are IIA strings~this point is
also made in Ref.@8#!. This causes supergravity to brea
down at even longer distance, the string scale. This is just
point that the supergravity description is valid for smallRs
but distances large compared to the string scale, while
matrix theory description is valid for smallRs and distances
small compared to the string scale.

Thus, while the scaling argument of Seiberg shows t
the conjecture~1.1! is literally true, it does not explain the
agreement with supergravity calculations, guarantee that
ture supergravity calculations will agree or enable us to
construct the eleven-dimensional limit. For the same reas
the paper@4#, which purported to test the conjecture~1.1!,
does not. Rather, it tests some not yet clearly formula
assumption about continuation from the supergravity reg
to the matrix theory regime.

Additional input, perhaps the large-N limit, is needed.
Note that even at largeN the zero modes become strong
coupled asRs→0, so it is necessary to show that these d
couple from the large-N process.
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