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Compactification in the lightlike limit
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We study field theories in the limit that a compactified dimension becomes lightlike. In almost all cases the
amplitudes at each order of perturbation theory diverge in the limit, due to strong interactions among the
longitudinal zero modes. The lightlike limit generally exists nonperturbatively, but is more complicated than
might have been assumed. Some implications for the matrix theory conjecture are discussed.
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I. INTRODUCTION vacua, disconnected from all previously known moduli
spaces. We think that this is unlikely to be true.
Matrix theory[1] is a promising proposal for the funda- If our interpretation of the conjecture is correct, it raises a

mental degrees of freedom and Hamiltonian of M theory.curious point. The finitdN matrix theory is interpreted as
The further proposdl2] of Susskind, which gives a physical one more limit of M theory. But we already know many
interpretation to the finitdd matrix model, appears to be a limits of M theory: the various string theories, and eleven-

major step forward. This proposal states that dimensional supergravity. Why should one more limit gen-
erate great excitement? Presumably the answer is that while
finite N matrix model matrix theory is a limit of M theory, it is hoped that the full

M theory can also be obtained as a limit of matrix theory,
namely the limit of largeN: taking N—o at fixed R is
(1.7 Lorentz-equivalent to takin@—« holding the frame of an
experiment fixed.
The left-hand side of this equation has a precise definition in In this paper we will address not the second limiting pro-
terms of supersymmetric quantum mechanics, at least wheredure but the first: does it make sense to put a quantum
the transverse dimensions are noncompact. It is the meanirgystem in a lightlike box, in the limiting sense that we as-

=discrete light cone quantization d¥l theory.

of the right-hand side that we wish to address. sume? Our study in this paper is limited gmantum field
Discrete light cone quantizatiofDLCQ) [3] refers to  theory, rather than string or M theory. The purpose is in part
compactification on a lightlike circle, to develop some intuition in this simpler setting, but it is also
. . of interest in its own right. Lightlike compactification is one
(x*,x7,xH=(x",x"+27R,x"), (1.2  of the few limits in which field theories dramatically sim-

plify, and therefore is a tool that should be developed further.
with fixed nonzergp_ =n/R. For the purpose of the conjec-  We find that the situation is somewhat complicated. If we
ture (1.1), we believe that this must be understood as a limitconsider perturbation theory, the limit of lightlike compacti-
of compactification on spacelike circles. This point of view fication does not exist. That is, individual Feynman graphs
has also been taken in some very recent papérs9|. diverge due to the infamous zero modes. In retrospect the
We should note that most of the literature on DLCQ is notproblem is rather obvious. The zero modes are described by
directed toward the above conjecture, but toward providing field theory in one fewer dimension, interacting with fixed
an infrared regulator for light-cone quantized field theoriesdegrees of freedom representing the particles with nonzero
In this case the discrete theory has no physical significance_ . We are holding fixed the parameters in the higher di-
of its own, and the only physical criterion it must satisfy is to mensional theory, so the couplingf of the reduced theory
give the correct infinite volume limit. But for conjecture scales a®R; ! with R being the invariant length of the com-
(1.1) to be meaningful, the right-hand side must have a natupact dimension. One would therefore expect every loop
ral and unique definition, and the limiting procedure providesgraph to diverge. The only theories that have smooth limits
this. If instead the DLCQ of M theory is something different, order-by-order are certain supersymmetric theories where the
the conjecture loses much of its content and becomes motgero modes interact with the fixed degrees of freedom but
of a definition. Further, it implies that matrix theory has anot with each other.
whole new moduli space of vacua, the discrete light-cone However, if we consider the full theory, then it is likely
that the limit does exist, at least if the original field theory
itself exists in the sense of being asymptotically free in the
*Email address: sheller@twiki.physics.ucsb.edu ultraviolet. The lightlike limit is governed by amfrared
"Email address: joep@itp.ucsb.edu fixed point, and in simple cases the zero modes simply be-
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come massive and cause no further trouble. While the limit
appears to exist in most cases, our work points up the fact
that it is more complicated than expected.

We should note that there are various discussions of zero
modes in the DLCQ literature, for example the recent paper
[10]. However, because the orthodox interpretation of DLCQ
differs from ours, there seems to be little relation between FIG. 1. One loop scalar graph. Lines are labelegbyR, flow-

the treatments of the zero modes. In particular, the standaiilg in the direction of the arrow. The dangerous termis0.

DLCQ appears to treat them essentially classically.

Although our work is not specifically applicable to M This gives the propagator
theory, we include in the conclusion some further discussion

of recent work.

II. SCALAR FIELD THEORY

We start with a complex scalar field theory dndimen-

sions with quartic self-interaction. We will denote the time
coordinate byr, the periodic coordinate by, and the re-

e’p2+2np,/R—pip;—M?

i
= 3
Fri-mieR—pp 7

mainder byx' for i=3,...x¢. The metric and periodicity are Wherep,=p,+n/e’R.

ds?= —2drdx + €2dx dx +dxdx,

(7, X", X)=(7,x"+27R,X). (2.2
The invariant length of the compact dimension is
Rs=2meR. (2.2
The timer is related to light-cone tima* by
62
r=xT+—x", (2.3
2
becoming identical in the limig— 0.
The action is
— d * 2 1% gz * 2
S=—| d%| 9, ¢* P+ Mo ¢+Z(¢ ).
(2.9

Now consider the one loop amplitude in Fig. 1,

4 *© d-2

9 J da.d q'(ezqz_nzlesz
4mR*n==e ) (2mdt
—qiqi—M?)"X(€?q/2—n%e?R?—q/q/ —M?) "L (2.9
Here Q,’L:‘Lﬁ k., wherek, is the exchanged momentum.
We have taken the dangerous c&se=0. The problematic
term isn=0, where both lines in the loop have vanishing
longitudinal momenta. Whea= 0, the integrand is indepen-
dent ofq, and the integral diverges. The integral is propor-
tional to e ! and diverges in the limit of lightlike compacti-
fication.

One way to understand this is in coordinate space. In the
lightlike limit of e=0, the kinetic term(2.6) for the zero
modes has na™ (time) derivative and so the propagator is
proportional to5(x*). A closed loop of zero modes then
involves 8(x*)2x§(0). We canalso understand the diver-
gence from dimensional reduction. The effective loop expan-

We leaved unspecified; a perturbatively well-defined theory sjon parameter in the dimensionally reduced zero mode

requiresd=<4, a nonperturbatively well-defined theory
=3.

Expanding

$(rx"X)=(27R) 7 X pu(rx)e™ R, (2.5

the kinetic term is

> | drd?

n=—o

. 2in
€ ard’n &T¢n+ ?¢n é’rd’n

— i ph Iy pn— M p* ¢)- (2.6

theory is

2
12 _ 9

9 27Re’

(2.9

Leaving the external lines fixed and summing over all graphs
with internal zero mode lines reproduces the full complica-
tion of the dimensionally reduced field theory, interacting
with fixed sources representing the external lines. In the
lightlike limit the coupling in this theory diverges.

Now let us examine the cast=3, where the original
theory is weakly coupled in the UV and should exist nonper-
turbatively. The effective dimensionless coupling at lerigth
in the zero mode theory ig?l?/Re. At the cutoff distance
| = Re this actually goes to zero in the lightlike limit, so the
theory should be well-defined. However, it diverges at any

For this reason we should perhaps introduce a new acronynfixed |. In fact, one expects a mass gap at

such as B for the lightlike limit, and restate the conjectutk 1) as
“finite N matrix mode&L3 of M theory.”

| ~ 61/2R1/2/g

(2.10
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i 0 4+ 2M external lines, will give one ne#0). The divergence is
= canceled by a corresponding fermion loop.
G 1,0 r+ . . ..
Rather than show the graphical calculations explicitly we
5= T give an argument based on supersymmetry. The zero mode
, 0 theory lives at a single light-cone time, so to first approxi-
(@) /5t 2 il (E’l ) ., Mation we can ignore tha* -dependence of the external

lines. The supersymmetry transformations that close on
translation ofx™ are then unbroken by the external lines, and
uarantee net vanishing of the loop amplitu@aain, to
eading order ine).
Let us see this explicitly. We write out in components the

where the effective coupling becomes strong. Thus the zerfE!€vant terms in the Lagrangian, using the conventions and
mode dynamics cures itself: at any fixed distance, the zergotations of Wess and BaggEt2], except that we denote
modes decouple whea is taken to zero. However, ampli- Sclars byd:
tudes with vanishingo_ exchange will be very different 2. % %
from their form in the noncompact theory, due to the gap. L==€0:dodrdo=didodido

This same kind of analysis should apply to any theory that _ 1. ,
is asymptotically free in the UV, such as four dimensional _i¢o<0'+¢97+ 5520‘a7+?ai) o
nonsupersymmetric or supersymmetric gauge theory. If the

FIG. 2. (a) A divergent scalar graph. Lines are labeledhyR
and by the superfield. Other divergent graphs are obtained by r
placing a pair of+ superfields with—. (b) Canceling fermion loop.

IR fixed point has massless fields, then some residue of the — [ 1. o .
zero mode dynamics will survive. —i l/fr( o i+ 562079# i UleJF?(?i)
Finally let us remark on tha+# 0 terms in the amplitude
(2.8). At large € these take the form Xt —=2A ¢ po—H.C—AAT A, Pp5 pg. (3.3
ig*e?R d?—2q, ) o) o3 We ha_ve kept only fields that contribute to the loop graphs.
Lom7r? j (Zw)d*2(1+€ qiqiR“/n%) %% (2.11)  In particular, the scalars with nonzepa do not appear, but

the fermions with nonzerp_ appear in Fig. &). All terms

are quadratic in the quantum fields. We have adopted a rather
condensed notation. The subscript labeling the superfields is
omitted, because thp_ moding is sufficient to distinguish
these. The index runs over the value€.2) for both *+ v,

thus implying also a sum over the superfieltls The cou-
%Iing and backgrounds are joined in

At fixed g; this vanishes as— 0, consistent with the analy-
sis of Weinberd 11]: for either time-ordering of the vertices
in Fig. 1, there is a particle with negatiye . The integrated
amplitude also vanishes <4, but ind=4 it scales ag®.
Further it is proportional tox~! so the sum diverges. This
just reflects the fact that the nonzero modes renormalize th
coupling to the scal®;. A=gd, . (3.4

ll. THE +—0 MODEL To make thee—O limit clear we redefiner=et, and

o o o make a Lorentz boost on the spinor indices so that
In the course of this investigation we did find one theory
+

whose light-cone limit is finite order-by-order. This is a toy ot—eoct, o —elo. (3.5
model inspired by our eventual interesthi+4 gauge theo- )
ries. It is a supersymmetric model with three chiral super-The Lagrangian becomes

fields and superpotential
PEp L= —dvdg drpo— 915 di o

W=gd D~ PO, 3.1 _ 1 .
. . . . _i¢0(3+f9t+—;_(9t+?f9i)¢o
We also introduce nondynamical “Wilson lines,” so that the 2
compact momenta fob = are shifted, o 1
r —i¢,(?+at+EF‘at+ie‘1F‘rR‘1+?ai)lp,
P-=g reZxw. (3.2 . .
_2Arlll,rlpo_H.C._4Ar Ar¢0 ¢o. (36)

Here v is an arbitrary noninteger constant. The point is thattne action acquires an overalfrom dr, which implies the
the fields in®= do not have zero modes, so the effective|00p counting factor ofe"%. Otherwise,e appears only in

zero mode theory is free. one term, where it causes one componeny,ofo decouple.

The abseqce of divgrgences is still nontrivial, becagse th§he surviving component, designated by a prime, satisfies
zero modes interact with the external states. Thus R@. 2

has the same divergence as Fig. 1. Now, however, it is can- o Yl=0, oo Y =2y . (3.7
celed by the fermion loop of Fig.(B). More generally, any
closed loop of bosonic zero modes, generalizing Fig) The Lagrangian finally comes to the form
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L=—d,}% dibo— 0, bt 0 o model and supergravity calculations in RE] must agree?
We do not see why this should be so. The established range
of validity for the supergravity calculation is eleven large
dimensions, while the derivation of the matrix theory deals
, . . with M theory compactified on a circle small compared to
—2A ¢ o= H.C.—AAT A g by (3-8 the eleven-dimensional Planck scale. Without some addi-
tional physical input, mere boosts of coordinate systems and
uniform rescaling of units of length will not turn one regime
into the other.

We could try to provide the additional input as follows.

| 1 _ .
—iyy a*at+§a*at+5'ai bo—ig ot du,

To leading order irg, the background is invariant under the
supersymmetry whose parame#grsatisfies Eq(3.7). Cor-
respondingly the actioB.8) is invariant under

Spo=V2E' Yy, Consider the supergravity scattering process in eleven large
dimensions, but in a fram@vhich can always be chosen for

Sho=V2ia' & 3y po+iV2aT E dy o, few enough particlgswhere thep_ components are integer
multiples of some lengtiR, assumed to be greater than the

Sy =—2V2E' A* . (3.9 eleven-dimensional Planck length. One could then consider

the same process in a spacetime with the null identification
This acts linearly on the quantum fields, and so guaranteeq.?). Actually let us consider first an identification that is
cancellation of the leading™* term in the one loop ampli-  aimost null, with invariant periodicitRs much less than the
tude. Planck scale, and then take a limit. By the argument in Ref.
[5], the resulting physics is indeed described by the matrix
IV. DISCUSSION theory Hamiltonian. The one nontrivial step would then seem
to be the periodic identification: should we expect this to
leave the amplitude invariant?
It is certainly not obvious that this should be so. One
ffect of the compactification is that loop momenta are quan-

Our work points out that for rather simple dimensional
reasons, the limit of lightlike compactification leads to a
strong coupling problem in almost any field theory. This may

reduce the prqmise of this idea as a means of studying fiel zed, leading as we have seen to strong coupling effects. The
theory dynamics: DLCQ is not a free lunch. compactified theory then breaks down at longer distance, the
T(.) concludg, we comment on some Very recent papers o, gimensional rather than eleven-dimensional Planck scale.
matrix theory, in particular one that seems 1o derive the Man second effect is the introduction of winding sectors, in this
trix model [5] and one[6] that seems to show that LIS case winding membranes which are A striritfsis point is
incorrect. Other very recent papdi&-9)] discuss related is- 10" made in Ref[8]). This causes supergravity to break
sues. . . down at even longer distance, the string scale. This is just the
Roughly speaklng: _the_ recent paper by_ Se'.bﬁb pb- ._point that the supergravity description is valid for small
serves that compactification on a nearly lightlike circle IShut distances large compared to the string scale, while the
Lorentz-equivalent to compactification on a circle of sma"matrix theory description is valid for smafl, and dis:tances
spacelike radiuis. The latter compactification of M theory compared to the string scale S
gives the IIA string, but now in a sector .With nonzero DO- Thus, while the scaling argumeht of Seiberg shows that
brane c.harge_p_zin/R. Taking RS_’Q Wh”.e holding dis- the conjecturg1.l) is literally true, it does not explain the
tances fixed in units of the eleven-dimensional Planck scal greement with supergravity calculations, guarantee that fu-

one retains just the open string ground states, which are in; ; : :
. _ . ’ ure supergravity calculations will agree or enable us to re-
deed described by the matrix theory. This approach allow: berg Y g

. ) Tonstruct the eleven-dimensional limit. For the same reason,
one to understand the increase in the number of degrees e papef[4], which purported to test the conjectuf®.1)
freedom when several coordinates are periodically identifie oes not R,ather it tests some not yet clearly formtjlated
from additional light states that survive the limiting process.assumloti;)n abouf continuation from the supergravity regime
Similar arguments are made by Séf. to the matrix theory regime.

Dine and Rajaramaii6] calculate a three-graviton to Additional input, perhaps the larde-limit, is needed.
three-graviton process in eleven-dimensional supergravitNOte that even at iargN the zero modes bécome strongly
and obtain a result that is not in agreement with the COIeL 6 pled asR.—0, so it is necessary to show that these de-
sponding two-loop matrix theory calculatidris this in di- counle from Sthe I,ar & DrOCEsS
rect contradiction with the derivation in Rd6]? Does the P 9& p '
argument in that paper actually imply the previous successful

tests of matrix model scattering, and therefore that the matrix
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