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Dynamics of primordial black hole formation
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We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to
primordial black holes~PBHs! during the radiation-dominated phase of the early Universe. The collapse
dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is
computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological
PBH mass function, is found to bedc'0.7 rather than the generally employeddc'1/3 if d is defined as
DM /Mh , the relative excess mass within the initial horizon volume. In order to study the accretion onto the
newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times
after formation of the event horizon. In general, small black holes~compared to the horizon mass at the onset
of the collapse! give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large
ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore,
the scaling of black hole mass with the distance from the formation threshold, known to occur in near-critical
gravitational collapse, is demonstrated to apply to primordial black hole formation.@S0556-2821~99!07310-5#

PACS number~s!: 04.70.Bw, 04.25.Dm, 98.80.Cq
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I. INTRODUCTION

Primordial overdensities seeded, for instance, by inflat
or topological defects may collapse to primordial black ho
~PBHs! during early radiation-dominated eras if they exce
a critical threshold@1,2#. This particular PBH formation pro
cess, which is examined in this paper, occurs when an
tially superhorizon-size region of order unity overdens
crosses into the horizon and recollapses. Among the po
tially observable consequences of PBHs, should they be
duced in cosmologically relevant numbers, are thermal
fects due to the Hawking evaporation of small PB
~manifested in the gamma ray background or as a clas
very short gamma ray bursts@3#! or purely gravitational ef-
fects such as gravitational radiation of coalescing bin
PBH systems@4# or contribution of PBHs to the cosmic den
sity parameter. Upper bounds on these signatures stro
constrain the spectral index of the fluctuation power sp
trum on small scales@5#.

Recently, the possibility that stellar mass PBHs constit
halo dark matter has received attention in the context of
Massive Compact Halo Object~MACHO! EROS microlens-
ing detections@6#. It has been suggested that during the c
mological QCD phase transition, occurring at an epo
where the mass enclosed within the particle horizon,Rh;t,
approximately equals one solar mass, PBH formation ma
facilitated due to equation of state effects manifest in a
duction of the PBH formation threshold@7#.

Every quantitative analysis of the PBH number and m
spectrum requires knowledge of the threshold parametedc
~for the specific definition used here see below! separating
perturbations that form black holes from those that do n
and the resulting black hole massMbh as a function of dis-
tance from the threshold. In a simplified picture of the fo
mation process, where hydrodynamical effects are only
0556-2821/99/59~12!/124013~8!/$15.00 59 1240
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counted for in a very approximate way, the universe is s
into a collapsing region described by a closed Friedma
Robertson-Walker~FRW! space-time and an outer, flat FRW
universe. For a radiation-dominated universe, it can
shown that this ansatz yieldsdc'1/3, wheredc is evaluated
at the time of horizon crossing@8#. On dimensional grounds
the natural scale forMbh is the horizon massMh;Rh

3 of the
unperturbed FRW solution at the epoch when fluctuatio
enter the horizon. However, these estimates fordc and Mbh
are valid only within the limitations of the model employe
which cannot account for the detailed nonlinear evolution
the collapsing density perturbations.

In order to determinedc andMbh for various initial con-
ditions, we performed one-dimensional, general relativis
simulations of the hydrodynamics of PBH formation. W
studied three families of perturbation shapes chosen to
resent generic classes of initial data, reflecting the lack
specific information about the distribution and classificati
of primordial perturbation shapes. Our numerical techniq
adopted from a scheme developed by Baumgarteet al. @9#, is
sketched in Sec. II, followed by a description of the gene
hydrodynamical evolution of the collapse and the results
dc ~Sec. III! and a discussion of accretion after the PB
formation ~Sec. IV!. Defined as the excess mass within t
horizon sphere at the onset of the collapse, we finddc'0.7
for all three perturbation shapes. A numerical confirmat
of the previously suggested power-law scaling ofMbh with
d2dc @10#, related to the well-known behavior of collapsin
space-times at the critical point of black hole formation@11#,
is presented in Sec. V. In this framework, the PBH ma
spectrum is determined by the dimensionless coefficienK
and the scaling exponentg, such that

Mbh5KMh~d2dc!
g. ~1!
©1999 The American Physical Society13-1
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We provide numerical results forK andg for the three per-
turbation families. These values may be used, in principle
determine PBH mass functions as outlined in@10#.

To introduce our numerical approach and isolate the
pendence ofdc and Mbh on the initial perturbation shap
from the impact of the equation of state, we restrict the d
cussion here to the purely radiation-dominated phase of
early universe. In a separate publication, we will investig
the change ofdc before, during, and after the cosmologic
QCD phase transition.

Two other groups have, to our knowledge, published
sults of numerical simulations of PBH formation in th
radiation-dominated universe@12#. Our work differs from
theirs with regard to the numerical technique, the choice
initial conditions, and the analysis of the numerical da
Wherever possible and relevant, we compare our meth
and results with those previously published.

II. NUMERICAL TECHNIQUE

The dynamics of collapsing density perturbations in
early universe is fully described by the general relativis
hydrodynamical equations for a perfect fluid, the field eq
tions, the first law of thermodynamics, and a suitable eq
tion of state. We use a simple radiation-dominated equa
of state,P5e/3, whereP is the pressure ande is the energy
density, as appropriate during most eras in the early unive
The assumption of spherical symmetry is well justified
large fluctuations in a Gaussian distribution@13#, reducing
the problem to one spatial dimension.

For our simulations, we have chosen the formulation
the hydrodynamical equations by Hernandez and Misner@14#
as implemented by Baumgarteet al. @9# ~we omit restating
the full system of equations but instead refer to the equat
published by Baumgarteet al. by a capital ‘‘B’’ followed by
the respective equation number@15#!. Based on the origina
equations by Misner and Sharp@16#, Hernandez and Misne
proposed to exchange the Misner-Sharp time variablet with
the outgoing null coordinateu. The line element then read
@Eq. ~B27!#

ds252e2Cdu222eCel/2du dA1R2dV2, ~2!

where eC is the lapse function,A is the comoving radial
coordinate,R is circumferential radius, anddV is the solid
angle element@cf. Eq. ~B2!#. After the transformation, the
hydrodynamical equations retain the Lagrangian characte
the Misner-Sharp equations but avoid crossing into the ev
horizon of a black hole once it has formed. Covering t
entire space-time outside while asymptotically approach
the event horizon, the Hernandez-Misner equations are
fectly suited to follow the evolution of a black hole for lon
times after its initial formation without encountering coord
nate singularities. This allowed us, in principle, to study t
accretion onto newly formed PBHs for arbitrarily long tim
~in contrast to earlier calculations@12#! and therefore predic
final PBH masses.

The Lagrangian form of the Hernandez-Misner equatio
allows the convenient tracking of the expanding outer
12401
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gions in a comoving numerical reference frame. It also p
vides a simple prescription for the outer boundary conditi
as explained below. The extremely low ratio of baryon nu
ber to energy density in the early universe requires a rein
pretation of the comoving radial coordinateA in Eq. ~B1!
and the comoving rest mass densityr0 in Eq. ~B3!. We re-
definer0 as the number density of a conserved tracer part
with the purpose to define the comoving coordinateA as the
tracer particle number enclosed withinR. The variablee is
then defined as the energy per tracer particle number den
such that the energy density ise5er0. In the ultrarelativistic
limit e@1, allowing us to replace ‘‘11e’’ with ‘‘ e’’ in Eqs.
~B3!, ~B4!, ~B6!, ~B14!, and~B38!. This way, the Lagrangian
coordinateA can be scaled to order unity together with a
other variables, which is desirable for reasons of numer
stability.

Given the definition of the radial grid coordinate, a su
able discretization ofA must be found. Numerical accurac
dictates to deviate as little as possible from an equidis
grid partition lest numerical instabilities occurring on supe
horizon scales severely constrain the grid size~see below!.
On the other hand, sinceDR;R22DA in a constant density
medium, spatial resolution is concentrated near the outer
boundary and is worst near the origin~where it is needed
most! in case of equidistantDA. As a compromise betwee
accuracy and resolution, we use an exponentially grow
cell size of the form

DAi5S 11
C
NDDAi 21 , ~3!

where C is a constant andN is the total number of grid
points. Based on the standard convergence tests for num
cal resolution, we usedN5500 andC512 for the results
reported below.

The canonical boundary conditions@Eqs. ~B18! and
~B40!# are imposed at the origin, while the outer boundary
defined to match the exact solution of the Friedmann eq
tions for a radiation-dominated flat universe. Hence,
pressure follows the analytic solution

P5P0S t~AN!

t0
D 22

, ~4!

wheret(AN) is the proper time of the outermost fluid ele
ment ~identified here with the FRW time coordinatetFRW)
and P0 andt0 are the initial values for pressure and prop
time. The time metric~lapse! functions in Eqs.~B1! and
~B27! are fixed at

eF5eC51 ~5!

at the outer boundary in order to synchronize the coordin
times t andu with the proper time of an observer comovin
with the outermost fluid element,t(AN), and thereby with
tFRW @note that Eq.~B40! synchronizesu with a stationary
observer at infinity which is a meaningless concept in
expanding space-time#.

Owing to the presence of the curvature perturbation,
space-time converges to the flat FRW solution only asym
3-2
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DYNAMICS OF PRIMORDIAL BLACK HOLE FORMATION PHYSICAL REVIEW D 59 124013
totically. Therefore, the accuracy of imposing Eq.~4! at the
outer boundary is presumed to grow with the size of
computational domain, removing the grid boundary farth
from the density perturbation. In particular, it is desirable
keep the boundary causally unconnected from the pertu
region for as long as achievable. The hydrodynamical evo
tion ensuing the collapse is highly dynamical fort&100t0
~Sec. III!, wheret0 is the FRW time at the beginning of th
simulation, corresponding to the light crossing time of a c
moving distance of approximately 9Rh . Explicit numerical
experiments showed good agreement of the numerical s
tion at the outer grid with the exact FRW solution for a
relevant perturbation parameters if the grid reached ou
Rmax*9Rh . Extending the grid to these large radii proved
be a nontrivial task for the Misner-Sharp part of the nume
cal scheme, needed to initialize the Hernandez-Misner c
putation, as will be outlined below.

As the initial data are most naturally assigned on a spa
hypersurface at constant Misner-Sharp~or, equivalently,
FRW! time t, one must transform the hydrodynamical a
metric variables onto a null hypersurface in order to initial
the Hernandez-Misner equations. This can be done num
cally in the way described by Baumgarteet al. @9#: first, the
initial conditions are given on at5const hypersurface an
evolved using the Misner-Sharp equations. Simultaneou
the path of a light ray is followed from the origin to the gr
boundary and the state variables on the path are stored. A
the light ray has crossed the grid, the Misner-Sharp com
tation is terminated and the stored state values are use
initial data for the Hernandez-Misner equations. As a con
quence, the Misner-Sharp calculation needs to be carried
until an initialization photon starting at the center reaches
outer grid boundary. For the aforementioned reasons,
preferable to use a superhorizon size computational dom
Since the light traveling time over such a large grid is larg
than the dynamical time for collapse to a PBH (;t0), a
black hole already forms during the Misner-Sharp calcu
tion before the initialization of the Hernandez-Misner grid
completed. In order to avoid a breakdown of the Misn
Sharp coordinate system inside the event horizon, the ev
tion of fluid elements is stopped artificially if curvature b
comes large. More specifically, we found that the Misn
Sharp equations are numerically well behaved if the in
grid boundary is defined as the innermost mass shell wh
the Misner-Sharp lapse function fulfillseF*0.2. The inner
boundary conditions are henceforth chosen as the froze
state variables on this shell. Despite this modification of
evolution equations the final results of the Hernandez-Mis
calculation are unaffected if the initialization photon is f
away from the collapsing region at the time of the bound
redefinition, i.e., if the black hole forms at late times duri
the Misner-Sharp calculation. In all cases reported here,
condition is satisfied.

The second complication that arises in the Misner-Sh
coordinate system is related to superhorizon scales.
nearly flat expanding space-time the square of the coordi
velocity, U2 ~whereU5e2F]R/]t), and the ratio of gravi-
tational mass to radius, 2m/R, grow with increasingR. Both
terms cancel identically in an exact FRW universe for allR.
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On scales much larger than the horizon, however, they
come much greater than unity, and thus numerical noise
lead to significant errors in the radial metric function,G
5(11U222m/R)1/2 @cf. Eq. ~B12!#. The positive feedback
of errors inG, r0, Eq. ~B13!, and m, Eq. ~B6!, leads to a
numerical instability of the Misner-Sharp equations on s
perhorizon scales. It can be controlled by solving forG, r0,
andm at each time step by iteration, and by imposing a ve
restrictive allowed density change ofDr0 /r0<531024 per
time step.

None of the above-mentioned problems exist in t
Hernandez-Misner formulation by virtue of the time slicin
along null surfaces: avoidance of the central singularity
guaranteed by the formation of an event horizon, and
superhorizon instability cannot occur because every g
point lies, by definition, on the horizon. Therefore, after t
assignment of initial data is completed, the integration of
fluid equations in Hernandez-Misner coordinates is num
cally stable for arbitrarily long times and on arbitrarily larg
spatial domains. In order to achieve reasonable accur
however, the time step size must be restricted to values m
smaller than the Courant-Friedrich-Levy~CFL! condition.
The reason is most likely found in the numerical integrati
of the lapse functioneC, which is only first-order accurate
@9#. This problem is most important for collapse with initia
conditions close to the threshold for black hole formatio
which leads to the formation of very small black holes a
gives rise to very strong space-time curvature. Decreas
the time step generally causes a decrease of resulting b
hole massMbh. At the numerical resolution chosen for th
problem@see Eq.~3!#, the code is unable to follow the for
mation of black holes smaller thanMbh'0.1 in units of the
initial horizon mass. An adaptive mesh algorithm may
necessary to resolve this problem. In agreement with stu
of critical gravitational collapse@17,18#, our experiments in-
dicate that only the coefficientK in Eq. ~1! is affected by the
time step variation, while the scaling exponentg appears
very robust. Nevertheless, these problems disappear rap
with distance to the threshold such that convergence
larger PBH masses was attained.

In addition to the test-bed calculations reported by Bau
garteet al. @9#, we verified the accuracy of the code inclu
ing the modified outer boundary conditions by simulating t
evolution of a flat unperturbed universe. Using the time s
restriction described above, the numerical results for all
drodynamical variables differ from the analytic FRW sol
tion by less than 1023.

III. HYDRODYNAMICAL EVOLUTION OF COLLAPSING
FLUCTUATIONS

We have studied the spherically symmetric evolution
three families of curvature perturbations. Initial conditio
are chosen to be perturbations in the energy densitye in
unperturbed Hubble flow specified at horizon crossing. T
first family of perturbations is described by a Gaussia
shaped overdensity that asymptotically approaches the F
solution at large radii:
3-3
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J. C. NIEMEYER AND K. JEDAMZIK PHYSICAL REVIEW D59 124013
e~R!5e0F11AexpS 2
R2

2~Rh/2!2D G . ~6!

Here,R is the circumferential radius,Rh52t0 is the horizon
length at the initial cosmological timet0, and e0

53/(32pt0
2), yielding Mh5(4p/3)e0Rh

35t0 for the initial
horizon mass of the unperturbed space-time. In the abs
of perturbations, cirumferential radius corresponds to wha
commonly referred to as proper distance in cosmology,r p
5arc , wherea is the scale factor of the universe andr c is
the comoving cosmic distance.

The other two families of initial conditions involve
spherical Mexican hat function and a sixth-order polynom
These functions are characterized by outer rarefaction
gions that exactly compensate for the additional mass of
inner overdensities, so that the mass derived from the i
grated density profile is equal to that of an unperturbed FR
solution:

e~R!5e0F11AS 12
R2

Rh
2D expS 2

3R2

2Rh
2D G ~7!

and

e~R!5H e0F11
A

9 S 12
R2

Rh
2D S 32

R2

Rh
2D 2G , R,A3Rh ,

e0 , R>A3Rh .
~8!

The amplitudeA is a free parameter used to tune the init
conditions to sub- or supercriticality with respect to bla
hole formation. The shapes of all three perturbations are
lustrated in Fig. 1.

The relevant dimensionless threshold parameterdc for the
purpose of evaluating the cosmological abundance of PB
is the energy overdensity in the uniform Hubble const

FIG. 1. Shapes of the critical perturbations as imposed at
onset of the simulations: Gaussian@solid line, Eq.~6!#, Mexican hat
@dotted line, Eq.~7!#, and polynomial@dashed line, Eq.~8!#.
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gauge averaged over a horizon volume~i.e., synchronous
gauge with uniform Hubble flow condition!. It is equivalent
to the additional mass energy insideRh in units of Mh . We
find similar values —dc50.67 ~Mexican hat!, dc50.70
~Gaussian!, anddc50.71 ~polynomial! — for all three fami-
lies of initial data in our study, suggesting that the valuedc
;0.7 yields a more accurate estimate for the cosmolog
PBH mass function than the commonly employeddc;1/3.

In cases where a black hole is formed, we define its m
Mbh as the gravitational massm enclosed by the innermos
shell that conforms toeC>10210, the temporal evolution of
all shells with smallereC being essentially frozen in~with
regard to proper time of a distant observer!. Owing to the
steep rise ofeC at the event horizon, the exact choice of t
cutoff value does not affectMbh within the accuracy reported
in this work. Unless otherwise specified, we hencefo
quote Mbh in units of the initial horizon mass,Mh , and
proper time in multiples of the initial time,t0.

Figures 2, 3, and 4 illustrate generic features of the e
lution of slightly supercritical perturbations for the three de
sity perturbation families, respectively. The curves disp
the energy densitye/e0 at constant proper timet for each
mass shell (t is given in multiples oft0 as labeled!. In
Hernandez-Misner coordinates, the lack of a well-defin
global time variable corresponding to the cosmological FR
time at infinity requires this local time slicing. As describe
in @9#, we integrate dt5eCdu and storet(A,u) together
with all other state variables. The curves are then created
plotting the energy density along the isosurfaces oft. The
radial coordinate is the circumferential radius, scaled s
that in the absence of a perturbation it may be associa
with a cosmic comoving radius. Further, the initial horizo
sizeRh52t0 is normalized to unity in the figures. It is inter
esting to note that with this type of time slicinge(t
5const) may cease to be a single-valued function of

e

FIG. 2. Time evolution of a near-critical Mexican hat dens
perturbation with initiald50.6780. A black hole with massMbh

50.37 forms in the interior.
3-4
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DYNAMICS OF PRIMORDIAL BLACK HOLE FORMATION PHYSICAL REVIEW D 59 124013
circumferential radiusR in cases of strong curvature~cf. Fig.
5!. In particular, at the same proper time spheres contain
larger baryon number~labeled byA) may have a smalle
circumferential radius than spheres containing sma
baryon number.

In all cases shown in Figs. 2, 3, and 4, a black hole w
Mbh'0.37 forms. The hydrodynamical evolution of the thr
different perturbations exhibits strong similarities: initiall
the central overdensity grows in amplitude while the ou
underdensity, if present in the initial conditions, gradua

FIG. 3. Time evolution of a near-critical polynomial perturb
tion with initial d50.7175, forming a black hole with massMbh

50.36.

FIG. 4. Time evolution of a near-critical Gaussian-curve pert
bation with initial d50.7015, forming a black hole with mas
Mbh50.37.
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widens and levels out. A black hole forms in the interio
Some time after the initial formation of an event horizo
material close to the PBH but outside the event horiz
bounces and launches a compression wave traveling
ward. This compression wave is connected to the black h
by a rarefaction region that evacuates the immediate vici
of the black hole, consistent with the observation by Eva
and Coleman@17# of a rarefaction region close to the blac
hole in critical solutions of a collapsing radiation fluid. Th
strength of the rarefaction differs significantly for the Gau
ian perturbation shape and the mass compensated o
while the latter display only a weak underdensity th
quickly equilibrates, the former gives rise to a drop in ener
density by three orders of magnitude.

As pointed out by Evans and Coleman@17#, the bounce of
material outside the newly formed black hole is a featu
intrinsic to black holes very close to the formation thresho
The effect is of direct relevance in the context of PBH fo
mation, since it effectively shuts off further accretion of m
terial onto the newly formed black hole. As Fig. 6 demo
strates, no bounce occurs if the initial conditions a
sufficiently far above the threshold. Here, a large black h
(Mbh52.75) forms whose event horizon reaches further o
encompassing regions where the pressure gradient is sm
preventing pressure forces from overcoming gravitational
traction. Slightly below the PBH formation threshold,
bounce occurs whose strength is proportional to the ini
perturbation amplitude~Fig. 5!, indicating that the fluid
bounce is strongest for perturbations very close to the thre
old. It is likely that previous studies@12# failed to observe
this phenomenon because their initial conditions were ins
ficiently close to the black hole formation threshold. The
numerical simulations may also not have followed the hyd
dynamical evolution for long enough after the initial form
tion of the PBH.

-

FIG. 5. Time evolution of an undercritical Gaussian-curve p
turbation with initiald50.7006. No black hole is formed.
3-5
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IV. ACCRETION

Accretion onto PBHs and their resulting growth in ma
has been a highly debated subject since the suggestion
PBHs may grow in proportion with the cosmological horiz
mass@1#. Both analytic@19# and previous numerical studie
@12# came to the conclusion that the growth of PBH mas
by ongoing accretion is negligible except, possibly, for ve
contrived initial data for the perturbations.

Our results generally confirm this statement for sm
PBHs, but we find noticeable differences between colla
simulations that exhibit the fluid bounce and those that
not ~Fig. 7!. The rarefaction following the outgoing densi
wave efficiently cuts off the flow of material into the blac
hole. Comparing Figs. 7 and 4, it is recognized that the s
ondary phase of mass growth for the Gaussian shape c
lation may correspond to the rise of the second wave cres
the strongly damped density oscillation at the black h
event horizon. This second rise in density is absent in
weaker bounces of the Mexican hat and polynomial-sha
perturbation simulations. The large (Mbh52.75) black hole,
on the other hand, continues to grow at a slowly decreas
rate for long times without gaining a considerable amoun
mass in the process. Based on these results, we expect a
tion to be insignificant for the determination ofMbh, at least
for the types of perturbations investigated here.

V. SCALING RELATIONS FOR PBH MASSES

Choptuik’s discovery@11# of critical phenomena in gravi
tational collapse near the black hole formation thresh
started an active and fascinating line of research in nume
and analytical general relativity~for recent reviews, see
@20#!. For a variety of matter models, it was found that t
dynamics of near-critical collapse exhibits continuous or d

FIG. 6. Time evolution of an overcritical Gaussian-curve pert
bation with initial d50.7196, forming a black hole with mas
Mbh52.75.
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crete self-similarity and power-law scaling of the black ho
mass with the offset from the critical point@Eq. ~1!#. In par-
ticular, Evans and Coleman@17# found self-similarity and
mass scaling in numerical experiments of a collapsing ra
tion fluid. They numerically determined the scaling expone
g'0.36, followed by a linear perturbation analysis of t
critical solution by Koikeet al. @18# that yieldedg'0.3558.

Until recently, it was believed that entering the scali
regime requires a degree of fine-tuning of the initial data t
is unnatural for any astrophysical application. It was no
@10# that fine-tuning to criticality occurs naturally in the ca
of PBHs forming from a steeply declining distribution o
primordial density fluctuations, as generically predicted
inflationary scenarios. In the radiation-dominated cosmolo
cal epoch, the only difference with the fluid collapse stud
numerically by Evans and Coleman@17# is the asymptoti-
cally expanding, finite density background space-time o
FRW universe. Assuming that self-similarity and mass sc
ing are consequences of an intermediate asymptotic solu
that is independent of the asymptotic boundary conditio
Eq. ~1! is applicable to PBH masses, allowing the derivati
of a universal PBH initial mass function@10#. Furthermore,
cosmological constraints based on evaporating PBHs
slightly modified as a consequence of the production of
only horizon-size PBHs, as previously assumed, but the
ditional production of smaller, subhorizon mass black ho
at each epoch@21#.

Figure 8 presents numerical evidence that mass sca
according to Eq.~1! occurs in the collapse of near-critica
black holes in an asymptotic FRW space-time, and there
applies to PBH formation. All three perturbation familie
give rise to scaling solutions with a scaling exponentg
'0.36. Only the smallest six black holes of all families we
included to obtain the numerical best fit quoted in the figu
captions. On larger mass scales, deviations from mass
ing with a fixed exponent become noticeable; in all casesg

-

FIG. 7. Growth rate ofMbh as a function of proper time imme
diately outside of the event horizon, providing a measure for
accretion rate onto the newly formed black hole. The lines co
spond to the black holes described in Figs. 2~dotted line!, 3 ~dashed
line!, 4 ~solid line!, and 6~dash-dotted line!.
3-6
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tends to increase slightly for largerMbh. Owing to resolution
limitations discussed in Sec. II, we were unable to comp
the formation of smaller black holes than the ones shown
Fig. 8.

To linear order, the scaling relation~1! is invariant under
transformations of the control parameterd up to a change of
the coefficientK. This was tested explicitly by choosing di
ferent definitions ofd ~the perturbation amplitudeA, the total
excess mass for the Gaussian-shaped perturbation, an
excess mass within the horizon volume! for the numerical fit
and obtaining identical values forg.

VI. CONCLUSIONS

In the general framework of primordial black hole form
tion from horizon-size, preexisting density perturbations,
numerically solved the spherically symmetric general rela
istic hydrodynamical equations in order to study the colla
of radiation fluid overdensities in an expanding Friedma
Robertson-Walker universe. The algorithm is adopted fr
an implementation of the Hernandez-Misner coordinates@14#
by Baumgarteet al. @9#. It allows the convenient computa
tion of black hole formation and superhorizon scale dyna
ics by virtue of its time coordinate, chosen to be const
along outgoing null surfaces.

One of the parameters entering the statistical analysi
cosmological consequences and constraints due to the
sible abundant production of PBHs is the threshold para
eter dc corresponding to the amplitude of the smallest p
turbations that still collapse to a black hole. It genera
depends on the specific perturbation shape at the tim
horizon crossing. We studied three generic families of
ergy density perturbations, one with a finite total excess m
with respect to the unperturbed FRW solution and two m

FIG. 8. Black hole masses as a function of the distance to
formation threshold,d2dc , for three different perturbation shap
families. Using the smallest six black holes of each family, the b
fit parameters to Eq.~1! areg50.36, K52.85, dc50.6745~Mexi-
can hat perturbation, triangles!, g50.37, K52.39, dc50.7122
~polynomial perturbation, crosses!, and g50.34, K511.9, dc

50.7015~Gaussian-curve perturbation, diamonds!.
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compensated ones. Defining the control parameterd as the
total excess gravitational mass of the perturbed space-
with respect to the unperturbed FRW background enclo
in the initial horizon volume, our calculations yield a simila
threshold value for all three fluctuation shape families,dc

'0.7.
We investigated features of collapsing space-times v

close to the threshold of black hole formation embedded
an expanding FRW solution. If the initial perturbation
smaller thandc , it grows until pressure forces at the orig
cause the fluid to bounce, creating an outgoing press
wave followed by a rarefaction, but no black hole. Initi
conditions slightly exceeding the threshold, on the oth
hand, lead to the formation of a very small black hole at
origin; however, the pressure gradient immediately outs
of the event horizon is still sufficiently steep to force th
fluid to bounce. The launch of a compression wave can
observed in simulations of all three perturbation shapes.
strongest in the case of a pure initial overdensity, para
etrized here as a Gaussian curve, where the density be
the pressure wave drops by three orders of magnitude.
creasingd to values significantly abovedc , the bounce be-
comes weaker and finally disappears, signaling the failure
the pressure gradient at the event horizon to overcome gr
tational attraction.

This behavior has important consequences for the ac
tion onto PBHs immediately after their formation. If
bounce occurs, the inner rarefaction~also observed by Evan
and Coleman@17# in a different context! shuts off accretion
almost completely before any significant amount of mate
has been accreted. On the other hand, black holes that
from sufficiently large overdensities, where a bounce is s
pressed, may accrete at a slowly decreasing rate for a
time. Since most PBHs created from collapsing primord
density fluctuations with a steeply declining amplitude d
tribution form very close todc @10#, we conclude that accre
tion is unimportant for the estimation of PBH masses. This
in agreement with previous studies@12#, albeit for different
reasons.

Finally, the previously suggested@10# scaling relation be-
tween Mbh and d2dc , based on the analogy with critica
phenomena observed in near-critical black hole collapse
asymptotically nonexpanding space-times@11#, was con-
firmed numerically for an asymptotic FRW background. F
the smallest black holes in our investigation, the scaling
ponent isg'0.36, which is identical to the nonexpandin
numerical and analytical result@17# within our numerical
accuracy. The parameterK of Eq. ~1!, needed to evaluate th
PBH initial mass function derived in@10#, was found to
range fromK'2.4 toK'12.
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