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Dynamics of primordial black hole formation

J. C. Niemeyer
University of Chicago, Department of Astronomy and Astrophysics, 5640 South Ellis Avenue, Chicago, lllinois 60637

K. Jedamzik
Max-Planck-Institut fu Astrophysik, Karl-Schwarzschild-Strasse 1, D-85740 Garching, Germany
(Received 5 June 1998; published 18 May 1999

We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to
primordial black holesPBHg during the radiation-dominated phase of the early Universe. The collapse
dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is
computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological
PBH mass function, is found to b&~0.7 rather than the generally employég~1/3 if § is defined as
AM/M,,, the relative excess mass within the initial horizon volume. In order to study the accretion onto the
newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times
after formation of the event horizon. In general, small black h{desnpared to the horizon mass at the onset
of the collapsggive rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large
ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore,
the scaling of black hole mass with the distance from the formation threshold, known to occur in near-critical
gravitational collapse, is demonstrated to apply to primordial black hole form&86%56-282(99)07310-5

PACS numbgs): 04.70.Bw, 04.25.Dm, 98.80.Cq

I. INTRODUCTION counted for in a very approximate way, the universe is split
into a collapsing region described by a closed Friedmann-
Primordial overdensities seeded, for instance, by inflatiorRobertson-Walke(FRW) space-time and an outer, flat FRW
or topological defects may collapse to primordial black holesuniverse. For a radiation-dominated universe, it can be
(PBHS during early radiation-dominated eras if they exceedshown that this ansatz yieldg~1/3, whered, is evaluated
a critical threshold1,2]. This particular PBH formation pro- at the time of horizon crossin@]. On dimensional grounds,
cess, which is examined in this paper, occurs when an inithe natural scale foly, is the horizon masM,~ R3 of the
tially superhorizon-size region of order unity overdensityunperturbed FRW solution at the epoch when fluctuations
crosses into the horizon and recollapses. Among the poterenter the horizon. However, these estimatesdoand My,
tially observable consequences of PBHs, should they be pr@re valid only within the limitations of the model employed,
duced in cosmologically relevant numbers, are thermal efwhich cannot account for the detailed nonlinear evolution of
fects due to the Hawking evaporation of small PBHsthe collapsing density perturbations.
(manifested in the gamma ray background or as a class of In order to determines, and M, for various initial con-
very short gamma ray bursf8]) or purely gravitational ef- ditions, we performed one-dimensional, general relativistic
fects such as gravitational radiation of coalescing binaryimulations of the hydrodynamics of PBH formation. We
PBH systems4] or contribution of PBHs to the cosmic den- studied three families of perturbation shapes chosen to rep-
sity parameter. Upper bounds on these signatures strongfgsent generic classes of initial data, reflecting the lack of
constrain the spectral index of the fluctuation power specspecific information about the distribution and classification
trum on small scalef5]. of primordial perturbation shapes. Our numerical technique,
Recently, the possibility that stellar mass PBHs constitutéadopted from a scheme developed by Baumgstrtd. [9], is
halo dark matter has received attention in the context of theketched in Sec. Il, followed by a description of the general
Massive Compact Halo Obje@ACHO) EROS microlens- hydrodynamical evolution of the collapse and the results for
ing detectiong6]. It has been suggested that during the cosd; (Sec. ll) and a discussion of accretion after the PBH
mological QCD phase transition, occurring at an epocHormation (Sec. IV). Defined as the excess mass within the
where the mass enclosed within the particle horizgp;t,  horizon sphere at the onset of the collapse, we &igd 0.7
approximately equals one solar mass, PBH formation may béor all three perturbation shapes. A numerical confirmation
facilitated due to equation of state effects manifest in a reof the previously suggested power-law scalingMy, with
duction of the PBH formation threshold]. 6— 6. [10], related to the well-known behavior of collapsing
Every quantitative analysis of the PBH number and masspace-times at the critical point of black hole formatjad,
spectrum requires knowledge of the threshold param&ter is presented in Sec. V. In this framework, the PBH mass
(for the specific definition used here see belmeparating spectrum is determined by the dimensionless coeffidient
perturbations that form black holes from those that do notand the scaling exponent, such that
and the resulting black hole mabké,,;, as a function of dis-
tance from the threshold. In a simplified picture of the for-
mation process, where hydrodynamical effects are only ac- Mpr=KMp(6—6.)7. (D)
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We provide numerical results fd¢ and y for the three per- gions in a comoving numerical reference frame. It also pro-
turbation families. These values may be used, in principle, tovides a simple prescription for the outer boundary condition,
determine PBH mass functions as outlined 19]. as explained below. The extremely low ratio of baryon num-
To introduce our numerical approach and isolate the deber to energy density in the early universe requires a reinter-
pendence ofs. and My, on the initial perturbation shape pretation of the comoving radial coordinaein Eq. (B1)
from the impact of the equation of state, we restrict the dis-and the comoving rest mass densityin Eq. (B3). We re-
cussion here to the purely radiation-dominated phase of thdefinep, as the number density of a conserved tracer particle
early universe. In a separate publication, we will investigatewith the purpose to define the comoving coordinatas the
the change ob; before, during, and after the cosmological tracer particle number enclosed withita The variablee is
QCD phase transition. then defined as the energy per tracer particle number density,
Two other groups have, to our knowledge, published resuch that the energy densityds- ep,. In the ultrarelativistic
sults of numerical simulations of PBH formation in the limit e>1, allowing us to replace “*+e” with “ e” in Egs.
radiation-dominated universgl2]. Our work differs from (B3), (B4), (B6), (B14), and(B38). This way, the Lagrangian
theirs with regard to the numerical technique, the choice otoordinateA can be scaled to order unity together with all
initial conditions, and the analysis of the numerical data.other variables, which is desirable for reasons of numerical
Wherever possible and relevant, we compare our methodstability.

and results with those previously published. Given the definition of the radial grid coordinate, a suit-
able discretization oA must be found. Numerical accuracy
IIl. NUMERICAL TECHNIQUE dictates to deviate as little as possible from an equidistant

grid partition lest numerical instabilities occurring on super-

The dynamics of collapsing density perturbations in thehorizon scales severely constrain the grid gigee below.
early universe is fully described by the general relativisticOn the other hand, sind®R~R™?AA in a constant density
hydrodynamical equations for a perfect fluid, the field equamedium, spatial resolution is concentrated near the outer grid
tions, the first law of thermodynamics, and a suitable equaboundary and is worst near the origiwhere it is needed
tion of state. We use a simple radiation-dominated equatiomos) in case of equidistanhAA. As a compromise between
of state,P= €/3, whereP is the pressure anelis the energy accuracy and resolution, we use an exponentially growing
density, as appropriate during most eras in the early universeell size of the form
The assumption of spherical symmetry is well justified for
large fluctuations in a Gaussian distributifit8], reducing
the problem to one spatial dimension.

For our simulations, we have chosen the formulation of
the hydrodynamical equations by Hernandez and Migh4r  where C is a constant andN is the total number of grid
as implemented by Baumgares al. [9] (we omit restating Points. Based on the standard convergence tests for numeri-
the full system of equations but instead refer to the equationgal resolution, we usedl=500 andC=12 for the results
published by Baumgartet al. by a capital “B” followed by ~ reported below.
the respective equation numHds]). Based on the original ~ The canonical boundary conditionEqgs. (B18) and
equations by Misner and Shafpé], Hernandez and Misner (B40)] are imposed at the origin, while the outer boundary is
proposed to exchange the Misner-Sharp time variahlih defined to match the exact solution of the Friedmann equa-
the outgoing null coordinata. The line element then reads tions for a radiation-dominated flat universe. Hence, the

AAi =

c
1+N)AAi1' (3)

[Eq. (B27)] pressure follows the analytic solution
-2
ds2= —e?Ydu?—2e¥eM?du dA+R2d02,  (2) b po< T(TAN)) , @
0

wheree? is the lapse functionA is the comoving radial
coordinate R is circumferential radius, and() is the solid
angle elemenicf. Eq. (B2)]. After the transformation, the nd P, and 7y are the initial values for pressure and proper

hydrodynamical equations retain the Lagrangian character ; : : ;
the Misner-Sharp equations but avoid crossing into the eve% mze7) ;?eeﬁt)ir;de aTetrlc(Iapsé functions in Egs.(B1) and

horizon of a black hole once it has formed. Covering the
entire space-time outside while asymptotically approaching eP=eg¥=1 (5)
the event horizon, the Hernandez-Misner equations are per-
fectly suited to follow the evolution of a black hole for long at the outer boundary in order to synchronize the coordinate
times after its initial formation without encountering coordi- timest andu with the proper time of an observer comoving
nate singularities. This allowed us, in principle, to study thewith the outermost fluid element,(Ay), and thereby with
accretion onto newly formed PBHSs for arbitrarily long times tqgy, [note that Eq.[B40) synchronizesu with a stationary
(in contrast to earlier calculatiori$2]) and therefore predict observer at infinity which is a meaningless concept in an
final PBH masses. expanding space-tinje

The Lagrangian form of the Hernandez-Misner equations Owing to the presence of the curvature perturbation, the
allows the convenient tracking of the expanding outer respace-time converges to the flat FRW solution only asymp-

where 7(Ay) is the proper time of the outermost fluid ele-
ment (identified here with the FRW time coordinategy)
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totically. Therefore, the accuracy of imposing E4) at the  On scales much larger than the horizon, however, they be-
outer boundary is presumed to grow with the size of thecome much greater than unity, and thus numerical noise can
computational domain, removing the grid boundary farthedead to significant errors in the radial metric functidn,
from the density perturbation. In particular, it is desirable to=(1+U?—2m/R)Y? [cf. Eq. (B12)]. The positive feedback
keep the boundary causally unconnected from the perturbesf errors inT", py, Eq. (B13), andm, Eq. (B6), leads to a
region for as long as achievable. The hydrodynamical evolunumerical instability of the Misner-Sharp equations on su-
tion ensuing the collapse is highly dynamical foe10Qt;  perhorizon scales. It can be controlled by solving Forp,,
(Sec. I, wheret, is the FRW time at the beginning of the andm at each time step by iteration, and by imposing a very
simulation, corresponding to the light crossing time of a co-restrictive allowed density change Afoy/po<5X10"* per
moving distance of approximatelyR. Explicit numerical  time step.
experiments showed good agreement of the numerical solu- None of the above-mentioned problems exist in the
tion at the outer grid with the exact FRW solution for all Hernandez-Misner formulation by virtue of the time slicing
relevant perturbation parameters if the grid reached out t@jong null surfaces: avoidance of the central singularity is
Rmax= 9Rp. Extending the grid to these large radii proved to guaranteed by the formation of an event horizon, and the
be a nontrivial task for the Misner-Sharp part of the numeri-syperhorizon instability cannot occur because every grid
cal scheme, needed to initialize the Hernandez-Misner compoint lies, by definition, on the horizon. Therefore, after the
putation, as will be outlined below. assignment of initial data is completed, the integration of the
As the initial data are most naturally assigned on a spatigfiuid equations in Hernandez-Misner coordinates is numeri-
hypersurface at constant Misner-Shapr, equivalently, cally stable for arbitrarily long times and on arbitrarily large
FRW) time t, one must transform the hydrodynamical andspatial domains. In order to achieve reasonable accuracy,
metric variables onto a null hypersurface in order to initia”ZEhowe\/er, the time Step size must be restricted to values much
the Hernandez-Misner equations. This can be done numersmaller than the Courant-Friedrich-LewZFL) condition.
cally in the way described by Baumgaeeal. [9]: first, the  The reason is most likely found in the numerical integration
initial conditions are given on &=const hypersurface and of the lapse functiore”, which is only first-order accurate
evolved using the Misner-Sharp equations. Simultaneouslyg]. This problem is most important for collapse with initial
the path of a light ray is followed from the origin to the grid conditions close to the threshold for black hole formation,
boundary and the state variables on the path are stored. Aft@fhich leads to the formation of very small black holes and
the light ray has crossed the grid, the Misner-Sharp compugives rise to very strong space-time curvature. Decreasing
tation is terminated and the stored state values are used ffe time step genera”y causes a decrease of resumng black
initial data for the Hernandez-Misner equations. As a consehple massM,;,. At the numerical resolution chosen for this
guence, the Misner-Sharp calculation needs to be carried OWfoblem[see Eq.3)], the code is unable to follow the for-
until an initialization photon starting at the center reaches thenation of black holes smaller thavi pr=0.1 in units of the
outer grid boundary. For the aforementioned reasons, it ifitial horizon mass. An adaptive mesh algorithm may be
preferable to use a superhorizon size computational domaiecessary to resolve this problem. In agreement with studies
Since the light traveling time over such a large grid is largerof critical gravitational collapsgl7,18, our experiments in-
than the dynamical time for collapse to a PBH 1), @ dicate that only the coefficient in Eq. (1) is affected by the
black hole already forms during the Misner—Sharp Calcula‘time Step Variation' while the Sca“ng exponeﬂtappears
tion before the initialization of the Hernandez-Misner grld is very robust. Nevertheless, these prob|ems disappear rap|d|y
completed. In order to avoid a breakdown of the Misner-yjith distance to the threshold such that convergence for
Sharp coordinate system inside the event horizon, the evolqarger PBH masses was attained.
tion of fluid elements is Stopped al‘tlfICIally if curvature be- In addition to the test-bed Ca|cu|ations reported by Baum-
comes large. More specifically, we found that the Misner-garteet al. [9], we verified the accuracy of the code includ-
Sharp equations are numerically well behaved if the innejng the modified outer boundary conditions by simulating the
grid boundary is defined as the innermost mass shell whergyojution of a flat unperturbed universe. Using the time step
the Misner-Sharp lapse function fulfills”=0.2. The inner  restriction described above, the numerical results for all hy-
boundary conditions are henceforth chosen as the frozen-igrodynamical variables differ from the analytic FRW solu-
state variables on this shell. Despite this modification of thgjgn by less than 10°.
evolution equations the final results of the Hernandez-Misner
calculation are unaffected if the initialization photon is far

away from the collapsing region at the time of the boundarym_ HYDRODYNAMICAL EVOLUTION OF COLLAPSING

redefi_nition, i.e., if the blapk hole forms at late times during_ FLUCTUATIONS
the Misner-Sharp calculation. In all cases reported here, this
condition is satisfied. We have studied the spherically symmetric evolution of

The second complication that arises in the Misner-Sharphree families of curvature perturbations. Initial conditions
coordinate system is related to superhorizon scales. In are chosen to be perturbations in the energy density
nearly flat expanding space-time the square of the coordinatenperturbed Hubble flow specified at horizon crossing. The
velocity, U2 (whereU=e~®gR/4t), and the ratio of gravi- first family of perturbations is described by a Gaussian-
tational mass to radius,ni2'R, grow with increasindR. Both ~ shaped overdensity that asymptotically approaches the FRW
terms cancel identically in an exact FRW universe forRall  solution at large radii:
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FIG. 2. Time evolution of a near-critical Mexican hat density
perturbation with initial =0.6780. A black hole with maskl,
=0.37 forms in the interior.

e(R)=¢g : (6)

gauge averaged over a horizon volurfi®., synchronous

Here,Ris the circumferential radiug, = 2t, is the horizon ~92uge with uniform Hubble flow conditignit is equivalent
length at the initial cosmological timet,, and e to the.aolldltlonal mass energy insiig in units of My,. We
=3/(32nt), yielding My= (47/3)eoR3=t, for the initial ~ iNd similar values —o:=0.67 (Mexican hat, 5.=0.70

Gaussian andd.=0.71 (polynomia) — for all three fami-

horizon mass of the unperturbed space-time. In the abseni f initial d . d . hat th
of perturbations, cirumferential radius corresponds to what i9€S Of initial data in our study, suggesting that the valije
~0.7 yields a more accurate estimate for the cosmological

commonly referred to as proper distance in cosmolagy, ; ion than th | | 3
=ar., wherea is the scale factor of the universe andis PBH mass function than the commonly emp Oml. :
In cases where a black hole is formed, we define its mass

the comoving cosmic distance. o .
The other two families of initial conditions involve a Mbn as the grawtauongl mainlaoenclosed by the innermost
spherical Mexican hat function and a sixth-order polynomial Shell that conforms te . 10", the temporal evolution of
All shells with smallee™ being essentially frozen ifwith

These functions are characterized by outer rarefaction r : k :
gions that exactly compensate for the additional mass of thE¢9ard to proper time of a distant obsejvedwing to the
teep rise of™ at the event horizon, the exact choice of the

inner overdensities, so that the mass derived from the inte2

e(R)=¢p| 1+A

and

€0

grated density profile is equal to that of an unperturbed FRWUtoff value does not affedd ,, within the accuracy reported
solution: in this work. Unless otherwise specified, we henceforth
quote My, in units of the initial horizon massM,,, and
R2 3R2 proper time in multiples of the initial time,,.
1- —2) exp( -— (7) Figures 2, 3, and 4 illustrate generic features of the evo-
Ri 2Ry, lution of slightly supercritical perturbations for the three den-
sity perturbation families, respectively. The curves display
the energy densityg/ e, at constant proper time for each
R2 R2\? mass shell £ is given in multiples oft, as labeled In
1__)(3_ _> , R< \/§Rh, Hernandez-Misner coordinates, the lack of a well-defined
e(R)= Rﬁ Rﬁ global time variable corresponding to the cosmological FRW
€, R> \/§Rh- f[ime at infinity requires this local time slicing. As described
@ in [9], we integrate d=e¥du and storer(A,u) together
with all other state variables. The curves are then created by
The amplitudeA is a free parameter used to tune the initial plotting the energy density along the isosurfacesrofrhe
conditions to sub- or supercriticality with respect to blackradial coordinate is the circumferential radius, scaled such
hole formation. The shapes of all three perturbations are ilthat in the absence of a perturbation it may be associated
lustrated in Fig. 1. with a cosmic comoving radius. Further, the initial horizon
The relevant dimensionless threshold paramétdor the  sizeR,=2t, is normalized to unity in the figures. It is inter-
purpose of evaluating the cosmological abundance of PBHesting to note that with this type of time slicing(r
is the energy overdensity in the uniform Hubble constant=const) may cease to be a single-valued function of the
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FIG. 3. Time evolution of a near-critical polynomial perturba-  FIG. 5. Time evolution of an undercritical Gaussian-curve per-
tion with initial §=0.7175, forming a black hole with mad4;, turbation with initial 5=0.7006. No black hole is formed.
=0.36.

widens and levels out. A black hole forms in the interior.

circumferential radiuR in cases of strong curvatufef. Fig.  Some time after the initial formation of an event horizon,
5). In particular, at the same proper time spheres containing,aterial close to the PBH but outside the event horizon
larger baryon numbeflabeled byA) may have a smaller pounces and launches a compression wave traveling out-
circumferential radius than spheres containing smalle{yarg. This compression wave is connected to the black hole
baryon number. . by a rarefaction region that evacuates the immediate vicinity
In all cases shown in Figs. 2, 3, and 4, a black hole withy¢ 1,0 12ck hole, consistent with the observation by Evans

Mbh%o'g’? forms. 'I_'he hydr(_)d_ynam|cal e\_/ol_utpr_] Of_ t_he_ .threeand Colemari17] of a rarefaction region close to the black
different perturbations exhibits strong similarities: initially, . . . ; o .
hole in critical solutions of a collapsing radiation fluid. The

the central overdensity grows in amplitude while the outer ; : s
underdensity, if present in the initial conditions, gradualllystrength of the rarefaction differs significantly for the Gauss-

ian perturbation shape and the mass compensated ones:

while the latter display only a weak underdensity that

RN quickly equilibrates, the former gives rise to a drop in energy
] density by three orders of magnitude.

1 ] As pointed out by Evans and Colemfy], the bounce of

15 3 material outside the newly formed black hole is a feature
2.0 ] intrinsic to black holes very close to the formation threshold.
£.9 - The effect is of direct relevance in the context of PBH for-

:'S . mation, since it effectively shuts off further accretion of ma-

8.0 ] terial onto the newly formed black hole. As Fig. 6 demon-

11.2 - strates, no bounce occurs if the initial conditions are
15.7 ] sufficiently far above the threshold. Here, a large black hole
2’;’; ) (Mp,=2.75) forms whose event horizon reaches further out,

e encompassing regions where the pressure gradient is smaller,
2.3 ] preventing pressure forces from overcoming gravitational at-
87.6 ] traction. Slightly below the PBH formation threshold, a
bounce occurs whose strength is proportional to the initial
perturbation amplitudg(Fig. 5), indicating that the fluid
bounce is strongest for perturbations very close to the thresh-
old. It is likely that previous studiegl2] failed to observe

2 R (273" (T/TS-W t_hi_s phenomenon because their initial c_onditions were insm_Jf-
ficiently close to the black hole formation threshold. Their
FIG. 4. Time evolution of a near-critical Gaussian-curve pertur-numerical simulations may also not have followed the hydro-
bation with initial §=0.7015, forming a black hole with mass dynamical evolution for long enough after the initial forma-
Mpn=0.37. tion of the PBH.
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R (B1y)™" (7/7¢)™" diately outside of the event horizon, providing a measure for the
accretion rate onto the newly formed black hole. The lines corre-

FIG. 6. Time evolution of an overcritical Gaussian-curve pertur-spond to the black holes described in Figgd@tted ling, 3 (dashed
bation with initial §=0.7196, forming a black hole with mass |ine), 4 (solid line), and 6(dash-dotted ling
Mbh: 275

crete self-similarity and power-law scaling of the black hole
IV. ACCRETION mass with the offset from the critical poifEqg. (1)]. In par-
) . i i ticular, Evans and Colemaf17] found self-similarity and

Accretion onto PBHSs and their resulting growth in masSmass scaling in numerical experiments of a collapsing radia-
has been a highly debated subject since the suggestion thgdn, fiuid. They numerically determined the scaling exponent
PBHs may grow in proportion with the cosmological horizon ..~ 9 36, followed by a linear perturbation analysis of the
mass|1]. Both analytic[19] and previous numerical studies cyitica| solution by Koikeet al. [18] that yieldedy~0.3558.

[12] came to the conclusion that the growth of PBH masses il recently, it was believed that entering the scaling
by ongoing accretion is negligible except, possibly, for veryregime requires a degree of fine-tuning of the initial data that
contrived initial data for the perturbations. is unnatural for any astrophysical application. It was noted

Our results generally confirm this statement for smalli10] that fine-tuning to criticality occurs naturally in the case
PBHSs, but we find noticeable differences between collapsgf pgHs forming from a steeply declining distribution of
simulations that exhibit the fluid bounce and those that dgyimordial density fluctuations, as generically predicted by
not (Fig. 7). The rarefaction following the outgoing density infjationary scenarios. In the radiation-dominated cosmologi-
wave efficiently cuts off the flow of material into the black c5) epoch, the only difference with the fluid collapse studied
hole. Comparing Figs. 7 and 4, it is recogmz_ed that the S€Giumerically by Evans and Colemdt7] is the asymptoti-
ondary phase of mass growth for the Gaussian shape calcgy|ly expanding, finite density background space-time of a
lation may correspond to the rise of the second wave crest gfryy universe. Assuming that self-similarity and mass scal-
the strongly damped density oscillation at the black holeng are consequences of an intermediate asymptotic solution
event horizon. This second_rlse in density is abs_ent in thenat is independent of the asymptotic boundary conditions,
weaker bounces of the Mexican hat and polynomial-shapegt (1) is applicable to PBH masses, allowing the derivation
perturbation simulations. The larg#g;,=2.75) black hole, of 3 universal PBH initial mass functidii0]. Furthermore,
on the other hand, continues to grow at a slowly decreasingosmological constraints based on evaporating PBHs are
rate for long times without gaining a considerable amount ojightly modified as a consequence of the production of not
mass in the process. Based on these results, we expect acGi@iy horizon-size PBHs, as previously assumed, but the ad-
tion to be insignificant for the determination bfy,, at least  gitional production of smaller, subhorizon mass black holes
for the types of perturbations investigated here. at each epocf21].

Figure 8 presents numerical evidence that mass scaling
according to Eq(1) occurs in the collapse of near-critical
black holes in an asymptotic FRW space-time, and therefore

Choptuik’s discovery11] of critical phenomena in gravi- applies to PBH formation. All three perturbation families
tational collapse near the black hole formation thresholdjive rise to scaling solutions with a scaling exponent
started an active and fascinating line of research in numericat0.36. Only the smallest six black holes of all families were
and analytical general relativityfor recent reviews, see included to obtain the numerical best fit quoted in the figure
[20)). For a variety of matter models, it was found that thecaptions. On larger mass scales, deviations from mass scal-
dynamics of near-critical collapse exhibits continuous or dising with a fixed exponent become noticeable; in all cases,

V. SCALING RELATIONS FOR PBH MASSES
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LOT T compensated ones. Defining the control paramétes the
total excess gravitational mass of the perturbed space-time
with respect to the unperturbed FRW background enclosed
° ] in the initial horizon volume, our calculations yield a similar

° 1 threshold value for all three fluctuation shape familiés,

] ~0.7.

f We investigated features of collapsing space-times very

Mbh/ M,
<

close to the threshold of black hole formation embedded in
DF an expanding FRW solution. If the initial perturbation is
x ] smaller thand,, it grows until pressure forces at the origin
A x cause the fluid to bounce, creating an outgoing pressure
wave followed by a rarefaction, but no black hole. Initial
a conditions slightly exceeding the threshold, on the other
R T hand, lead to the formation of a very small black hole at the
1006 107° 1074 9073 107° origin; however, the pressure gradient immediately outside
6 — 4, of the event horizon is still sufficiently steep to force the
fluid to bounce. The launch of a compression wave can be
formation threshold— .. for three different perturbation shape Bbserved in simulations of all three perturbation shapes. It is

families. Using the smallest six black holes of each family, the bes{strpngest in the case Of. a pure initial overdenS|ty,. para”."
fit parameters to Eq(1) are y=0.36, K =2.85, 5.= 0.6745(Mexi- etrized here as a Gaussian curve, where the density behind
.36, .85, 5.=0.

can hat perturbation, trianglesy=0.37, K=2.39, §,=0.7122 the pressure wave drops by three orders of magnitude. In-
(polynomial perturbation, crossesand y=0.34, K=11.9, &, creasingé to values significantly abové., the bounce be-
=0.7015(Gaussian-curve perturbation, diamonds comes weaker and finally disappears, signaling the failure of
the pressure gradient at the event horizon to overcome gravi-
tends to increase slightly for larght,,,,. Owing to resolution tational attraction.
limitations discussed in Sec. Il, we were unable to compute This behavior has important consequences for the accre-
the formation of smaller black holes than the ones shown iriion onto PBHs immediately after their formation. If a
Fig. 8. bounce occurs, the inner rarefacti@iso observed by Evans
To linear order, the scaling relatidd) is invariant under and Coleman17] in a different contextshuts off accretion
transformations of the control parameteup to a change of almost completely before any significant amount of material
the coefficientK. This was tested explicitly by choosing dif- has been accreted. On the other hand, black holes that form
ferent definitions of (the perturbation amplitudg, the total  from sufficiently large overdensities, where a bounce is sup-
excess mass for the Gaussian-shaped perturbation, and teessed, may accrete at a slowly decreasing rate for a long
excess mass within the horizon volunier the numerical fit  time. Since most PBHs created from collapsing primordial

FIG. 8. Black hole masses as a function of the distance to th

and obtaining identical values foy. density fluctuations with a steeply declining amplitude dis-
tribution form very close ta; [10], we conclude that accre-
VI. CONCLUSIONS tion is unimportant for the estimation of PBH masses. This is

. _ in agreement with previous studigs2], albeit for different
In the general framework of primordial black hole forma- reasons.

tion from horizon-size, preeX'IStIng denS|ty perturbatlons, \{VE Fina”y, the previous|y Suggestémo:l Sca"ng relation be-
numerically solved the spherically symmetric general relativtyween M., and 5— 8., based on the analogy with critical
istic hydrodynamical equations in order to study the collapsghenomena observed in near-critical black hole collapse in
of radiation fluid overdensities in an expandlng Fr|edmann'asymptotica”y nonexpanding Space_timgbl], was con-
Robertson-Walker universe. The algorithm is adopted fromjrmed numerically for an asymptotic FRW background. For
an implementation of the Hernandez-Misner coordinftd$  the smallest black holes in our investigation, the scaling ex-
by Baumgarteet al. [9]. It allows the convenient computa- ponent isy~0.36, which is identical to the nonexpanding
tion of black hole formation and superhorizon scale dynamnymerical and analytical resuf.7] within our numerical
ics by virtue of its time coordinate, chosen to be constangccuracy. The parametirof Eq. (1), needed to evaluate the

along outgoing null surfaces. o ~ PBH initial mass function derived ifi10], was found to
One of the parameters entering the statistical analysis ghnge fromk~2.4 toK~12.

cosmological consequences and constraints due to the pos-
sible abundant production of PBHSs is the threshold param-
eter §, corresponding to the amplitude of the smallest per-
turbations that still collapse to a black hole. It generally
depends on the specific perturbation shape at the time of We wish to thank T. Baumgarte for providing the original
horizon crossing. We studied three generic families of enversion of the hydrodynamical code, and T. Abel, A. Olinto,
ergy density perturbations, one with a finite total excess masand V. Katalinicfor helpful discussions. Part of this research
with respect to the unperturbed FRW solution and two massvas supported by the Enrico-Fermi Foundation.
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