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Black hole lasers
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High frequency dispersion does not alter the low frequency spectrum of Hawking radiation from a single
black hole horizon, whether the dispersion entails subluminal or superluminal group velocities. We show here
that in the presence of an inner horizon as well as an outer horizon the superluminal case differs dramatically
however. The negative energy partners of Hawking quanta return to the outer horizon and stimulate more
Hawking radiation if the field is bosonic or suppress it if the field is fermionic. This process leads to expo-
nential growth or damping of the radiated flux and correlations among the quanta emitted at different times,
unlike in the usual Hawking effect. These phenomena may be observable in condensed matter black hole
analogues that exhibit ‘‘superluminal’’ dispersion.@S0556-2821~99!07510-4#
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I. INTRODUCTION

Recent work has shown that Hawking radiation is high
insensitive to modifications of the short distance physics
the quantum field. In these models linear fields are con
ered, and the field equation is modified at high wave vec
in some preferred frame, yielding a nonlinear dispersion
lation v(k) relating frequency to wave vector. Models wi
both subluminal@1–3# and superluminal@4,5# group veloci-
ties at high wave vectors have been studied, including lat
black hole spacetimes@6# ~which have subluminal disper
sion!. The picture that emerges from these studies is that
thermal Hawking spectrum is very robust for black ho
with temperature much less than the energy scale of the
physics. Although short distance physics does modify t
spectrum, the modifications are so slight at the frequencie
interest that they seem well nigh impossible to observe.

We have found a dramatic exception to this rule howev
If there is both an outer and an inner horizon, and if t
dispersion is superluminal, then the Hawking process fo
bosonic field is self-amplifying and the radiated flux grow
exponentially in time, while for a fermionic field the proce
is self-attenuating. What happens is that the negative en
partner of a Hawking particle, after falling to the inner ho
zon, ‘‘bounces’’ and returns to the outer horizon on a sup
luminal trajectory, where it either stimulates or suppres
more Hawking radiation in the bosonic or fermionic ca
respectively. This secondary radiation is not only differe
than the usual Hawking flux, but it is correlated to the pr
radiation. In the bosonic case the process continues to
plify at least until the back reaction becomes important.

Charged black holes have inner horizons, but astroph
cal ones would lose their charge very rapidly; so it is diffic
to imagine how this runaway Hawking effect could ever
observed for real black holes. Even so, it provides an in
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esting theoretical laboratory in which to explore the effe
of short distance physics. Moreover, it is conceivably r
evant to string theory, and it might be observable in a c
densed matter analogue of a black hole. Let us briefly in
cate these ideas in turn.

In spite of many points of close agreement between
physics of near extremal D-branes and black holes, a gla
discrepancy persists. If a radiating near extremal D-br
state is maintained at fixed energy by a constant influx
energy in a pure state, then the entropy in the radiation
be constant and there will be correlations in the radiation t
emerges at different times. For a black hole, on the ot
hand, the usual Hawking process leads to uncorrelated t
mal radiation for all time. The effects of superluminal di
persion invalidate the usual Hawking picture because
negative energy partners return to the event horizon. If th
is something analogous to the superluminal dispersion of
model in string theory, then perhaps that could eliminate
discrepancy between the string and black hole pictures. T
may not be so farfetched. String theory is, after all, non-lo
in some sense, and there is some evidence@7# suggesting that
it supports superluminal effects.

A condensed matter analogue—Unruh’s sonic black h
@8,1,9#—was the original stimulus for the development of t
dispersive models. In this model, a sonic horizon occ
where the flow velocity of an inhomogeneous fluid excee
the speed of sound. Although it seems unlikely that this s
ation can be experimentally realized for a low temperat
superfluid, there are variations of the idea that might be
alizable, involving quasiparticles other than phonons in d
ferent systems. For example, this may occur for fermion q
siparticles in rotating superfluid vortex cores with gap nod
such as3He-A or d-wave superconductors@10#, or in moving
3He-A textures@11#. In both these examples there are bo
inner and outer horizons. Moreover, the quasiparticle disp
sion relation is ‘‘relativistic’’ sufficiently near a gap node
and the group velocity increases~i.e. becomes ‘‘superlumi-
nal’’ ! as the difference between the momentum and the
node increases; so the effective field theory has ‘‘superlu
©1999 The American Physical Society11-1
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STEVEN CORLEY AND TED JACOBSON PHYSICAL REVIEW D59 124011
nal’’ dispersion. Thus it is not inconceivable that the ph
nomena discussed here may someday be observable.

This paper is organized as follows. In Sec. II the supe
minal dispersion model for both bosons and fermions is d
cussed. The propagation of wave packets in the black h
spacetime with inner and outer horizons is analyzed qua
tively in Sec. III and the implications for the amplification o
suppression and the correlations in the Hawking radiation
drawn in Sec. IV. Section V renders the previous discuss
quantitative by using explicit wave packet solutions~derived
in the Appendix! to find expressions for the number an
correlations between the radiated quanta. Open issues
cerning the boundary conditions on the quantum state
the gravitational back reaction are discussed briefly in S
VI.

We use units with \5c51 and metric signature
(1222).

II. SUPERLUMINAL DISPERSION MODEL

A 2-dimensional model suffices to illustrate the essen
physics. We assume that the spacetime metric is static,
therefore@12# coordinates can be chosen~at least locally! so
that the line element takes the form

ds25dt22@dx2v~x!dt#2. ~2.1!

A special case is the line element of thet-r subspace of the
Reissner-Nordstro¨m black hole spacetime in Painleve´-
Gullstrand coordinates, wherev(r )52A2GM/r 2Q2/r 2.
@These coordinates cover the black hole interior down
where v(r )50, at r 5Q2/2GM.# More generally, we con-
sider anyv(x) which is negative, vanishes asx→1`, and is
greater than21 except between inner and outer horizon
located atxi andxo , wherev(xi ,o)521.

A. Boson field

We adopt a linear field theory with higher spatial deriv
tives included in the action in order to provide a superlum
nal dispersion relation. In this section we restrict to the c
of a real bosonic field. The case of a Majorana fermion fi
will be discussed in Sec. II B. The action for the field
given by

Sf5
1

2E d2x$@~] t1v]x!f#21fF̂~]x!f%. ~2.2!

In the ordinary relativistic action one hasF̂(]x)5]x
2 . In this

paper we take

F̂~]x!5]x
22

1

k0
2
]x

4 . ~2.3!

To motivate this action we note that the black hole define
preferred frame, the frame of freely falling observers. In
Painlevé-Gullstrand coordinate system, (] t1v]x) is the unit
tangent to free-fall world lines that start from rest at infinit
and]x is its unit, outward pointing normal. Our action com
from modifying the derivative operator, only along the un
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normal]x , by the addition of higher derivative terms whic
become important only when the wavelength is of order 1k0
or shorter. We will assume that this length scale of ‘‘ne
physics’’ is much shorter than the length scale of the me
~2.1!, i.e.k0@uv8/vu. @In particular, we assumek0@k, where
k5uv8(xi ,o)u is the surface gravity of the horizon.# The idea
is that the microstructure of spacetime, or of a conden
matter analogue, might give rise to such higher derivat
terms in the effective action. The choice~2.3! is just the
generic form for the lowest order such term that is reflect
invariant and produces superluminal group velocities.

The action~2.2!,~2.3! produces the equation of motion

~] t1]xv !~] t1v]x!f5]x
2f2

1

k0
2
]x

4f. ~2.4!

To derive the dispersion relation for this equation we lo
for solutions of the form

f~ t,x!5expS 2 ivt1 i Ex

k~x8! dx8 D ~2.5!

wherek(x) is a position dependent wave vector. Substituti
this ansatz into the equation of motion~2.4! and neglecting
derivatives ofv(x) andk(x) results in the dispersion relatio

~v2vk!25F2~k! ~2.6!

where

F2~k!5k21k4/k0
2 . ~2.7!

The group velocity in the free-fall frame isdF/dk; so wave
packets with k!k0 propagate near the speed of ligh
whereas wave packets withk*k0 propagate superluminally

The dispersion relation~2.6! is a fourth order polynomial
equation in the wave vectork, and so it has four solutions fo
k at given values ofv and v. The nature of these roots i
revealed by a graphical method. In Fig. 1 we plot the strai

FIG. 1. Plot of (v1uvuk) ~for one value ofv and two values of
v) andF(k) as functions ofk. The intersection points of the curve
are the allowed wave vector roots of the dispersion relation~2.6!.
1-2
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BLACK HOLE LASERS PHYSICAL REVIEW D59 124011
line (v1uvuk) for one value ofv ~satisfying 0,v!k0) and
two values ofv, and the curve6F(k), as functions ofk.
@We defineF(k) as thepositivesquare root of Eq.~2.7!.# The
intersection points are the allowed real wave vector root
the dispersion relation. Whenuvu,1 there are only tworeal
roots@corresponding to the two roots for the ordinary disp
sion relation withFord(k)56k#, the other two being com
plex. The positive wave vector is denotedk1s . When uvu
*11 3

2 (v/k0)2/3'1, on the other hand, all four roots a
real, with one positive and three negative. The positive w
vector is denotedk1 in this case and, in decreasing magn
tude, the negative wave vectors are denotedk2 andk2s re-
spectively~the other negative wave vector corresponds to
ingoing wave that plays no role in this paper, and so we
not give it a name!. These roots are labeled in Fig. 1.

The dispersion relation plot in Fig. 1 is also quite conv
nient for tracing the motion of wave packets in the bac
ground spacetime. The coordinate group velocityvg
5dx/dt of a wave packet centered on a given wave vecto
given by

vg5
dv

dk
52uvu6

dF

dk
, ~2.8!

where6dF/dk is the group velocity in the free-fall frame
Thus at any wave vectorvg is just the slope of the6F(k)
curve minus the slope of the straight line (v1uvuk). For all
four types of wave vectorsk6s,6 of interest to us,6dF/dk
is positive; hence the sign ofvg is determined by which of
the two slopes is larger, something that is easily read fr
the figure. Forv.0, the group velocity fork1s and k6 is
positive, whereas fork2s it is negative.

When generalized to a complex scalar field, the act
~2.2! is invariant under constant phase transformations of
field. This implies the existence of a conserved currentj m.
The integral of the time componentj 0 over a spatial slice
serves as a conserved inner product when evaluated on
plex solutions to the equation of motion~2.4!. For the metric
~2.1!, this inner product takes the form

~ f ,g!5 i E dx@ f * ~] t1v]x!g2g~] t1v]x! f * #, ~2.9!

where f (t,x) andg(t,x) are solutions to Eq.~2.4!.
Two classes of complex solutions to the field equat

~2.4! are of special interest for quantization. The first are
positive free-fall frequency wave packets. They can be w
ten as sums of solutions satisfying

~] t1v]x! f ~ t,x!52 iv8 f ~ t,x! ~2.10!

wherev8.0. The second are the positive Killing frequen
wave packets. These are sums of solutions of the fo
e2 ivtw(x) wherev.0. A positive free-fall frequency wave
packet confined to a constantv(x) interval at one time nec
essarily has a positive norm under Eq.~2.9!, as does a posi
tive Killing frequency wave packet confined to a regio
wherev(x)50 ~where the Killing frequency coincides wit
the free-fall frequency!. Since the norm is conserved, it
positive at all times if it is at one time, even when the wa
12401
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packet does not remain in an interval of constant or van
ing v(x). Note that if the wavelength is small compared
the scale of variations ofv(x), then a positive free-fall fre-
quency wave packet will have positive norm even ifv(x) is
not constant.

To quantize the field we assume thatf̂(t,x) is a self-
adjoint operator solution to the field equation that satisfi
the canonical commutation relations. We define the ann
lation operatora( f ) associated to a normalized complex s
lution to the wave equationf (t,x) by

a~ f ![~ f ,f̂ !. ~2.11!

The commutation relations for the field operator are equi
lent to the relations

@a~ f !,a†~g!#5~ f ,g! ~2.12!

for all f andg. If f (t,x) is a positive norm solution, thena( f )
behaves as an annihilation operator. Iff (t,x) is a negative
norm solution, f * (t,x) has positive norm; soa( f )
52a†( f * ) behaves as a creation operator.

B. Fermion field

For simplicity we consider two-dimensional massless M
jorana fermions. Following the conventions of@13#, the ac-
tion in a general curved spacetime is given by1

Sc5
i

2E d2xA2gc̄Gm]mc ~2.13!

whereGm5Gaea
m and ea

m is the zweibein. We take the fla
space gamma matrices as

G05S 0 2 i

i 0 D , G15S 0 i

i 0D . ~2.14!

Decomposing the spinorc as

c5S c1

c2
D ~2.15!

and expanding the action in the metric~2.1! using the
zweibein (e0 ,e1)5(] t1v]x , ]x) we find

Sc5
i

2E d2x$c1@] t1~11v !]x#c1

1c2@] t2~12v !]x#c2%. ~2.16!

In this form it is clear thatc1 andc2 do not mix. Further-
more, at infinity, wherev(x)50, c1 is right-moving while
c2 is left-moving. We therefore dropc2 in the remainder as
it plays no role in the Hawking radiation calculation.

1In higher dimensions there would be a spin connection term
well. In two dimensions it is easy to show that this term vanish
identically.
1-3
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STEVEN CORLEY AND TED JACOBSON PHYSICAL REVIEW D59 124011
Following the same motivation described in Sec. II, w
now modify the action forc1 by subtracting the higher de
rivative termk0

22c1]x
3c1 , obtaining the action

Sc5
i

2E d2x$c1@] t1~11v !]x2k0
22]x

3#c1%. ~2.17!

Varying with respect toc1 results in the equation of motio

~] t1v]x1]xv/21]x2k0
22]x

3!c150. ~2.18!

Substitutingc1(t,x)5exp@2ivt1i*xk(x8)dx8# into the equa-
tion of motion and dropping derivatives ofk(x) and v(x)
results in the dispersion relation

v2vk5k1k3/k0
2 . ~2.19!

This is the same~up to the coefficient of thek3 term and
higher order terms! as the branch of the scalar field dispe
sion relation corresponding to positive group velocity in t
free-fall frame given in Eq.~2.6! and displayed in Fig. 1. The
classification of scalar wave packet types in Sec. II A the
fore applies to fermion wave packets as well. In particu
the higher derivative term leads to superluminal propaga
at large wave vectors.

To quantize the field we assume thatĉ1(t,x) is a
self-adjoint operator solution to the field equation th
satisfies the canonical anti-commutation relatio

$ĉ1(t,x),ĉ1(t,x8)%5d(x,x8). The conserved inner produc
is the integral of the time component of the conserved c
rent associated with phase invariance of the action~2.17!
~generalized to complex fermions!, and takes the form

^c1 ,c2&5E dx c1* c2 . ~2.20!

We define the annihilation operatorb( f ) associated with a
normalized complex solution to the wave equationf (t,x) by

b~ f ![^ f ,ĉ1&. ~2.21!

The anti-commutation relations for the field operator are th
equivalent to the relations

$b~ f !,b†~g!%5^ f ,g& ~2.22!

for all f and g. We represent the operatorsb( f ) on the fer-
mionic Fock space generated by positive free-fall freque
solutions to the equation of motion~2.18!. If f (t,x) is a
positive free-fall frequency solution, thenb( f ) behaves as an
annihilation operator on this space. Iff (t,x) is a negative
free-fall frequency solution, thenf * (t,x) has positive free-
fall frequency; sob( f )5b†( f * ) behaves as a creation oper
tor.

III. WAVE PACKET PROPAGATION

In this section we give a qualitative analysis of the role
the inner horizon in modifying the Hawking radiation. Th
analysis will exploit a WKB description of wave pack
12401
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propagation, allowing for non-WKB ‘‘mode conversion’’ in
the vicinity of the horizons. The analysis applies equally w
for the bosonic and fermionic quantum fields. Scattering
waves on account of the background curvature of the me
~2.1! is negligible as long as the radius of curvature is mu
greater than 1/k0. For small wave vectors,k!k0, this is be-
cause the wave equation is approximately conformally
variant and the metric~like any two-dimensional metric! is
conformally flat. For large wave vectors,k*k0, it is because
the wavelength is much smaller than the radius of curvatu

We begin outside the outer horizon with a low frequen
outgoing wave packet peaked around a wave vector of t
k1s ~see Fig. 1!, and we follow this wave packet backward
in time. A sketch of what we find is given in Fig. 2. The fin
wave packet~i.e. the one we begin with! is labeled1s in
Fig. 2. This packet has positive group velocity and theref
is right-moving, as can be seen from the graph of the disp
sion relation~Fig. 1!. Following this packet backward in time
it moves toward the black hole and blueshifts. The Killin
frequencyv is conserved; so the increase in the wave vec
can be seen from Fig. 1 by increasing the slope of
straight line while keeping the intercept fixed. As the wa
vector grows, the group velocity increases in the free-
frame, and so the packet becomes superluminal and cro
the horizon ~backward in time!, becoming a packet with
wave vectors of typek1 ~see Fig. 2!.

The wave packet inside the horizon also has ak2 compo-
nent, which is not obvious if we simply follow continuousl
along the dispersion curve. In fact, the WKB approximati
breaks down near the horizon, and ‘‘mode conversion’’ fro
the positive wave vector to the negative wave vector, ne
tive free-fall frequency, branch of the dispersion relation o
curs. This is easily shown analytically, and is made plaus
by the fact that, around the horizon, the straight line of Fig
nearly coincides with a large portion of the curved line of t
dispersion curve, thus allowing other wave vectors to
come mixed in. The dispersion relation allows wave vect
of typesk1 , k2 , andk2s in between the horizons; howeve

FIG. 2. Spacetime sketch of the evolution of an outgoingk1s

wave packet backward in time. The end of a line indicates a w
packet destroyed by mode conversion, while a continuous line
dicates that the wave vector evolves continuously on the disper
curve.
1-4
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BLACK HOLE LASERS PHYSICAL REVIEW D59 124011
only the first two are right moving, whereas the last type
left moving. Since our final wave packet is by assumpt
purely outgoing outside the horizon, there can be nok2s
component generated here. Thek1 andk2 wave packets are
labeled1 and 2 in Fig. 2. In this figure the end of a line
indicates a wave packet destroyed by mode convers
while a continuous line indicates that the wave vec
evolves continuously on the dispersion curve.

The k1 and k2 packets propagate backward in time t
ward the inner horizon where they both undergo partial m
conversion. The group velocity of thek1 packet remains
positive around the inner horizon and therefore it can cro
becoming ak1s packet, labeled1s2 in Fig. 2. As before,
though, there is also some mode conversion from the p
tive to the negative wave vector branch of the dispers
relation, and a left-movingk2s packet (2s2 in Fig. 2! is
generated which propagates backward in time back tow
the outer horizon. Thek2 packet on the other hand cann
cross the inner horizon on the negative wave vector bra
because its group velocity drops to zero at the horizon.
deed the group velocity goes through zero and beco
negative; so thek2 packet turns around and propagates ba
toward the outer horizon as ak2s packet still on the negative
wave vector branch. In addition, some mode convers
from the negative to the positive wave vector branch of
dispersion relation occurs at the inner horizon. Therefore
of the k2 packet does cross the horizon as ak1s packet and
is superposed with thek1s packet that evolved from thek1

packet.
The k1s packet inside the inner horizon continues prop

gating to the left backward in time. Thek2s packet however
returns to the outer horizon, near which its group veloc
drops to zero. Again, partial mode conversion to the posi
wave vector branch occurs; so thek2s packet evolves back
ward in time to a pair ofk1 andk2 packets which are head
ing back to the inner horizon. This is now almost the sa
situation we started with, since the originalk1s packet also
evolved into a pair ofk1 andk2 packets between the hor
zons~although with a different relative weight!. The analysis
given above thus tells us qualitatively what happens w
they reach the inner horizon, namely, the same thing as
pened before. The general pattern that emerges is show
Fig. 2.

We have so far discussed the history of an outgoingk1s
wave packet followed backward in time. It is also instructi
to look at thefuture evolution of ak2s wave packet in be-
tween the horizons, since the negative energy partner
Hawking particle is such a wave packet. This evolution c
be inferred by the same sort of analysis just given or sim
by time and space reversal of that analysis, and is show
Fig. 3.

IV. PARTICLE CREATION: ORIGIN OF THE
AMPLIFICATION OR SUPPRESSION OF HAWKING

RADIATION

The amount of particle creation in an outgoing positi
frequency wave packetc is indicated by the expectatio
value of the number operatorN(c)5a†(c)a(c). To deter-
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mine this expectation value an initial quantum state must
specified. Let us define an in-Hilbert space on some spa
like surface as the Fock space generated by positive free
frequency wave packets on that surface. The correspon
ground state is then annihilated by annihilation operators
these wave packets. We shall suppose the initial state is
a free-fall ground state associated with a given surfaceS.
Decomposingc5c11c2 into its positive and negative
free-fall frequency parts onS, the ground state condition
implies in the bosonic case that^N(c)&52(c2,c2) and in
the fermionic casêN(c)&5^c2,c2&.

Suppose we chooseS as surface 1 in Fig. 2, i.e., a surfac
that cuts through thek1 and k2 packets first produced by
propagating thek1s packet back in time. Then the numbe
expectation value for thek1s packet is just~minus! the norm
of the k2 packet. In@4,5# this was shown~for bosons! to be
thermal at the Hawking temperature, for wave packets w
Killing frequenciesv satisfyingk&v!k0. That is, the stan-
dard Hawking effect occurs even in the presence of supe
minal dispersion, if there is only a single horizon.

When there is also an inner horizon, the particle creat
depends very much on which surface is used to define
initial ground state. If we impose the ground state condit
on the earlier surface 2 in Fig. 2, instead of surface 1,
occupation number for the finalk1s packet is no longer ther
mal. The norm of the negative frequency part of the wa
packet on surface 2 is determined not just by the final p
sage across the outer horizon, but also by the mode con
sion processes at the inner and outer horizons.

As the time between the initial ground state and the fi
outgoing wave packet grows, there is an exponential am
fication or suppression in the occupation number of the fi
wave packet in the boson and fermion cases respectively

FIG. 3. Spacetime sketch of the trajectory of a Hawking parti
and its partner forward in time. The end of a line indicates a wa
packet created by conversion, while a continuous line indicates
the wave vector evolves continuously on the dispersion curve.
1-5
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STEVEN CORLEY AND TED JACOBSON PHYSICAL REVIEW D59 124011
see why, note that thek2s packet denoted2s2 in Fig. 2
evolves into the orthogonalk1s and k2s packets denoted
1s1 and2s1 respectively; hence the norms are related b

i2s2i25i1s1i21i2s1i2 ~4.1!

wherei f i2 stands for (f , f ) in the bosonic case and̂f , f & in
the fermionic case.

Consider first the bosonic case. Ak1s(k2s) packet has
positive ~negative! free-fall frequency and therefore positiv
~negative! norm under Eq.~2.9!; so it follows from Eq.~4.1!
that i2s1i2 is larger in magnitude thani2s2i2. Continuing
into the past this process repeats, and for each ‘‘boun
between the horizons the norm of the wave packet betw
the horizons grows by some fixed multiple, resulting in e
ponential growth of bothi2sni2 and i1sni2.2 Since the
negative frequency part of this wave packet determines
number of created particles in the final outgoing wa
packet, that number will grow exponentially in time betwe
the initial surfaceS and the emergence of the outgoing wa
packetc. Viewed forward in time, the Hawking effect is
self-amplifying process since the negative energy partner
the Hawking particles return to the event horizon~in the
form of a pair ofk1 andk2 packets! and stimulate the emis
sion of more radiation and more partners. The wave pac
trajectories associated with this forward in time picture
shown in Fig. 3.

For a fermionic field, the above discussion is modifi
only by the fact that all wave packets have positive norm;
Eq. ~4.1! implies thati2s1i2 is smaller in magnitude than
i2s2i2. This means that the number of created particles w
be exponentiallydampedin time. In effect, the allowed state
between the horizons for the negative energy partners of
Hawking particles become filled, cutting off further pair cr
ation.

One further important point can be extracted from t
analysis. Since a single particle and partner wave packet
evolves to a sequence of outgoing wave packets as show
Fig. 3, the states of all these outgoing wave packets will
correlated. This can also be seen from the backwards in ti
picture. It is clear from Fig. 2 that successive outgoing wa
packets will have past histories that partly overlap, in p
ticular on the initial ground state surface; so there will
correlations between the quanta emitted from the horizo
different times. These correlations are in sharp contrast to
usual Hawking effect which produces uncorrelated therm
radiation. The information loss that is normally associa
with the correlations between Hawking quanta and their p
ners is largely eliminated, since an unending sequenc
Hawking quanta is coherently correlated to the same par
degrees of freedom.

2It is perhaps surprising to have exponential growth in time wh
there are no imaginary frequency solutions to the dispersion rela
~2.6!. There is no contradiction however, since these exponent
growing wave packet solutions cannot be Fourier transformed
time and so need not be expressible as superpositions of t
independent mode solutions.
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V. QUANTITATIVE ANALYSIS

The qualitative analysis of the previous section will no
be sharpened by explicitly constructing the wave packet
lutions discussed there. This will allow us to quantify th
amount of amplification, suppression, and correlation of
black hole radiation. In the first two subsections we tre
only the bosonic case, and in the last subsection we dis
the fermionic case.

A. Wave packet solutions

The basic idea applied here is to patch together local w
packet solutions with the aid of ‘‘evolution formulas.’’ Th
derivation of these evolution formulas is discussed in
Appendix of this paper. They are derived using connect
formulas for time-independent mode functions which are
tained by matching WKB solutions to near-horizon appro
mations. Forming wave packets with the mode functions
then obtain the evolution formulas for the wave packets.

Evolution formulas are needed for two different bounda
conditions at both the inner and outer horizons, correspo
ing to the spacetime diagrams in Figs. 4a–4d. Using
notation ‘‘f→g’’ to denote ‘‘f evolves tog’’ ~forward in
time!, the evolution formulas about the outer horizon are

cn,11cn,2→cn,1s ~5.1a!

xn,11xn,2→cn11,2s , ~5.1b!

while about the inner horizon they are

c i ,n,1s1cn,2s→cn,11cn,2 ~5.1c!

x i ,n,1s1cn,2s→xn,11xn,2 , ~5.1d!

n
n

ly
in
e-

FIG. 4. Spacetime sketches of the local wave packet evolut
given by ~5.1a!–~5.1d! respectively.
1-6
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BLACK HOLE LASERS PHYSICAL REVIEW D59 124011
where all packets have been left unnormalized in orde
keep the formulas as simple as possible. The evolution
mulas given here are preferred for evolving packets ba
wards in time. Following the same techniques described
the Appendix evolution formulas more conducive to evo
ing wave packets forward in time can be derived. The1,
2, 1s and2s subscripts denote which type of wave vect
the packet is peaked about.cn,1s lies outside the outer ho
rizon, whilec i ,n,1s andx i ,n,1s both lie inside the inner ho
rizon. The subscriptn is a sort of time variable. Translatio
of n by one unit has the effect of translating the wave pac
in time by a certain amount and also distorting the wa
packet. Note that in the evolution formula at the outer ho
zon ~5.1b! n increases by one unit on thecn11,2s wave
packet. The evolution formulas~5.1a!–~5.1d! are basically
scattering solutions about a black hole event horizon w
~5.1a!–~5.1b! corresponding to scattering thecn,1s and
cn,2s packets off the outer horizon backward in time~see
Figs. 4a and 4b respectively! and ~5.1c!–~5.1d! correspond-
ing to scattering the resulting combinations of1 and 2
packets off the inner horizon backward in time as well~see
figures 4c and 4d respectively!.

To construct the wave packet solution with final data co
sisting of ak1s packet outside the outer horizon we sta
with the local solution~5.1a! ~Fig. 4a!. This clearly is not a
global solution sincecn,6 do not solve the equation of mo
tion ~2.4! about the inner horizon. The combination may
replaced by Eq.~5.1c! which does however. This results i
the evolution formula

~c i ,n,1s1cn,2s!→cn,1s . ~5.2!

The evolution~5.2! is also not a global solution to th
equation of motion~2.4! however sincecn,2s is not a solu-
tion about the outer horizon. Using Eq.~5.1b! to evolve
cn,2s about the outer horizon, followed by Eq.~5.1d! to
evolve the resulting wave packetscn21,1 andcn21,2 about
the inner horizon, we obtain an evolution formula that can
iterated indefinitely:

~x i ,n21,1s1cn21,2s!→cn,2s . ~5.3!

Beginning with Eq. ~5.2! and iterating Eq.~5.3! (n2m)
times yields

S c i ,n,1s1 (
j 51

n2m

x i ,n2 j ,1s1cm,2sD→cn,1s . ~5.4!

In this manner we can evolve the final wave packet back
the spacelike surface where the initial ground state bound
condition is defined. Solutions of the form~5.4! correspond
to those used in the qualitative discussion of Sec. III, wh
are depicted in Fig. 2@wherein the firstk2s packet has been
traded for ak6 pair using~5.1b!#.

If the horizons are not sufficiently widely separated, th
intermediate wave packets that arise between the initial
final packets of Eq.~5.4! will overlap with the initial and
final wave packets, thus complicating the analysis of part
creation. We can avoid such complications by constructin
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different solution. Settingn equal tom in Eq. ~5.2! and sub-
tracting from Eq.~5.4!, we obtain

S c i ,n,1s1 (
j 51

n2m

x i ,n2 j ,1s2c i ,m,1sD→~cn,1s2cm,1s!.

~5.5!

This solution corresponds to sending (n2m) x i ,k,1s packets
and a pair ofc i ,k,1s packets into the inner horizon and ge
ting a pair ofc1s packets out of the outer horizon.

B. Particle creation

We can now compute the average number of particle
the wave packet3 ĉn,1s and the correlations between emitte
particles for different values of the time indexn. To begin
with let us evaluate the occupation number^0uN(ĉ0,1s)u0&
of the first outgoing packet after the initial state condition
assumed. Then the only evolution formula we need is
~5.1a!, with n50. The annihilation operator for a normalize
wave packetf is given bya( f )5( f ,f̂), Eq. ~2.11!. Taking
the inner product of Eq.~5.1a! with the quantum fieldf̂, and
using the ground state conditions

a~ ĉ0,1!u0&505a~ ĉ0,2* !u0&, ~5.6!

we obtain

^0uN~ ĉ0,1s!u0&52
~c0,2 ,c0,2!

~c0,1s ,c0,1s!

5
1

vu2v l
E

v l

vu
dv

1

e2pv/k21
. ~5.7!

@The norms~A30! were used in the last equality.# This is just
the Planck distribution at the Hawking temperatureTH
5k/2p, as was shown previously@4,5# for a superluminal
dispersive field theory in the case that there is just one h
zon. It holds fork&v!k0.

We would have obtained a different result fo

^0uN(ĉ0,1s)u0& had we replaced the initial conditions~5.6!
with, for example,

a~ ĉ i ,0,1s!u0&505a~ ĉ0,2s* !u0&. ~5.8!

Indeed, from Eq.~5.2! with n50, we find that if Eq.~5.8!
holds, the occupation number ofĉ0,1s is given by

^0uN~ ĉ0,1s!u0&52
~c0,2s ,c0,2s!

~c0,1s ,c0,1s!
5

1

vu2v l
E

v l

vu
dv

3
2$12cos@u1~v!2u2~v!#%

e2pv/k1e22pv/k22
. ~5.9!

3We use a caret to denote normalized wave packets.
1-7
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The phase anglesu6(v) are defined implicitly in Eq.~A18!,
and the norms~A30! were used in the last equality of Eq
~5.9!. This differs from the thermal result~5.7!.

It is not yet clear to us what is the ‘‘correct’’ initial con
dition on the quantum state of the field. To determine t
would require following the evolution of the field state as t
black hole~or condensed matter black hole analogue! forms.
It does seem however that the conditionsa(ĉ i ,k,1s)u0&50
are likely to hold, while the remaining specification of th
state remains to be determined. Fortunately these condit
alone suffice to determine the rate of growth of the num
of particles emitted and the correlations between them.

In order to find the number and correlations in the rad
tion for n.0 we use the solution~5.5!. We taken.m@1 so
that the intermediate wave packets that entered the cons
tion of Eq. ~5.5! will not have any support on the initia
surface, and we assume the ground state conditions

a~ ĉ i ,k,1s!u0&505a~ x̂ i ,k,1s!u0& ~5.10!

for k>m. Taking the inner product of Eq.~5.5! with the field
operatorf̂ and using conditions~5.10! we obtain

a~ ĉn,1s!u0&5A~cm,1s ,cm,1s!

~cn,1s ,cn,1s!
a~ ĉm,1s!u0&,

~5.11!

from which it follows that

^0ua†~ ĉk,1s!a~ ĉn,1s!u0&

5
~cm,1s ,cm,1s!

A~ck,1s ,ck,1s!~cn,1s ,cn,1s!
^0uN~ ĉm,1s!u0&.

~5.12!

In particular takingk5n we obtain

^0uN~ ĉn,1s!u0&5
~cm,1s ,cm,1s!

~cn,1s ,cn,1s!
^0uN~ ĉm,1s!u0&.

~5.13!

The norm ofcn,1s , Eq. ~A30!, is given by

~cn,1s ,cn,1s!54pE
v l

vu
dvS 11

12cos~u12u2!

2 sinh2~pv/k!
D 2n

~5.14!

where we have used Eq.~A21!. This decreases monoton
cally with n except for at most a discrete set of frequenc
for which u1(v)5u2(v)12pk for some integerk. @For
these frequenciesT1, Eq. ~A21!, vanishes; so according t
Eq. ~A20! the corresponding mode is a bound state trap
between the horizons.# Therefore the particle creation i
ĉn,1s increases monotonically withn, diverging asn→`. In
particular, if the wave packets are narrowly peaked abo
frequencyv, Eq. ~5.13! yields
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^0uN~ ĉn,1s!u0&

^0uN~ ĉm,1s!u0&
5S 11

12cos~u12u2!

2 sinh2~pv/k!
D n2m

,

~5.15!

which grows exponentially withn2m.
A measure of the correlation between emitted particle

given by

C~m,n!:5
^0ua†~ ĉm,1s!a~ ĉn,1s!u0&

@^0uN~ ĉm,1s!u0&^0uN~ ĉn,1s!u0&#1/2

51, ~5.16!

independent of the differencen2m. This should be con-
trasted with the correlation obtained whenf̂ satisfies the
ordinary wave equation

C~m,n!5~ ĉm,1s ,ĉn,1s!, ~5.17!

which is nonvanishing only to the extent that these wa
packets are not orthogonal. Asn2m grows the overlap of
these wave packets and hence the correlation~5.17! go to
zero, whereas the correlation~5.16! remains.

Finally let us estimate the time between the success
particle emissions~see Fig. 3!, i.e., the difference in times
when successivecn,1s packets~A22! cross a fixedx coordi-
nate. The trajectory of the packets is given approximately
the condition of stationary phase,

t5
d

dv
Arg@An~v!f1s~x,v!#, ~5.18!

and therefore the timeDt between thenth and (n11)th
packets crossing the coordinatex is given approximately by

Dt'
d

dv
Arg~T3!

5
d

dv
@g1Arg~e2pv/ke2 iu12epv/ke2 iu2!# ~5.19!

where we have substituted forAn using Eq.~A23!, andT3 is
given by Eq.~A21!.

Using the results given in the Appendix th
v-dependence of the phase factorsg(v) andu6(v) can be
computed. Rather than carrying out this calculation—wh
we can only do explicitly for any particularv(x) in some
approximation anyway—let us make a rough estimate. T
interval Dt is determined by the time it takes a wave pack
to ‘‘bounce’’ back and forth between the horizons. Ifv(x)
11 is of order unity between the horizons, then using
group velocity of thek2s and k6 waves one finds that this
bounce time is of ordera, the coordinate distance betwee
the horizons.

C. Fermionic case

In this section we briefly describe the differences in t
quantitative analysis of the fermion case. The derivation
1-8
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BLACK HOLE LASERS PHYSICAL REVIEW D59 124011
the wave packet solutions for fermions parallels that giv
for the scalar field in Sec. V A and yields an evolution fo
mula very similar to Eq.~5.5!. The final expression for the
average value of the number operator is identical in form
Eq. ~5.13!; however, the normNn,1s now increases mono
tonically with n so that the number expectation value d
creases exponentially inn. This is to be expected since un
like the scalar case, the conserved norm^ f , f &, Eq. ~2.20!, is
positive definite. The effect of this crucial difference is th
instead of exponential growth of Hawking radiation we no
get exponential decay.

VI. DISCUSSION

We left the question of the ‘‘correct’’ initial condition
unanswered. For a condensed matter black hole it shoul
straightforward to deduce this by following the state of t
field as the ‘‘black hole’’ forms. It seems fairly clear that th
c i ,1s wave packets inside the inner horizon will be in the
ground states. What is less clear is the state of the w
packetsc1 , c2* and c2s* between the horizons. For a re
black hole—if one wants to entertain the possibility of s
perluminal dispersion—the same may be true. Thec i ,1s
wave packets inside the inner horizon arise from ingo
waves that scatter around or through the central singula
of a Reissner-Nordstro¨m black hole in the manner discusse
in @14#. Since the region inside the inner horizon is static
would seem plausible that these are in their ground stat
well.

Another issue we have not touched is that of the grav
tional back reaction to the radiation studied here. In
bosonic case the exponential growth of the number of ne
tive energy Hawking partners between the horizons wo
surely rapidly entail a strong gravitational reaction. In t
fermionic case, the exponential suppression of radia
leads quickly to a state with no radiation at all. This is ha
to reconcile with the usual picture in which Hawking radi
tion is a robust consequence of a general ‘‘well-behave
state near the horizon. One would expect that although
negative energy states of the Hawking partners in the erg
gion between the horizons become filled, there is not all t
much energy in these states~since the partners at late time
are the same as the partners at earlier times due to
‘‘bounce’’ between the horizons! so the back reaction shoul
be limited. If so, then why does the Hawking radiation n
continue? The answer, it would seem, is that although
state is reasonably well-behaved in terms of energy den
it has peculiar features in just those modes relevant to
Hawking effect.
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APPENDIX: WAVE PACKET SOLUTIONS

In this appendix we explain how the evolution formul
~5.1a!–~5.1d! for wave packet solutions are derived with th
help of the results of@5#. We treat only the bosonic case
although the fermionic case is essentially identical.

The wave packet evolution formulas are inferred fro
connection formulas for mode solutions to the field equat
~2.4! of the form

u~ t,x!5e2 ivtf~x,v!, ~A1!

where f(x,v) satisfies the ordinary differential equatio
~ODE!

2f ( iv)~x!1@12v2~x!#f9~x!12v~x!@ iv2v8~x!#f8~x!

2 iv@ iv2v8~x!#f~x!50. ~A2!

In @5# such solutions were constructed for a black hole spa
time with a single horizon. The basic technique used was
find approximate solutions to Eq.~A2! using the WKB ap-
proximation away from the horizon, and to match these
lutions across the horizon by comparing to the near hori
solution obtained by the method of Laplace transforms.

1. Outer horizon connection formulas

Assuming that the horizon is located atx50, and that the
metric in the vicinity of the horizon is given by

v~x!'211kx, ~A3!

the analysis of@5# leads to the following two connection
formulas:

K~epv/2kf11e2pv/2kf2!↔f1s ~A4a!

2f2s1K~e2pv/2kf11epv/2kf2!↔0, ~A4b!

where

K5@v/2 sinh~pv/k!#1/2. ~A5!

The notation ‘‘f1(x)↔f2(x)’’ denotes that the approximat
WKB solutionf1(x) behind the horizon connects to the a
proximate WKB solutionf2(x) outside the horizon. The
modesf6 ,f6s are approximate WKB solutions to Eq.~A2!
and are given by4

f6~x!'C6@v~x!221#23/4expS i E
2e

x

ds k6„v~s!,v…D
~A6!

4We have changed notation slightly from that in@5#. We have
added the lower limit of integration6e to the integrals appearing in
the exponents and consequently the coefficientsC6,6s acquire
somee dependence to compensate. Furthermore, a factor ofi ap-
pearing in the matching formulas of@5# has been absorbed inf2

and the phase ofN as defined in@5# has been absorbed intof6s .
We have also renamed thef2m solution in @5# asf2s here.
1-9
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f6s~x!'C6s expS i E
2e

x

ds k6s„v~s!,v…D , ~A7!

where the approximate WKB wave vectors are given by

k6'6k0Av2211vv/~12v2!, ~A8!

k6s'v/~11v !, ~A9!

provided we assumev!k0 and chooseuxu,e@(v/k0)2/3/k.
The WKB solutions are only valid foruxu@k21/3k0

22/3. The
coefficientsC6,6s are necessary to match these WKB so
tions to the near-horizon Laplace transform solutions. Th
can be determined by comparing the Laplace transform
lutions given in@5# to the matching formulas~A4a!–~A4b!
with the WKB modes~A6!,~A7! evaluated in the smallx
limit.5 We find that the coefficients are given by

C65 i (171)/2expS 7 i
2

3
A2k/k0~k0e!3/2D

3expS 2 i
v

2k
ln~2ke! D , ~A10!

C6s5expS i
v

k
ln~k0e!1 i

p

4
2 i arg@G~11 iv/k!# D .

~A11!

2. Inner horizon connection formulas

In the case of a black hole with both inner and ou
horizons, the connection formulas Eq.~A4a!–~A4b! remain
valid locally about each horizon~after some slight modifica
tions to be discussed presently!, but the solutions are no
longer global. Assume that the outer horizon is located
xo50, with v(x) taking the same form as given by Eq.~A3!,
and that the inner horizon is atxi52a with v(x) near the
inner horizon taking the form

v~x!'212k~x1a!. ~A12!

~We assume that the surface gravity of the inner horizon
the same magnitude as that of the outer horizon to simp
the results. There is no difficulty however in allowing th
surface gravities to be different.! Then the connection formu
las ~A4a!–~A4b! are valid for Eq.~A2! locally about the
outer horizon, where the notation ‘‘f1(x)↔f2(x)’’ now de-
notes thatf1(x) is valid between the horizons andf2(x) is
valid outside the outer horizon.

To find the ‘‘local’’ mode solutions about the inner hor
zon we reexpress the mode equation~A2! in terms of the
new coordinateyª2(x1a). The resultingy-equation is the

5x cannot be arbitrarily small however because the WKB appro
mation breaks down asx→0. In @5# it was shown that the WKB and
Laplace transform approximate solutions are both valid wh
k21/3k0

22/3!uxu!k21, and therefore the matching can be done
this range. We also choosee to satisfy the same inequality.
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complex conjugate of thex-equation ~A2!, with v(x) re-
placed byṽ(y)ªv(2y2a). We denote the WKB mode so
lutions to thisy-equation byf̃6 and f̃6s . Since we have
chosen the surface gravities to have the same magnit

ṽ(y) takes the same form near the inner horizon asv(x)
does near the outer horizon~A3!. Therefore the mode solu
tions near the inner horizon are the complex conjugates
those about the outer horizon, withx replaced byy; so they
satisfy the same connection formulas

K~epv/2kf̃11e2pv/2kf̃2!↔f̃ i ,1s ~A13a!

2f̃2s1K~e2pv/2kf̃11epv/2kf̃2!↔0. ~A13b!

The notation ‘‘f̃1(y)↔f̃2(y)’’ now denotes thatf̃1(y) is
valid between the horizons andf̃2(y) is valid inside the
inner horizon. We have included a subscript ‘‘i ’’ in f̃ i ,1s(y)
to make it clear that this solution is valid only inside th
inner horizon.

The WKB solutionsf̃6,2s„y(x)… are in fact the same
functions ofx, up tov-dependent phases, as the WKB so
tions f6,2s(x) respectively. To see this, note that the WK
modesf6,2s(x) given in Eqs.~A6!,~A7! all take the form6

f~x!5C~v! f „v~x!…expS i E
2e

x

ds k„v~s!,v…D ~A14!

whereC is x-independent andf and k are real functions of
v(x). Since, as discussed above, thex and y equations are
related by substitutingv(x)→ ṽ(y)5v(2y2a) and com-
plex conjugating, the WKB modesf̃6,2s(y) are given by

f̃~y!5C* ~v! f „ṽ~y!…expS 2 i E
2e

y

ds k„ṽ~s!,v…D .

~A15!

Usingy52x2a andṽ(y)5v(x), and changing the integra
tion variable inb Eq.~A15! to s852s2a, we obtain

f̃~2x2a!5C* ~v! f „v~x!…expS i E
2a1e

x

ds8 k„v~s8!,v…D ,

~A16!

which differs from Eq.~A14! only by anv-dependent phase
factor, i.e.,

f̃~2x2a!5FC* ~v!

C~v!
expS i E

2a1e

2e

ds k„v~s!,v…D G f~x!.

~A17!

We shall not attempt to compute these phase factors,
rather shall assume the generic formi-

n

6We have dropped the6,2s subscripts onf(x),C, f , andk.
1-10
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f̃6~2x2a!5eiu6(v)f6~x!,

f̃2s~2x2a!5eig(v)f2s~x!, ~A18!

whereu6 ,g also depend onv(x),k0 and a ~the coordinate
distance between the horizons! but do not depend one as
long as it is chosen large enough so that the WKB appro
mation holds.

Using the phase relations~A18! the inner horizon connec
tion formulas~A13a!,~A13b! can be reexpressed in terms
the same linear combinations off6 appearing in the oute
horizon formulas~A4a!,~A4b!:

K~epv/2kf11e2pv/2kf2!1eigT1f2s↔T2f̃ i ,1s
~A19!

K~e2pv/2kf11epv/2kf2!1T3f2s↔T1f̃ i ,1s
~A20!

with

T15v21K2~e2 iu12e2 iu2!

T25v21K2~epv/ke2 iu12e2pv/ke2 iu2!

T35v21K2eig~e2pv/ke2 iu12epv/ke2 iu2!. ~A21!

3. Wave packet evolution formulas

We can now form wave packets from the modes and
the mode connection formulas to obtain wave packet ev
tion formulas. To keep the latter simple, thev-dependence
of the coefficients in the connection formulas is built into t
definition of the wave packets as follows. Define

cn,1s5E
v l

vudv

Av
An e2 ivtf1s

cn,2s5E
v l

vudv

Av
Bn e2 ivtf2s

cn,65E
v l

vudv

Av
Cn,6 e2 ivtf6

xn21,65E
v l

vudv

Av
Dn21,6 e2 ivtf6

c i ,n,1s5E
v l

vudv

Av
En e2 ivtf̃ i ,1s

x i ,n21,1s5E
v l

vudv

Av
Fn21 e2 ivtf̃ i ,1s ,

~A22!

where the coefficientsA, . . . ,F depend onv, and the mode
functionsf depend on bothv andx.
12401
i-

e
u-

With these definitions the evolution formulas about t
outer horizon ~5.1a!,~5.1b! follow immediately from the
outer horizon connection formulas~A4a!,~A4b! provided
we choose Cn65K exp(6pv/2k) An and Dn,65
2K exp(7pv/2k) Bn11. Similarly, the inner horizon evolu-
tion formula ~5.1c! follows providedBn5eigT1An and En
5T2An , while Eq. ~5.1d! requiresFn52T1Bn11 and Bn
52T3Bn11. The solution~up to an undetermined overa
constant! is given by

An5~2T3!2n

Bn5eigT1~2T3!2n

Cn,65Ke6pv/2k~2T3!2n

Dn,652Ke7pv/2keigT1~2T3!2n21

En5T2~2T3!2n

Fn52eig~T1!2~2T3!2n21. ~A23!

4. Norm of the wave packets

The wave packets defined in Eqs.~A22! are not normal-
ized. Their norms can be determined as follows. A gene
one of these wave packets has the form

c5E
v l

vudv

Av
G e2 ivtf, ~A24!

which has the norm@cf. Eq. ~2.9!#

~c,c!5 i E dxE dv

Av
E dv8

Av8
$Gv* Gv8e

i (v2v8)t

3@fv* ~] t1v]x!fv8 2fv8 ~] t1v]x!fv* #%.

~A25!

The norm is conserved under time evolution, and so it s
fices to evaluate it at any one time.

The key assumption we need in order to evaluate
norm is that at some time the wave packet is confined t
constantv region. This is certainly the case for the1s wave
packets, since they are outgoing and eventually reach
asymptotic region. If the region between the horizons is la
and has a large constant velocity region, then it may si
larly hold for the2s and6 wave packets as well. Alterna
tively, these wave packets spend some time squeezed
the horizon, with wavelengths much smaller than the len
scale over whichv(x) changes~but, in the case ofk2s , still
much longer thank0

21; so we can nevertheless use the sm
k approximation!. If the wave packet is contained in a con
stantv region, then for the purposes of evaluating the nor
we can imagine this region to extend to infinity in both d
rections. The fixedv mode equation~A2! in a constantv
region has solutionsfv5Cv exp(ikx), where v2vk5
6F(k) with F(k) given by Eq.~2.7!. Matching to the WKB
1-11
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modes~A6!,~A7! we see thatuCvu5$1,(v221)23/4% for the
6s modes and6 modes respectively. Thus we have

E dxfv8
* fv52p$1,~v221!23/4%Udv

dkUd~v82v!.

~A26!

Using Eq.~A26! in Eq. ~A25! yields

~c,c!54p$1,~v221!23/2%E dv uGvu2
6F

v Udv

dkU.
~A27!

Using the small and largek approximations fork6s andk6

respectively, we find that

$1,~v221!23/2%
6F

v Udv

dkU56$1,v21% ~A28!

respectively. Thus, finally,
Re

12401
~c,c!564pE dv uGvu2$1,v21%. ~A29!

With Eq. ~A29! and the coefficients~A23! for the wave
packets~A22! we obtain the norms needed in Sec. V B:

~c0,2 ,c0,2!524pE
v l

vu
dv

1

e2pv/k21
,

~cn,1s ,cn,1s!54pE
v l

vu
dv uT3u22n,

~c0,2s ,c0,2s!524pE
v l

vu
dv uT1u2

524pE
v l

vu
dv

2$12cos@u1~v!2u2~v!#%

e2pv/k1e22pv/k22
.

~A30!
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