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High frequency dispersion does not alter the low frequency spectrum of Hawking radiation from a single
black hole horizon, whether the dispersion entails subluminal or superluminal group velocities. We show here
that in the presence of an inner horizon as well as an outer horizon the superluminal case differs dramatically
however. The negative energy partners of Hawking quanta return to the outer horizon and stimulate more
Hawking radiation if the field is bosonic or suppress it if the field is fermionic. This process leads to expo-
nential growth or damping of the radiated flux and correlations among the quanta emitted at different times,
unlike in the usual Hawking effect. These phenomena may be observable in condensed matter black hole
analogues that exhibit “superluminal” dispersidi®0556-282(199)07510-4

PACS numbds): 04.70-s, 04.62+v

[. INTRODUCTION esting theoretical laboratory in which to explore the effects
of short distance physics. Moreover, it is conceivably rel-
Recent work has shown that Hawking radiation is highlyevant to string theory, and it might be observable in a con-
insensitive to modifications of the short distance physics oflensed matter analogue of a black hole. Let us briefly indi-
the quantum field. In these models linear fields are consideate these ideas in turn.
ered, and the field equation is modified at high wave vectors In spite of many points of close agreement between the
in some preferred frame, yielding a nonlinear dispersion rephysics of near extremal D-branes and black holes, a glaring
lation w(k) relating frequency to wave vector. Models with discrepancy persists. If a radiating near extremal D-brane
both sublumina[1-3] and superluminal4,5] group veloci- state is maintained at fixed energy by a constant influx of
ties at high wave vectors have been studied, including latticenergy in a pure state, then the entropy in the radiation will
black hole spacetimeg] (which have subluminal disper- be constant and there will be correlations in the radiation that
sion). The picture that emerges from these studies is that themerges at different times. For a black hole, on the other
thermal Hawking spectrum is very robust for black holeshand, the usual Hawking process leads to uncorrelated ther-
with temperature much less than the energy scale of the newmal radiation for all time. The effects of superluminal dis-
physics. Although short distance physics does modify thigersion invalidate the usual Hawking picture because the
spectrum, the modifications are so slight at the frequencies afegative energy partners return to the event horizon. If there
interest that they seem well nigh impossible to observe. is something analogous to the superluminal dispersion of our
We have found a dramatic exception to this rule howevermodel in string theory, then perhaps that could eliminate the
If there is both an outer and an inner horizon, and if thediscrepancy between the string and black hole pictures. This
dispersion is superluminal, then the Hawking process for anay not be so farfetched. String theory is, after all, non-local
bosonic field is self-amplifying and the radiated flux growsin some sense, and there is some evid¢@¢suggesting that
exponentially in time, while for a fermionic field the process it supports superluminal effects.
is self-attenuating. What happens is that the negative energy A condensed matter analogue—Unruh’s sonic black hole
partner of a Hawking particle, after falling to the inner hori- [8,1,9—was the original stimulus for the development of the
zon, “bounces” and returns to the outer horizon on a superdispersive models. In this model, a sonic horizon occurs
luminal trajectory, where it either stimulates or suppressesvhere the flow velocity of an inhomogeneous fluid exceeds
more Hawking radiation in the bosonic or fermionic casethe speed of sound. Although it seems unlikely that this situ-
respectively. This secondary radiation is not only differentation can be experimentally realized for a low temperature
than the usual Hawking flux, but it is correlated to the priorsuperfluid, there are variations of the idea that might be re-
radiation. In the bosonic case the process continues to analizable, involving quasiparticles other than phonons in dif-
plify at least until the back reaction becomes important.  ferent systems. For example, this may occur for fermion qua-
Charged black holes have inner horizons, but astrophyskiparticles in rotating superfluid vortex cores with gap nodes
cal ones would lose their charge very rapidly; so it is difficult such as’He-A or d-wave superconductof40], or in moving
to imagine how this runaway Hawking effect could ever be3He-A textures[11]. In both these examples there are both
observed for real black holes. Even so, it provides an interinner and outer horizons. Moreover, the quasiparticle disper-
sion relation is “relativistic” sufficiently near a gap node,
and the group velocity increaséise. becomes ‘“‘superlumi-
*Email address: scorley@phys.ualberta.ca nal”) as the difference between the momentum and the gap
TEmail address: jacobson@physics.umd.edu node increases; so the effective field theory has *“superlumi-
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nal” dispersion. Thus it is not inconceivable that the phe-
nomena discussed here may someday be observable.

This paper is organized as follows. In Sec. Il the superlu-
minal dispersion model for both bosons and fermions is dis-
cussed. The propagation of wave packets in the black hole
spacetime with inner and outer horizons is analyzed qualita-
tively in Sec. Il and the implications for the amplification or
suppression and the correlations in the Hawking radiation are
drawn in Sec. IV. Section V renders the previous discussion k
guantitative by using explicit wave packet solutigdsrived 4 k+s
in the Appendix to find expressions for the number and k_s
correlations between the radiated quanta. Open issues con-
cerning the boundary conditions on the quantum state and

g

the gravitational back reaction are discussed briefly in Sec. k_
VI.

We use units withZi=c=1 and metric signhature
(+——-).

FIG. 1. Plot of w+|v|k) (for one value ofw and two values of
Il. SUPERLUMINAL DISPERSION MODEL v) andF(k) as functions ok. The intersection points of the curves

. . . . ._are the allowed wave vector roots of the dispersion rela).
A 2-dimensional model suffices to illustrate the essentlaf51 P A8

physics. We assume that the spacetime metric is static, arh%rmala
therefore[12] coordinates can be choséat least locally so
that the line element takes the form

«» by the addition of higher derivative terms which
become important only when the wavelength is of ordkg 1/
or shorter. We will assume that this length scale of “new
A2 Tl y— 2 physics” is much shorter than the length scale of the metric
ds’=dt*~[dx—v ()" @ (2.1, i.e.kg>|v'/v|. [In particular, we assumig> «, where
A special case is the line element of the subspace of the «=|v'(X;o)| is the surface gravity of the horizdnThe idea
Reissner-Nordsira black hole spacetime in Painleve is that the microstructure of spacetime, or of a condensed
Gullstrand coordinates, where(r)=—2GM/r—Q?%/r?. matter analogue, might give rise to such higher derivative
[These coordinates cover the black hole interior down tderms in the effective action. The choi¢2.3) is just the
wherev(r)=0, atr=Q%2GM.] More generally, we con- generic form for the lowest order such term that is reflection
sider anyv (x) which is negative, vanishes &s- + %, and is invariant and produces superluminal group velocities.
greater than—1 except between inner and outer horizons, The action(2.2),(2.3) produces the equation of motion
located atx; andx,, wherev(x; ,)=—1.

1
O+ 0.0)(d+vd) b= d2d—
A. Boson field (dy+ dyv) (9, W h= 5P ké

We adopt a linear field theory with higher spatial deriva_—TO derive the dispersion relation for this equation we look

tives included in the action in order to provide a superluml—for solutions of the form
nal dispersion relation. In this section we restrict to the case

9. (2.4

of a real bosonic field. The case of a Majorana fermion field . (x
will be discussed in Sec. Il B. The action for the field is ¢(t,x)=exr{—|wt+|J k(X')dX') (2.5
given by

wherek(x) is a position dependent wave vector. Substituting

S, == | g2 PR 24 bE( _ 29 this ansatz into the equation of motié®.4) and neglecting
¢ ZJ X{[(tva) eI+ $R(0) 4} (22 derivatives ofv (x) andk(x) results in the dispersion relation

In the ordinary relativistic action one h&fa,)=d2. In this (0—vk)*=F?(k) (2.6

aper we take
pap where

E(d,)= a2 %(93_ 23 F2(k) = K2+ K4/K2. 2.7
° The group velocity in the free-fall frame oF/dk; so wave

To motivate this action we note that the black hole defines gpackets with k<k, propagate near the speed of light,
preferred frame, the frame of freely falling observers. In thewhereas wave packets wiktzk, propagate superluminally.
PainleveGullstrand coordinate systemy, (v d,) is the unit The dispersion relatiof2.6) is a fourth order polynomial
tangent to free-fall world lines that start from rest at infinity, equation in the wave vectdr and so it has four solutions for
andd, is its unit, outward pointing normal. Our action comesk at given values oftv andv. The nature of these roots is
from modifying the derivative operator, only along the unit revealed by a graphical method. In Fig. 1 we plot the straight
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line (w+|v]|k) for one value ofw (satisfying O<w<kg) and  packet does not remain in an interval of constant or vanish-
two values ofv, and the curvetF(k), as functions ofk. ing v(x). Note that if the wavelength is small compared to
[We defineF (k) as thepositivesquare root of Eq2.7).] The  the scale of variations af(x), then a positive free-fall fre-
intersection points are the allowed real wave vector roots tquency wave packet will have positive norm even (k) is

the dispersion relation. When|<1 there are only twoeal not constant.

roots[corresponding to the two roots for the ordinary disper-  To quantize the field we assume tha(t,x) is a self-
sion relation withF,4(k) = =k], the other two being com- adjoint operator solution to the field equation that satisfies
plex. The positive wave vector is denotkds. When|v|  the canonical commutation relations. We define the annihi-
=1+ 3(w/kp)*®~1, on the other hand, all four roots are |ation operator(f) associated to a normalized complex so-
real, with one positive and three negative. The positive waveytion to the wave equatiofi(t,x) by

vector is denotedk, in this case and, in decreasing magni-

tude, the negative wave vectors are dendtedandk g re- a(f)z(f,&ﬁ)_ (2.11
spectively(the other negative wave vector corresponds to an

ingoing wave that plays no role in this paper, and so we dd’he commutation relations for the field operator are equiva-

not give it a namg These roots are labeled in Fig. 1. lent to the relations
The dispersion relation plot in Fig. 1 is also quite conve- +
nient for tracing the motion of wave packets in the back- [a(f),a'(g)]=(f,0) (212

ground spacetime. The coordinate group velocity
=dx/dt of a wave packet centered on a given wave vector i

{)or all fandg. If f(t,x) is a positive norm solution, thea(f)
given by

ehaves as an annihilation operatorf(f,x) is a negative
norm solution, f*(t,x) has positive norm; soa(f)
dow dF =—a'(f*) behaves as a creation operator.
vg=W=—|v|im, (2.8

B. Fermion field

where =dF/dk is the group velocity in the free-fall frame. £ gimplicity we consider two-dimensional massless Ma-
Thus at any wave vectary is just the slope of theF(k)  jorana fermions. Following the conventions [af3], the ac-
curve minus the slope of the straight line ¢ [v|k). Forall  4on'in a general curved spacetime is giver! by
four types of wave vectork. ¢ .. of interest to us+dF/dk

is positive; hence the sign af; is determined by which of i )

the two slopes is larger, something that is easily read from Swzif dxV—gyI'*d, ¢ (2.13
the figure. Foro>0, the group velocity fok, s andk-. is

positive, whereas fok_s it is negative. whereI'*=T"3e* and e is the zweibein. We take the flat

When generalized to a complex scalar field, the actionspace gamma matrices as
(2.2) is invariant under constant phase transformations of the

field. This implies the existence of a conserved curignt 0 0 —i 1 0 i
The integral of the time componef? over a spatial slice =l o) =l of (2.14
serves as a conserved inner product when evaluated on com-
plex solutions to the equation of moti¢R.4). For the metric  pecomposing the spinaf as
(2.12), this inner product takes the form
by
=i * * lﬁ: (2.13
(fg)=i | dXf*(d+vdgg—g(dtva)f*], (2.9 P

- and expanding the action in the metrig.1) using the
wheref(t,x) andg(t,x) are solutions to Eq.2.4). Zweibein €,e,)= (3 + 4y, d,) we find

Two classes of complex solutions to the field equation
(2.4) are of special interest for quantization. The first are the

positive free-fall freqpency wave packets. They can be writ- Swzlzj d2{ ¢ [0+ (1+v)dy ]
ten as sums of solutions satisfying
(Gt va)F(tx)=—iw f(t,X) (2.10 [0 (1=v)ady-}. (2.18

wherew’>0. The second are the positive Killing frequency ' this form it is clear thaty, and . do not mix. Further-
wave packets. These are sums of solutions of the fornfOre, at infinity, wherey(x)=0, ¢, is right-moving while
e—iwt‘p(x) wherew>0. A positive free-fall frequency wave _z//, is Ieft-movmg. We therefpre drop,_ in the remr?under as
packet confined to a constanx) interval at one time nec- It Plays no role in the Hawking radiation calculation.
essarily has a positive norm under Eg.9), as does a posi-

tive Killing frequency wave packet confined to a region

wherev (x) =0 (where the Killing frequency coincides with  in higher dimensions there would be a spin connection term as
the free-fall frequency Since the norm is conserved, it is well. In two dimensions it is easy to show that this term vanishes
positive at all times if it is at one time, even when the waveidentically.
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Following the same motivation described in Sec. I, we
now modify the action fory, by subtracting the higher de-

rivative termkg 2, 93¢, , obtaining the action ]

s¢='§f d{r [+ (L+v)dx— ko 2519} (2.17)
Varying with respect tay, results in the equation of motion
(2.18
Substitutingy, (t,x) =exd —iwt+i*k(x")dx'] into the equa-

tion of motion and dropping derivatives &{(x) anduv(x)
results in the dispersion relation

(Oi+ vyt dul2+ dy— kg 203) ¢, =0.

+s

w—vk=k+k3/K3. (2.19
This is the saméup to the coefficient of th&® term and
higher order termsas the branch of the scalar field disper-  FIG. 2. Spacetime sketch of the evolution of an outgding

sion relation corresponding to positive group velocity in thewave packet backward in time. The end of a line indicates a wave
free-fall frame given in Eq(2.6) and displayed in Fig. 1. The Packet destroyed by mode conversion, while a continuous line in-
classification of scalar wave packet types in Sec. Il A theredicates that the wave vector evolves continuously on the dispersion
fore applies to fermion wave packets as well. In particular CU"Ve-

the higher derivative term leads to superluminal pmpagatiorﬂ)ropagation, allowing for non-WKB “mode conversion” in

at Iarge wave vectors.

To quantize the field we assume that (t,x) is a
self-adjoint operator solution to the field equation that
satisfies  the canonical anti-commutation
(i, (,X), %, (t,x")}=8(x,x"). The conserved inner product
is the integral of the time component of the conserved cur
rent associated with phase invariance of the act®i?)
(generalized to complex fermionsand takes the form

<l//1,i//2>:f dx ¢7 ¢, (2.20

We define the annihilation operatbff) associated with a
normalized complex solution to the wave equatf@thx) by

b(f)=(f,¢.). (2.2

The anti-commutation relations for the field operator are the
equivalent to the relations

{b(f),b'(9)}=(f,g) (2.22

for all f andg. We represent the operatdo¢f) on the fer-

the vicinity of the horizons. The analysis applies equally well
for the bosonic and fermionic quantum fields. Scattering of
waves on account of the background curvature of the metric

relations(2.1) is negligible as long as the radius of curvature is much

greater than k. For small wave vectork<Kkg, this is be-
cause the wave equation is approximately conformally in-
variant and the metri¢like any two-dimensional metrids
conformally flat. For large wave vectolsz ko, it is because
the wavelength is much smaller than the radius of curvature.
We begin outside the outer horizon with a low frequency
outgoing wave packet peaked around a wave vector of type
k., (see Fig. 1, and we follow this wave packet backwards
in time. A sketch of what we find is given in Fig. 2. The final
wave packet(i.e. the one we begin wilhis labeled+s in
Fig. 2. This packet has positive group velocity and therefore
is right-moving, as can be seen from the graph of the disper-
sion relation(Fig. 1). Following this packet backward in time
it moves toward the black hole and blueshifts. The Killing
requencyw is conserved; so the increase in the wave vector
can be seen from Fig. 1 by increasing the slope of the
straight line while keeping the intercept fixed. As the wave
vector grows, the group velocity increases in the free-fall
frame, and so the packet becomes superluminal and crosses

mionic Fock space generated by positive free-fall frequencye horizon (backward in timg, becoming a packet with

solutions to the equation of motiof2.18. If f(t,x) is a
positive free-fall frequency solution, théx{f) behaves as an
annihilation operator on this space. fift,x) is a negative
free-fall frequency solution, thefi* (t,x) has positive free-
fall frequency; sd(f)=b'(f*) behaves as a creation opera-
tor.

IIl. WAVE PACKET PROPAGATION

wave vectors of typd, (see Fig. 2

The wave packet inside the horizon also hds a&compo-
nent, which is not obvious if we simply follow continuously
along the dispersion curve. In fact, the WKB approximation
breaks down near the horizon, and “mode conversion” from
the positive wave vector to the negative wave vector, nega-
tive free-fall frequency, branch of the dispersion relation oc-
curs. This is easily shown analytically, and is made plausible
by the fact that, around the horizon, the straight line of Fig. 1
nearly coincides with a large portion of the curved line of the

In this section we give a qualitative analysis of the role ofdispersion curve, thus allowing other wave vectors to be-

the inner horizon in modifying the Hawking radiation. This
analysis will exploit a WKB description of wave packet

12401

come mixed in. The dispersion relation allows wave vectors
of typesk, , k_, andk_g in between the horizons; however,
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only the first two are right moving, whereas the last type is
left moving. Since our final wave packet is by assumption
purely outgoing outside the horizon, there can bekng
component generated here. The andk_ wave packets are
labeled+ and — in Fig. 2. In this figure the end of a line
indicates a wave packet destroyed by mode conversion,
while a continuous line indicates that the wave vector
evolves continuously on the dispersion curve.

The k, andk_ packets propagate backward in time to-
ward the inner horizon where they both undergo partial mode
conversion. The group velocity of thie, packet remains
positive around the inner horizon and therefore it can cross,
becoming ak, ¢ packet, labeled+s, in Fig. 2. As before,
though, there is also some mode conversion from the posi-
tive to the negative wave vector branch of the dispersion
relation, and a left-movink_¢ packet s, in Fig. 2) is
generated which propagates backward in time back toward
the outer horizon. Th&_ packet on the other hand cannot
cross the inner horizon on the negative wave vector branch
because its group velocity drops to zero at the horizon. In-
deed the group velocity goes through zero and becomes
negative; so th&_ packet turns around and propagates back FIG. 3. Spacetime sketch of the trajectory of a Hawking particle
toward the outer horizon as|@_s packet still on the negative and its partner forward in time. The end of a line indicates a wave
wave vector branch. In addition, some mode conversiorpacket created by conversion, while a continuous line indicates that
from the negative to the positive wave vector branch of théhe wave vector evolves continuously on the dispersion curve.
dispersion relation occurs at the inner horizon. Therefore part
of thek_ packet does cross the horizon ak g packet and mine this expectation value an initial quantum state must be
is superposed with thle, s packet that evolved from thie, specified. Let us define an in-Hilbert space on some space-
packet. like surface as the Fock space generated by positive free-fall

The k. s packet inside the inner horizon continues propa-frequency wave packets on that surface. The corresponding
gating to the left backward in time. THe ¢ packet however ground state is then annihilated by annihilation operators of
returns to the outer horizon, near which its group velocitythese wave packets. We shall suppose the initial state is such
drops to zero. Again, partial mode conversion to the positivea free-fall ground state associated with a given surface
wave vector branch occurs; so tke, packet evolves back- Decomposingy=#*+4¢~ into its positive and negative
ward in time to a pair ok, andk_ packets which are head- free-fall frequency parts of.,, the ground state condition
ing back to the inner horizon. This is now almost the saméamplies in the bosonic case th@ll(#))=— (¢, ) and in
situation we started with, since the origirial; packet also the fermionic caséN(¢))= (¢, ).
evolved into a pair ok, andk_ packets between the hori- Suppose we choose as surface 1 in Fig. 2, i.e., a surface
zons(although with a different relative weightThe analysis that cuts through th&, andk_ packets first produced by
given above thus tells us qualitatively what happens whempropagating thek , ¢ packet back in time. Then the number
they reach the inner horizon, namely, the same thing as hagxpectation value for thie, ; packet is justminug the norm
pened before. The general pattern that emerges is shown af the k_ packet. In[4,5] this was showr{for boson$ to be
Fig. 2. thermal at the Hawking temperature, for wave packets with

We have so far discussed the history of an outgding  Killing frequenciesw satisfyingk < w<k,. That is, the stan-
wave packet followed backward in time. It is also instructivedard Hawking effect occurs even in the presence of superlu-
to look at thefuture evolution of ak_g wave packet in be- minal dispersion, if there is only a single horizon.
tween the horizons, since the negative energy partner of a When there is also an inner horizon, the particle creation
Hawking particle is such a wave packet. This evolution cardepends very much on which surface is used to define the
be inferred by the same sort of analysis just given or simplyinitial ground state. If we impose the ground state condition
by time and space reversal of that analysis, and is shown ian the earlier surface 2 in Fig. 2, instead of surface 1, the

+s

+s

+s

Fig. 3. occupation number for the finél, ; packet is no longer ther-
mal. The norm of the negative frequency part of the wave
IV. PARTICLE CREATION: ORIGIN OF THE packet on surface 2 is determined not just by the final pas-
AMPLIFICATION OR SUPPRESSION OF HAWKING sage across the outer _horlzon, but also by the mode conver-
RADIATION sion processes at the inner and outer horizons.

As the time between the initial ground state and the final

The amount of particle creation in an outgoing positiveoutgoing wave packet grows, there is an exponential ampli-
frequency wave packey is indicated by the expectation fication or suppression in the occupation number of the final
value of the number operatdi(4)=a'()a(). To deter-  wave packet in the boson and fermion cases respectively. To

124011-5



STEVEN CORLEY AND TED JACOBSON PHYSICAL REVIEW [39 124011

see why, note that thk_g packet denoted-s, in Fig. 2 a b Wn+1 -
evolves into the orthogondt,; and k_g packets denoted ‘ ‘ ’
+s,; and —s; respectively; hence the norms are related by

I=sall?= [+ s112+ [ = slI? (4.1 Vo +s Xn.+

IIIn,+
wherel|f||? stands for ¢,f) in the bosonic case and,f) in
the fermionic case. Y, - Xp-
Consider first the bosonic case. KA ((k_g) packet has

positive (negative free-fall frequency and therefore positive
(negative norm under Eq(2.9); so it follows from Eq.(4.1)
that| —s,||? is larger in magnitude thal—s,|?. Continuing
into the past this process repeats, and for each “bounce” C. W d. Xn,+
between the horizons the norm of the wave packet between n,+

the horizons grows by some fixed multiple, resulting in ex-
ponential growth of botH|—s,||? and |+s,//?.? Since the v
negative frequency part of this wave packet determines the
number of created particles in the final outgoing wave
packet, that number will grow exponentially in time between Vi ts ‘Vn,-s X . Wn,-s
the initial surface®, and the emergence of the outgoing wave Ln,+s

packety. Viewed forward in time, the Hawking effect is a

self-amplifying process since the negative energy partners of FIG. 4. Spacetime sketch(_es of the local wave packet evolutions
the Hawking particles return to the event horizéin the ~ 9iven by(5.18—(5.1d respectively.

form of a pair ofk, andk_ packet$ and stimulate the emis-

sion of more radiation and more partners. The wave packet V. QUANTITATIVE ANALYSIS
trajectories associated with this forward in time picture are ¢ qualitative analysis of the previous section will now
shown in Fig. 3. be sharpened by explicitly constructing the wave packet so-

For a fermionic field, the above discussion is mOdiﬁ_edlutions discussed there. This will allow us to quantify the
only by the fact that all wavze.packets have positive norm; sqymount of amplification, suppression, and correlation of the
Eq. (4.1 implies that||—s,[|* is smallerin magnitude than pjack hole radiation. In the first two subsections we treat

I=s2[*. This means that the number of created particles willynjy the bosonic case, and in the last subsection we discuss
be exponentialldampedn time. In effect, the allowed states he fermionic case.

between the horizons for the negative energy partners of the
Hawking particles become filled, cutting off further pair cre- .
ation. A. Wave packet solutions

One further important point can be extracted from this  The basic idea applied here is to patch together local wave
analysis. Since a single particle and partner wave packet pajracket solutions with the aid of “evolution formulas.” The
evolves to a sequence of outgoing wave packets as shown derivation of these evolution formulas is discussed in the
Fig. 3, the states of all these outgoing wave packets will be\ppendix of this paper. They are derived using connection
correlated This can also be seen from the backwards in timeformulas for time-independent mode functions which are ob-
picture. It is clear from Fig. 2 that successive outgoing waveained by matching WKB solutions to near-horizon approxi-
packets will have past histories that partly overlap, in parmations. Forming wave packets with the mode functions we
ticular on the initial ground state surface; so there will bethen obtain the evolution formulas for the wave packets.
correlations between the quanta emitted from the horizon at Evolution formulas are needed for two different boundary
different times. These correlations are in sharp contrast to theonditions at both the inner and outer horizons, correspond-
usual Hawking effect which produces uncorrelated thermaing to the spacetime diagrams in Figs. 4a—4d. Using the
radiation. The information loss that is normally associatechotation “f—g” to denote “f evolves tog” (forward in
with the correlations between Hawking quanta and their parttime), the evolution formulas about the outer horizon are
ners is largely eliminated, since an unending sequence of
Hawking quanta is coherently correlated to the same partner Un+ T ¥n-—¥n s (5.1a
degrees of freedom.

Xn,+ T Xn——¥nr1-s; (5.1b

2lt is perhaps surprising to have exponential growth in time whenwhile about the inner horizon they are
there are no imaginary frequency solutions to the dispersion relation
(2.6). There is no contradiction however, since these exponentially

i . \ . i + i + iy 5.1
growing wave packet solutions cannot be Fourier transformed in Yinest¥n-s= ot (5.19
time and so need not be expressible as superpositions of time-

independent mode solutions. Xin+sT ¥n—s—Xn++Xn—» (5.109

124011-6



BLACK HOLE LASERS PHYSICAL REVIEW D59 124011

where all packets have been left unnormalized in order talifferent solution. Settingn equal tomin Eq. (5.2) and sub-
keep the formulas as simple as possible. The evolution fortracting from Eq.(5.4), we obtain

mulas given here are preferred for evolving packets back-
wards in time. Following the same techniques described in
the Appendix evolution formulas more conducive to evolv- | ¥in,+st D Xin-jrs— Wimas| = (Unrs— Pmss)-
ing wave packets forward in time can be derived. The =1 (5.5
—, +s and — s subscripts denote which type of wave vector '

the packet is peaked about, . s lies outside the outer ho- This solution corresponds to sending{m) x; . packets

rizon, while i ,..s and x; s, s both lie inside the inner No- 54 4 pair ofy; , ., s packets into the inner horizon and get-
rizon. The subscriph is a sort of time variable. Translation ting a pair oy packets out of the outer horizon.

of n by one unit has the effect of translating the wave packet
in time by a certain amount and also distorting the wave
packet. Note that in the evolution formula at the outer hori-
zon (5.1b n increases by one unit on the, ;s wave We can now compute the average number of particles in

packet. The evolution formulat.18—-(5.1d are basically  the wave packéty, . s and the correlations between emitted
scattering solutions about a black hole event horizon withyarticles for different values of the time index To begin

(5.139—(5.1b corresponding to scattering th¢, ,s and ; - -
) N, +S with let us evaluate the occupation nuUMKBFN(y +s)|0)
g'n,,sfackedtsdrgff the O;J.terl h%”éo? bagkilvard in t||(se§ of the first outgoing packet after the initial state condition is
gs. #a an respectivelpnd (5.10~(5.1d correspond-  jsqmed. Then the only evolution formula we need is Eq.

g]fc;gts?%??fr:len?n:e]? r:grsi;(l)tlr\n%acccl)(r\?vglrgaitéogri :faznv(ze;e (5.13, with n=0. The annihilation oPerator for a normalized
figures 4c and 4d respectively wave packef is given bya(f)=(f,¢), Eq. (2.11). Taking

To construct the wave packet solution with final data conthe inner product of Eq5.1a with the quantum fields, and
sisting of ak, ¢ packet outside the outer horizon we startusing the ground state conditions
with the local solution(5.13 (Fig. 4a. This clearly is not a - -
global solution sincey, . do not solve the equation of mo- a(o+)|0)=0=a(y;_)[0), (5.6
tion (2.4) about the inner horizon. The combination may be )
replaced by Eq(5.10 which does however. This results in We obtain
the evolution formula

n—m

B. Particle creation

N (o~ tpo,-)
N —_ o7 ru
(‘r//i,n,+s+ (/fn,—s)_”r/’n,+s- (5'2) <O| (¢O'+S)|O> (l/’0,+s’l/’0,+s)
The evolution(5.2) is also not a global solution to the 1 oy 1
equation of motion(2.4) however since, _ is not a solu- T wu—o Ll @ 2moin_q " (5.7

tion about the outer horizon. Using E¢5.1b to evolve

Y, _s about the outer horizon, followed by E¢5.1d to [The norms(A30) were used in the last e L
' . qualityThis is just
evolve the resulting wave packefg_, . andy,_, about the Planck distribution at the Hawking temperatufg
the inner horizon, we obtain an evolution formula that can be_ «27, as was shown previousf.5] for a superluminal
iterated indefinitely: dispersive field theory in the case that there is just one hori-
‘ zon. It holds fork= w<kKg.
(Xin-14sF ¥n-1-9)=¥n, s 6.3 We would have obtained a different result for
Beginning with Eq.(5.2 and iterating Eq.(5.3 (n—m)  (OIN(i0+5)|0) had we replaced the initial conditiorts.6)
times yields with, for example,

= a(i0+5)|0)=0=a(y5_4)|0). (5.8
wi,n,+s+ 21 Xi,nfj,+s+ wm,fs _>¢n,+s- (5.9 i
. Indeed, from Eq(5.2) with n=0, we find that if Eq.(5.8

In this manner we can evolve the final wave packet back tdolds, the occupation number ¢f . ¢ is given by
the spacelike surface where the initial ground state boundary

condition is defined. Solutions of the for(B.4) correspond ~ (o-s %05 1 @
to those used in the qualitative discussion of Sec. lIl, which OIN(#0,+5)[0)= — (Vorstore) Ou—o1)w
are depicted in Fig. Pwherein the firsk_¢ packet has been ' ' '
traded for ak.. pair using(5.1b]. 2{1—cod 6. (w)—06_(w)]}

If the horizons are not sufficiently widely separated, then X

intermediate wave packets that arise between the initial and
final packets of Eq(5.4) will overlap with the initial and
final wave packets, thus complicating the analysis of particle
creation. We can avoid such complications by constructing a ®we use a caret to denote normalized wave packets.

udw

e27Tw/K+e*21Tw/K_2 (59)
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The phase angleg. (w) are defined implicitly in Eq(A18),

and the normgA30) were used in the last equality of Eq.

(5.9). This differs from the thermal resulb.?).

It is not yet clear to us what is the “correct” initial con-
dition on the quantum state of the field. To determine this
would require following the evolution of the field state as the

black hole(or condensed matter black hole analogioems.
It does seem however that the conditi(n(a}iyk,+s)|0>=0

are likely to hold, while the remaining specification of the
state remains to be determined. Fortunately these conditions
alone suffice to determine the rate of growth of the number

of particles emitted and the correlations between them.

In order to find the number and correlations in the radia-

tion for n>0 we use the solutio(b.5). We taken>m>1 so

that the intermediate wave packets that entered the construc-
tion of Eq. (5.5 will not have any support on the initial

surface, and we assume the ground state conditions

a(ti k+)|0y=0=a(xi x +5)|0) (5.10

for k=m. Taking the inner product of E@5.5) with the field
operatoré and using conditiong5.10 we obtain

~ m,+s:»¥m S) ~
2l +210)= \ 2 B o),
’ ’ (5.11)

from which it follows that

(0la’ (¢ +9a(Pn +)|0)
(‘/’m,+51¢m,+s)

= OIN(m,+5)[0).
\/(¢k,+s1'pk,+s)(¢n,+sa¢n,+s)< | ’ | >

(5.12

In particular takingk=n we obtain

(wm,-%—s"pm,-%—s)

(n,+s:¥n,+s) (OIN(¥im, +5)[0).

(5.13

(OIN(y, +5)|0y=

The norm ofy, ., Eq.(A30), is given by

-n

(¢n,+s,wn,+s>=4wf““dw

@)

(1+ 1-cog 6, —0_)
2 sinff(7mw/ k)
(5.19

where we have used E@A21). This decreases monotoni-
cally with n except for at most a discrete set of frequencie

for which 6, (w)=6_(w)+2wk for some integek. [For

these frequencie$,, Eq. (A21), vanishes; so according to
Eqg. (A20) the corresponding mode is a bound state trappe
between the horizonk.Therefore the particle creation in

f//n,+s increases monotonically with, diverging amn—-ce. In

S

PHYSICAL REVIEW [39 124011

(OIN(#n,+9)[0) _
(O[N(¥m, +5)0)

1-cog6,—6_)\" "
2 sintf( 7w/ k)

(5.19

which grows exponentially wittm—m.
A measure of the correlation between emitted particles is
given by
(0la"(m,+ AP, +910)
[{OIN(&m,+)|0)(OIN( ¥ +)[0) ]2

=1, (5.1

C(m,n):=

independent of the difference—m. This should be con-

trasted with the correlation obtained wheh satisfies the
ordinary wave equation

C(MN)=(fm s, +), (5.17

which is nonvanishing only to the extent that these wave
packets are not orthogonal. As—m grows the overlap of
these wave packets and hence the correlattoh?) go to
zero, whereas the correlati@f.16 remains.

Finally let us estimate the time between the successive
particle emissiongsee Fig. 3, i.e., the difference in times
when successivé, . s packets(A22) cross a fixed coordi-
nate. The trajectory of the packets is given approximately by
the condition of stationary phase,

d
and therefore the timét between thenth and (+1)th
packets crossing the coordinatés given approximately by

d
At~ %Arg(Tg)

d . .
— d_w[,y+Arg(e—7Tw/Ke—I0+_eﬂ'w/Ke—lﬁ,)]

(5.19

where we have substituted fér, using Eq.(A23), andT; is
given by Eq.(A21).

Using the results given in the Appendix the
w-dependence of the phase factfsy) and 6. (w) can be
computed. Rather than carrying out this calculation—which
we can only do explicitly for any particular(x) in some
approximation anyway—Ilet us make a rough estimate. The
interval At is determined by the time it takes a wave packet
to “bounce” back and forth between the horizons.vlfx)
+1 is of order unity between the horizons, then using the
group velocity of thek_¢ andk.. waves one finds that this
bounce time is of ordea, the coordinate distance between

6he horizons.

C. Fermionic case

particular, if the wave packets are narrowly peaked about a In this section we briefly describe the differences in the

frequencyw, Eq. (5.13 yields

quantitative analysis of the fermion case. The derivation of
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the wave packet solutions for fermions parallels that given APPENDIX: WAVE PACKET SOLUTIONS
for the scalar field in Sec. V A and yields an evolution for-

mula very similar to Eq(5.5. The final _ex.presglon.for the (5.139—(5.1d for wave packet solutions are derived with the
average value of the number operator is identical in form tonelp of the results of5]. We treat only the bosonic case
Eq. (5.13; however, the normN,, ;s now increases mono-  4ithough the fermionic case is essentially identical.
tonically with n so that the number expectation value de- Tphe wave packet evolution formulas are inferred from

creases exponentially in. This is to be expected since un- connection formulas for mode solutions to the field equation
like the scalar case, the conserved ndiif), Eq.(2.20,is  (2.4) of the form

positive definite. The effect of this crucial difference is that _
instead of exponential growth of Hawking radiation we now u(t,x)=e"''¢(x,w), (A1)
get exponential decay.

In this appendix we explain how the evolution formulas

where ¢(X,w) satisfies the ordinary differential equation

VI. DISCUSSION (ODB)
We left the question of the “correct” initial condition = M) +[1-03(x)]¢" (%) + 20 (N[ w=v" (x)]e' (X)

unanswered. For a condensed matter black hole it should be  _j,[jw—0'(x)]A(x)=0. (A2)

straightforward to deduce this by following the state of the

field as the “black hole” forms. It seems fairly clear that the In [5] such solutions were constructed for a black hole space-

i +s Wave packets inside the inner horizon will be in their time with a single horizon. The basic technique used was to

ground states. What is less clear is the state of the wavind approximate solutions to EGA2) using the WKB ap-

packetsy, , ¢* and ¢* ¢ between the horizons. For a real proximation away from the horizon, and to match these so-

black hole—if one wants to entertain the possibility of su-lutions across the horizon by comparing to the near horizon

perluminal dispersion—the same may be true. The s solution obtained by the method of Laplace transforms.

wave packets inside the inner horizon arise from ingoing

waves that scatter around or through the central singularity 1. Outer horizon connection formulas

of a Reissner-Nordstr black hole in the manner discussed . . :

in [14]. Since the region inside the inner horizon is static, it Aﬁsﬁlm'”g tha_t Fhe horizon IS Ioca_tedmo, and that the

would seem plausible that these are in their ground state angetnc in the vicinity of the horizon is given by

well. _ _ _ v(X)~—1+ KX, (A3)
Another issue we have not touched is that of the gravita-

tional back reaction to the radiation studied here. In thehe analysis of5] leads to the following two connection

bosonic case the exponential growth of the number of negadormulas:

tive energy Hawking partners between the horizons would

surely rapidly entail a strong gravitational reaction. In the K(e™2 ¢, +e ™/ ¢ ) g (Ada)
fermionic case, the exponential suppression of radiation
leads quickly to a state with no radiation at all. This is hard ~ — ¢_s+K(e” ™2 ¢, +e™¢_)—0, (Adb)

to reconcile with the usual picture in which Hawking radia-

tion is a robust consequence of a general “well-behavedwhere
state near the horizon. One would expect that although the
negative energy states of the Hawking partners in the ergore-

gion between the horizons become filled, there is not all thaﬁ'he notation “e;(X) <> é,(x)” denotes that the approximate
much energy in these stat&since the partners at late times WKR solution ¢11(X) berfind the horizon connects to the ap-

are the same as the partners at earlier times due to the . ; . .
“bounce” between the hporizonso the back reaction should proximate WKB solutlon¢2(x) outside the horizon. The
be limited. If so, then why does the Hawking radiation not;nnoddgfgii’viﬁs are approximate WKB solutions to Eh2)
continue? The answer, it would seem, is that although the 9
state is reasonably well-behaved in terms of energy density, X

p(if ds k+<v(s>,w>)

K=[ w/2 sini 7w/ k)] (A5)

it has peculiar features in just those modes relevant to the ¢. (x)~C_.[v(x)2—1] ¥*ex

Hawking effect.
g (AB)
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(x complex conjugate of the-equation(A2), with v(x) re-
¢is(x)~CiSeXp( : f_eds kis(v(s)""))’ (A7) placed bys(y)=v(—y—a). We denote the WKB mode so-

lutions to thisy-equation by¢. and ¢... Since we have
where the approximate WKB wave vectors are given by  chosen the surface gravities to have the same magnitude,

_ ~ ) v(y) takes the same form near the inner horizonvés)
ke~*koVo =~ 1+ wv/(1-v%), (A8)  does near the outer horizgA3). Therefore the mode solu-
tions near the inner horizon are the complex conjugates of
Kes=wl(1+0), (A9)  those about the outer horizon, wittreplaced byy; so they

. satisfy the same connection formulas
provided we assume <k, and chooséx|,e> (w/kq) % k. fy

The WKB solutions are only valid fojx|> =%, 2. The
coefficientsC.. . ¢ are necessary to match these WKB solu-
tions to the near-horizon Laplace transform solutions. They - ~ ~
can be determined by comparing the Laplace transform so- —¢-stK(e~ TOl2Kgh  +eT2KG ) 0. (A13Db)
lutions given in[5] to the matching formulagA4a)—(A4b)

with the WKB modes(A6),(A7) evaluated in the smakk

K(e™2 g, +e ™ )y s (Al33)

limit.> We find that the coefficients are given by The notation “b,(y) < ¢a(y)” now denotes thatgh (y) is
valid between the horizons ang,(y) is valid inside the
2 1 H H ' [} 3
L=jaFne Ti o 2rklk(k 3/2) inner horizon. We have included a subscript in ¢; 1 4(y)
Ce=l exp( 13 «lko(koe) to make it clear that this solution is valid only inside the

inner horizon.

><ex;< —iiln(zke)), (A10) The WKB solutions?&i,,s(y(x)) are in fact the same
2K functions ofx, up to w-dependent phases, as the WKB solu-
tions ¢ _¢(x) respectively. To see this, note that the WKB
C..= exp{igln(koe)ﬂ ;—i ardT(1+iw/x)]]. modes¢.. _(x) given in Egs.(A6),(A7) all take the forri
- K
(A11) [*
d(X)=C(w)f(v(x))exp i ds kiv(s),w)| (Al4)
2. Inner horizon connection formulas
In the case of a black hole with both inner and outer?hereC is x-independent andl andk are real functions of

horizons, the connection formulas E@4a)—(Adb) remain  U(X). Since, as discussed above, thandy equations are
valid locally about each horizotafter some slight modifica- related by substituting (x) —v(y)=v(—y—a) and com-
tions to be discussed presenthput the solutions are no plex conjugating, the WKB modes$. _<(y) are given by
longer global. Assume that the outer horizon is located at ’

Xo= 0, withv (x) taking the same form as given by E&3), ~ ~ (Y ~

and that the inner horizon is at=—a with v(x) near the ¢(y)=C*(w)f(v(y))ex;{ —i f_eds |<(U(S),w))-

inner horizon taking the form (A15)

v(x)=—1=k(x+a). (A12) Usingy=—x—a ando(y) =v(x), and changing the integra-

(We assume that the surface gravity of the inner horizon halion variable inb Eq(A15) to s’=—s—a, we obtain

the same magnitude as that of the outer horizon to simplify .

the results. There is no difficulty however in allowing the &(—x—a)=C*(w)f(v(x))exp(ij ds’ k(v(S'),w)),
surface gravities to be differepiThen the connection formu- —ate

las (A4a)—(A4b) are valid for Eq.(A2) locally about the (A16)
outer horizon, where the notation; (x) < ¢,(x)"” now de- ] )

notes thaip,(x) is valid between the horizons amfh(x) is which differs from Eq.(A14) only by anw-dependent phase

valid outside the outer horizon. factor, i.e.,
C*(w) .f*f q
Cla) exp i i skiv(s),w)

To find the “local” mode solutions about the inner hori-
zon we reexpress the mode equati@®) in terms of the H(—x—a)=
new coordinate/:= — (x+a). The resultingy-equation is the

5x cannot be arbitrarily small however because the WKB approxi-\r/z\i/fh esrh;I]I aﬂoatszgﬁqrgﬁth éoggzgnrfcuir;? ese phase factors, but
mation breaks down as—0. In[5] it was shown that the WKB and
Laplace transform approximate solutions are both valid when
Kk~ Y;#P<|x|< k"1, and therefore the matching can be done in

this range. We also choogeto satisfy the same inequality. %We have dropped the:, —s subscripts onp(x),C, f, andk.

d(X).
(A17)
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Do(—x—a)=e=@¢_ (x) With these definitions the evolution formulas about the
- = outer horizon(5.13,(5.1b follow immediately from the

b (—x—a)=e"¢_(x) (A18) outer horizon connection formulagA4a),(Adb) provided
) —S 1

we choose C,.=KexpEnw?2«)A, and D,.=

where @ ,y also depend om(x),ko, anda (the coordinate — K eXp(+7w/2«) B, 1. Similarly, the inner horizon evolu-
distance between the horizonisut do not depend or as  tion formula (5.19 follows providedB,=¢€'"T;A, and E,
long as it is chosen large enough so that the WKB approxi= T2An, While Eq. (5.1d requiresF,=—T;B,,; and B,
mation holds. =—T3B,+1. The solution(up to an undetermined overall

Using the phase relatior818) the inner horizon connec- constantis given by
tion formulas(A13a),(A13b) can be reexpressed in terms of h
the same linear combinations @f. appearing in the outer An=(—Tg)
horizon formulagA4a),(A4b): .

B,=€"Ty(—Ty) "
K(e™ ¢, +e ™" ¢ )+ T1d =Tobi 15

(A19) Cp-=Ke /(=T ™"
K(e—ww/2K¢++eww/2x¢_)+T3¢_sHTl$i'+s Dn’t:_KeI'n'a)/ZKeinl(_TS)—n—l
(A20)
En=To(~Tg) "
with n=T2(=Ts)
Ti= 0 K2(e 1t —e %) Fa=—e(T)?(—Ty "L (A23)

Ty=w 'K (e™/re !0+ —e kg TI0-) 4. Norm of the wave packets
Ta= o K26 V(e mlkg=i0s _ gmolkg=io_y A1 _ The wave packets defined in E_c(AZZ) are not normal- '
3 ( ) (A21) ized. Their norms can be determined as follows. A generic
one of these wave packets has the form

3. Wave packet evolution formulas oudw
—_ —iwt
We can now form wave packets from the modes and use Y= \/_—G e ', (A24)
. . w| w
the mode connection formulas to obtain wave packet evolu-
tion formul:_as_. To I_<eep the Iatter simple, the(_jepeﬂd_ence which has the norriicf. Eq. (2.9)]
of the coefficients in the connection formulas is built into the
definition of the wave packets as follows. Define

do ([ do’ )
W) =i | dx| =| —={G:G,, el
wdo (,) If Xf@fﬁ{ wCor€
(/fn,-%—s: \/_—Ane © ¢+s
oL Vo X[ 5 (d+vdy) b, — (i +vdy) B, 1}
oydw (A25)

= | —=Bpe“¢_
Yn—s | \/5 " ¢ The norm is conserved under time evolution, and so it suf-
fices to evaluate it at any one time.
oudw _ The key assumption we need in order to evaluate the
In,== \/_—Cn,t e g norm is that at some time the wave packet is confined to a
“ N constant region. This is certainly the case for thes wave
packets, since they are outgoing and eventually reach the
asymptatic region. If the region between the horizons is large
and has a large constant velocity region, then it may simi-
larly hold for the —s and = wave packets as well. Alterna-
oudw s tively, these wave packets spend some time squeezed near
Yin+s= —E e " s the horizon, with wavelengths much smaller than the length
o Vo scale over whichy(x) changegbut, in the case ok_g, still
much longer thark, *; so we can nevertheless use the small
_ ‘”ud_wF ot k approximation. If the wave packet is contained in a con-
Xin-1+s= o o 18 i, stantv region, then for the purposes of evaluating the norm,
(A22)  we can imagine this region to extend to infinity in both di-
rections. The fixedw mode equatior(A2) in a constant
where the coefficients,, . .. ,F depend orw, and the mode region has solutions¢,=C, exp(kx), where w—vk=
functions ¢ depend on bothw andx. +F(k) with F(k) given by Eq.(2.7). Matching to the WKB

oydw

_ —iot
Xn—-1,+= =D, 1. .
| w
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modes(A6),(A7) we see thalC,|={1,(v?—1) ¥4 for the i 1
+s modes and- modes respectively. Thus we have ()= i477f do[G,|*{1,0  }. (A29)
B 2l With Eq. (A29) and the coefficient$A23) for the wave
j dx¢ bu=2m{1(v?~1)" 4} 5(0) ). packets(A22) we obtain the norms needed in Sec. V B:
(A26)
Wy 1
USing Eq(A26) in Eq (A25) y|e|dS (¢0,— llpO,—): _47Tf dwTKl'
)| e -
*Fldw
() =4m{1,(v*~1)" 3/2}f dw|Gw|2 @u _
dk (¢n,+51¢n,+s):477j do |T3| 2n,
(A27) |

Using the small and largk approximations fok..; andk. oy )
respectively, we find that (Yo-s:0,-s)=—4m o do [T,

{1,(02—1)*3’2}%': z—t‘ =+{1,0 Y} (A28)

_4waudw2{1 co§ 0. ()= ()]}

e2’7Tu)/K+ e—27ru)/l< 2

@)

respectively. Thus, finally, (A30)
[1] W.G. Unruh, Phys. Rev. B1, 2827(1995. [10] N.B. Kopnin and G.E. Volovik, Phys. Rev. B/, 8526(1998;
[2] R. Brout, S. Massar, R. Parentani, and Ph. Spindel, Phys. Rev. Phys. Rev. Lett79, 1377(1997.

D 52, 4559(1995. [11] T.A. Jacobson and G.E. Volovik, Phys. Rev.98, 064021
[3] S. Corley and T. Jacobson, Phys. Revsf) 1568(1996. (1998; Pis’'ma Zh. Kksp. Teor. Fiz68, 833(1998 [JETP Lett.
[4] W.G. Unruh(personal communication 68, 874(1998].

[5] S. Corley, Phys. Rev. 537, 6280(1998. [12] See e.g. Appendix A of Ref6].

[6] S. Corley and T. Jacobson, Phys. RevoD) 6269(1998. [13] M. B. Green, J.H. Schwarz, and E. Witte3yperstring Theory
[7] D.A. Lowe et al, Phys. Rev. D62, 6997(1995. (Cambridge University Press, Cambridge, England, 1987
[8] W.G. Unruh, Phys. Rev. Let#l6, 1351(1981). Vol. 1.

[9] M. Visser, Class. Quantum Gra¥5, 1767(1998. [14] T. Jacobson, Phys. Rev. by, 4890(1998.

124011-12



