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Metric fluctuation corrections to Hawking radiation
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We study how fluctuations of the black hole geometry affect the properties of Hawking radiation. Even
though we treat the fluctuations classically, we believe that the results so obtained indicate what might be the
effects induced by quantum fluctuations in a self-consistent treatment. To characterize the fluctuations, we use
the model introduced by York in which they are described by an advanced Vaidya metric with a fluctuating
mass. Under the assumption of spherical symmetry, we solve the equation of null outgoing rays. Then, by
neglecting the greybody factor, we calculate the late time corrections swilage contributions of the energy
flux and the asymptotic spectrum. We find three kinds of modifications. First, the energy flux fluctuates around
its average value with amplitudes and frequencies determined by those of the metric fluctuations. Secondly,
this average value receives two positive contributions, one of which can be reinterpreted as due to the “renor-
malization” of the surface gravity induced by the metric fluctuations. Finally, the asymptotic spectrum is
modified by the addition of terms containing thermal factors in which the frequency of the metric fluctuations
acts as a chemical potenti@50556-282(99)05812-9

PACS numbds): 04.70.Dy

I. INTRODUCTION tions are generalized to Einstein-Langevin equations which

contain stochastic stress-energy tensor describing metric

25 years have passgd since Hawking’s theqr etical dISCOVﬂuctuations induced by quantized field&or recent review
ery of the quantum radiation by black holgld. Since then, see[17—20 and references therejn.

many aspects of this phenomenon have been investigated. the stydy of the effects connected with black hole fluc-
First, the mean value of the energy-momentum tensor hagations is a technically very complicated problem. Only
received much attention since it provides the source of thggme preliminary work has been done in this direction till
so-called semiclassical Einstein equatidisee, €.9.[2,3]  now. Under these conditions it is natural to study simplified
and references therginHopefully, the solutions of these models. In particular, it is not unreasonable to hope that the
equations should govern the mean evolution of the evaporainain properties of the Hawking radiation modified by metric
ing geometry. More recently, more quantum mechanicafluctuations can be extracted from a much simpler frame-
guestions which raise doubts concerning the validity of thisyork in which the fluctuations of the metric are treated clas-
semiclassical evolution have also received attention. In parsically.
ticular, the controversial role of arbitrarily larg&trans- The model we shall use is inspired by that proposed by
Planckian’) frequencies of vacuum fluctuatiof$—10] and ~ York [21]. In that model, the fluctuating geometry near the
the gravitational back reaction due to a specific quantunfiorizon of the black hole is represented by a Vaidya-type
[11,17 have been discussed. metric with a fluctuating mass. The spectrum of these fluc-
In this paper, we shall consider another aspect: We studyJations is characterized by the zero point fluctuations of
how the fluctuations of the black hole horizon geometryquantum fields. In this paper, we further simplify this model
might affect the properties of Hawking radiation. To describeby considering only spherically symmetric fluctuations and
these fluctuations quantum mechanically and to determinBy neglecting the scattering by the gravitational potential
their effects on Hawking radiation requires full quantumWhich occurs in the 4-dimensional Dalembertian. Then we
gravity. In addition to the “spontaneous” metric fluctuations determine how these fluctuations modify the energy flux and
there also exist so-called “induced” metric fluctuations, the asymptotic spectrum sfwaves.
which are generated by quantum fluctuations of all other The paper is organized as follows. York's model is de-
fields interacting with the gravitational one. In the regimescribed in Sec. Il. Section Il contains a perturbation analysis
when the “induced” metric fluctuations are dominating, a ©f the equation of radial null ray propagation in the fluctuat-
consistent way to describe black hole fluctuations and backld geometry. The solution of this equation is obtained in
reaction is to use the stochastic semiclassical theory of gra®ec. IV and used to obtain the modified energy flux in Sec. V
ity based on the Schwinger-Keldysh effective acti@8,14  and the spectrum in Sec. VI. The results are discussed in Sec.
and the Feynman-Vernon influence functiof$,16 meth- ~ VII. In our work we use dimensionless units whe@e=c
ods. In stochastic gravity the semiclassical Einstein equa=# =1 and the sign conventions {i22].
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r=0 time. In the presence of the fluctuations, the conformal struc-
ture of the spacetime remains the same, but the function
V(u) is modified. We shall study this modification in Sec.
V.

P Upon substituting the metri€2.1) into Einstein’s equa-
r=2M/ . tions, one easily gets that the right-hand side of these equa-
’ tions takes the form

1
T,w=4m2['\/|5(v)+M,U«(v)ﬁ(v)]'#'w (2.5

r=0 v=
wherel ,=—v , is a future-directed null vector tangent to a
radial in-going null ray. From a “classical” viewpoint,
“ ()l l, is a fluctuating flux of positive[for 2mn<wv
V(u) <2w(n+1)] and negative[for 27 (n+1)<wv<2w(n
+2)] energy density. Correspondingly, the position of the
apparent horizon,y=2M(1+ w(v)) also fluctuates near its

average value,,=2M.
Following York [21] we assume that the dimensionless
amplitudewo= a(Mpjancd M), Whereea is a pure number. In
FIG. 1. Conformal diagram for a black hole created by a CO|-particu|ar this assumption means tw<]_ for black holes
lapse qf a mas;ive null shell. Solid dark line=0 represents the  of massM > mp,nq It is also assumed that in order to get a
collapsing massive null shell. more realistic result one should average over a spectrum of

i , metric fluctuations.
model proposed by York21]. In his model, the fluctuations

of the black hole geometry are approximated by an incoming

Vaidya metric with a fluctuating mass. The fluctuating part IIl. RADIAL RAY PROPAGATION

of the mass function can be decomposed into spherical har- A. Radial null rays in perturbed geometry
monics. Upon quantizing the gravitational field, only compo-
nents withl=2 are important. However quantum fluctua-
tions of matter fields may induce fluctuations of the
geometry with alll.

We first study the propagation of radial null rays in the
fluctuating black hole geometr§2.1) since we shall use, as
usually done, geometric optics to construct the solutions of

In what follows we shall only consider spherical modes oftheI wave equation. by — d :
fluctuations. Therefore, the metric for a neutral nonrotating b n-grc]Jlng rays are given by =const and out-going rays
black hole can be taken of the form obey the equation

ds?=—Adv2+2dv dr+r2ds5, 2.1 Adv=2dr. @1
In order to solve this equation, we use a method of pertur-

whered$S; is the metric of a unit 2-sphere and X .
bations and write

2m
A=1-—, (2.2 r=r(v)=R()+p(v)+o(v)+:
m=m(v)=M[1+ u(v)] 9(v), 2.3 =2M[R(v)+p(v)+o(v)]+---. (3.2
1(0) = s SiN(wv). 2.4 R(v) is the solution of Eq(3.1) in the absence of fluctua-

tions, andp(v) ando(v) are respectively the first and sec-
This is the standard Vaidya metric in advanced time coordi®nd order perturbation ip,. Higher order corrections are
nates ¢,r). The functionu(v) encodes the fluctuations of dgnotec_i by dots. In.what follows, we sh.all also often use the
dimensionless amplitudg,. The step functiond(v) in re-  dimensionless versions & p, ando which we mark by a
lation (2.3 indicates that the black hole results from the filde. _ _ _ _
gravitational collapse of a massiy&ith massM) null shell The equation for out-going rays in the unperturbed metric
propagating along =0. Therefore inside the collapsing null [()'=d/dv],

shell the spacetime is flat.

The conformal diagram of the whole geome2yl) in the R= E( 1— 2M ‘9(”))
absence of fluctuationghat is for uy=0) is schematically 2 R '
shown in Fig. 1. The dashed line on this figure shows a radial
null ray which reacheg7* at the moment of the retarded can be easily integrated. Let us choose the value of the re-
time u and which was sent frond ™~ atv =V(u) of advanced tarded timeu and denote by =R(v;u) the unperturbed tra-

(3.3
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jectory of a radial ray which arrives tg+ at the chosen time and k=(4M) ™! is the unperturbed surface gravity of the

u. This trajectory can be found by solving the equation ~ black hole.
For both solutions it is possible to add a solution of the

u=v—2R, =const. (3.9 homogeneous equation. Such a solution corresponds to radial
null rays propagating near the horizon in the unperturbed
Here geometry. For these solutions the absolute valug ahd o
is infinitely growing. We choose the integration constants to
R—2M exclude these solutions so that the perturbed radial null ray

R,=R—2M+2M In (3.5

2M neither goes to infinity nor to=0. Therefore it describes the

position of the event horizon in the perturbed geometry. It is

is the usual tortoise radial coordinate. easy to verify that Eqs3.10 and (3.1 coincide with the
The equations for the perturbatiopgv) and o(v) are  solution obtained by York21] [see Eqs(4.8) and(4.9) of

obtained by linearizing Eq(3.1). Both functions obey the York's papet.

same equation It is also interesting to compute the modified value of the

surface aread of the event horizon. When averaging over

. M time v, we find
f=—f+F, (3.6
R? I o
A=4m(r2 (v)=16a7M?2 1+ ———|. (3.13
for v>0 and o 2(1+0?)
f=0 37 Similarly the average value of the surface gravity in the fluc-
' ' tuating geometry is
for v<0. For the first order perturbation, one has )
— [ m(v = po—
M E( > ):K[1+3(Pz)_2M0(PS|n(wv))]
f=p, F=——2u, (3.9 Mholv)
R 2
S R 3.1
and for the second order perturbation K +2(1+Q )| (3.14
M M, Upon computing the modifications of the Hawking flux, we
f=0o, F= ;MP— %P . (3.9 shall see that this “renormalized” surface gravity will deter-

mine the m_odified temperatuﬁ = k/27. The change of_the

In these equations, the retarded timés a fixed parameter area,0A=.A— A, and the change of temperatudd,,,= Ty
which specifies the unperturbed ray under consideration and T, of the black hole induced by the metric fluctuations

R=R(v;u). obey the relatioh
B. Perturbed horizon %4 = g (3.15
Before giving the general solution of the equations for the H
perturbations(v) ando(v) we discuss the particular solu- _
tion which describes the event horizon in the fluctuating ge- C. Perturbed radial rays
ometry. We now consider the general case, that is we assume that

First notice thaR=2M satisfies the unperturbed equation R+2M. Equation(3.7) can be easily integrated and gives
(3.3. This degenerate solution describes an outgoing null ray = const everywhere inside the collapsing shell. To integrate
propagating along the unperturbed event horizon. Startingq. (3.6), we change variable to R(v;u), where as earlier
with this solution we easily obtain the following solutions for the retarded time parameteris fixed. This allows us to

the dimensionless perturbations: rewrite Eq.(3.6) as
~ _ QcogQv)+sin(Qv) a1 2M\ df 2M
PEHT Mo 1+QZ ’ ( . Q —? d_R_?fZZF (316)

- ,20%(2—0?)cog 2Qv) + Q(1-502)sin(2Qv) The solution of this equation is

TEHT Ho 2(1+0%?(1+40?) ’
(3.11)
11t is interesting to note that similar corrections to the black hole
where surface area and temperature were obtained by Hu and Shiokawa
_ [23] in their stationary model of metric stochasticity. The relation
Q=wl/k, v=«uv, (3.12 betweens.A and 6Ty in their case contains an additional factor 2.
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oM »  2F wherexg is the value ofx on the massive null shefl.e., at
f=<1— —) f —F——>dR+fy[. (3.1 v=0). It depends oru and is a solution of the following
R R (1_ Z_M) equation:
R
U+xo+Inxe=0. (3.29

The integration constarfy corresponds to the possibility to

add a solution of the homogeneous equation; that is, a soluwe shall be interested in the null rays arriving 40 at late
tion of Eq.(3.16 with F=0. We putf,=0 since this choice time u. For such rays Eq3.25 can be solved by iterations
is equivalent to the requirement that the ray propagating imand gives

the “perturbed” geometry arrives tg* at the same time

as the “unperturbed” ray =R(v;u). xozefa(l—e*a)JrO(e*?’a). (3.26
In what follows it is convenient to introduce the dimen-
sionless quantities This relation shows that for the late-time regimgis very
small.
B R—-2M ~
O TVERE I L TV E (3.18 IV. CALCULATION OF V(u) FUNCTION
A. First order corrections
R* ~
X*:m:XH”X: f:m- (3.19 In this section we analyze the perturbatiop&) and

o(x) in the late-time regime. Before proceeding to the com-
In these notations solutiorf8.17) for the dimensionless per- putation of these perturbations it is appropriate to make a
turbationsp and o take the form few remarks. First, we notice that it is necessary to compute

o, the quadratic fluctuation ifxg, Since our aim is to obtain

X all gquadratic corrections to the flux and to the asymptotic

p(X)= 775 1(X), (320 gpectrum. Secondly, it should be noticed that the following
developments for determining(u) in the perturbed geom-
od R etry are quite similar to those of Ref24,25 which con-
|(X):f ?(1+ Hu(é), (3.2)  cerned the determination of/(u) when the energy-
X momentum tensor of Hawking quanta is taken into account.
- ~ We start with the first order perturbatign(x), see Eq.
T(X)=— X j —Sﬁ(f) [L(f _ (&) . (3.22 (3.20. To calculatel (x) we notice that Eq(3.21) can be
1+xJx & 1+¢& written in the form
The fluctuating mass termu(£)=pu(v(£)) which enters 1(X)= o IMLPUL(X Q) + PUa(x )], 4.1
these equations is where forn=1
(€)= poSiQ(E+In £+ )] (3.23 PU,(x:0) =€ %P (x:0) 42

To study quantum black hole radiation in the fluctuating ge-;nq

ometry, we need to solve the wave equation in this geometry.

As usual, we use the geometrical optic approximafidius o al Q€

we only need to solve the following problefh]. Consider a P.(x;Q)= f ™ dé. 4.3
radial ray, which leaveg7~ at some advance time and x &

reaches7 " at some retarded time(see Fig. 1. What is the
relation betweenu and v? To establish the relatiow
=V(u) we use the above solution for a ray propagating in

By integrating by parts, it is easy to show that

eiQx
the fluctuating geometry outside the collapsing massive nullp_(x;())= _ 4 — P, _1(xQ).
shell, and glue it to the solution inside the shell. The latter (n—1-iQ)x"" 1712 n-1-iQ
means that the values ofcoordinate for both rays must be (4.4

the same on the shell=0. Using this condition and the

reflection atr =0, one finds folV/= \V/4M Using this relation, we can rewrite E(4.1) as

~ ~ ~ 1 o~ 1
V=—[1+Xy+p(Xg)+(X)], (3.29 |(X):M0|m[1_i9 e'ﬂ(u+x+'n><);+ PUl(X;Q)“
Mo . ~ ~
2The validity of this approximation follows from the fact that the = Xm5|r’[9(u+x+ Inx) +arctan} ]+ 1(x),
initial frequencies involved in the processes occurring at large
times are much larger than the characteristic frequereyl/4M. (4.5

124010-4
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where

PU(x;Q)

—1-ia (4.6

T(X)=poIm

FunctionP4(x;Q) can be expressed in terms of the incom-
plete gamma functioh'(«, ). Using the relation

xe7M§
fu gl,ad§=ﬂ‘“F(a,Mu), (4.7)
we get
Pi(x;Q)=(—iQ) 7T (iQ,-iQx)
=e mTIONOD(iO, ~i0x). (4.9

Furthermore, the incomplete gamma functlofw, ) allows
the following series expansion:

% %

F(a,g)zI‘(a) l—§a87§n=o m .

(4.9
Thus for smallx (1x<<1) we have
i o
LI, —iQx)~T(i0)+ e % N® (410

and
ixi®

I
+—.

Pl(X;Q)’*ﬁe_ﬂﬂ/z_iQ InS)F(iQ) q

(4.11

For the calculation o¥/(u) we need to know(x,) wherexg
is the solution of Eq(3.25. Using Eq.(4.5), one gets

Mofd

I(Xg) = —————— +1(Xy), 4.1
(Xo) Xo(1+02) (Xo) (4.12
where
_ iefion
I (X0) = po IM a(1=i0)
) - ~T(iQ
+M0|m eWQ/ZIQ|nQ+IQU1(_i())}. (413)

For small x, the first term in the right-hand side gives
wo/[Q(1+Q2?)]. To calculate the second term contribution,
we notice that

efﬂ-ﬂlzfiﬂInQF(iQ):q(Q)e*Wr(Q)’ (4.19
where
2w
O)=———, 4.1
e TPy (4.19

and o (Q) is a real function which for large values 6F,
Q) —o, has the following expansion:

PHYSICAL REVIEW [»9 124010

[

1 (—=1)""'Byy,
)=+ -7+ ,
) 4 nz‘l (2n—1)(2n)Q2"1

or( (4.16

whereB,, are Bernoulli numbers.
Inserting Eq.(4.14) into Eq.(4.13 one gets, for smak,

- Mo qQ)
I(x0)~9(1+02)+,u0msm<bl, (4.17

where

O, =P(Q)+arctan), P(Q)=Qu— o (Q).

(4.18
Collecting all the results, we finally obtain
1(Xg) o + ! a D
Xg) ~ sin
O (1402 (1102 J1roZ !
(4.19

This result can be used to obtain the asymptotic form of the
function V(u). Using Egs.(3.20), (3.24, (4.19, and(4.20,
we find, up to the first order ie ™Y,

—V=Vot+e Y& +C,sin(d)]+Vy(T), (4.20
where
Vo=1l+pg——, Ci= _Mo—Qz_l )
1+ 072 Q(1+0?
Cfm%, (4.21)
and
V(1) = (xo(1)) (4.22

is the second order correction.

B. Second order corrections

To calculate the second order correctisnwe must esti-

mate the integrals of Eq3.22. By integrating by partsg
can be rewritten as

12(x) >dé.
S ), N

X
T 14x

(X)

o

) , (4.23

where as earlier
[(X)=11(X)+15(X) (4.29

and

~>dé.
In(x)= L g—f/vt(f)- (4.29

124010-5
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It is easy to see that

=dé.

= M(f)'z(f)——ﬂz(x)]z (4.26

Thus we have

- I +1 2 1
T =1 (1(2X<)1+§§§)) _§[|2(X)]2_T(X)1,
(4.27
where
T(X) = po IM[€Q,(x; Q)] (4.29
and
= d
Qn(x; Q)= f fnfglm. (4.29

The functiond ,(x) are related td® U, (x;()) defined by Eqg.

(4.2) as follows:

In(X) = o IM[PUL(X; Q) ]. (4.30

Using the results of the previous section, we can obtain the
expansions of ,(xg) for smallxg. Thus, the problem of find-

ing o(x,) for smallx, is reduced to study the functioi(x).

For this purpose we first obtain a recursion relation for,

Qn(x;Q). By integrating by parts, we have

ei()xl l(X)

(N—1-iQ)x" 1710

1 =dg e u(é)
B (n—l—iQ)L £n-i0

iQ _
+an—1(X,Q)-

Qn(x;Q)=

(4.31)

Using Eq.(3.23 and the definition(4.2) of PU,(x;Q) we
can write the second term of EGt.31) as

=d¢ ey i -
[ gniﬁ@) == S uoe™ Y PUL(:200)
1
BT 4.32

Relations(4.31) and(4.32 allow us to writeQ,(x;{}) as

Moe—mﬁ

S 2i(1-iQ)

ei!)xll(x)
(1-iQ)xtie

1
Qx(x; Q)= [Puz(XQZQ)_;}

iQ _
g 6. (4.33

We also have

PHYSICAL REVIEW D59 124010

o dgelﬂg oodneiﬂ';y
fl iQ ¢ 1-iQ

Qi )=57| e ;

IQuJ‘wdgelﬂfj*oodyle iQn
—e

gl iQ ¢ 7]1+IQ
= B0 6100~ (PUL(0)- St
(4.3
where
~dg el redpe i
S(X;Q):L gl—iﬂf SR (4.39

This function allows the following representatidsee Ap-
pendix A):

—7Q2+i10 InQ

S(X;Q)=(|2—e
XT (=i Q)X F(iQ;1+i10Q;iQX)
+ (iz—[ln(iQx)—Ff(—iQ;iQx)—w(iQ)],

(4.36

where F; is a function, ¢(2)

=[dInT'(2/dz], and

hypergeometric

o

. y"
flay)=2 TR (4.37)
Here
_F(l-l—a-l—n)
(1+a)n—m (43&

Combining these results, we can rewrite £33 as
eiQ(u+x+In x)l 1(X)

¢%Qax: ) = — g

Mo

1
m[PUZ(X ZQ)— —}

Mol
Ta-ia) |Q)[

(PU3(x;0))?=S(x) |.

(4.39

The final expression for the second order perturbati(xy)
is obtained by inserting Eq$4.28), (4.39, and(4.30 into
Eq. (4.27).

Since we are interested i(xo) wherex, is small we

need only to know the first terms of its expansion in powers
of Xo. To do this we use the following asymptotics at small

value ofx:
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i i 02-1 2+302%-3304+200°
PU,(Xg;Q)~ = +q(Q)e' ), (4.40 —1— 2
l( 0 ) Q q( ) Cl 1 'LLOQ(l_f_QZ)J’_'LLO 492(1—1—02)2(14—492)
PU,(Xo; Q2 L 0P Ux: ), (44 0
2(X0; V=7 5q g ! 1(X0; Q) |, (4.40) Ty (Q)
i . i _ (TQ=2InQ=2 1M (Q—=i)y(iQ)])
s<xo;mwﬁ{qm)e-'q’(mﬂn(ﬂxm7—:#('0)}. - 21+ 09 . (453
(4.42
h lues o (%) andl(xg) can be easil c o [, 91 (4.54
The approximative values ¢f(xg) andl,(xy) can be easily 2THOTT—— | reyramrevNE .
obtained by using the relatio.30. The calculations the 1+0 01+05
asymptotic value of(xg) is hence straightforward but quite 20
long. We use Maple to perform these calculations. The result _ 2 Q)
: C3_11""0 ’ (453
IS 41+ 02
}(XO)%ILL%[U()"‘ O'1Xo+ 0',], (4439 ) Qq(ZQ)
Cs=—up : (4.5
where V(1+02)(1+402?)
_ 0%(2-0?) (4.44 1o
O T Q2L+ 407 | ST E 59
o1= 01+ 01q(Q)+0ig%(Q)+030(2Q), (445  and the phase®, are defined as follows:
 2+302-330%+200° .48 @, =QU— ¢ (Q)+arctan, (4.58
174071+ 09)A(1+40%) '
~ 1
,_(©2- DO ot +sin@©Q)] CDZ:ZQ“_Z‘DF(Q)_arCta'Eﬁ ’ (4.59
71 Q(1+0?%? (447
~ 30
2_(1—92)+[QSIH(2<I>(Q))—COS(2<IJ(Q))] ¢)3ZZQU_QDF(ZQ)_arCta m . (46@
1= 4(1+0?) ’ o X
(4.489 Notice, that the coefficient¥,, C,, and C, which ap-
, _ peared in the first order expressi¢h20 are now replaced
o3 — Q[(207-1)sin(P(2€2)) — 30 coP(202))] in Eq. (4.51) by the new coefficient¥,,, C,, andC, with the
1 (1+02)(1+402?) ' only difference that the corresponding coefficients get sec-
(4.49 ond order corrections. Notice also that in Eg.51), the
d terms with double frequency(2 and a term which is linear
an

o= — M%Qf)[wg—z In(Qx) =2 Im[ (=) p(1Q)]].
(4.50

Let us recall that in these expressioggsis a function of the
retarded timau given by Eq.(3.26). We can now include the

second order correctior{d.22 into the expression fov(u)
and write it in a form similar to Eq(4.20

—V~Vg+e U[Cy+C,sin(®,)+Cysin(®,)

+Cysin(®3)+CU], (450
where
Vo=1 & 2 09207 45
0~ +M01+QZ+MO(1+QZ)2(1+4QZ)! ( . 2

in U are new with respect to the first oder resit20).

V. CALCULATION OF THE FLUX
OF HAWKING RADIATION

Now we derive thesmode contribution to Hawking ra-
diation. In what follows, we shall neglect the scattering by
the gravitational potential barrier which appears in the 4D
Dalembertian. In other words, we use 2D approximation in
which ingoing and outgoing modes completely decouple.
This strong hypothesis requires some explanations. The de-
coupling of the modes greatly simplifies the calculation of
the asymptotic flux when the metric is no longer static. In-
deed, the height of the potential barrier now depends on
the metric Eq.(2.1). Therefore one loses the fact that the
transmission coefficients are diagonal in energy. Moreover,
the new coefficients will also mix positive and negative fre-
quency modes. This will lead to additional pair creation
probabilities. Thus there will be interference effects between
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the usual pair creation amplitudes induced by the frequencthem. Note also, that sind@ is already a quantity of second
mixing governed by Eq4.51) and these new coefficients.  order in w2, the redefinition ofV does not affect it.
To determine the importance of these interesting effects is The calculation ofdE/du from Egs. (5.1) and (5.2 is

complicated and goes beyond the scope of the present papgfaightforward but long and was performed by using Maple.
which is to describe the effects on Hawking radiation in-t ijs convenient to write the result in the form

duced by the fluctuations of the geometry in the very close

vicinity of the horizon. In this respect, we wish to emphasize dE/du=(dE/du)Pe™+ (dE/du)uet, (5.6)
that our classical metric has been chosen to mimic the near

horizon quantum fluctuations and not the fluctuations of thg,ere @E/duPe™ is the mean value of the flux and
height of the barrier around=3M. On physical grounds, in (dE/du)™e is its fluctuating part. The latter will of course
a self-consistent treatment, one might expect that the residugh; contribute to the total energy received GA .
fluctuations around B be much smaller that the near hori-  The constant part is

zon ones. Therefore the neglection of the time dependence of

the barrier might turn out to be physically legitimate. 2 1
In the two-dimensional simplified description, when the (dE/du)permzﬁ 1+ E,uSQZqZ(Q)—ZC , (5.7
field is in its vacuum state before the formation of the black

hole, the mean energy fi i . .
gy flux at™ is and the fluctuating part is

<2 [dV\ " a2 [ dV ‘1’2]
— = A ¥ T, )= | — ——| | = . y7i -
du Tw) =127 du/ du?|\du (dE/du)uet= — ?OQ\/lJrQZq(Q)cos{Qqugol)
(5.0

HereV(u) is the function calculated in the previous section. +u2 q(Q) 1-0° cog QU+ ¢;)
Notice also, thati in this relation is the proper time g&* in 0 V1+02 !
the perturbed geometry, see the remark made after Eq.
(8.17. Thus this is the time which defines positive frequency 0%(1-502) ~
atg". +q2(Q)WCOS(ZQU+2<P1)

Before presenting the results of the calculations Bfdu
we make several remarks. First, it is evident that the expres- 5 Q(1+403?) _ -
sion fordE/du does not depend on the value of consiégt +a%(Q) 41+ 02) Sin(2Qu+2¢)

in Eq.(4.57). For this reason we can put it equal to zero. This
corresponds to a simple redefinitidh—V+V,. Moreover,
dE/du is not changed if we multiply/ by an arbitrary con-
stant. For these reasons the calculationgBfdu can be
performed with the simplified form fov The functionq(Q) is given by Eq.(4.19 and, in the last
term, b, cos(22+ ¢,) is equal to

—b,0(1+40%)cog2Qu+¢,)|. (5.8

V=—e Y1+A,siNQU+¢y)+A,sin2Q0+ ¢,)+ CU].
(5.

>2 qAQ)
In this expression, we have kept all terms up to second order P2 Co%2Qu+ 902)2—4 mcoiqb)
in uo and introduced the following notations:
Qq(2Q)
_ 2 — q(Q2) 5 0%-1 - = —=CoSDy).
A= poart o 1—Mo\/ﬁ 1+ NI V(1+02)(1+4032)
(5.3 (5.9
¢1= — er+arctan(). (5.4  The remarkable fact is that, to second ordeyis the cor-

. , -~ rection term which is linear i in Eq. (5.2) does not give
In the same way the two terms in He.51 with coeficients any time-dependent contribution. It only gives an additional

C; andC, having the same dependenc@@ on the retarded constant to dE/du)P*™in Eq. (5.7). This has the following

time U have been combined into the following single term: simple explanation: the terf@U can be removed from Eq.

: ~ _ : : (5.2 by absorbing it intoe™" without changing the other
Az SIN20UH 92)=C3SIN(P2) +CysiN(P3). (55 01 h"our second order expression. This transformation
A, is of second order in, and, with notations to E¢5.3,  corresponds to the “renormalization” of the surface gravity
can be written ag\,= u2b,. The explicit expressions fdr,
and ¢, can be obtained easily, but since they are very long
and are not important for our final result we do not reproduce

2
Mo
Hoaray

. (5.10

k—Kk,=k(1l-C)=«
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Hence the expression fod E/du)P*'™ can be identically re- e IV(U) g-ilu

written as ,BM—J dud¢, (V(u))la d,(u)= jdu Tamy m

Kf 1 (6.3
(dE/duP™= o | 1+ 5 u50% 2(9)} | | .
The second expressions follow from integration by part and
2 70 the neglect of the end-point contributions.
= 1+,U~5— . (6.1) In the unperturbed geometry, for largexV(u) is given
48m exp2m()) -1 by —1—e !, see Eq(3.24. The validity of this asymptotic

. . . expression requires that the initial frequenciese large
It is interesting to note that the renormalized surface grawty enough. Indeed, upon applying the stationary phase condi-

x, which is introduced here coincides with the average Valu%on to the integrand of the coefficient, , one obtains the
V,\
of the surface gravity defined by Eq(3.14. following relation for the position of the saddle poiag,:

VI. THE MODIFIED ASYMPTOTIC SPECTRUM A=ve “Usp, (6.4

Instead of focusing on integrated quantities, we shall nowThis equation simply specifies the value wfat which the
consider how the asymptotic spectrum is modified by theDoppler shifted initial frequency resonates with. Notice
fluctuating part of the metric. As usual, the asymptotic specin passing that it is this exponentially small Doppler factor
trum is characterized by the angular momenttimat we take  which leads to the necessity of considering arbitrary large

to zerg and the asymptotic energy, the eigenvalue afd,, . initial (“trans-Planckian’ frequencies. From Ed6.4), one
Indeed the fluctuations we are considering do not affect theleduces that large means that the corresponding value of
stationary character of the asymptofiarger) metric. e~ “Usp satisfiese ™ “Ysp> e~ 2*Usp, Notice also that the station-

To obtain the modified spectrum, we need to compute thery phase condition applied to tiecoefficient, leads to the
Bogoliubov coefficients in the modified geometry. Before same condition up to an overall negative sign. This implies
proceeding to this calculation, it should be noticed that thehat the location of the saddle point in the compleglane
2D expressions we shall use are exact only for largée.  receives an imaginary contribution equalta«/«. The de-
kA>1. At lower frequencies, there is indeed a potential bartermination of the sign of this imaginary part follows from
rier in the 4D Dalembertian fos-waves which reduces the the fact thatV(u) appearing ine”'*V must belong to the
transmitted flux in a static geometry, cf. the discussion at théower half complexV-plane. Physically this amounts to
beginning of the former section. specifying that the in-vacuum contains no excitation charac-

We first recall how the well known properties of Hawking terized by positiver. Mathematically it giveg 3, ,/a,, |2
spectrum are extracted from the Bogoliubov coefficients=g=27M«,

The latter are given by the overlap of the initiahfalling) These considerations based on a saddle point analysis are
modes which are specified Qi and the final(outgoing  confirmed by the exact integration of Eq¢$.3). It will be
modes specified off *. Both are solutions of the Dalember- found useful to express the exact expressions in terms of the
tian equation in the metri€2.1). For sswaves and under the following function:

neglection of the potential barrier, these modes satisfy the

2D equationd,d,¢=0. Thus the in-modes can be decom- A N [v) TN N2k
posed in terms of plane waves Br.M)=Ti—]y 27\ x € . (6.9
e iw where I'(x) is the Euler complete gamma function. The
¢,(v)= Jany’ (6.1 norm of this function give$B|2=(e>™*<—1)~1. Upon ex-

tending the domain of validity of the asymptotic behavior of

wherev is the energy measured @i . Similarly, the out-  V(u) for all u, one finds

modes are

CEV)\:B(V,)\) e’JT)\/Ke—iV/K’

[ 1
B(V,)\) me'””‘. (66)

Two crucial properties follow from EQq(6.6): first, the
Planck distribution characterizing the mean number of out-
guanta in the in-vacuurup to a normalization factor, it is
obtained from ,BM|2), and secondly, the existence of a con-
stant flux of out-quanta. The stationarity follows from the

efixu

¢)\(u): \/m:

where\ is the energy measured @i'.
The scattering of in-modes in the time dependent geom-

etry simply follows from the “reflection” condition orr

=0 wherein the Wronskian must vanish. This implies that

the scattered in-modes are given $y(V(u)). Then the Bo-

goliubov coefficients are

(6.2

SV il fact that the phases g8 and « are both proportional to
*-)\/K . . . .
a, = | dug*(v(u )i 9,y (U fdu , v~ "N This implies indeed that the value of the energy flux
. f P (VDI Tu(u) = Vamv TN~ Jan 1 is constant. To prove it, we recall that the renormalized value
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of the energy flux in the in-vacuum, when expressed in terms — 1k V(U)=Vo+e “[1+A,; sifwu+ @)

+A,sin2wu+ ¢5)], (6.9

(4.52, (5.3, and(5.5. We have kept the constant shiftih
_R{ei()\-*—)\/)u\f dVCYV’)\BV')\/) .
0
surface gravity introduced in Eq5.10. We have indeed

of the Bogoliubov coefficients, is
0 0 A )\)\’ ©
= | d\| dN——[e TN dugr B, ¥ i

0 0 2 0 v AP, where the values o¥,, A;, andA, can be found in Egs.
since it will modify the absolute phase of the Bogoliubov

(6.7 coefficients. The symbaok, designates the “renormalized”

By using Eq.(6.6) and performing the integral over, one  absorbed the linear term inof Eq. (5 2) in the redefinition
immediately obtains that the second term, the interferingdf «. As before, sincex,—k=0(u2) and since we shall

one, vanishes and that the first term is constant. work up to quadratic corrections in,, the modification of
We shall now determine how these properties are affectethe terms proportional té; andA, are irrelevant.
by the fluctuations of the geometry described by E4l). To reveal the nature of the modifications induced by the

Under our restriction te-waves and neglection of the poten- time dependent fluctuations of the metric, it is appropriate to
tial barrier, it suffices to repeat the same procedure with thanalyze thes coefficient. Up to quadratic order in the metric
modified functionV(u), as if we were considering 2D propa- fluctuations of amplitudew,, the modified 8 coefficient
gation. The asymptotic expression we shall use is given byreads

—|)\u —|vV(u)
mod f du————

ot Jamy

iV(Vo‘FeiKru)/Kr [ 1(

—iAu
du
f N VA

v
+iK_eiKru{A1 Sin(wu+ (,Dl)+A2 Sln(2wu+ (,02)}:| (69)
r

2
—2Kk,Up2 nZ
—_ | — r +
2 r) e Alsl (wu+¢q)

By decomposing the sines into imaginary exponentials and by using several times the fé{atioh)=xI"(x) we get

1 o~
BIN= N5 VVO’“r[ Bi(v.\)
r

\F [B(v)\ 20) Y\ —2we'*2— B (v,\ +2w) N + 20e 1¢2]

2
1 .
1_ —
—24Kr()\ )N

A . A
—\\ ﬁ[Br(v,)\—w) VA — we'?1—B,(v,A + w) YA+ we ™ '?1]
r

A2 . .
+\ S—:Q[Br(v,)\—Zw)()\—Zw—iKr)\/)\—Zwez""l-l- Br(V,)\+2w)()\+2(u—iKr)\/)\+2we_2'¢1]} . (6.10
r

HereB,(v,\) designates the functioB(»,\) defined in Eq.

(6.5 with the renormalized surface gravity. o dV|Bm°d
The replacement oB(v,\) by B(v,\*w) in the last (ny)= (6.11
three terms of Eq(6.10 indicates thaiw, the frequency of f dv/ kv

the fluctuating metric, enters into the expressions in such a

way that the “effective” frequency, i.e., the one which we have implemented time average by integrating ovep

weighs the new amplitudes, i+ w. to the cut-off frequencN and dividing the resulting expres-
Physically, this leads to a modification of the mégoan-  sjon by [Ndw/k, v=Au. This last equality follows from the

tum averaged and time averagawmber of quanta which resonance condition, E6.4), and its validity requires that

reach 7™ per unitu time. This averaged flux is Au>1/k,, as in usual golden rule estimates.
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In this ratio, to quadratic order ipg, only four terms
contribute. The first two terms of the first line of E®.10 0.05
and those resulting from the square of the second line. This
is because the integral of all other terms are crossed terms of
the formB(v,\)B* (v,\ = w) which lead to oscillatory inte-
grands containing™' s, These terms do not contribute 0.04
to the production rate, Eq6.11), in the limit of largexAu.

By combining the four nonvanishing contributions we get /

1 L[, (AN 0031/}
()= 2 | @2mN K _q K| 2
A\ A—w Ao 0.021 y
+|=— + . A
2Kr e27'r()\7w)/Kr_ 1 ez"T()\er)/Kr— 1 ; \
(6.12
0.017
Having obtained the spectrum of the particle number flux, A
the spectrum of the energy flux is F \
dE 2 / \\:‘:
9E iy LT 005 1 15 2 25 3
Judn ANy 2W[f(A)+ 5 F(A,Q)}, (6.13
whereA=Nr. . O=wlk FIG. 2. FunctionF(A,Q) for different values of dimensionless
" r frequencyQ): Q=0.01, solid line;Q2=0.1, dashed line; and)
A =0.5, dotted line.
f(A)=———— (6.14
expi2mA)—1 Eq. (6.7) no longer vanishes even though it still does not
and contribute to the meaftime averageenergy flux.
VIl. CONCLUSION
2 : . .
. T _ In this paper we studied how the fluctuations of the ge-
F(A Q)= Q%(1+0Q72) FEIHA-D)+1(A+Q) ometry near the black-hole horizon affect Hawking radiation.

To characterize the fluctuations of geometry, we used York’s
—2f(A)]. (6.19  model [21] in which they are described by an in-coming
. . Vaydia metric with a time dependent masév) which fluc-
P.IOtS Qf th_e functiorF(A;€2) for different values of) are 5105 around its mean with amplitugg and period Zr/ w.
given |ndF|g. 2. btain th ¢ the density of en. O further simplicity, we only considered tisamodes of a
In order to obtain the constant part of the density of €n-q . antym scalar massless field and we also neglected the scat-

ergy flux one must integrate E(G.13 over the frequenck  e1ing by the gravitational potential barrier. Using these sim-

plifying assumptions, we reached the following conclusions.

2 . 2 First, the expectation value of the outgoing flux of energy
d_E: iJ' dA{f(AH— @F(A;Q) _ (6.16 is no longer cqnstant. It now qu_ctuates around _its time aver-
du 2mJo 2 aged value with frequencies given by harmonicswofind

with amplitudes starting with a term linear in,, see Eq.
(5.8). The fact that the phase of the fluctuations of the ex-
Using formulas(B1) and (B10) from Appendix B, it is easy pectation value oflE/du is well defined results from the fact
to verify that Eq.(6.16 coincides with the expressidb.11) that the fluctuations we considered were treated classically.
for (dE/du)P*™we obtained earlier. In a more quantum mechanical treatment, these well defined
The other physical consequence of the correction terms tphases will probably be replaced by a more diffuse ensemble
a and B is the following. The mean instantaneous energyof phases.
flux now oscillates around its time average with the harmon- Secondly, the time averaged value of the outgoing flux of
ics of w. This can be seen from the oscillatory termsenergy is modified. One part of this modification is con-
B(»,\)B*(v,A*=(2)w) which behave in e*'(?2Usg?)  nected with the renormalization of the surface gravity of the
when parametrized bycus,=Inw/\, the location of the fluctuating black hole given by expressi@10. The other
dominant contribution tav,, , . The amplitudes of the fluc- part is an additional factor given hy3wQ/(exp(27Q)—1),
tuations are linear i\, andA,. Moreover, the phase shifts see Eq.5.11). Both changes are second orderig. More
of the modified coefficients with respect the unperturbedsurprisingly, they decrease for larg®. Indeed, one might
ones differ fora andB. This implies that the second term in have feared that fast metric fluctuations would lead to copi-
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ous pair creatiod.We conjecture that we do not find abun- does not depend on the black hole mass. It is worth noticing
dant production since we worked in a two-dimensionalthat this modification of the black hole entropy is exactly of
model in which the time dependence of the metric does nothe same form as in theories with corrections quadratic in the
affect directly massless modes, thanks to conformal invarieurvature[27]. We recall that these corrections arise in the
ance. effective action by taking, in the one-loop approximation, the
Thirdly, the asymptotic spectrum of Hawking radiation is average of the gravitational equations over quantum fluctua-
also modified. Besides the renormalization of the surfacdions of the metric. This observation might give a possible
gravity which shifts the temperature, the modified spectrumexplanation to the origin of the similarity between Kd.2)
(6.12 contains three additional correction terms. The twoand the results of Ref27]. Similarily, it would be interest-
last terms in that equation contain Bose thermal factors oing to find the relation between the results obtained in this
the form 1L(exd2m(\=w)/x]—1). In these relations, the fre- paper and the quantum treatmentd 28—31.
guency of geometry fluctuations; w, plays the role of a Even though these results were obtained in an extremely
chemical potential. The presence of such chemical potentiaimplified model in which the metric fluctuations were
is reminiscent to superradiance. This fact supports the gerireated classically, we believe that they indicate what might
eral ideas proposed by York since the appearance of thed® the impact of the quantum fluctuations of the near horizon
factors might be expected from the existence afuantum geometry on black hole radiance.
ergoshperelndeed, due to quantum fluctuations, the average
position of the event horizon is moved by a term propor- ACKNOWLEDGMENTS
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turbed black hole matter can escape from the narrow region

close to the horizon. This leakage of energy is seen as Hawk- APPENDIX A: CALCULATION OF FUNCTION  S(x)

ing radiation[21]. Under the same conditions one can expect

an additional amplification of Hawking quanta while they are

propagating close to the fluctuating horizon. The amplifica- -

tion factor we got in the expression for the modified spec- s(x):f

trum of Hawking radiation may be considered as an indica- x

tion to this effect. de el
The modifications in the black hole temperature and sur- PPN e o

face area in the presence of metric fluctuations raise the =(i92) f gl—iﬂ F(=i,1Q9), (A1)

guestion about the modifications of black hole thermody-

namics. If we identify the energy of the systdfrwith the  we use the following general result, which can be found in

averaged mass of the black hde and the temperature of [26] (volume Il relation 2.10.3)6

the black hole,T, with «,/2r, then the first lawdE=T dS

and Egs(3.13 and(5.10 define the averaged entropy to be xx“‘l(x—a)ﬁ‘le"xl“(v,cx)dx

To calculate function

dgeiilffxdne—i(ln

gl—iQ ¢ 7]1+iQ

X

=4 1+—2—Mg A 1——2“S (7.2)
B T ) 4 1+02%)° " =a* P IT (»)B(B, 1~ a— B) 1F1(a;a+ B;ac)
a+pBt+v—1.v
Therefore, one loses the relationship between the entropy _ g B(B,1— a— B— )
and a fourth of the area. v ’

If one writes the amplitude of the fluctuations as o Ea(at v Lyt lat Bty
= aMppanad M Wherea is dimensionless, one has 2Falatv Lyt Lat+viac)

5 mel e p I'a+B-1)

S=4m—— s, (7.2 ~sif(a+pty)m] T(1-v)
P X Fy(1— B;2— a—B;ac). (A2)
where
Here
4o
=— ) Fx)ry)
s 1+0° (7.3 B(X’Y):F(x—ﬂty};' (A3)

This relation is valid fora>0, ReB>0, Rel@+ B+ v)
We are grateful to T. Jacobson for pointing out this fact to us. <2; |argc|< . For a particular casg=1 one has
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f X 1e® T (v,cx)dx

a

B aa]‘*(v) . 1 . atvav e 11
=— 1 1(&, +a’,aC)+m2 2((1+V, X
wc~ ¢ I'la)
+v,1+a+v;ac)+ (Ad)

sif(atv)w] ['(1-v)’
The integral in Eq(Al) is of the form(A4) with

a=iQ, v=-iQ, a=x, c=i. (A5)

For this casex+ v=0, and the last two terms in E¢A4) are
divergent. To consider this limit, we defing=a+» and

rewrite the sum of these two divergent terms in the following

form:
a” e’ Fo(a+v,1;1+v,1+ a+v;
mz 2(a v,1; v, [e% V,aC)
N mc~ I'la) _C”_VZ A6
sif(a+v)m] T(1—v) ' (A6)
where
7yv I'(y—v)

3

1

= |y . .
Z= YR Ll v vy s T
(A7)

andy=ac.
Using the expression for the hypergeometric function

. a S y"
oFo(y.1;1+ v, 1+ yy) =1+ ynz,l TEDN

(A8)

where (1+v),=I'(1+n+v)/T'(1+v), we can write for
small y

oFa(y, 11+ 0,1+ yyy) =1+ yf(v}y), (A9)
where
TP S (A10)
Y n=1 n(1+v)n'
We also have
I'(y—v) 1 I''(—v) 1 1
Ti=v) ~ » Ta=p?" 5 /27
(A11)

where(z)=dInT'(2)/dz
Substituting expressiongA9) and (Al1l) into (A7) and
expanding singm)=ym(1—%y*7*+---), we get

PHYSICAL REVIEW [»9 124010

1
Z= ;[y7(1+ Yi(vy)—1=yp(-v)]

y’-1
= +iwy)—¢g(=v)=Iny+f(v,y)—d(—v).
(A12)
Thus forv=—a we have
fwx”‘*lecxl“(—a,cx)dx
a’T'(—a)
=——Fi(a;1+ajac)
o

— _ [In(ac)+f(—a;ac)—d(a)]. (A13)

(47

Using this result, we obtain foB(x) the following expres-
sion:

iQINQ+iQInxqy—7Q/2

S(x)zsi)—e e

XT(—iQ),F1(iQ;1+iQ:i0x)

+ gl—[ln(iQx)Jrf(—iQ;iQx)—z//(iQ)].
(A14)

APPENDIX B: CALCULATION OF INTEGRALS

In this appendix we demonstrate that

= dNAN2(N+Q) = dAA2(AN—Q)
fo exd2rn )] -1 fo exd2n(r—0)]—1

:m(lm4+1002+1). (B1)
First we notice that
J=Ilim[J.(p)+JI_(p)], (B2
p—0
where
(AN = Q)exp( —pIA])
Ji(p)‘f exg2m(N = 0)] -1 ©3)

Making change of variable of integration— —\ in the ex-
pression forJ_(p) we get

J_(p)= fowdx NN+ Q)exp(ph)

2 _
JO dA NN+ Q)exp( —p|A]) 84)

—w  eXg2m(N+Q)]-1
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Thus we have

J+(p>+J_<p>=fldx NZ(\+Q)exppn)

= dx(x—Q)Zxexp — p|x—Q|)
+j_m exp2mx)—1

(B5)

In the last integral in the right-hand side we made change of

variablesh =x— ().
Consider now the integral

JO dx(x—Q)%x exp(—p|x—Q|) (86)

—» exp2mx)—1

By changing variablex— —x it can be identically rewritten

as
exp— pQ)f:dx X(x+ Q)2 exp(— px)

dx x(x+ Q)2 exp( — pXx)
exp2wx)—1

+exp(—pQ)fO°c (B7)

Using Eqgs.(B5) and(B7) and taking the limijpp—0 we get

PHYSICAL REVIEW D59 124010

J= jw—dxx(xz+92)+m B8
7)o exp2mx)—1 ’ (B8)

where

A= Iim“0 dx X2(x+Q)exp(px)
p—OLY ~%

+exp(— pQ)f:dx X(x+ Q)%exp — pX)

i H 6+ Q s 6+4Q+92”
=lim|| ——= e —
p* " p® p* " p® p?

p—0

1 4

The integrals which enter E4B8) can be easily calculated:
fw dxx 1 f@ dxx® 1
oexp2mx)—1 24" Joexp2mx)—1 240
(B10)

Combining these results we get H&1).
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