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Metric fluctuation corrections to Hawking radiation
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We study how fluctuations of the black hole geometry affect the properties of Hawking radiation. Even
though we treat the fluctuations classically, we believe that the results so obtained indicate what might be the
effects induced by quantum fluctuations in a self-consistent treatment. To characterize the fluctuations, we use
the model introduced by York in which they are described by an advanced Vaidya metric with a fluctuating
mass. Under the assumption of spherical symmetry, we solve the equation of null outgoing rays. Then, by
neglecting the greybody factor, we calculate the late time corrections to thes-wave contributions of the energy
flux and the asymptotic spectrum. We find three kinds of modifications. First, the energy flux fluctuates around
its average value with amplitudes and frequencies determined by those of the metric fluctuations. Secondly,
this average value receives two positive contributions, one of which can be reinterpreted as due to the ‘‘renor-
malization’’ of the surface gravity induced by the metric fluctuations. Finally, the asymptotic spectrum is
modified by the addition of terms containing thermal factors in which the frequency of the metric fluctuations
acts as a chemical potential.@S0556-2821~99!05812-9#
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I. INTRODUCTION

25 years have passed since Hawking’s theoretical disc
ery of the quantum radiation by black holes@1#. Since then,
many aspects of this phenomenon have been investiga
First, the mean value of the energy-momentum tensor
received much attention since it provides the source of
so-called semiclassical Einstein equations~see, e.g.,@2,3#
and references therein!. Hopefully, the solutions of thes
equations should govern the mean evolution of the evapo
ing geometry. More recently, more quantum mechan
questions which raise doubts concerning the validity of t
semiclassical evolution have also received attention. In p
ticular, the controversial role of arbitrarily large~‘‘trans-
Planckian’’! frequencies of vacuum fluctuations@4–10# and
the gravitational back reaction due to a specific quant
@11,12# have been discussed.

In this paper, we shall consider another aspect: We st
how the fluctuations of the black hole horizon geome
might affect the properties of Hawking radiation. To descr
these fluctuations quantum mechanically and to determ
their effects on Hawking radiation requires full quantu
gravity. In addition to the ‘‘spontaneous’’ metric fluctuation
there also exist so-called ‘‘induced’’ metric fluctuation
which are generated by quantum fluctuations of all ot
fields interacting with the gravitational one. In the regim
when the ‘‘induced’’ metric fluctuations are dominating,
consistent way to describe black hole fluctuations and b
reaction is to use the stochastic semiclassical theory of g
ity based on the Schwinger-Keldysh effective action@13,14#
and the Feynman-Vernon influence functional@15,16# meth-
ods. In stochastic gravity the semiclassical Einstein eq
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tions are generalized to Einstein-Langevin equations wh
contain stochastic stress-energy tensor describing m
fluctuations induced by quantized fields.~For recent review
see@17–20# and references therein.!

The study of the effects connected with black hole flu
tuations is a technically very complicated problem. On
some preliminary work has been done in this direction
now. Under these conditions it is natural to study simplifi
models. In particular, it is not unreasonable to hope that
main properties of the Hawking radiation modified by met
fluctuations can be extracted from a much simpler fram
work in which the fluctuations of the metric are treated cla
sically.

The model we shall use is inspired by that proposed
York @21#. In that model, the fluctuating geometry near t
horizon of the black hole is represented by a Vaidya-ty
metric with a fluctuating mass. The spectrum of these fl
tuations is characterized by the zero point fluctuations
quantum fields. In this paper, we further simplify this mod
by considering only spherically symmetric fluctuations a
by neglecting the scattering by the gravitational poten
which occurs in the 4-dimensional Dalembertian. Then
determine how these fluctuations modify the energy flux a
the asymptotic spectrum ofs-waves.

The paper is organized as follows. York’s model is d
scribed in Sec. II. Section III contains a perturbation analy
of the equation of radial null ray propagation in the fluctu
ing geometry. The solution of this equation is obtained
Sec. IV and used to obtain the modified energy flux in Sec
and the spectrum in Sec. VI. The results are discussed in
VII. In our work we use dimensionless units whereG5c
5\51 and the sign conventions of@22#.

II. MODEL

In order to study the influence of metric fluctuations
Hawking radiation, we consider a simplified version of t
©1999 The American Physical Society10-1
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model proposed by York@21#. In his model, the fluctuations
of the black hole geometry are approximated by an incom
Vaidya metric with a fluctuating mass. The fluctuating p
of the mass function can be decomposed into spherical
monics. Upon quantizing the gravitational field, only comp
nents with l>2 are important. However quantum fluctu
tions of matter fields may induce fluctuations of t
geometry with alll.

In what follows we shall only consider spherical modes
fluctuations. Therefore, the metric for a neutral nonrotat
black hole can be taken of the form

ds252A dv212 dv dr1r 2dS2
2 , ~2.1!

wheredS2
2 is the metric of a unit 2-sphere and

A512
2m

r
, ~2.2!

m5m~v !5M @11m~v !# q~v !, ~2.3!

m~v !5m0 sin~vv !. ~2.4!

This is the standard Vaidya metric in advanced time coo
nates (v,r ). The functionm(v) encodes the fluctuations o
dimensionless amplitudem0. The step functionq(v) in re-
lation ~2.3! indicates that the black hole results from t
gravitational collapse of a massive~with massM ) null shell
propagating alongv50. Therefore inside the collapsing nu
shell the spacetime is flat.

The conformal diagram of the whole geometry~2.1! in the
absence of fluctuations~that is for m050) is schematically
shown in Fig. 1. The dashed line on this figure shows a ra
null ray which reachesJ1 at the moment of the retarde
time u and which was sent fromJ2 at v5V(u) of advanced

FIG. 1. Conformal diagram for a black hole created by a c
lapse of a massive null shell. Solid dark linev50 represents the
collapsing massive null shell.
12401
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time. In the presence of the fluctuations, the conformal str
ture of the spacetime remains the same, but the func
V(u) is modified. We shall study this modification in Se
IV.

Upon substituting the metric~2.1! into Einstein’s equa-
tions, one easily gets that the right-hand side of these eq
tions takes the form

Tmn5
1

4pr 2
@Md~v !1Mm~v !q~v !# l ml n , ~2.5!

wherel m52v ,m is a future-directed null vector tangent to
radial in-going null ray. From a ‘‘classical’’ viewpoint
m(v) l ml n is a fluctuating flux of positive@for 2pn,vv
,2p(n11)] and negative @for 2p(n11),vv,2p(n
12)] energy density. Correspondingly, the position of t
apparent horizonr AH52M „11m(v)… also fluctuates near its
average valuer̄ AH52M .

Following York @21# we assume that the dimensionle
amplitudem05a(mPlanck/M ), wherea is a pure number. In
particular this assumption means thatm0!1 for black holes
of massM@mPlanck. It is also assumed that in order to get
more realistic result one should average over a spectrum
metric fluctuations.

III. RADIAL RAY PROPAGATION

A. Radial null rays in perturbed geometry

We first study the propagation of radial null rays in th
fluctuating black hole geometry~2.1! since we shall use, a
usually done, geometric optics to construct the solutions
the wave equation.

In-going rays are given byv5const and out-going rays
obey the equation

A dv52 dr. ~3.1!

In order to solve this equation, we use a method of per
bations and write

r 5r ~v !5R~v !1r~v !1s~v !1•••

52M @R̃~v !1 r̃~v !1s̃~v !#1•••. ~3.2!

R(v) is the solution of Eq.~3.1! in the absence of fluctua
tions, andr(v) ands(v) are respectively the first and se
ond order perturbation inm0. Higher order corrections are
denoted by dots. In what follows, we shall also often use
dimensionless versions ofR, r, ands which we mark by a
tilde.

The equation for out-going rays in the unperturbed me
@( )•[d/dv#,

Ṙ5
1

2 S 12
2M q~v !

R D , ~3.3!

can be easily integrated. Let us choose the value of the
tarded timeu and denote byr 5R(v;u) the unperturbed tra-

-

0-2
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jectory of a radial ray which arrives toJ1 at the chosen time
u. This trajectory can be found by solving the equation

u5v22R* 5const. ~3.4!

Here

R* 5R22M12M ln
R22M

2M
~3.5!

is the usual tortoise radial coordinate.
The equations for the perturbationsr(v) and s(v) are

obtained by linearizing Eq.~3.1!. Both functions obey the
same equation

ḟ 5
M

R2
f 1F, ~3.6!

for v.0 and

ḟ 50, ~3.7!

for v,0. For the first order perturbation, one has

f 5r, F52
M

R
m, ~3.8!

and for the second order perturbation

f 5s, F5
M

R2
mr2

M

R3
r2. ~3.9!

In these equations, the retarded timeu is a fixed paramete
which specifies the unperturbed ray under consideration
R5R(v;u).

B. Perturbed horizon

Before giving the general solution of the equations for
perturbationsr(v) ands(v) we discuss the particular solu
tion which describes the event horizon in the fluctuating
ometry.

First notice thatR52M satisfies the unperturbed equatio
~3.3!. This degenerate solution describes an outgoing null
propagating along the unperturbed event horizon. Star
with this solution we easily obtain the following solutions f
the dimensionless perturbations:

r̃EH5m0

V cos~V ṽ !1sin~V ṽ !

11V2 , ~3.10!

s̃EH5m0
2 2V2~22V2!cos~2V ṽ !1V~125V2!sin~2V ṽ !

2~11V2!2~114V2!
,

~3.11!

where

V5v/k, ṽ5kv, ~3.12!
12401
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and k5(4M )21 is the unperturbed surface gravity of th
black hole.

For both solutions it is possible to add a solution of t
homogeneous equation. Such a solution corresponds to r
null rays propagating near the horizon in the unperturb
geometry. For these solutions the absolute value ofr ands
is infinitely growing. We choose the integration constants
exclude these solutions so that the perturbed radial null
neither goes to infinity nor tor 50. Therefore it describes th
position of the event horizon in the perturbed geometry. I
easy to verify that Eqs.~3.10! and ~3.11! coincide with the
solution obtained by York@21# @see Eqs.~4.8! and ~4.9! of
York’s paper#.

It is also interesting to compute the modified value of t
surface areaA of the event horizon. When averaging ov
time v, we find

Ā[4p„r hor
2 ~v !…516pM2F11

m0
2

2~11V2!
G . ~3.13!

Similarly the average value of the surface gravity in the flu
tuating geometry is

k̄[S m~v !

r hor
2 ~v !

D 5k@113~ r̃2!22m0„r̃ sin~vv !…#

5kF11
m0

2

2~11V2!
G . ~3.14!

Upon computing the modifications of the Hawking flux, w
shall see that this ‘‘renormalized’’ surface gravity will dete
mine the modified temperatureT̄H5k̄/2p. The change of the
area,dA5Ā2A, and the change of temperature,dTH5T̄H
2TH , of the black hole induced by the metric fluctuatio
obey the relation1

dA
A 5

dTH

TH
. ~3.15!

C. Perturbed radial rays

We now consider the general case, that is we assume
RÞ2M . Equation~3.7! can be easily integrated and give
f 5const everywhere inside the collapsing shell. To integr
Eq. ~3.6!, we change variablev to R(v;u), where as earlier
the retarded time parameteru is fixed. This allows us to
rewrite Eq.~3.6! as

S 12
2M

R D d f

dR
2

2M

R2
f 52F. ~3.16!

The solution of this equation is

1It is interesting to note that similar corrections to the black h
surface area and temperature were obtained by Hu and Shiok
@23# in their stationary model of metric stochasticity. The relati
betweendA anddTH in their case contains an additional factor
0-3
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f 5S 12
2M

R D F 2E
R

` 2F

S 12
2M

R D 2 dR1 f 0G . ~3.17!

The integration constantf 0 corresponds to the possibility t
add a solution of the homogeneous equation; that is, a s
tion of Eq.~3.16! with F50. We putf 050 since this choice
is equivalent to the requirement that the ray propagating
the ‘‘perturbed’’ geometry arrives toJ1 at the same timeu
as the ‘‘unperturbed’’ rayr 5R(v;u).

In what follows it is convenient to introduce the dime
sionless quantities

x5
R22M

2M
, ũ5ku5

u

4M
, ~3.18!

x* 5
R*

2M
5x1 ln x, f̃ 5

f

2M
. ~3.19!

In these notations solutions~3.17! for the dimensionless per
turbationsr̃ and s̃ take the form

r̃~x!5
x

11x
I ~x!, ~3.20!

I ~x!5E
x

`dj

j2 ~11j!m̂~j!, ~3.21!

s̃~x!52
x

11xEx

`dj

j2 r̃~j!S m̂~j!2
r̃~j!

11j
D . ~3.22!

The fluctuating mass termm̂(j)[m„v(j)… which enters
these equations is

m̂~j!5m0 sin@V~j1 ln j1ũ!#. ~3.23!

To study quantum black hole radiation in the fluctuating g
ometry, we need to solve the wave equation in this geome
As usual, we use the geometrical optic approximation.2 Thus
we only need to solve the following problem@1#. Consider a
radial ray, which leavesJ2 at some advance timev and
reachesJ1 at some retarded timeu ~see Fig. 1!. What is the
relation betweenu and v? To establish the relationv
5V(u) we use the above solution for a ray propagating
the fluctuating geometry outside the collapsing massive
shell, and glue it to the solution inside the shell. The lat
means that the values ofr coordinate for both rays must b
the same on the shellv50. Using this condition and the
reflection atr 50, one finds forṼ5V/4M

Ṽ52@11x01 r̃~x0!1s̃~x0!#, ~3.24!

2The validity of this approximation follows from the fact that th
initial frequencies involved in the processes occurring at largu
times are much larger than the characteristic frequencyk51/4M .
12401
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wherex0 is the value ofx on the massive null shell~i.e., at
v50). It depends onu and is a solution of the following
equation:

ũ1x01 ln x050. ~3.25!

We shall be interested in the null rays arriving toJ1 at late
time u. For such rays Eq.~3.25! can be solved by iteration
and gives

x05e2ũ~12e2ũ!1O~e23ũ!. ~3.26!

This relation shows that for the late-time regimex0 is very
small.

IV. CALCULATION OF V„u… FUNCTION

A. First order corrections

In this section we analyze the perturbationsr̃(x) and
s̃(x) in the late-time regime. Before proceeding to the co
putation of these perturbations it is appropriate to mak
few remarks. First, we notice that it is necessary to comp
s̃, the quadratic fluctuation inm0, since our aim is to obtain
all quadratic corrections to the flux and to the asympto
spectrum. Secondly, it should be noticed that the follow
developments for determiningV(u) in the perturbed geom
etry are quite similar to those of Refs.@24,25# which con-
cerned the determination ofV(u) when the energy-
momentum tensor of Hawking quanta is taken into accou

We start with the first order perturbationr̃(x), see Eq.
~3.20!. To calculateI (x) we notice that Eq.~3.21! can be
written in the form

I ~x!5m0 Im@PU1~x;V!1PU2~x;V!#, ~4.1!

where forn>1

PUn~x;V![eiVũPn~x;V! ~4.2!

and

Pn~x;V!5E
x

` eiVj

jn2 iV
dj. ~4.3!

By integrating by parts, it is easy to show that

Pn~x;V!5
eiVx

~n212 iV!xn212 iV
1

iV

n212 iV
Pn21~x;V!.

~4.4!

Using this relation, we can rewrite Eq.~4.1! as

I ~x!5m0 ImH 1

12 iV FeiV(ũ1x1 ln x)
1

x
1PU1~x;V!G J

5
m0

xA11V2
sin@V~ ũ1x1 ln x!1arctanV#1 Ĩ ~x!,

~4.5!
0-4
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where

Ĩ ~x!5m0 ImFPU1~x;V!

12 iV G . ~4.6!

FunctionP1(x;V) can be expressed in terms of the inco
plete gamma functionG(a,z). Using the relation

E
u

`e2mj

j12a
dj5m2aG~a,mu!, ~4.7!

we get

P1~x;V!5~2 iV!2 iVG~ iV,2 iVx!

5e2pV/22 iV ln VG~ iV,2 iVx!. ~4.8!

Furthermore, the incomplete gamma functionG(a,z) allows
the following series expansion:

G~a,z!5G~a!F12zae2z (
n50

`
zn

G~a1n11!G . ~4.9!

Thus for smallx (Vx!1) we have

G~ iV,2 iVx!'G~ iV!1
i

V
epV/2xiVeiV ln V ~4.10!

and

P1~x;V!'e2pV/22 iV ln VG~ iV!1
ix iV

V
. ~4.11!

For the calculation ofV(u) we need to knowI (x0) wherex0
is the solution of Eq.~3.25!. Using Eq.~4.5!, one gets

I ~x0!5
m0V

x0~11V2!
1 Ĩ ~x0!, ~4.12!

where

Ĩ ~x0!5m0 ImF ie2 iVx0

V~12 iV!G
1m0 ImFe2pV/22 iV ln V1 iVũ

G~ iV!

12 iV G . ~4.13!

For small x0 the first term in the right-hand side give
m0/@V(11V2)#. To calculate the second term contributio
we notice that

e2pV/22 iV ln VG~ iV!5q~V!e2 iwG(V), ~4.14!

where

q~V!5
A2p

AV~e2pV21!
, ~4.15!

and wG(V) is a real function which for large values ofV,
V→`, has the following expansion:
12401
-

wG~V!'V1
1

4
p1 (

n51

`
~21!n21B2n

~2n21!~2n!V2n21
, ~4.16!

whereBn are Bernoulli numbers.
Inserting Eq.~4.14! into Eq.~4.13! one gets, for smallx0,

Ĩ ~x0!'
m0

V~11V2!
1m0

q~V!

A11V2
sinF1 , ~4.17!

where

F15F~V!1arctanV, F~V!5Vũ2wG~V!.
~4.18!

Collecting all the results, we finally obtain

I ~x0!'m0F V

x0~11V2!
1

1

V~11V2!
1

q~V!

A11V2
sinF1G .

~4.19!

This result can be used to obtain the asymptotic form of
function Ṽ(u). Using Eqs.~3.20!, ~3.24!, ~4.19!, and~4.20!,
we find, up to the first order ine2ũ,

2Ṽ'V̂01e2ũ@Ĉ11Ĉ2 sin~F1!#1Ṽ2~ ũ!, ~4.20!

where

V̂0511m0

V

11V2
, Ĉ1512m0

V221

V~11V2!
,

Ĉ25m0

q~V!

A11V2
, ~4.21!

and

Ṽ2~ ũ!5s̃„x0~ ũ!… ~4.22!

is the second order correction.

B. Second order corrections

To calculate the second order corrections̃, we must esti-
mate the integrals of Eq.~3.22!. By integrating by parts,s̃
can be rewritten as

s̃~x!5
x

11x S I 2~x!

2~11x!22E
x

`dj

j2 m̂~j!I ~j! D , ~4.23!

where as earlier

I ~x!5I 1~x!1I 2~x! ~4.24!

and

I n~x!5E
x

`dj

jn
m̂~j!. ~4.25!
0-5
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It is easy to see that

E
x

`dj

j2
m̂~j!I 2~j!5

1

2
@ I 2~x!#2. ~4.26!

Thus we have

s̃~x!5
x

11x F „I 1~x!1I 2~x!…2

2~11x!2
2

1

2
@ I 2~x!#22T~x!G ,

~4.27!

where

T~x!5m0 Im@eiVũQ2~x;V!# ~4.28!

and

Qn~x;V!5E
x

` dj

jn2 iV
I 1~j!. ~4.29!

The functionsI n(x) are related toPUn(x;V) defined by Eq.
~4.2! as follows:

I n~x!5m0 Im@PUn~x;V!#. ~4.30!

Using the results of the previous section, we can obtain
expansions ofI n(x0) for smallx0. Thus, the problem of find-
ing s̃(x0) for smallx0 is reduced to study the functionT(x).
For this purpose we first obtain a recursion relation
Qn(x;V). By integrating by parts, we have

Qn~x;V!5
eiVxI 1~x!

~n212 iV!xn212 iV

2
1

~n212 iV!
E

x

`dj eiVjm̂~j!

jn2 iV

1
iV

n212 iV
Qn21~x;V!. ~4.31!

Using Eq.~3.23! and the definition~4.2! of PUn(x;V) we
can write the second term of Eq.~4.31! as

E
x

`dj eiVjm̂~j!

jn2 iV
52

i

2
m0e2 iVũF PUn~x;2V!

2
1

~n21!xn21G . ~4.32!

Relations~4.31! and ~4.32! allow us to writeQ2(x;V) as

Q2~x;V!5
eiVxI 1~x!

~12 iV!x12 iV
2

m0e2 iVũ

2i ~12 iV! FPU2~x;2V!2
1

xG
1

iV

12 iV
Q1~x;V!. ~4.33!

We also have
12401
e
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Q1~x;V!5
m0

2i FeiVũE
x

`dj eiVj

j12 iV E
j

`dh eiVh

h12 iV

2e2 iVũE
x

`dj eiVj

j12 iV E
j

`dh e2 iVh

h11 iV G
5

m0

2i
e2 iVũF1

2
„PU1~x;V!…22S~x;V!G ,

~4.34!

where

S~x;V!5E
x

`dj eiVj

j12 iV E
j

`dh e2 iVh

h11 iV
. ~4.35!

This function allows the following representation~see Ap-
pendix A!:

S~x;V!5
i

V
e2pV/21 iV ln V

3G~2 iV!xiV
1F1~ iV;11 iV; iVx!

1
i

V
@ ln~ iVx!1 f ~2 iV; iVx!2c~ iV!#,

~4.36!

where 1F1 is a hypergeometric function, c(z)
5@d ln G(z)/dz#, and

f ~a;y!5 (
n51

`
yn

n~11a!n
. ~4.37!

Here

~11a!n5
G~11a1n!

G~11a!
. ~4.38!

Combining these results, we can rewrite Eq.~4.33! as

eiVũQ2~x;V!5
eiV(ũ1x1 ln x)I 1~x!

~12 iV!x

2
m0

2i ~12 iV! FPU2~x;2V!2
1

xG
1

m0V

2~12 iV! F1

2
„PU1~x;V!…22S~x!G .

~4.39!

The final expression for the second order perturbations̃(x0)
is obtained by inserting Eqs.~4.28!, ~4.39!, and ~4.30! into
Eq. ~4.27!.

Since we are interested ins̃(x0) where x0 is small we
need only to know the first terms of its expansion in pow
of x0. To do this we use the following asymptotics at sm
value ofx0:
0-6
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PU1~x0 ;V!'
i

V
1q~V!eiF(V), ~4.40!

PU2~x0 ;V!'
1

12 iV F 1

x0
1 iVPU1~x0 ;V!G , ~4.41!

S~x0 ;V!'
i

V Fq~V!e2 iF(V)1 ln~Vx0!1
ip

2
2c~ iV!G .

~4.42!

The approximative values ofI 1(x0) andI 2(x0) can be easily
obtained by using the relation~4.30!. The calculations the
asymptotic value ofs(x0) is hence straightforward but quit
long. We use Maple to perform these calculations. The re
is

s̃~x0!'m0
2@s01s1x01s8#, ~4.43!

where

s05
V2~22V2!

~11V2!2~114V2!
, ~4.44!

s15s1
01s1

1q~V!1s1
2q2~V!1s1

3q~2V!, ~4.45!

s1
05

213V2233V4120V6

4V2~11V2!2~114V2!
, ~4.46!

s1
15

~V221!@V cos„F~V!…1sin„F~V!…#

V~11V2!2 , ~4.47!

s1
25

~12V2!1@Vsin„2F~V!…2cos„2F~V!…#

4~11V2!
,

~4.48!

s1
352

V@~2V221!sin„F~2V!…23V cos„F~2V!…#

~11V2!~114V2!
,

~4.49!

and

s852
x0

4~11V2!
†pV22 ln~Vx0!22 Im@~V2 i !c~ iV!#‡.

~4.50!

Let us recall that in these expressionsx0 is a function of the
retarded timeu given by Eq.~3.26!. We can now include the
second order corrections~4.22! into the expression forṼ(u)
and write it in a form similar to Eq.~4.20!

2Ṽ'Ṽ01e2ũ@C11C2 sin~F1!1C3 sin~F2!

1C4 sin~F3!1Cũ#, ~4.51!

where

Ṽ0511m0

V

11V2
1m0

2 V2~22V2!

~11V2!2~114V2!
, ~4.52!
12401
lt

C1512m0

V221

V~11V2!
1m0

2F 213V2233V4120V6

4V2~11V2!2~114V2!

1
12V2

4~11V2!
q2~V!

2
„pV22 lnV22 Im@~V2 i !c~ iV!#…

4~11V2! G , ~4.53!

C25m0

q~V!

A11V2 F11m0

V221

V~11V2!G , ~4.54!

C35m0
2

q2~V!

4A11V2
, ~4.55!

C452m0
2

Vq~2V!

A~11V2!~114V2!
, ~4.56!

C52
m0

2

2~11V2!
, ~4.57!

and the phasesF i are defined as follows:

F15Vũ2wG~V!1arctanV, ~4.58!

F252Vũ22wG~V!2arctanS 1

V D , ~4.59!

F352Vũ2wG~2V!2arctanS 3V

2V221D . ~4.60!

Notice, that the coefficientsV̂0 , Ĉ1, and Ĉ2 which ap-
peared in the first order expression~4.20! are now replaced
in Eq. ~4.51! by the new coefficientsṼ0 , C1, andC2 with the
only difference that the corresponding coefficients get s
ond order corrections. Notice also that in Eq.~4.51!, the
terms with double frequency 2V and a term which is linear
in ũ are new with respect to the first oder result~4.20!.

V. CALCULATION OF THE FLUX
OF HAWKING RADIATION

Now we derive thes-mode contribution to Hawking ra
diation. In what follows, we shall neglect the scattering
the gravitational potential barrier which appears in the
Dalembertian. In other words, we use 2D approximation
which ingoing and outgoing modes completely decoup
This strong hypothesis requires some explanations. The
coupling of the modes greatly simplifies the calculation
the asymptotic flux when the metric is no longer static.
deed, the height of the potential barrier now depends onv in
the metric Eq.~2.1!. Therefore one loses the fact that th
transmission coefficients are diagonal in energy. Moreov
the new coefficients will also mix positive and negative fr
quency modes. This will lead to additional pair creati
probabilities. Thus there will be interference effects betwe
0-7
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the usual pair creation amplitudes induced by the freque
mixing governed by Eq.~4.51! and these new coefficients.

To determine the importance of these interesting effect
complicated and goes beyond the scope of the present p
which is to describe the effects on Hawking radiation
duced by the fluctuations of the geometry in the very clo
vicinity of the horizon. In this respect, we wish to emphas
that our classical metric has been chosen to mimic the n
horizon quantum fluctuations and not the fluctuations of
height of the barrier aroundr 53M . On physical grounds, in
a self-consistent treatment, one might expect that the resi
fluctuations around 3M be much smaller that the near hor
zon ones. Therefore the neglection of the time dependenc
the barrier might turn out to be physically legitimate.

In the two-dimensional simplified description, when t
field is in its vacuum state before the formation of the bla
hole, the mean energy flux atJ1 is

dE

du
[4pr 2^Tuu&

ren5
k2

12p S dṼ

dũ
D 1/2

d2

dũ2 F S dṼ

dũ
D 21/2G .

~5.1!

HereṼ(ũ) is the function calculated in the previous sectio
Notice also, thatu in this relation is the proper time atJ1 in
the perturbed geometry, see the remark made after
~3.17!. Thus this is the time which defines positive frequen
at J1.

Before presenting the results of the calculations ofdE/du
we make several remarks. First, it is evident that the exp
sion fordE/du does not depend on the value of constantṼ0
in Eq. ~4.51!. For this reason we can put it equal to zero. T
corresponds to a simple redefinitionṼ→Ṽ1Ṽ0. Moreover,
dE/du is not changed if we multiplyṼ by an arbitrary con-
stant. For these reasons the calculations ofdE/du can be
performed with the simplified form forṼ

Ṽ52e2ũ@11A1 sin~Vũ1w1!1A2 sin~2Vũ1w2!1Cũ#.
~5.2!

In this expression, we have kept all terms up to second o
in m0 and introduced the following notations:

A1[m0a11m0
2b15m0

q~V!

A11V2 F112m0

V221

V~11V2!G ,
~5.3!

w152wG1arctanV. ~5.4!

In the same way the two terms in Eq.~4.51! with coefficients
C3 andC4 having the same dependence 2Vũ on the retarded
time ũ have been combined into the following single term

A2 sin~2Vũ1w2![C3 sin~F2!1C4 sin~F3!. ~5.5!

A2 is of second order inm0 and, with notations to Eq.~5.3!,
can be written asA2[m0

2b2. The explicit expressions forb2

andw2 can be obtained easily, but since they are very lo
and are not important for our final result we do not reprodu
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them. Note also, that sinceC is already a quantity of secon
order inm0

2, the redefinition ofṼ does not affect it.
The calculation ofdE/du from Eqs. ~5.1! and ~5.2! is

straightforward but long and was performed by using Map
It is convenient to write the result in the form

dE/du5~dE/du!perm1~dE/du!fluct, ~5.6!

where (dE/du)perm is the mean value of the flux an
(dE/du)fluct is its fluctuating part. The latter will of cours
not contribute to the total energy received onJ1.

The constant part is

~dE/du!perm5
k2

48p F11
1

2
m0

2V2q2~V!22CG , ~5.7!

and the fluctuating part is

~dE/du!fluct52
m0

2
VA11V2q~V!cos~Vũ1w1!

1m0
2Fq~V!

12V2

A11V2
cos~Vũ1w1!

1q2~V!
V2~125V2!

8~11V2!
cos~2Vũ12w1!

1q2~V!
V~114V2!

4~11V2!
sin~2Vũ12w1!

2b2V~114V2!cos~2Vũ1w2!G . ~5.8!

The functionq(V) is given by Eq.~4.15! and, in the last
term,b2 cos(2Vũ1w2) is equal to

b2 cos~2Vũ1w2!5
q2~V!

4A11V2
cos~F2!

2
Vq~2V!

A~11V2!~114V2!
cos~F3!.

~5.9!

The remarkable fact is that, to second order inm0, the cor-
rection term which is linear inũ in Eq. ~5.2! does not give
any time-dependent contribution. It only gives an addition
constant to (dE/du)perm in Eq. ~5.7!. This has the following
simple explanation: the termCũ can be removed from Eq
~5.2! by absorbing it intoe2ũ without changing the othe
terms in our second order expression. This transforma
corresponds to the ‘‘renormalization’’ of the surface grav

k→k r5k~12C!5kF11
m0

2

2~11V2!
G . ~5.10!
0-8
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Hence the expression for (dE/du)perm can be identically re-
written as

~dE/du!perm5
k r

2

48p F11
1

2
m0

2V2q2~V!G
5

k r
2

48p F11m0
2 pV

exp~2pV!21G . ~5.11!

It is interesting to note that the renormalized surface gra
k r which is introduced here coincides with the average va
of the surface gravityk̄ defined by Eq.~3.14!.

VI. THE MODIFIED ASYMPTOTIC SPECTRUM

Instead of focusing on integrated quantities, we shall n
consider how the asymptotic spectrum is modified by
fluctuating part of the metric. As usual, the asymptotic sp
trum is characterized by the angular momentum~that we take
to zero! and the asymptotic energy,l, the eigenvalue ofi ]u .
Indeed the fluctuations we are considering do not affect
stationary character of the asymptotic~large r ! metric.

To obtain the modified spectrum, we need to compute
Bogoliubov coefficients in the modified geometry. Befo
proceeding to this calculation, it should be noticed that
2D expressions we shall use are exact only for largel, i.e.
kl@1. At lower frequencies, there is indeed a potential b
rier in the 4D Dalembertian fors-waves which reduces th
transmitted flux in a static geometry, cf. the discussion at
beginning of the former section.

We first recall how the well known properties of Hawkin
spectrum are extracted from the Bogoliubov coefficien
The latter are given by the overlap of the initial~infalling!
modes which are specified onJ2 and the final~outgoing!
modes specified onJ1. Both are solutions of the Dalembe
tian equation in the metric~2.1!. For s-waves and under the
neglection of the potential barrier, these modes satisfy
2D equation]u]vf50. Thus the in-modes can be decom
posed in terms of plane waves

fn~v !5
e2 inv

A4pn
, ~6.1!

wheren is the energy measured onJ2. Similarly, the out-
modes are

fl~u!5
e2 ilu

A4pl
, ~6.2!

wherel is the energy measured onJ1.
The scattering of in-modes in the time dependent geo

etry simply follows from the ‘‘reflection’’ condition onr
50 wherein the Wronskian must vanish. This implies th
the scattered in-modes are given byfn„V(u)…. Then the Bo-
goliubov coefficients are

an,l5E dufn* „V~u!…i ]Jufl~u!5E du
einV(u)

A4pn

e2 ilu

Apl21
,
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bn,l5E du fn„V~u!…i ]Jufl~u!5E du
e2 inV(u)

A4pn

e2 ilu

Apl21
.

~6.3!

The second expressions follow from integration by part a
the neglect of the end-point contributions.

In the unperturbed geometry, for largeu, kV(u) is given
by 212e2ku, see Eq.~3.24!. The validity of this asymptotic
expression requires that the initial frequenciesn be large
enough. Indeed, upon applying the stationary phase co
tion to the integrand of the coefficientan,l one obtains the
following relation for the position of the saddle pointusp :

l5ne2kusp. ~6.4!

This equation simply specifies the value ofu at which the
Doppler shifted initial frequencyn resonates withl. Notice
in passing that it is this exponentially small Doppler fact
which leads to the necessity of considering arbitrary la
initial ~‘‘trans-Planckian’’! frequencies. From Eq.~6.4!, one
deduces that largen means that the corresponding value
e2kusp satisfiese2kusp@e22kusp. Notice also that the station
ary phase condition applied to theb coefficient, leads to the
same condition up to an overall negative sign. This impl
that the location of the saddle point in the complexu-plane
receives an imaginary contribution equal to2 ip/k. The de-
termination of the sign of this imaginary part follows from
the fact thatV(u) appearing ine2 inV must belong to the
lower half complex V-plane. Physically this amounts t
specifying that the in-vacuum contains no excitation char
terized by positiven. Mathematically it givesubn,l /an,lu2

5e22pl/k.
These considerations based on a saddle point analysi

confirmed by the exact integration of Eqs.~6.3!. It will be
found useful to express the exact expressions in terms of
following function:

B~n,l!5GS i
l

k DA l

~2pk!S n

k D 2 il/k

e2pl/2k, ~6.5!

where G(x) is the Euler complete gamma function. Th
norm of this function givesuBu25(e2pl/k21)21. Upon ex-
tending the domain of validity of the asymptotic behavior
V(u) for all u, one finds

an,l5B~n,l!A 1

2pkn
epl/ke2 in/k,

bn,l5B~n,l!A 1

2pkn
ein/k. ~6.6!

Two crucial properties follow from Eq.~6.6!: first, the
Planck distribution characterizing the mean number of o
quanta in the in-vacuum~up to a normalization factor, it is
obtained fromubn,lu2), and secondly, the existence of a co
stant flux of out-quanta. The stationarity follows from th
fact that the phases ofb and a are both proportional to
n2 il/k. This implies indeed that the value of the energy fl
is constant. To prove it, we recall that the renormalized va
0-9
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of the energy flux in the in-vacuum, when expressed in te
of the Bogoliubov coefficients, is

dE

du
5E

0

`

dlE
0

`

dl8
All8

2p Fe2 i (l2l8)uS E
0

`

dn bn,l* bn,l8D
2ReS ei (l1l8)uE

0

`

dn an,lbn,l8D G . ~6.7!

By using Eq.~6.6! and performing the integral overn, one
immediately obtains that the second term, the interfer
one, vanishes and that the first term is constant.

We shall now determine how these properties are affec
by the fluctuations of the geometry described by Eq.~2.1!.
Under our restriction tos-waves and neglection of the pote
tial barrier, it suffices to repeat the same procedure with
modified functionV(u), as if we were considering 2D propa
gation. The asymptotic expression we shall use is given
h
h

12401
s

g

d

e

y

2k rV~u!5Ṽ01e2kru@11A1 sin~vu1w1!

1A2 sin~2vu1w2!#, ~6.8!

where the values ofṼ0 , A1, and A2 can be found in Eqs.
~4.52!, ~5.3!, and~5.5!. We have kept the constant shift inV
since it will modify the absolute phase of the Bogoliubo
coefficients. The symbolk r designates the ‘‘renormalized’
surface gravity introduced in Eq.~5.10!. We have indeed
absorbed the linear term inu of Eq. ~5.2! in the redefinition
of k. As before, sincek r2k5O(m0

2) and since we shal
work up to quadratic corrections inm0, the modification of
the terms proportional toA1 andA2 are irrelevant.

To reveal the nature of the modifications induced by
time dependent fluctuations of the metric, it is appropriate
analyze theb coefficient. Up to quadratic order in the metr
fluctuations of amplitudem0, the modified b coefficient
reads
bn,l
mod5E

2`

`

du
e2 ilu

Apl21

e2 inV(u)

A4pn

5E du
e2 ilu

Apl21

ein(Ṽ01e2kru)/kr

A4pn
F12

1

2S n

k r
D 2

e22kruA1
2 sin2~vu1w1!

1 i
n

k r
e2kru$A1 sin~vu1w1!1A2 sin~2vu1w2!%G . ~6.9!

By decomposing the sines into imaginary exponentials and by using several times the relationG(x11)5xG(x) we get

bn,l
mod5A 1

2pk rn
einṼ0 /krH Br~n,l!F12

A1
2

4k r
2~l2 ik r !lG2Al

A1

2k r
@Br~n,l2v!Al2veiw12Br~n,l1v!Al1ve2 iw1#

2Al
A2

2k r
@Br~n,l22v!Al22veiw22Br~n,l12v!Al12ve2 iw2#

1Al
A1

2

8k r
2 @Br~n,l22v!~l22v2 ik r !Al22ve2iw11Br~n,l12v!~l12v2 ik r !Al12ve22iw1#J . ~6.10!
-

t

HereBr(n,l) designates the functionB(n,l) defined in Eq.
~6.5! with the renormalized surface gravity.

The replacement ofB(n,l) by B(n,l6v) in the last
three terms of Eq.~6.10! indicates thatv, the frequency of
the fluctuating metric, enters into the expressions in suc
way that the ‘‘effective’’ frequency, i.e., the one whic
weighs the new amplitudes, isl6v.

Physically, this leads to a modification of the mean~quan-
tum averaged and time averaged! number of quanta which
reachJ1 per unitu time. This averaged flux is
a

^n̄l&5

EN

dnubn,l
modu2

EN

dn/k rn

. ~6.11!

We have implemented time average by integrating overn up
to the cut-off frequencyN and dividing the resulting expres
sion by*Ndn/k rn5Du. This last equality follows from the
resonance condition, Eq.~6.4!, and its validity requires tha
Du@1/k r , as in usual golden rule estimates.
0-10
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In this ratio, to quadratic order inm0, only four terms
contribute. The first two terms of the first line of Eq.~6.10!
and those resulting from the square of the second line. T
is because the integral of all other terms are crossed term
the formB(n,l)B* (n,l6v) which lead to oscillatory inte-
grands containinge6 ivusp(n). These terms do not contribut
to the production rate, Eq.~6.11!, in the limit of largekDu.

By combining the four nonvanishing contributions we g

^n̄l&5
1

2p H 1

e2pl/kr21
S 12S A1

k r
D 2 l2

2 D
1S A1

2k r
D 2

lF l2v

e2p(l2v)/kr21
1

l1v

e2p(l1v)/kr21
G J .

~6.12!

Having obtained the spectrum of the particle number fl
the spectrum of the energy flux is

dE

du dl
5l^n̄l&5

k r

2p F f ~L!1
m0

2

2
F~L;V!G , ~6.13!

whereL5l/k r , V5v/k r ,

f ~L!5
L

exp~2pL!21
~6.14!

and

F~L;V!5
pL2

V2~11V2!
f ~V!@ f ~L2V!1 f ~L1V!

22 f ~L!#. ~6.15!

Plots of the functionF(L;V) for different values ofV are
given in Fig. 2.

In order to obtain the constant part of the density of e
ergy flux one must integrate Eq.~6.13! over the frequencyl

dE

du
5

k r
2

2pE0

`

dLF f ~L!1
m0

2

2
F~L;V!G . ~6.16!

Using formulas~B1! and~B10! from Appendix B, it is easy
to verify that Eq.~6.16! coincides with the expression~5.11!
for (dE/du)perm we obtained earlier.

The other physical consequence of the correction term
a and b is the following. The mean instantaneous ener
flux now oscillates around its time average with the harm
ics of v. This can be seen from the oscillatory term
B(n,l)B* „n,l6(2)v) which behave in e6 i (2)vusp(n)

when parametrized bykusp5 ln n/l, the location of the
dominant contribution toan,l . The amplitudes of the fluc
tuations are linear inA1 andA2. Moreover, the phase shift
of the modified coefficients with respect the unperturb
ones differ fora andb. This implies that the second term i
12401
is
of

t

,
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to
y
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d

Eq. ~6.7! no longer vanishes even though it still does n
contribute to the mean~time average! energy flux.

VII. CONCLUSION

In this paper we studied how the fluctuations of the g
ometry near the black-hole horizon affect Hawking radiatio
To characterize the fluctuations of geometry, we used Yor
model @21# in which they are described by an in-comin
Vaydia metric with a time dependent massm(v) which fluc-
tuates around its mean with amplitudem0 and period 2p/v.
For further simplicity, we only considered thes-modes of a
quantum scalar massless field and we also neglected the
tering by the gravitational potential barrier. Using these si
plifying assumptions, we reached the following conclusio

First, the expectation value of the outgoing flux of ener
is no longer constant. It now fluctuates around its time av
aged value with frequencies given by harmonics ofv and
with amplitudes starting with a term linear inm0, see Eq.
~5.8!. The fact that the phase of the fluctuations of the e
pectation value ofdE/du is well defined results from the fac
that the fluctuations we considered were treated classic
In a more quantum mechanical treatment, these well defi
phases will probably be replaced by a more diffuse ensem
of phases.

Secondly, the time averaged value of the outgoing flux
energy is modified. One part of this modification is co
nected with the renormalization of the surface gravity of t
fluctuating black hole given by expression~5.10!. The other
part is an additional factor given bym0

2pV/„exp(2pV)21…,
see Eq.~5.11!. Both changes are second order inm0. More
surprisingly, they decrease for largeV. Indeed, one might
have feared that fast metric fluctuations would lead to co

FIG. 2. FunctionF(L,V) for different values of dimensionles
frequencyV: V50.01, solid line;V50.1, dashed line; andV
50.5, dotted line.
0-11
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ous pair creation.3 We conjecture that we do not find abu
dant production since we worked in a two-dimension
model in which the time dependence of the metric does
affect directly massless modes, thanks to conformal inv
ance.

Thirdly, the asymptotic spectrum of Hawking radiation
also modified. Besides the renormalization of the surf
gravity which shifts the temperature, the modified spectr
~6.12! contains three additional correction terms. The t
last terms in that equation contain Bose thermal factors
the form 1/„exp@2p(l6v)/k#21…. In these relations, the fre
quency of geometry fluctuations,6v, plays the role of a
chemical potential. The presence of such chemical poten
is reminiscent to superradiance. This fact supports the g
eral ideas proposed by York since the appearance of t
factors might be expected from the existence of aquantum
ergoshpere. Indeed, due to quantum fluctuations, the avera
position of the event horizon is moved by a term prop
tional to the second powerm0

2 of the amplitude of fluctua-
tions, while the temporal position of the apparent horizon
fluctuating with amplitudem0. An alternative way to de-
scribe these fluctuations is to say that there exists a blur
of the physical null cone at the unperturbed horizon. Beca
of the existence of negative energy states inside the un
turbed black hole matter can escape from the narrow reg
close to the horizon. This leakage of energy is seen as Ha
ing radiation@21#. Under the same conditions one can exp
an additional amplification of Hawking quanta while they a
propagating close to the fluctuating horizon. The amplifi
tion factor we got in the expression for the modified sp
trum of Hawking radiation may be considered as an indi
tion to this effect.

The modifications in the black hole temperature and s
face area in the presence of metric fluctuations raise
question about the modifications of black hole thermo
namics. If we identify the energy of the systemE with the
averaged mass of the black holeM, and the temperature o
the black hole,T, with k r /2p, then the first lawdE5T dS
and Eqs.~3.13! and~5.10! define the averaged entropy to b

S̄5
Ā
4 F11

m0
2

2~11V2!
G22

;
Ā
4 S 12

m0
2

11V2D . ~7.1!

Therefore, one loses the relationship between the entr
and a fourth of the area.

If one writes the amplitude of the fluctuations asm0
5amPlanck/M wherea is dimensionless, one has

S̄54p
M2

mPlanck
2

2s, ~7.2!

where

s5
4pa2

11V2 ~7.3!

3We are grateful to T. Jacobson for pointing out this fact to u
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does not depend on the black hole mass. It is worth notic
that this modification of the black hole entropy is exactly
the same form as in theories with corrections quadratic in
curvature@27#. We recall that these corrections arise in t
effective action by taking, in the one-loop approximation, t
average of the gravitational equations over quantum fluc
tions of the metric. This observation might give a possib
explanation to the origin of the similarity between Eq.~7.2!
and the results of Ref.@27#. Similarily, it would be interest-
ing to find the relation between the results obtained in t
paper and the quantum treatments of@28–31#.

Even though these results were obtained in an extrem
simplified model in which the metric fluctuations we
treated classically, we believe that they indicate what mi
be the impact of the quantum fluctuations of the near hori
geometry on black hole radiance.
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APPENDIX A: CALCULATION OF FUNCTION S„x…

To calculate function

S~x!5E
x

`dj eiVj

j12 iV E
j

`dh e2 iVh

h11 iV

5~ iV! iVE
x

`dj eiVj

j12 iV
G~2 iV,iVj!, ~A1!

we use the following general result, which can be found
@26# ~volume II relation 2.10.3.6!:

E
a

`

xa21~x2a!b21ecxG~n,cx!dx

5aa1b21G~n!B~b,12a2b! 1F1~a;a1b;ac!

2
aa1b1n21cn

n
B~b,12a2b2n!

32F2~a1n,1;n11,a1b1n;ac!

2
pc12a2b

sin@~a1b1n!p#

G~a1b21!

G~12n!

31F1~12b;22a2b;ac!. ~A2!

Here

B~x,y!5
G~x!G~y!

G~x1y!
. ~A3!

This relation is valid fora.0, Reb.0, Re(a1b1n)
,2; uargcu,p. For a particular caseb51 one has
0-12



ng

METRIC FLUCTUATION CORRECTIONS TO HAWKING . . . PHYSICAL REVIEW D59 124010
E
a

`

xa21ecxG~n,cx!dx

52
aaG~n!

a 1F1~a;11a;ac!1
aa1ncn

n~a1n! 2F2~a1n,1;1

1n,11a1n;ac!1
pc2a

sin@~a1n!p#

G~a!

G~12n!
. ~A4!

The integral in Eq.~A1! is of the form~A4! with

a5 iV, n52 iV, a5x, c5 iV. ~A5!

For this casea1n50, and the last two terms in Eq.~A4! are
divergent. To consider this limit, we defineg5a1n and
rewrite the sum of these two divergent terms in the followi
form:

aa1ncn

a~a1n! 2F2~a1n,1;11n,11a1n;ac!

1
pc2a

sin@~a1n!p#

G~a!

G~12n!
5

cn2g

n
Z, ~A6!

where

Z5
1

g Fyg
2F2~g,1;11n,11g;y!1

pgn

sin~gp!

G~g2n!

G~12n! G ,
~A7!

andy5ac.
Using the expression for the hypergeometric function

2F2~g,1;11n,11g;y!511g (
n51

`
yn

~g1n!~11n!n
,

~A8!

where (11n)n5G(11n1n)/G(11n), we can write for
small g

2F2~g,1;11n,11g;y!'11g f ~n;y!, ~A9!

where

f ~n;y!5 (
n51

`
yn

n~11n!n
. ~A10!

We also have

G~g2n!

G~12n!
'2

1

n
1

G8~2n!

G~12n!
g52

1

n
2

1

n
c~2n!g,

~A11!

wherec(z)5d ln G(z)/dz.
Substituting expressions~A9! and ~A11! into ~A7! and

expanding sin(gp)5gp(121
6g

2p21•••), we get
12401
Z5
1

g
@yg

„11g f ~n,y!…212gc~2n!#

5
yg21

g
1 f ~n,y!2c~2n!' ln y1 f ~n,y!2c~2n!.

~A12!

Thus forn52a we have

E
a

`

xa21ecxG~2a,cx!dx

52
aaG~2a!

a 1F1~a;11a;ac!

2
c2a

a
@ ln~ac!1 f ~2a;ac!2c~a!#. ~A13!

Using this result, we obtain forS(x) the following expres-
sion:

S~x!5
i

V
eiV ln V1 iV ln xe2pV/2

3G~2 iV! 1F1~ iV;11 iV; iVx!

1
i

V
@ ln~ iVx!1 f ~2 iV; iVx!2c~ iV!#.

~A14!

APPENDIX B: CALCULATION OF INTEGRALS

In this appendix we demonstrate that

J[E
0

` dl l2~l1V!

exp@2p~l1V!#21
1E

0

` dl l2~l2V!

exp@2p~l2V!#21

5
1

120
~10V4110V211!. ~B1!

First we notice that

J5 lim
p→0

@J1~p!1J2~p!#, ~B2!

where

J6~p!5E
0

`dl l2~l6V!exp~2pulu!
exp@2p~l6V!#21

. ~B3!

Making change of variable of integrationl→2l in the ex-
pression forJ2(p) we get

J2~p!5E
2`

0

dl l2~l1V!exp~pl!

1E
2`

0 dl l2~l1V!exp~2pulu!
exp@2p~l1V!#21

. ~B4!
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Thus we have

J1~p!1J2~p!5E
2`

0

dl l2~l1V!exp~pl!

1E
2`

` dx ~x2V!2 x exp~2pux2Vu!
exp~2px!21

.

~B5!

In the last integral in the right-hand side we made chang
variablesl5x2V.

Consider now the integral

E
2`

0 dx~x2V!2x exp~2pux2Vu!
exp~2px!21

. ~B6!

By changing variablesx→2x it can be identically rewritten
as

exp~2pV!E
0

`

dx x~x1V!2 exp~2px!

1exp~2pV!E
0

`dx x~x1V!2 exp~2px!

exp~2px!21
. ~B7!

Using Eqs.~B5! and ~B7! and taking the limitp→0 we get
d

ts

n

ra

Re

12401
of

J52E
0

`dx x~x21V2!

exp~2px!21
1DJ, ~B8!

where

DJ5 lim
p→0

F E
2`

0

dx x2~x1V!exp~px!

1exp~2pV!E
0

`

dx x~x1V!2exp~2px!G
5 lim

p→0
F S 2

6

p4 1
2V

p3 D1e2pVS 6

p4 1
4V

p3 1
V2

p2 D G
5

1

12
V4. ~B9!

The integrals which enter Eq.~B8! can be easily calculated

E
0

` dx x

exp~2px!21
5

1

24
, E

0

` dx x3

exp~2px!21
5

1

240
.

~B10!

Combining these results we get Eq.~B1!.
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