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Simulating four-dimensional simplicial gravity using degenerate triangulations
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We extend a model of four-dimensional simplicial quantum gravity to includedegeneratetriangulations in
addition to the combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is
uniquely defined by a set of five distinct vertices, we allow triangulations containing multiply connected
simplexes and distinct simplexes defined by the same set of vertices. We demonstrate numerically that includ-
ing degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we
provide strong numerical evidence for an exponential bound on the entropic growth of the ensemble of
degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangu-
lations of volumeN4'4000.@S0556-2821~99!01812-3#

PACS number~s!: 04.60.Nc, 02.70.Lq, 05.70.Fh
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Discretized models of four-dimensional Euclidean qua
tum gravity, known as simplicial gravity or dynamical trian
gulations, have received ample attention in recent years
hope being that in a suitable scaling limit they might provi
a sensible nonperturbative definition of quantum gravity.
the simplicial gravity approach the integration over metr
is replaced by a sum over an ensemble of triangulations c
structed by all possible gluings of equilateral 4-simplex
into closed~piece-wise linear! simplicial manifolds~see, e.g.,
Refs. @1,2#!. The regularized Euclidean Einstein-Hilbert a
tion is particularly simple; it can be taken to depend on o
two coupling constants,m andk, related to the cosmologica
and the inverse Newton’s constants. The coupling const
are conjugate to the volume—the number of 4-simplexe
and the number of triangles in a given triangulation resp
tively. The regularized grand-canonical partition functi
thus becomes

Z~m,k!5 (
TPT

1

CT
e2mN41kN2. ~1!

The sum is over all distinct triangulationsTPT, Ni is the
number ofi-simplexes in a triangulationT andCT denotes its
symmetry factor—the number of equivalent labeling of t
vertices.

Extensive numerical simulations have established that
model Eq. ~1! has a strong-coupling~small k! crumpled
phase and a weak-coupling~largek! elongated phase, sepa
rated by a discontinuous phase transition. In the crump
phase the internal geometry collapses and is dominated
novel singular structure—two singular vertices connected
an extensive fraction of the total volume and joined by
subsingular edge@3#. The elongated phase, on the oth
hand, is dominated by branched polymer like triangulatio
i.e., bubbles glued togethervia small necks into a treelike
structure.

In Eq. ~1!, T denotes a suitable ensemble of triangulatio
included in the partition function. Different ensembles a
defined by imposing various restrictions on how the si
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plexes are glued together. Provided this leads to a w
defined partition function, and as long as the difference
only at the level of discretization, one expects differe
choices ofT to lead to the same continuum theory in th
thermodynamic limit. This is known to be true in two dime
sions where models of simplicial gravity corresponding
different choices ofT are soluble as matrix models@5#. Even
in two dimensions, however, for the partition function to
convergent the topology of the triangulations included in
sum Eq.~1! must be fixed, regardless of the ensemble us
As the same most likely is true in higher dimensions, in t
paper we only consider triangulations of fixed spherical
pology.

All simulations of four-dimensional simplicial gravity
have, as of yet, used an ensemble ofcombinatorialtriangu-
lationsTC . In a combinatorial triangulation everyD-simplex
is uniquely defined by a set of (D11) distinct vertices—it is
said to be combinatorially unique. In this letter we study
larger ensemble ofdegeneratetriangulationsTD where we
relax this constraint and allow distinct simplexes to be d
fined by the same set of vertices. This includes two s
plexes with more than one face in common. We do, howev
retain the restriction that every 4-simplex is defined by a
of five distinct vertexes, i.e., we exclude degenerate s
plexes. ClearlyTC,TD . This corresponds to an ensemble
restricted degenerate triangulations as defined in Ref.@6#.

The benefits of using a larger ensemble of triangulatio
are well known from simulations of two-dimensional simp
cial gravity which have demonstrated that less restricted
triangulations are translates into smaller finite-size effe
@7#. Recently the same observation has been made in t
dimensions@6#. As simulations of four-dimensional simpli
cial gravity are notoriously time-consuming, primarily due
the large volumes needed to observe any ‘‘true’’ infinit
volume behavior, any reduction in the finite-size effects is
great practical importance.

In this paper we show that including degenerates trian
lations in simulations of four-dimensional simplicial gravi
likewise leads to reduced finite-size effects. This reduction
most pronounced in the crumpled phase of the model wh
©1999 The American Physical Society08-1
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the free-energy density of the canonical~fixed volume!
ensemble—the pseudo-critical cosmological const
mc(N4)—converges very rapidly to an infinite-volume valu
This in turn implies an exponential bound on the entro
growth of the ensemble of degenerate triangulations, so
thing that has been the subject of some controversy in
past for combinatorial triangulations@8,9#. Although we ob-
serve qualitatively the same phase structure as with
model Eq.~1! restricted to combinatorial triangulations, the
are some dissimilarities. A discontinuous phase transit
separating the elongated and the crumpled phases, is alr
observed on triangulations of relatively modest size,N4
'4000, compared to combinatorial triangulations where
volume of N4'32.000 is needed. And while the crumple
phase is still dominated by a singular structure, for degen
ate triangulations this corresponds to agas of subsingular
vertices rather than to only two singular vertexes.

We have simulated the model Eq.~1! using degenerate
triangulations on volumes up to 32.000 4-simplexes us
Monte Carlo methods. As customary we work in a quasi
nonical ensemble of spherical manifolds with almost fix
N4 :

Z~m,k;N̄4!5(
N4

e2mN42d~N42N̄4!2
VN4

~k!, ~2!

whereVN4
(k)5(TPT(N4) exp(kN2) is the canonical partition

function. As there do not exist ergodic volume conserv
local moves, hence the canonical ensemble cannot be s
lated directly, we must allow the volume to fluctuate. T
quadratic potential term added to the action ensures, fo
appropriate choice ofd, that these fluctuations are small.

In the simulations the triangulation space is explored
ing a set of local geometric changes, the~p,q! moves. In a
~p,q! move, wherep5D112q, a (q21) subsimplex in
the triangulation is replaced by its ‘‘dual’’ (p21) subsim-
plex. For combinatorial triangulations the~p,q! moves are
known to be ergodic forD<4 @10#. To demonstrate that th
same holds true for degenerate triangulations we obs
that, just as in three dimensions@6#, every set of combinato
rially equivalent simplexes, or subsimplexes, can be m
distinct by a finite sequence of the~p,q! moves. Thus every
degenerate triangulation can be reduced to a combinat
one. In addition the local nature of the~p,q! moves prohibits
the creation of pseudo-manifolds in the simulations, i.e.,
angulations containing vertexes with a neighborhood not
meomorphic to theD ball.

From a practical point of view simulating degenerate
angulations is actually simpler than simulating their com
natorial counterpart as one avoids the nonlocal manif
checks necessary to exclude combinatorially equivalent s
plexes. For combinatorial triangulations these checks are
most time-consuming part of the simulations@11#. This sim-
plification of is particularly beneficial in the crumpled pha
where the singular structure dominates; in this phase we
serve a tenfold reduction in the effective autocorrelat
times ~measured in ‘‘real’’ time! when using degenerate in
stead of combinatorial triangulations. In the branched po
12400
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mer phase, on the other hand, the autocorrelation times
pear comparable for the two ensembles.

The real benefit of using degenerate triangulations is
reduction of geometric finite-size effects. This reduction
most striking for the volume dependence of the pseu
critical cosmological constant,mc

D(N4), which we shown in
Fig. 1. For comparison we also include the correspond
valuesmc

C(N4), for combinatorial triangulations. For degen
erate triangulations we observe a rapid convergence to
infinite volume valuem̄. This can be quantified by compa
ing the fit of mc

D(N4) to two different functional forms: a
weak power-law convergence,

mc~N4!5m̄1
b

N4
g , ~3!

or a logarithmic divergence,

mc~N4!5m̄1b8 logN4 . ~4!

The fit parameters and the quality of the fits are shown
Table I. In contrast to combinatorial triangulations for dege
erate triangulations there is no comparison in the quality
the fits; the latter, which corresponds to a divergent partit
function Eq.~1!, is ruled out by ax2/(DOF)'117. For com-
binatorial triangulations, on the other hand, it is difficult
use the quality of the fit ofmc

C(N4) to either Eq.~3! or Eq.
~4! to distinguish between those two scenarios~see, e.g., Ref.
@9#!.

FIG. 1. The pseudo-critical cosmological constantmc
D(N4) for

an ensemble of degenerate triangulations, together with fits ass
ing a power-law convergence, Eq.~3! ~solid curve!, or a logarithmic
divergence, Eq.~4! ~dashed curve!. Also included are the corre
sponding values,mc

C(N4), for an ensemble of combinatorial trian
gulations.

TABLE I. The parameters in the fit of the pseudo-critical co
mological constantmc

D(N4) to Eqs.~3! and ~4!, respectively. Mea-
surements on volumesN45400 to 25.600 are included in the fits

m̄ g x2/DOF

Eq. ~3! 2.556~3! 0.55~5! @3.8#
Eq. ~4! 2.385~4! @117#
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The importance of this result is that it provides stro
numerical evidence for an exponential bound on the entro
growth of the ensemble of degenerate triangulations a
function of volume—a necessary condition for a we
defined partition function Eq.~1!. And, asTCPTD , this im-
plies an exponential bound on the number of combinato
triangulations as well.

The origin of the large finite-size effects present in sim
lations with combinatorial triangulations lies in the nature
the quantum geometry in the crumpled phase. As stated
partition function is dominated by triangulations charact
ized by two singular vertexes connected by a sub-sing
edge. A singular vertex has a local volumeq—the number of
4-simplexes containing that vertex—which grows linea
with the volume of the manifold, while the subsingular ed
has a local volume which grows likeN4

a , a'2/3 @3#. How-
ever, for combinatorial triangulations this singular structu
only dominates on large enough volumes, on small volum
triangulations with only one singular vertex have larger e
tropy. This results in a cross-over behavior in the frac
structure atN4'1000, as can be observed in Fig. 1.

For degenerate triangulation the crumpled phase is l
wise dominated by a singular structure. This is evident fr
the probability distributionP(q) of the local volumes which
contains an isolated peak in the tail. This is shown in Fig
for k50. However, the distributionP(q) differs in two re-
spects from the corresponding distribution measured on c
binatorial triangulations@3#.

~a! The peak corresponds to not just two singular verti
but rather to several subsingular vertices, i.e., vertices w
local volumes that scale likeN4

a , a,1. A rough estimate
yields a'0.9. The number of these sub-singular vertic
ns , increases logarithmically with the volume as is shown
the inset in Fig. 2. This suggests that the crumpled phas
dominated by agasof subsingular vertices.

~b! For each volume,P(q) effectively separates into two
distinct distributions depending on whether the local volu
is even or odd.

It is not clear though how much significance should

FIG. 2. The~normalized! distributions of local volumes,P(q),
for degenerate triangulations. This is for 400<N4<3200, and for
k50. ~Inset! The number,ns , of subsingular vertices versus vo
ume.
12400
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attached to this difference in the singular structure. Beca
of the collapsed nature of the internal geometry it is unlike
that any sensible continuum limit exists in the crumpl
phase, hence there is no reason to expect identical sca
behavior for the two different ensembles. The details of
discretization may still be important in the thermodynam
limit for k,kc . It is, however, worth noticing that for de
generate triangulations we do not observe any change in
fractal structure as the volume is increased as for comb
torial triangulations.

Additional evidence of a collapsed intrinsic geometry
the crumpled phase comes from the~absence of! volume
scaling of the simplex-simplex distributions(r ), i.e., the
number of simplexes at a geodesic distancer from a marked
simplex. Using the scaling ansatzs(r )5N4

121/dHF(x), where

x5r /N4
1/dH @12,13#, we tried to collapse distributionss(r )

measured on different volumes onto a single scaling cu
This was though not possible with an ‘‘acceptable’’ collap
@with x2/(DOF) of order unity#; moreover, the estimate o
the fractal dimensiondH appeared to increase with the vo
ume. From this we conclude thatdH5` in the crumpled
phase.

We have also investigated the phase structure of
model for nonzero values of the inverse Newton’s const
k. As for combinatorial triangulations we observe a pha
transition to an elongated phase atkc'1.7. To establish the
nature of the phase transition we have studied the Mo
Carlo time series of the energy density,n05N0 /N4 , in the
critical region. We show an example of one such time se

FIG. 3. ~Top! A MC time series of the energy density,n0

5N0 /N4 , for N454000 andk51.673.~Bottom! The correspond-
ing histogram together with a fit to a function composed of tw
Gaussian peaks~dashed line!.
8-3
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in Fig. 3 together with the corresponding histogram. This
for volumeN454000 andk51.673. The histogram shows
clear double-peak structure characteristic of a discontinu
phase transition. Note that in order to observe the co
sponding two-state signal using the combinatorial ensem
triangulations of volumeN4'32.000 are needed@4#.

For k.kc the model is in an elongated or branched po
mer phase. This we have established by measuring the fr
dimensionsdH and the spectral dimensionds for k52. The
former is determined from the scaling of the simple
simplex distribution, the latter from the return probability
a walker on the dual graph,p(t);t2ds/2 @13#. Including mea-
surements on volumesN45400 to 1600, we getdH
51.9(2) andds51.32(5), in excellent agreement withdH
52 andds54/3 as expected for branched polymer.

In this paper we have demonstrated that including deg
erate triangulations in simulations of four-dimensional si
plicial gravity has many potential advantages over the mo
restricted to combinatorial triangulations. This agrees w
the same observations previously made in both two and t
dimensions. The chief benefit is the reduction in geome
finite-size effects mainly due to an enlarged ensemble—w
’’
tio
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a larger triangulation space the infinite-volume fractal str
ture is more easily approximated on small volumes. T
most important result presented in this letter is a strong
merical evidence for an exponential bound on the entro
growth of the canonical partition functionVN4

. A more prac-
tical result is the observation of a discontinuous phase tr
sition on triangulations of relatively modest size.

A natural extension of the work presented in this pape
to investigate how the phase structure is affected if the mo
Eq. ~1! is changed either by using a modified measure@14# or
by adding matter fields@15#. For combinatorial triangulations
it has recently been observed that this can substantially a
the phase structure and, for a suitable modification, a n
crinkled phase appears@16#. If this observed phase structur
corresponds to a genuine change in the continuum beha
of the model Eq.~1!, one expects on basis of universality th
it should be independent of the ensemble of triangulati
used.
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