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Simulating four-dimensional simplicial gravity using degenerate triangulations
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We extend a model of four-dimensional simplicial quantum gravity to incllelgeneratdriangulations in
addition to the combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is
uniquely defined by a set of five distinct vertices, we allow triangulations containing multiply connected
simplexes and distinct simplexes defined by the same set of vertices. We demonstrate numerically that includ-
ing degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we
provide strong numerical evidence for an exponential bound on the entropic growth of the ensemble of
degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangu-
lations of volumeN,~4000.[S0556-282(199)01812-3

PACS numbg(s): 04.60.Nc, 02.70.Lg, 05.70.Fh

Discretized models of four-dimensional Euclidean quan{lexes are glued together. Provided this leads to a well-
tum gravity, known as simplicial gravity or dynamical trian- defined partition function, and as long as the difference is
gulations, have received ample attention in recent years, thenly at the level of discretization, one expects different
hope being that in a suitable scaling limit they might providechoices of7 to lead to the same continuum theory in the
a sensible nonperturbative definition of quantum gravity. Inthermodynamic limit. This is known to be true in two dimen-
the simplicial gravity approach the integration over metricssions where models of simplicial gravity corresponding to
is replaced by a sum over an ensemble of triangulations corflifferent choices of"are soluble as matrix mode[l§]. Even
structed by all possible gluings of equilateral 4-simplexedn two dimensions, however, for the partition function to be
into closed(piece-wise linearsimplicial manifolds(see, e.g., convergent the topolo_gy of the triangulations included in the
Refs.[1,2]). The regularized Euclidean Einstein-Hilbert ac- SUM Ed-(1) must be fixed, regardless of the ensemble used.
tion is particularly simple; it can be taken to depend on only”*S the same most likely is true in higher dimensions, |n|th|s
two coupling constantsy and, related to the cosmological paper we only consider triangulations of fixed spherical to-

and the inverse Newton’s constants. The coupling constanPsOI gy

. ; All simulations of four-dimensional simplicial gravity
are conjugate to the .volume.—the pumbgr of 4-s_|mplexes—have, as of yet, used an ensemblecombinatorialtriangu-
and the number of triangles in a given triangulation respecj,

i : : » “=*Jations7: . In a combinatorial triangulation evefy-simplex
tively. The regularized grand-canonical partition functiong uniquely defined by a set ob(+ 1) distinct vertices—it is
thus becomes

said to be combinatorially unique. In this letter we study a
larger ensemble oflegenerateriangulations7y where we
Z(u, k)= E iewNﬂKNz. (1) rglax this constraint and aIIowldistinct 'simplexes to be de—
TerCr fined by the same set of vertices. This includes two sim-
plexes with more than one face in common. We do, however,
The sum is over all distinct triangulatiorise 7, N; is the  retain the restriction that every 4-simplex is defined by a set
number ofi-simplexes in a triangulatiom andC+ denotes its  of five distinct vertexes, i.e., we exclude degenerate sim-
symmetry factor—the number of equivalent labeling of theplexes. Clearly7-C 75 . This corresponds to an ensemble of
vertices. restricted degenerate triangulations as defined in [Rgf.
Extensive numerical simulations have established that the The benefits of using a larger ensemble of triangulations
model Eq.(1) has a strong-couplingsmall x) crumpled are well known from simulations of two-dimensional simpli-
phase and a weak-coupliri@rge «) elongated phase, sepa- cial gravity which have demonstrated that less restricted the
rated by a discontinuous phase transition. In the crumpletriangulations are translates into smaller finite-size effects
phase the internal geometry collapses and is dominated by[&]. Recently the same observation has been made in three
novel singular structure—two singular vertices connected todimensiong6]. As simulations of four-dimensional simpli-
an extensive fraction of the total volume and joined by acial gravity are notoriously time-consuming, primarily due to
subsingular edgg3]. The elongated phase, on the otherthe large volumes needed to observe any “true” infinite-
hand, is dominated by branched polymer like triangulationsyolume behavior, any reduction in the finite-size effects is of
i.e., bubbles glued togetheta small necks into a treelike great practical importance.
structure. In this paper we show that including degenerates triangu-
In Eq. (1), 7 denotes a suitable ensemble of triangulationdations in simulations of four-dimensional simplicial gravity
included in the partition function. Different ensembles arelikewise leads to reduced finite-size effects. This reduction is
defined by imposing various restrictions on how the sim-most pronounced in the crumpled phase of the model where
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the free-energy density of the canonicdixed volume P

ensemble—the pseudo-critical cosmological constant ¢

rc(Ng)—converges very rapidly to an infinite-volume value. 2.54

This in turn implies an exponential bound on the entropic ]

growth of the ensemble of degenerate triangulations, some-  2-52 7

thing that has been the subject of some controversy in the ]

past for combinatorial triangulatiori8,9]. Although we ob- 2507

serve qualitatively the same phase structure as with the | 45 ]

model Eq.(1) restricted to combinatorial triangulations, there T ou?
are some dissimilarities. A discontinuous phase transition, . ] V ‘¢
separating the elongated and the crumpled phases, is already ] 5 Hou i
observed on triangulations of relatively modest sikg, 2.44 ——rrrriey e —— 1.00
~4000, compared to combinatorial triangulations where a 1000 10* 10° N4

volume of N,~32.000 is needed. And while the crumpled
phase is still dominated by a singular structure, for degener- FiG. 1. The pseudo-critical cosmological constaft(N,) for
ate triangulations this corresponds togas of subsingular  an ensemble of degenerate triangulations, together with fits assum-
vertices rather than to only two singular vertexes. ing a power-law convergence, E@) (solid curve, or a logarithmic
We have simulated the model E€l) using degenerate divergence, Eq(4) (dashed curve Also included are the corre-
triangulations on volumes up to 32.000 4-simplexes usingponding valuesuS(N,), for an ensemble of combinatorial trian-
Monte Carlo methods. As customary we work in a quasicagulations.
nonical ensemble of spherical manifolds with almost fixed
Ny: mer phase, on the other hand, the autocorrelation times ap-
pear comparable for the two ensembles.
_ The real benefit of using degenerate triangulations is the
Z(p,k;Ng) =, eria(Ner;)ZQNA(K), (2)  reduction of geometric finite-size effects. This reduction is
Ny most striking for the volume dependence of the pseudo-
critical cosmological constan;;,E(N4), which we shown in
whereQy, (k) =Z1cn,) €XPKN,) is the canonical partition  Fig. 1. Izor comparison we a!so ipclude t.he corresponding
function. As there do not exist ergodic volume conservingvaluesuc(N,4), for combinatorial triangulations. For degen-
local moves, hence the canonical ensemble cannot be sim@tate triangulations we observe a rapid convergence to an
lated directly, we must allow the volume to fluctuate. Theinfinite volume valueu. This can be quantified by compar-
quadratic potential term added to the action ensures, for aimg the fit of xJ(N,) to two different functional forms: a

appropriate choice o8, that these fluctuations are small.  weak power-law convergence,
In the simulations the triangulation space is explored us-
ing a set of local geometric changes, tlpeg moves. In a — b
(p,9 move, wherep=D+1—q, a (q—1) subsimplex in “C(N4)_“+N_Z’ ©

the triangulation is replaced by its “dual”’p(—1) subsim-
plex. For combinatorial triangulations th@,q moves are or a logarithmic divergence,
known to be ergodic fob<4 [10]. To demonstrate that the o
same holds true for degenerate triangulations we observe #e(Ng)=p+Db" logNy. (4)
that, just as in three dimensiof8], every set of combinato- ) ) ) ,
rially equivalent simplexes, or subsimplexes, can be madd e fit parameters and the quality of the fits are shown in
distinct by a finite sequence of tip,g) moves. Thus every Table I._In contr_ast to comk_)matonal trlan_gula'glons for degen-
degenerate triangulation can be reduced to a combinatori§f@t€ triangulations there is no comparison in the quality of
one. In addition the local nature of tifp,g) moves prohibits the fl.tS; the Iattgr, which correspgnds to a divergent partition
the creation of pseudo-manifolds in the simulations, i.e., trifunction Eq.(1), is ruled out by g¢*/(DOF)~117. For com-
angulations containing vertexes with a neighborhood not hobinatorial triangulations, oncthe other hand, it is difficult to
meomorphic to thd ball. use the quality of the fit ofug(N,) to either Eq.(3) or Eq.
From a practical point of view simulating degenerate tri- (4) to distinguish between those two scenafigee, e.g., Ref.
angulations is actually simpler than simulating their combi-[9D)-
natorial counterpart as one avoids the nonlocal manifold ) ] .
checks necessary to exclude combinatorially equivalent sim- TABLE I The parameters in the fit of the pseudo-critical cos-
plexes. For combinatorial triangulations these checks are tH80109ical constang.c (N,) to Egs.(3) and(4), respectively. Mea-
most time-consuming part of the simulatidii]. This sim- surements on volumes,=400 to 25.600 are included in the fits.
plification of is particularly beneficial in the crumpled phase —

2
where the singular structure dominates; in this phase we ob- ® Y X/DOF
serve a tenfold reduction in the effective autocorrelationgq. (3) 2.5543) 0.5505) [3.8]
times (measured in “real” tim¢ when using degenerate in- gq. (4) 2.3854) [117]

stead of combinatorial triangulations. In the branched poly
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P e S i el attached to this difference in the singular structure. Because
(q) k=0 °n - of the collapsed nature of the internal geometry it is unlikely
that any sensible continuum limit exists in the crumpled
phase, hence there is no reason to expect identical scaling
behavior for the two different ensembles. The details of the
discretization may still be important in the thermodynamic
limit for k<k.. It is, however, worth noticing that for de-
generate triangulations we do not observe any change in the
fractal structure as the volume is increased as for combina-
torial triangulations.

Additional evidence of a collapsed intrinsic geometry in
s 000 . the crumpled phase comes from tfabsence of volume
e ey scaling of the simplex-simplex distributios(r), i.e., the

10 100 1000 q number of simplexes at a geodesic distanf®m a marked

simplex. Using the scaling ansatfr) = Nifl/dHF(x), where
FIG. 2. The(normalized distributions of local volumesP(q),

1/d ; o
for degenerate triangulations. This is for 408 ,=<3200, and for x=r/N4 " [12']_'3’ we tried to collapse (_jlstrlbutlops(r)
x=0. (Insey The numbern,, of subsingular vertices versus vol- Meéasured on different volumes onto a single scaling curve.
ume. This was though not possible with an “acceptable” collapse
[with x?/(DOF) of order unity; moreover, the estimate of
the fractal dimensioml,, appeared to increase with the vol-
yme. From this we conclude thaf,=c in the crumpled
hase.

We have also investigated the phase structure of the
model for nonzero values of the inverse Newton’s constant
As for combinatorial triangulations we observe a phase
nsition to an elongated phaserqt=1.7. To establish the
e S .. nature of the phase transition we have studied the Monte
The origin of the large finite-size effects present in s,lmu-Carlo time series of the energy densityy=No/Ny, in the

lations with combinatorial triangulations lies in the nature of itical region. We show an example of on h tim .
the quantum geometry in the crumpled phase. As stated, tHg tcal region. Yve show an example of one suc € series

partition function is dominated by triangulations character-

ized by two singular vertexes connected by a sub-singular I’lo
edge. A singular vertex has a local voluge-the number of 3
4-simplexes containing that vertex—which grows linearly — 0.42 3
with the volume of the manifold, while the subsingular edge 3 \ 3
has a local volume which grows likKd;, a~2/3[3]. How- 0.40 1 3
ever, for combinatorial triangulations this singular structure E 4 3
only dominates on large enough volumes, on small volumes 0.38 ; 3
triangulations with only one singular vertex have larger en- - T T <
tropy. This results in a cross-over behavior in the fractal g 1 2l
structure afN,~ 1000, as can be observed in Fig. 1. . . L : . . . .

For degenerate triangulation the crumpled phase is like- * 70 1 NV, = 4000
wise dominated by a singular structure. This is evident from K =1.673
the probability distributiorP(q) of the local volumes which 0.006 7
contains an isolated peak in the tail. This is shown in Fig. 2
for «k=0. However, the distributiof?(q) differs in two re-
spects from the corresponding distribution measured on com- 0.004 7
binatorial triangulation$3].

(a) The peak corresponds to not just two singular vertices
but rather to several subsingular vertices, i.e., vertices with 0.002 1
local volumes that scale lik&ly, «<<1. A rough estimate
yields a=~0.9. The number of these sub-singular vertices,
ng, increases logarithmically with the volume as is shown in 0 +——rFf—7T—T————T— T y
the inset in Fig. 2. This suggests that the crumpled phase is 0:36 038 0 0ad 044 n
dominated by ayasof subsingular vertices. 0

(b) For each volumeP(q) effectively separates into two  FIG. 3. (Top) A MC time series of the energy density,
distinct distributions depending on whether the local volume=N,/N,, for N,=4000 andx=1.673.(Bottom) The correspond-
is even or odd. ing histogram together with a fit to a function composed of two

It is not clear though how much significance should beGaussian peak&lashed ling
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The importance of this result is that it provides strong
numerical evidence for an exponential bound on the entropi
growth of the ensemble of degenerate triangulations as
function of volume—a necessary condition for a well-
defined partition function Eql). And, as7c € 7p, this im-
plies an exponential bound on the number of combinatoriafr'a
triangulations as well.

I 1 1 1
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in Fig. 3 together with the corresponding histogram. This isa larger triangulation space the infinite-volume fractal struc-
for volumeN,=4000 andk=1.673. The histogram shows a ture is more easily approximated on small volumes. The
clear double-peak structure characteristic of a discontinuousost important result presented in this letter is a strong nu-
phase transition. Note that in order to observe the corremerical evidence for an exponential bound on the entropic
sponding.two-state signal using the combinatorial ensembleyrowth of the canonical partition functidﬂN4_ A more prac-

triangulations of volume,~32.000 are needefd]. tical result is the observation of a discontinuous phase tran-

For k> k. the model is in an elongated or branched poly-gjtion on triangulations of relatively modest size.
mer phase. This we have established by measuring the fractal o atural extension of the work presented in this paper is

dimensionsdy, and the spectral dimensiah for k=2. The 4, inyestigate how the phase structure is affected if the model
former is determined from the scaling of the simplex- Eq.(1) is changed either by using a modified meagarg or
simplex distribution, the latter frory t2he return prpbability of by adding matter fieldgL5]. For combinatorial triangulations
a walker on the dual grapp(t)~t~%[13]. Including mea-  jt'has recently been observed that this can substantially alter
surements on volumes\,=400 to 1600, we getdy  the phase structure and, for a suitable modification, a new
=1.9(2) andd;=1.325), in excellent agreement withy  ¢rinkled phase appeafd 6]. If this observed phase structure
=2 andds=4/3 as expected for branched polymer. corresponds to a genuine change in the continuum behavior
In this paper we have demonstrated that including degeryf the model Eq(1), one expects on basis of universality that

erate triangulations in simulations of four-dimensional sim-jt should be independent of the ensemble of triangulations
plicial gravity has many potential advantages over the model,ggq.

restricted to combinatorial triangulations. This agrees with

the same observations previously made in both two and three We are indebted to A. Krzywicki and B. Petersson for
dimensions. The chief benefit is the reduction in geometrialiscussions. S.B. was supported by FOM and G.T. by the
finite-size effects mainly due to an enlarged ensemble—wititHumboldt Foundation.
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