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The thermodynamical properties of the Reissner—Nordstanti-de Sitter black hole in the grand canonical
ensemble are investigated using York’s formalism. The black hole is enclosed in a cavity with a finite radius
where the temperature and electrostatic potential are fixed. The boundary conditions allow one to compute the
relevant thermodynamical quantities, e.g., thermal energy, entropy, and charge. The stability conditions imply
that there are thermodynamically stable black hole solutions, under certain conditions. By taking the boundary
to infinity, and leaving the event horizon and charge of the black hole fixed, one rederives the Hawking-Page
action and Hawking-Page specific heat. Instantons with negative heat capacity are also found.
[S0556-282(199)05108-3

PACS numbd(s): 04.70.Bw, 04.70.Dy

I. INTRODUCTION conditions chosen in this formalisfi2,17,18. More pre-
cisely, Hawking and Page 7,19 fix the Hawking tempera-
The path-integral approach to the thermodynamics ofure of the black holdi.e., the temperature defined so that
black holes was originally developed by Hawkirgg al.  the respective Euclidean metric has no conical singularity at
[1-3]. In this approach the thermodynamical partition func-the horizon, while York et al. [5,11,17 fix the local tem-
tion is computed from the path integral in the saddle-pointperature at a finite radius, where the boundary conditions are
approximation, thus obtaining the thermodynamical laws fordefined. For asymptotically flat spacetimes the two formal-
black holes. isms coincide, because at infinity the local temperature is
In the path-integral approach we can use the three differequal to the Hawking temperature. On the contrary, for as-
ent ensembles: microcanonical, canonical, and grand canongmptotically anti—-de Sitter spacetimes the two procedures
cal. Because of difficulties related to the stability of the blackdisagree, since the local temperature is redshifted to zero at
hole in the canonical ensemble, the microcanonical ensembiefinity and is equal to the Hawking temperature only in the
was originally considere@3,4]. However, further develop- region where spacetime has a flat metric. Louko and
ments by Yorket al. [5—8] allowed us to define the canoni- Winters-Hilt [13] have studied the thermodynamics of the
cal ensemble. Effectively, by carefully defining the boundaryReissner—Nordstro—anti-de Sitter black hole fixing a renor-
conditions, one can obtain the partition function of a blackmalized temperature at infinity that corresponds to the same
hole in thermodynamical equilibrium. This approach wasprocedure used in Refgl7,18. In this paper we have cho-
further developed to include other ensemi&6], and to  sen to follow York’s formalisni5,11,19 and study the ther-
study charged black holes in the grand canonical ensembl@odynamics of the Reissner—Nordstreanti-de Sitter black
[11] and black holes in asymptotically anti—de Sitter spacehole fixing the local temperature at finite radius.
times [12,9,13. This approach was also applied to black We find that the two procedures give some identical re-
holes in two[14] and thred12] dimensions. sults, e.g., in both procedures the Hawking-Bekenstein for-
In York’s formalism the black hole is enclosed in a cavity mula for the entropy19,2Q is obtained. In addition, by that
with a finite radius. The boundary conditions are definedtaking the boundary to infinity, and leaving the event horizon
according to the thermodynamical ensemble under studyand charge of the black hole fixed, we rederive the Hawking-
Given the boundary conditions and imposing the appropriat®age action and Hawking-Page specific heat from York’s
constraints, one can compute a reduced action suitable féormalism. However, the value for the energy at infinity dif-
doing black hole thermodynamid4.1,15. Evaluating this fers depending on which procedures one uses. In[R8&F.it
reduced action at its stable stationary point one obtains thevas found that the energy at infinity is equal to the mass of
corresponding classical action, which is related to a thermothe black hole, a result that does not hold here. These results
dynamical potential. In the canonical ensemble this thermoeonform with the similarities and differences found for the
dynamical potential corresponds to the Helmholtz free enSchwarzschild—anti-de Sitter black hole in Rdfs7,12.
ergy, while for the grand canonical ensemble the In Sec. Il we briefly introduce York’s formalism. In Sec.
thermodynamical potential is the grand canonical potentialll we compute the reduced action for the Reissner—
[2,11]. From the thermodynamical potential one can computeNordstran—anti-de Sitter black hole and evaluate its thermo-
all the relevant thermodynamical quantities and relationglynamical quantities. In Sec. IV we analyze the black hole
[16]. solutions. In Sec. V we study the local and global stability of
Some controversy has appeared related to the boundatiiese solutions. The limit where the boundary is taken to
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infinity mentioned above is studied in Sec. VI. Finally some

special cases are briefly referred in Sec. VII.

II. THE ACTION

The Euclidean Einstein-Maxwe[B] is given by

1 1
- 4 _ _ 3
=1 fdeJmR 2A)+8WJ;deJhK

1
- EJ'MdLlX\/aF,quMV_ Isubtra (1)

where M is a compact region with boundawM\, R is the
scalar curvature) the cosmological constard,the determi-
nant of the Euclidean metrick the trace of the extrinsic
curvature of the boundarg M, h is the determinant of the
Euclidean induced metrics on the boundafy,,=d,A,
—d,A,, is the Faraday tensor, anig,,, is an arbitrary term

that can be used to define the zero of the energy as will b

seen later.
In order to set the nomenclature we follddd] in this

section. We consider a spherical symmetric static metric o}

the form[11]

ds?’=b2dr?+ady?+r2dQ? 2

wherea, b, andr are functions only of the radial coordinate

ye[0,1]. The Euclidean timer has period 2. The event
horizon, given byy=0, has radiug . =r(0) and areaA,
=47rri . The boundary is given by=1 and at this bound-

ary the thermodynamical variables defining the ensemble ar

fixed. The boundary is a two sphere with an@g=4wr§,

whererg=r(1). We will consider the grand canonical en-
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The thermodynamical quantities and relations are ob-
tained from the “classical actionT (defined as the reduced
action evaluated at its locally stable stationary pgintsing
the well known relation between the “classical action” and
the thermodynamical potential

T=pF. (5)
HereF is the grand canonical potential since we are consid-
ering the grand canonical ensemble. All the thermodynami-
cal quantities can be obtained frok using the classical
thermodynamical relationsee, for example, Ref16]).

lll. THE REISSNER —~NORDSTROM—ANTI-de SITTER
BLACK HOLE

The Reissner—Nordstno-anti-de Sitter black hole in the
grand canonical ensemble is obtained using a negative cos-
mological constantA and the boundary conditiond
=T(Rg) and¢= ¢(rg), whererg is the boundary radius of
fhe spherical cavityT the temperature at the boundary afd
the electrostatic potential difference between the horizon and
he boundary. Instead af we can also use its invergg

The reduced action for Reissner—Nordstreanti-de Sit-
ter black hole is obtained from the Euclidean Einstein-
Hilbert-Maxwell actionl given in Eq.(1). For simplicity we
split the action in two termg=14+1,, wherel, is the
gravitational term andl,, the matter field term. To obtain the
reduced action we use the Hamiltonian constredhtand the
Maxwell equations.

The evaluation of ., is identical to the casa =0 and can
tgerefore be found in Refl11]:

Im=— 7 Bed, (6)

semble, where heat and charge can flow in and out througlheree is the electrical charge of the black hole ands the

the boundary to maintain a constant temperafl#eT (rg)
and electrostatic potentiab=¢(rg) at the boundary. We
impose a black hole topology to the met(®), by using the
conditions,b(0)=0, b'/al,_o=1 and ¢'/a)?|,_,=0, see
Ref. [11].

Evaluating the actioril) for the metric(2),

difference of potential betweey=0 andy=1. To evaluate
the gravitational termg (3) we use as mentioned above the
constraint(4):

G",+AQ”,=87T",. @)

The component of the Einstein tengsf, for the metric(2)

1 (e (1 rb’r’  br'2 is
I=—J drj dy| -2 — ——ab+Aabr?
2Jo 0 a a 2
o r' 1+2r” 2a'r’ ®
- 2y/ . 2 e i e .
_Ejz dT(br ) _}F d,,fldyr_Afz_| afr? r?2 afr a¥
2 0 a y=0 2 o 0 ab’ 7 subtr-
3 The stress-energy tensor compon€&hnt is given by
_ _ 1A\ 1 e
In order to obtain the reduced action one uses the proper T =—|—] =———. 9
" 8w\ ab 8 4

constraints. For the gravitational part of the actigngiven

in Eq. (3), the constraint used is the Hamiltonian constrain

[11,15

G",.+Ag",=87T",. (4)

In addition, for the matter fields part of the action we use

Maxwell equationd=*”.,=0.

t
Substituting Eqs(9) and(8) in Eq. (7) we obtain

2 r72 1 ’

2r!!

+
a%r? 2 a%

2a'r

asr

A= A
~lab

(10

Rearranging terms in Eq10) and using Eq(9) we obtain
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e?r’

+—+Arr’=0. (11
r

1 r/2 L !
— r — —
r2r/ a.2

Integrating and simplifying the previous equation yields

r'\?2 2M €2

12

where M is an integration constant ang’=—A/3. The

integration constant I can be evaluated using the black

hole topology condition r(’/a)2|y=0= 0:
2

€ 2.3
2M=r++—r +acry . (13
+

This is the known relation between the Arnowitt-Deser-
Misner (ADM) mass of the Reissner—Nordstreanti-de

Sitter black hole and its event horizon radius.
Substituting Eq(10) in Eq. (3) yields

I*—lfhd jld 2rb’r’ 2br’2
g_i 0 T 0 y a a

brr’’  bra'r’ r?
-2 +2 2

a2 ab T

1 (27  (br?)’
__f dr( )

2)o a

2 1
=—J de dy
0 0

1 1 27rd
“2P7 3],

~ I'subtr
y=0
r.I !

br

a

b'r2
,

. 14

=1 subtr
y=0

where we have used the topology conditions given in Sec. I\Ilvherefo(rB;a):f(rB 10,0.)= mg_ Substituting Eq.

and to evaluate the term i, we used Eq(6), since this
term is identical td .

The first term after the second equality in Ef{4) can be
evaluated by integrating and substituting Eq<2) and (13).

The respective third term is integrated and using the topol-
ogy conditions gives— wri . Following this procedure, we

obtain

|;: —pBref(rg;ry.e,a)— %ﬁe(ﬁ_wri_lsubtra (15

where the inverse temperature at the boungry given by

the proper length of the time coordinate at the boundary

=T 1=[3"b(1)dr=27b(1) and

2 3 2
r+ € r+ e

f(rg;ry.ea)= \/1_————a2—+—+a2r§.
rB r+rB I‘B ré

(16)
Adding Egs.(6) and(15), yields the reduced action
I*

=—Brgf(rg;r,.e,a)—Bed—7ar’ —lgp. (17
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The terml gy is of the form BEg py, WhereEgyy, is a con-
stant that does not depend @nor ¢, sincel gy, is an arbi-
trary term that can be used to fix the zero of the energy but
cannot affect other thermodynamical variabl6$ For con-
venience, we use for the zero of the energy
EADS: E(r+:0,e: 0):0, (18)
where E\ps is the thermal energy of anti—de Sitter space-
time.
To evaluatd 4, We compute the thermal energy of the
Reissner—Nordstro—anti-de Sitter black hole from E¢L7)
and use conditiori18). The thermal energy is given Ky6]

k] A5, 15, 5
~TrAasl,, ael,, 7B, TBlae),,

:_rBf(rB;r+1e1a)_Esubtri (19)
whereF is the grand canonical potential and we have used
Eq. (5). Although the reduced actiolf is not the classical
action (therefore we cannot writd* = 8F), the energy
has the form given in Eq.(19). This is because the
classical actionl corresponds to the minimum of the

reduced action and therefore the equalitieﬁ/()ﬁ)(z,,rB

:(al*/aﬂ)¢,r51r+ e and ((5"/(5’(#)'3}8:((ﬂ*/a(ﬁ)‘g’rB’rJr e
hold. Howevery , andein Eqg.(19) are not free parameters,
they depend on the boundary conditidng., on the values
of B, ¢, andrg) and on the cosmological constant. The
functionsr , =r . (B,¢,rg,a) ande=e(B,¢,rg,a) are ob-
tained from the equilibrium conditiongl*/dr ,=0 and
dl*/9e=0 as will be seen later.

Using Eq.(18) on Eq.(19), yields

Esubr= —refo(rs; @), (20)

(20) in Eq. (17), we finally obtain the reduced action for the
Reissner—Nordstro—anti-de Sitter black hole

1*=Brglfo(rg;a)—f(rg;r. .e,a)]—Bep—mrs .
(21

Similarly substituting Eq(20) in Eq. (19), we obtain its

thermal energy

E=rglfo(rg;a)—f(rg;ry e a)l. (22)
The mean value of the charge is
oF 1/ a1
:‘(%B;‘E(@)ﬁ;e- @3

The entropy is obtained from

o[ F Jl -,
Szﬂ(w) =Plog Tt=mr. (@4
b, b,
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where Eq(5) was used. SincA_ /4= wri , WhereA, is the
area of the event horizon, this is the usual Hawking-
Bekenstein entrop{19,20.

As mentioned above, the event horizon radius and
electric chargee of the black hole for the given boundary
conditions, i.e.8, ¢, andrg, are obtained by evaluating the
locally stable stationary points of the reduced action with
respect tar, ande [11]. Effectively, once the values g8,
¢, andrg are held fixed by the boundary conditions, then the
reduced action is a function of only, ande, i.e., I*
=1*(r, ,e). The local stability conditions are th€p VI*
=0 and(ii) the Hessian matrix is positive definite. The latter However, not every solution of this equation corresponds to
condition corresponds to a condition of dynamical as well ag Physical solution of a black hole. This is because the radius
thermodynamical stability11] and will be discussed in Sec. Of the event horizon of the Reissner—Nordstreanti-de Sit-

B2~ 1+ 2+ a2 )2+ 402 B2 P2 (— 1+ 2+ a2 P?)x
+(—1-a?+6a2B%2— 1222 B2~ 6a* B2 P>
+6a2B2¢*+10a* B2 ") X2+ (1— p2— a2 p?

— 120 B2 %+ 120 B2 ™) X3+ a?(9a2 B2 — 2
—18aB%¢?+ 902 B2 Y X + a®(1— ¢?)x°=0.
(3D

V. We will start by investigating the first condition.
The condition of stationarit¥ |* =0 gives

2
ﬂ=7f(rs;r+,e,a), (25)

where k= (r2 —e?+3a?r*)/2r3 is the surface gravity of
the horizon, and

f(rg;ro,e,a) t (26)

_(e e
=l

ry

These are the inverse Hawking temperature and the differl—

ence in the electrostatic potential betwaenandrg blue-
shifted from infinity torg, respectively.

Inverting these two equations, and e are obtained as
functions of the boundary conditions and the cosmological

constant. We define the more convenient variables

1
+
(0]

n. ’8 R 2

= — = — = = 2
X= rBy q rB, 47TI’B' o rB' (27)
In these variable$25) and (26) are written
J— q2 —
,8=X\/1—X\/1— Y+a2(1+x+x2)
o2 -
X ( 1- —2+3a2X2) , (28
X
q P? —1/2
= ;Jl—x(l— 7+oﬂ(1+x+x2)
(29

To invert these equations, we start by inverting E28) to
obtainq;

GP2=x2p 1+ a?(1+x+xD)](1—x+x¢2) L. (30)

Substituting Eq.(30) in Eqg. (28) and taking its square, we

obtain a seventh degree equationximvith a double rootx

=1 which is not a solution of the initial equations. Getting

rid of that root, we obtain a fifth degree equation

ter must obey the following condition:

r2 —e?+3a%r* =0, (32

where the equality defines the extremal Reissner—
Nordstran—anti-de Sitter black hole.

Comparing Eq.(32) with Eq. (25), yields thatg is real
and positive. Comparing it with Eq26) we obtain the fol-
lowing condition:

1+3a%r?
2<

1+ a?(1+2r,rg+3r2)

(33

n the coordinates given in E@27), the inequality(33) be-
comes

, 1+ 3a2x2
=

<—— . 34)
1+ a?(1+2x+3x?) (

This is the condition that the solutions of E§1) must obey

in order to represent physical black hole solutions.
Equation(31) has no known analytical solutions. How-

ever, its solutions can be numerically computed and pre-

sented in graphics. This will be done in the next section.

IV. ANALYSIS OF THE BLACK HOLE SOLUTIONS

In this section we present in graphics an analysis of the
solutions of Eq(31) that obey conditior{34). This analysis
is done in two steps(i) first, we analyze Figs. 1-4, that

present the solutions as functions of8 and ¢, for values

a=0, 0.5, 1, and 5{ii) afterwards we show in Figs. 5 -9,
the regions with zero, one, and two solutions in the space
spanned byp X « for fixed values of.

(i) Analysis of Figs. 1-4x=0. The solutions forx=0
are presented in Fig. 1. These are obviously identical to the
solutions of the Reissner-Nordstnoblack hole, see Ref.
[11]. We can see in Fig. 1 that for fixed there is a maxi-

mum of B, Bmad @), SO that for3> B.{#) there are no
solutions. ForB< Bma{#) one can have two or only one
solution depending on the precise value Exf For ¢=0
(Schwarzschilgd one has always two solutions foE
<Bimad0) [Bmaf0)=2/1/27]. In the limiting casef—0
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T 05

0.0

0.0 0:5
¢
FIG. 1. Solutions of Eq(31) for «=0 (Reissner-Nordstr) as FIG. 3. Solutions of Eq(31) for =1 as a function of the

a function of the electrostatic potential at the boundarfor fixed electrostatic potential at the boundady for fixed values of3
values of3=0.1,0.3,0.6,0.9,3,9. The stable solutions correspond to=0.1,0.3,0.6,0.9,3,9. The maximum valuegfor which there are
the upper branch of the curves. This means that when there are twaplutions, ¢,,=0.76 is imposed by conditio(84). The stable so-

solutions for given values g8 and ¢, only the solution with higher lutions correspond to the upper branch of the curves. This means
that when there are two solutions for given value@aind ¢, only

value ofx is stable.
the solution with higher value of is stable.

(i.e.,rgT—x), one finds there is a solution with=r , /rg
—1 (as will be seen in Sec. V this is the stable solutiaee

Ref. [5]. For ¢=0, still, and 8> B,a(0) there are no solu-
tions (see comments at the end of this_sec)jdﬁor <o

<1/4/3 one has one or two solutions up/a,.{ ¢), whereas

for B> Bmal ) there are as well no solutions. Finally for ) oy iy e
¢>1//3 there is only one solutiofagain for 3< Bnad ¢)] 1-¢°—a ¢~ 2a°¢px+3a(1-¢)x°=0. (39

corresponding to the unstable branch as will be seen in Sec.
Notice this is the equation one obtains taking the equality in

V. Note that, fora= 0, condition(34) implies that the elec- © C <
trostatic potential has a maximum gkq,=1. Notice also condition(34). In fact it corresponds to the condition of ex-
Pt n the i =(T_~0), he cunies i ig 3 tnd to [T OF 1 Rerssrer Nt s Ster ek,
:\Tgrg:trr\'/;nqst; ;CQ'V:(')CIQ é:orie(;ponds to the extremal Relssner-only the extremal black holes have zero temperature.
= * ' ) Equation(35) has at least one solution that verifies'®
The casese#0, which are now going to be analyzed -1

require the following prior analysis. As in the case: 0, for

a+#0 there are solutions =0 (B=), that correspond to
the extremal black holes. This can be analytically verified by

replacingﬁ=w in Eq. (31), from where we obtain the equa-
tion

FIG. 4. Solutions of Eq(31) for a=5 as a function of the

FIG. 2. Solutions of Eq(31) for @=0.5 as a function of the electrostatic potential at the boundagy for fixed values of 8
electrostatic potential at the boundady for fixed values of 8 =0.1,0.3,0.6,0.9,3,9. The maximum valuedfor which there are
=0.1,0.3,0.6,0.9,3,9. Notice thét<0.89, as imposed by condition solutions, ¢,,,=0.71, is imposed by conditioi34). The stable
(34). The stable solutions correspond to the upper branch of theolutions correspond to the upper branch of the curves. This means
curves. This means that when there are two solutions for givelﬂhat when there are two solutions for given Va|ue§gjnd¢y 0n|y

values ofEandgb, only the solution with higher value ofis stable.  the solution with higher value of is stable.
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¢

.5 1

FIG. 5. Number of solutions of E¢31) with 83— 0, in the space
¢ X a, wherea is given by Eq.(40). There is one black hole solu-
tion in the confined region and also far=1 (i.e., infinite cosmo-
logical constant for ¢<+/0.5. There are two solutions fap=0,
i.e., for the Schwarzschild—anti-de Sitter black hole.

— 1 . 1+ 3a? ) 39
a’<= an — << ——,
6 1+ 6a? 1+ a?
1 -, 2 3a2+6—\9a%+ 1242 1
—<a’<- and — <SP ——,
6 3 4a%+6 1+ a?

PHYSICAL REVIEW D59 124007

¢

.5 1

FIG. 7. Number of solutions of Eq31) with 5= 2/,/27=0.38,
in the spacep X a, wherea is given by Eq(40) (see caption of Fig.
6).

2

2 3a2+6—9a*+ 1242
o 2§ =

4046

1+3a?
= —.
1+6a?2

2

and

For these values ap ande, the curves for fixedp presented

in the figures reach infinit@. Furthermore, Eq(35) has two
solutions if

1/6<a?<2/3 and

3a%+6—\9a"+122° 2 1+3a? an
— < =,
40°+6 1+6a?
1 a
1
[ 2
St
5 1
FIG. 6. Number of solutions of Eq31) with 8=0.3, in the 0 |
space¢ X a, wherea is given by Eq.(40) 0 means that there are
zero solutions in this region, i.e., there are no solutions of black I N D
holes in thermodynamical equilibrium for this set of valuegofp, 5 1

anda. 1 means that there is one solution. 2 means that there are two
solutions. In the shaded region the stable solutions are not globally

stable and therefore represent metastable black h@les Sec.
V B).

FIG. 8. Number of solutions of E¢31) with B=1, in the space
¢ X a, wherea is given by Eq.(40) (see caption of Fig. )6
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FIG. 9. Number of solutions of E¢31) with 8=, in the space
¢Xa, wherea is given by Eq(40). Notice that for8— o, Eq.(31)
becomes EQq(35) which corresponds to the extremal Reissner—
Nordstron—anti-de Sitter black hole, see discussion following Eq.
(35) (see caption of Fig. )6

3a2+6—9a*+ 1242
40°+6

1
2<

a?=2/3 and S
1+a?

a=0.5. The solutions for=0.5 are presented in Fig. 2.

This figure presents the same properties mentioned prev

ously for the caser=0. Comparing Figs. 1 and 2, we verify
that the maximum value g8, B.{¢), for which there are

PHYSICAL REVIEW D 59 124007

the curveB=9 is representative of the curves with highlt
can be seen that fo8=9 there are two solutions fop
< ¢, Wherepo=1/\1+ a?=0.71 is the value ofp where

x=0 for everyﬁ. There is one solution for 0.A¢$=<0.76,
see Fig. 3, where the upper-limit is imposed by condition

(34). In fact, condition(34) imposes, fora®<2/3,
1+3a?
Pma= N T a2

Notice this is the upper-limit of the interval given in Eq.
(36).

a=5. Figure 4 presents the solutions ter5. Using Eq.
(36), we can see that fap=<0.19, there are solutions only for
B<Bma{®). For 0.19 ¢=<0.71 there is one solution for
high values of3 (consider the curvgg=9). For infinite 8
this region is 0.195 ¢=<0.196, see Eq(37). In Fig. 4, we
can also see that for 0.89$=<0.71 there is one solution,
where the upper-limit is given by E¢39). For higher values

of « there are not new types of solutions and therefore it is
not necessary to pursue our analysis.
(i) Analysis of Figs. 5—9. In order to clarify the disposi-

tion of the number of solutions for given values£f¢, and

B, we present, in the space spannedabgind ¢ for fixed 3,
the regions with zero, one, and two solutions. We do this for

eleven different values QE E= 0,0.3,24/27=0.38,1%, see
Eigs. 5-9, respectively. In these figures one can see the evo-

lution of the number of solutions g3 increases. To present
all possible values ofve[ 0,0, we use in these figures the

(39

solutions is increasing, i.e., there are solutions for slightlyP@rameter instead ofa, a is defined by

lower values of the temperature at=0.5 than ata=0.

Furthermore there are solutions for infinjt_ﬂain the interval
0.83< $»=0.89, see Eq.36), this can be seen using the curve

2

a= —arctana, (40)
ar

B=9 in Fig. 2, since it corresponds to a good approximation

of infinite 3.
Condition (34) implies, for a®°<2/3,

1
V1+a?

This condition corresponds to the upper-limit of the interval
given in Eq.(36), which in this case igp=0.89. Notice that

if in Eq. (3) we do x=0, we obtain precisely¢
=1/\J1+ a?, as can be seen in Fig. 2.

a=1. Figure 3 plots the solutions far=1. We can see
that this figure presents similar properties to the ones o

tained for lower values of:. Using Eq.(§6),_vve can see that
f_or $=0.66 there are solutions only f@< B,.{ #), where
Bmad{ @) is finite and depends og. On the contrary, the

curves for higher values ap reach infiniteﬁ. In particular,
for 0.66< ¢=<0.71[see Eq.37)] there are two solutions at

low temperature§i.e., highﬁ) as can be seen in Fig. 3, since

<

=

¢ (39)

b-

such that Bsa<1. It is this variable that appears in the
ordinate axis in Figs. 5-9.

Due to condition(34) there are no physically possible
solutions on the right-hand side of Figs. 5-9.

An important value ofg, first studied by York[5] in
connection with the Schwarzschild black holg=€ a«=0), is
B=2/\27=0.38, i.e.,8=(87/\27)rg . For higher values of
B, lower values of the temperature, there are no black hole
solutions. This is a quantum effect and following Ydi
can be understood as follows. One can associate a Compton
type wavelength to the energkgT of the thermal particles,
by A =%c/kgT, or in Planck units\ = 1/T= 8. If this Comp-
ton wavelength is much larger than the radigsof the cav-
ity (or more specificallyx>8x/\27rg=4.83) then the
thermal particles cannot be confined within the cavity and do
not collapse to form a black hole.

By analyzing Figs. 6 and 7, we can see that for nonzero

cosmologica_l constant%éO) this phenomenon starts at
even lowergB (higher T). Indeed using Eq(28) (with ¢
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=0, i.e., g=0) we can show that to first order in P21 * S2E* I
a? (a’ri<1), York's criterion for no black hole solutions | =B— =B(—> ,
becomes e e 9e/s
eq eq
87 ( 5 , 2) 1 P?1* BaZE* B(M) 1(3,3)
AN=B>—rpg|1—<sarg]|. 41 = =8l—=| =—=[—=—] ,
A J27 B 18" B eS| " oers|  T\as| — Blae]g

From Eq.(41) we infer that the role of the negative cosmo- PI* 9°E* 1/dB
logical constant A = —3«?) is to produce an effective cav- P =B | = Blas) (47)
ity radiusreﬁer(l—%azré) smaller thanrg. Thus for a eq eq €

given temperature, it is more difficult to confine the thermalWhere “eq” means quantities evaluated at equilibrium. i.e
particles, and harder to form black holes, in accord with the q q 4 v

idea that a negative cosmological constant shrinks space. at ?ﬁesﬁ?;'tonf& (Fﬂ)nitss ;fn:hle rti((jeugr(‘as? sﬁlr?gse equations
If we extend our previous first order analysis to include P Py q '

the electrostatic potentiap, we obtain The second pivot45) is easily obtained from Eq47)

87 5 detl; 1(aﬂ> 1(&/3 a¢) / (aqs)
N=p>=re 1- et +24). (42 T, B\esl Bl )as], /) Lol
We can see that the electrostatic potential has the opposite =_ i{(%) +(%) (f)
effect of the cosmological constafgee, for example, Figs. B\ S|, \de/glaS]
6, 7, and 8. 1(ap 1
V. STABILITY - E(E s Corg’ 49

A. Local stability whereC,,_is the heat capacity at constagtandrg . No-

As mentioned before there is a second condition of locatice that in all this calculation we have implicitly helds
stability that has not yet been investigated. We will follow constant, since in the grand canonical ensemble the dimen-
the same procedure as given in Réfl]. This is the condi- sjon of the system is held constant.
tion that the Hessian matrix of the reduced action be positive |mposing positive pivots for local stability yields
definite. For convenience in this analysis we will use the

variableS==r% insteadr , . The Hessian matrix df* (S,e) (ﬁ =0
is el ~
Srg
|* * s
,ee ,€
1% = ( o S) _ (43) Cyr =0. (49)
,eS ,S

These conditions are identical to the classical thermodynami-
cal stability conditiong16]. Therefore one can conclude that
the dynamical stability conditions given in Eq46) and(49)

The matrix is positive definite if its pivots are all positive.
The pivots of Eq.(43) are

1 (44) are identical to the thermodynamical stability conditions
' [11].
and For the Reissner—Nordstre-anti-de Sitter black hole,
dell* ) the pivots obtained from Eq$47) and (48) are
e(l”;
e (45) g\ (1 1
.ee % < - : E
B
The first condition of local stabilityV | * =0 yields
r e?  a’rd @2 v
(9'* &E* (9E X 1__+___ + 2+a2ré
2 2 2 2.3
al* JE* B JE +e_(i_i) _fe_ & o7
75| =Bl gg | ~1=0=p"=T=|75) - rg\r+ Is 'g Iifg Tg
e e e
(46) e? 3/2
2.2
. . + - + o rB , (50)
These are well-known thermodynamical relati¢h6]. rg
From Eq.(46), we compute the second derivatives| &f
in the stationary points af* which is positive, and
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Cor =473 (r—r.)(r2 —e?+3a%r? As the reduced action given in EQR1) grows without
"e bound in the directions whene, or e tend to infinity, the
X[1+ az(r§+r+rB+ri)] global minimum must be found either at the local minimum

or atr ., =e=0. The action tends to zero as ande tend to

4 3 2,2 2.3
X{e"+ri[(6ari—2)(rgtary zero, therefore the condition of global stability of the stable

+3r, +2a%% +3a%5 ]+ 26?r solutions is that the classical actibmust be negative.
If the classical action is positive, the partition function is
X[—2r,+rg(l+ az(r§—2r+r3—2ri))]}’l. dominated by points near the origin. But these points do not
(51) correspond to a black hole in thermal equilibrium. In this

case, the black hole, that corresponds to the stable solution of
The numerator ofC,, _ is positive, therefore the condition the reduced action, is metastable. »

C,. >0 is verified if the denominator in Ed51) is posi- _We verified numerically which boundary conditions
“drpT . ) (given by the values 08, ¢, anda) correspond to globally
tive. Using Egs(27) and(30), we obtain the following con-  staple black holes, i.e., to solutions that dominate the parti-
dition of stability for the solutions of Eq31): tion function. We can also see, using a simple argument, that

for E< £ all locally stable solutions are also globally stable.
Indeed, York[ 6] has shown that for the Schwarzschild black

[—2(1+ a?)+3x+6a2(1+ a?)x2+ 2a®x3+ 3a*x°] 2 o= :
hole the condition of global stability i8<<5s and since the

X (1=x+x¢?) 2= {21+ (1 +x+x?)] classical actiorl is a decreasing function ap and «, this
- ) condition is still a bound for global stability for a$h and «.
X[=1+2x+a(—1+2x+2x)]} However, for3>£, there is always a certain region ¢f

X a, for which the locally stable solutions do not correspond
to global minima of the action. We show these regions in

B ical . i th luti h Figs. 5-9, where the regions for which the solutions do not
y numerical computation, we can verify the solutions that, . oshond to a global minimum of the action, i.e., the meta-

obey this condition. We have found that the lower branchegy e solutions, are shaded. In particular Figs. 5 and 9 do not

of the curves presented in Figs. 1 to 4 correspond to unstabigosent 4 shaded region because all the stable solutions are
solutions, while the upper branches correspond to stable so-

lutions. Therefore we can say that in general only the soludominant in the limit3—0 as said above and f@— the
tions with the higher value of, that is with higher event region with metastable solutions is too thin to be presented in
horizon radius, are stable. graphic.

In more detail we can distinguish three cas@sfor low

a (see Figs. 1 and)2and for values o3 and ¢ for which
there is one solution, it corresponds to a lower branch and

therefore this solution is unstabléi) for high values ofa One can study the case where the boundary goes to infin-
(see Fig. 4, whenever there is only one solution, it corre- ity. There are two different ways for taking this limiti)
sponds to an upper branch and therefore this solution ifixing the horizon radius ;. and the charge of the black
stable;(iii) whenever there are two solutions, for given val- hole; (i) fixing the boundary conditions, i.e., fixing and ¢.
ues ofﬁ' d%Z, the smaller one is an instantdne., it is an In this"sectior'l we .wiII study .only the pure Reissner—
unstable solution and dominates the semi-classical evaludiordstran—anti-de Sitter cases, i.e., the cases witkp# 0.
tion of the rate of nucleation of black holgal]) and the one  Other cases, with either or ¢ equal to zero are considered
with larger event horizon radius is a stable black hole. N the next section. _ _ o

These three cases can easily be distinguished in Figs. 5—9. We will start by studying the first casét) Fixing the
In these figures there are in general two separated regiodack hole solution, i.e., fixing . ande and taking the limit
with one solution. The region with lower values af i.e., s—, We obtain from Egs(25) and(26) that the tempera-

lower values ofa, corresponds to cage and these are un- ture E:'B 5 : ang fleCtrOStgt'C,EOtem'ab go to ze[ol ast
stable solutions. The region with higher valuesaotorre- ~ ~L(r —&°+3a’r3)/Amar Jrg” andd~(e/ar . )rg ", re-
sponds to caséi) and these are stable solutions. Obviously,SPectively. |2n Zth_lsilzcase the thermal energy goes to zero as
the region with two solutions in each Fig. 5-9, correspondd&~M(1+ a“rg)~ " whereM is the mass of the black hole

to cas(iii), i.e., one of those solutions is stable, the one withdiven in Eq.(13). As also previously found in Ref12], the
higher value ofx, and the other unstable. thermal energy at infinity is not equal to the ADM mass of

the black hole, due to the the fact that the spacetime is not

asymptotically flat. Note that in Refgl13,17] it is found that

E=M due to a different definition of the temperature of the
The stable solutions computed in the previous subsectioansemble.

are not necessarily global minimum of the action. In this case To determine the stability of the black hole solutions in

they will not dominate the partition function and the zero- this limit, we compute the heat capacity, from Ef1) and

loop approximation cannot be considered accuréitl]. obtain

X (1= X+X$?) + ¢* X[ 1+ a?(1+x+x2)]?>0. (52

VI. THE rg— o LIMIT AND THE HAWKING-PAGE
SOLUTIONS

B. Global stability
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2712 (r2 —e2+3a%%) (I) Putting =0 andA =0, we obtain the Schwarzschild
Cyu= A i (53)  black hole studied in Ref5]. There are two solutions for

B< Bmax=2I\27. These solutions can be computed analyti-

The numerator in Eq553) is necessarily positive due to con- Cally, since Eq(31) becomes a third degree equation for
dition (32), thatr . must obey to represent the event horizon=0. Only the solution with higher event horizon radius, i.e.,
radius. Therefore, the stability condition for these solutiondhigher mass, is stable. In the limig—c the unstable solu-
is simplye?—r2 +3a?r? >0. Notice that Eq(53) is a gen-  tion, i.e., the solution with lower value of the horizon radius,
eralization toe#0 of the heat capacity found by Hawking goes tor . =1/(4mr ), while the stable solution goes to in-
and Page in Ref[17]. Computing the action in this limit finity asr,~rg [5].
yields (1) Putting A=0 we obtain the Reissner-Nordstno
black hole. This has been studied in Rdfl]. There are one

2,2 2 24 or two solutions for3< Ba. These as stated above can be
ari(ri—e“—acr . - i .
—_ + computed analytically. Once again only the solution with
' 2 _ 2 2.4 - (54) ; : : G oviete
re—e“+3ar; higher event horizon radius, when it exists, is stable. In the
o _ _ ) _ limit rg—o, the black hole horizon radius is,=(g/
This is precisely Hawking-Page acti¢h7,13, which here  47)(1— ¢?) and the charge is given k= ¢r . . The ther-
we have recovered from York’s formalism taking the appro-ma| energy of these solutions is equal to their ADM mass
priate limit. _ - E=M. The heat capacity is negati@,= —2mr? . There-
From Eg.(54), we can verify the global stability of the {5re the solutions are unstable.

black hole by imposing thak<<0. Therefore we conclude (Ill) Putting =0 we obtain the Schwarzschild—anti-de
that the solution given byrg,e)zcorrzesp()zngs to a globally gjtier. This black hole has been studied before in Refs.
stable black hole if conditions®. —e°—«a“r, <0 and Eq. [17 12 This black hole has two solutions fi< .y, and
(32) are both verified. These conditions are similar to thoseagain only the one with higher event horizon radius is stable.
found in Ref.[13]. . . ~ The limit rg— can be taken in two waydi) fixing the
~ We conclude that taking different boundary conditions,temperature and the cosmological constant, there is one un-
i.e., choosing to fix the boundary conditions in the boundarysiaple solution that tends to zero as~(ﬁ/4wa)rgl and
at in_finity (as _done hepeor in the _region Where spacetime is one stable solution that tends to infinityras~crg, wherec
flat like Hawking and Paggl7], y_|eld_s a d|ffer_ent value for s the solution of equation®+ (3aBl4m)2c2— 1=0; (ii) fix-
the energy only. Furthermore this difference is so that all th‘?ng the horizon radius . , the temperature goes to zero as

otrller pfhyhsica:] quantitigsﬂike the ac_tion,_enrt]ropy, mean- T~(1+3a2r2+)/47mr+r,;l these solutions are stable if
value of the charge and heat ca| ain the same. '
9 palcitym 3a%r2>1, see Ref[12].

On the other hand, we can take a different linit) we . .
can fix the boundary conditions, i.e3,and ¢, when taking (V) The ex.trer.nal cases r(.aq'uwe'speual d@2-24 and
were not studied in any detail in this paper.

the limit. This is done by recovering the variabjggnd« in
Eq. (31), using Eq.(27). Taking the limitrg— o0, we obtain
the equation a?B $p?(1+2x+3x%)—3x%]?—x?(1+x
+x%)(1—x+ ¢?x)=0. This is a fifth degree equation in
For fixed 8, ¢, anda and taking the limir g—c, we obtain We have studied the thermodynamics of the Reissner—
a solutionr . that tends to infinity as, ~c.rg, wherec, is  Nordstran—anti-de Sitter black hole in York's formalism. In

a constant that depends only @ ¢, and «. Considering  the grand canonical ensemble where the temperature and the
now Eq.(30), we can see that the charggoes to infinity as  electrostatic potential are fixed at a boundary with finite ra-
e~Cel 5, Where agairc, is a constant that depends only on dius, we have found one or two black hole solutions depend-
B, ¢, anda. Therefore the entropf24) and the mean-value ing on the boundary conditions and the value of the cosmo-
of the chargg23) both go to infinity ag3. In this limit the  logical constant. In general when there are two solutions, one
action, the thermal energy and the heat capacity, given iis stable, the one with larger event horizon radius, and the
Egs. (21), (22), and (51), respectively, also diverge aé. other is an instanton. On the other hand, the cases with a
The heat capacity is always positive, which means these s@ingle solution can correspond either to a stable or unstable
lutions are stable. The action is always positive, therefore thgolution. We have found that both high values of the cosmo-
solutions are not globally stable and represent metastablegical constant and low temperatures favor stable solutions.
black holes.

e?—r2 +3a%r?
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