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Thermodynamics of Reissner–Nordström–anti-de Sitter black holes
in the grand canonical ensemble
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The thermodynamical properties of the Reissner–Nordstro¨m–anti-de Sitter black hole in the grand canonical
ensemble are investigated using York’s formalism. The black hole is enclosed in a cavity with a finite radius
where the temperature and electrostatic potential are fixed. The boundary conditions allow one to compute the
relevant thermodynamical quantities, e.g., thermal energy, entropy, and charge. The stability conditions imply
that there are thermodynamically stable black hole solutions, under certain conditions. By taking the boundary
to infinity, and leaving the event horizon and charge of the black hole fixed, one rederives the Hawking-Page
action and Hawking-Page specific heat. Instantons with negative heat capacity are also found.
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I. INTRODUCTION

The path-integral approach to the thermodynamics
black holes was originally developed by Hawkinget al.
@1–3#. In this approach the thermodynamical partition fun
tion is computed from the path integral in the saddle-po
approximation, thus obtaining the thermodynamical laws
black holes.

In the path-integral approach we can use the three dif
ent ensembles: microcanonical, canonical, and grand can
cal. Because of difficulties related to the stability of the bla
hole in the canonical ensemble, the microcanonical ensem
was originally considered@3,4#. However, further develop
ments by Yorket al. @5–8# allowed us to define the canon
cal ensemble. Effectively, by carefully defining the bounda
conditions, one can obtain the partition function of a bla
hole in thermodynamical equilibrium. This approach w
further developed to include other ensembles@10#, and to
study charged black holes in the grand canonical ensem
@11# and black holes in asymptotically anti–de Sitter spa
times @12,9,13#. This approach was also applied to bla
holes in two@14# and three@12# dimensions.

In York’s formalism the black hole is enclosed in a cav
with a finite radius. The boundary conditions are defin
according to the thermodynamical ensemble under stu
Given the boundary conditions and imposing the appropr
constraints, one can compute a reduced action suitable
doing black hole thermodynamics@11,15#. Evaluating this
reduced action at its stable stationary point one obtains
corresponding classical action, which is related to a therm
dynamical potential. In the canonical ensemble this therm
dynamical potential corresponds to the Helmholtz free
ergy, while for the grand canonical ensemble t
thermodynamical potential is the grand canonical poten
@2,11#. From the thermodynamical potential one can comp
all the relevant thermodynamical quantities and relatio
@16#.

Some controversy has appeared related to the boun
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conditions chosen in this formalism@12,17,18#. More pre-
cisely, Hawking and Page@17,18# fix the Hawking tempera-
ture of the black hole~i.e., the temperature defined so th
the respective Euclidean metric has no conical singularity
the horizon!, while York et al. @5,11,12# fix the local tem-
perature at a finite radius, where the boundary conditions
defined. For asymptotically flat spacetimes the two form
isms coincide, because at infinity the local temperature
equal to the Hawking temperature. On the contrary, for
ymptotically anti–de Sitter spacetimes the two procedu
disagree, since the local temperature is redshifted to zer
infinity and is equal to the Hawking temperature only in t
region where spacetime has a flat metric. Louko a
Winters-Hilt @13# have studied the thermodynamics of th
Reissner–Nordstro¨m–anti-de Sitter black hole fixing a reno
malized temperature at infinity that corresponds to the sa
procedure used in Refs.@17,18#. In this paper we have cho
sen to follow York’s formalism@5,11,12# and study the ther-
modynamics of the Reissner–Nordstro¨m–anti-de Sitter black
hole fixing the local temperature at finite radius.

We find that the two procedures give some identical
sults, e.g., in both procedures the Hawking-Bekenstein
mula for the entropy@19,20# is obtained. In addition, by tha
taking the boundary to infinity, and leaving the event horiz
and charge of the black hole fixed, we rederive the Hawki
Page action and Hawking-Page specific heat from Yor
formalism. However, the value for the energy at infinity d
fers depending on which procedures one uses. In Ref.@13# it
was found that the energy at infinity is equal to the mass
the black hole, a result that does not hold here. These re
conform with the similarities and differences found for th
Schwarzschild–anti-de Sitter black hole in Refs.@17,12#.

In Sec. II we briefly introduce York’s formalism. In Sec
III we compute the reduced action for the Reissne
Nordström–anti-de Sitter black hole and evaluate its therm
dynamical quantities. In Sec. IV we analyze the black h
solutions. In Sec. V we study the local and global stability
these solutions. The limit where the boundary is taken
©1999 The American Physical Society07-1
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infinity mentioned above is studied in Sec. VI. Finally som
special cases are briefly referred in Sec. VII.

II. THE ACTION

The Euclidean Einstein-Maxwell@3# is given by

I 52
1

16pEMd4xAg~R22L!1
1

8pE]M
d3xAhK

2
1

16pEMd4xAgFmnFmn2I subtr, ~1!

whereM is a compact region with boundary]M, R is the
scalar curvature,L the cosmological constant,g the determi-
nant of the Euclidean metrics,K the trace of the extrinsic
curvature of the boundary]M, h is the determinant of the
Euclidean induced metrics on the boundary,Fmn5]mAn

2]nAm is the Faraday tensor, andI subtr is an arbitrary term
that can be used to define the zero of the energy as wil
seen later.

In order to set the nomenclature we follow@11# in this
section. We consider a spherical symmetric static metric
the form @11#

ds25b2dt21a2dy21r 2dV2, ~2!

wherea, b, andr are functions only of the radial coordina
yP@0,1#. The Euclidean timet has period 2p. The event
horizon, given byy50, has radiusr 15r (0) and areaA1

54pr 1
2 . The boundary is given byy51 and at this bound-

ary the thermodynamical variables defining the ensemble
fixed. The boundary is a two sphere with areaAB54pr B

2 ,
where r B5r (1). We will consider the grand canonical en
semble, where heat and charge can flow in and out thro
the boundary to maintain a constant temperatureT[T(r B)
and electrostatic potentialf[f(r B) at the boundary. We
impose a black hole topology to the metric~2!, by using the
conditions,b(0)50, b8/auy5051 and (r 8/a)2uy5050, see
Ref. @11#.

Evaluating the action~1! for the metric~2!,

I 5
1

2E0

2p

dtE
0

1

dyS 22
rb8r 8

a
2

br82

a
2ab1Labr2D

2
1

2E0

2p

dt
~br2!8

a U
y50

2
1

2E0

2p

dtE
0

1

dy
r 2

ab
At8

22I subtr.

~3!

In order to obtain the reduced action one uses the pro
constraints. For the gravitational part of the actionI g given
in Eq. ~3!, the constraint used is the Hamiltonian constra
@11,15#

Gt
t1Lgt

t58pTt
t . ~4!

In addition, for the matter fields part of the action we u
Maxwell equationsFmn

;n50.
12400
e

f

re

gh

er

t

The thermodynamical quantities and relations are
tained from the ‘‘classical action’’Ĩ ~defined as the reduce
action evaluated at its locally stable stationary points! using
the well known relation between the ‘‘classical action’’ an
the thermodynamical potential

Ĩ 5bF. ~5!

HereF is the grand canonical potential since we are cons
ering the grand canonical ensemble. All the thermodyna
cal quantities can be obtained fromF using the classica
thermodynamical relations~see, for example, Ref.@16#!.

III. THE REISSNER –NORDSTRÖM –ANTI-de SITTER
BLACK HOLE

The Reissner–Nordstro¨m–anti-de Sitter black hole in the
grand canonical ensemble is obtained using a negative
mological constantL and the boundary conditionsT
[T(RB) andf[f(r B), wherer B is the boundary radius o
the spherical cavity,T the temperature at the boundary andf
the electrostatic potential difference between the horizon
the boundary. Instead ofT we can also use its inverseb.

The reduced action for Reissner–Nordstro¨m–anti-de Sit-
ter black hole is obtained from the Euclidean Einste
Hilbert-Maxwell actionI given in Eq.~1!. For simplicity we
split the action in two termsI 5I g1I m , where I g is the
gravitational term andI m the matter field term. To obtain th
reduced action we use the Hamiltonian constraint~4! and the
Maxwell equations.

The evaluation ofI m is identical to the caseL50 and can
therefore be found in Ref.@11#:

I m52 1
2 bef, ~6!

wheree is the electrical charge of the black hole andf is the
difference of potential betweeny50 andy51. To evaluate
the gravitational termI g ~3! we use as mentioned above th
constraint~4!:

Gt
t1Lgt

t58pTt
t . ~7!

The component of the Einstein tensorGt
t for the metric~2!

is

Gt
t5

r 82

a2r 2
2

1

r 2
1

2r 88

a2r
2

2a8r 8

a3r
. ~8!

The stress-energy tensor componentTt
t is given by

Tt
t5

1

8p
S At

8

ab
D 2

52
1

8p

e2

r 4
. ~9!

Substituting Eqs.~9! and ~8! in Eq. ~7! we obtain

L5S At
8

ab
D 2

2
r 82

a2r 2
1

1

r 2
2

2r 88

a2r
1

2a8r 8

a3r
. ~10!

Rearranging terms in Eq.~10! and using Eq.~9! we obtain
7-2
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1

r 2r 8
H F r S r 82

a2
21D G 81

e2r 8

r 2
1Lr 2r 8J 50. ~11!

Integrating and simplifying the previous equation yields

S r 8

a D 2

512
2M

r
1

e2

r 2
1a2r 2, ~12!

where 2M is an integration constant anda252L/3. The
integration constant 2M can be evaluated using the blac
hole topology condition (r 8/a)2uy5050:

2M5r 11
e2

r 1
1a2r 1

3 . ~13!

This is the known relation between the Arnowitt-Dese
Misner ~ADM ! mass of the Reissner–Nordstro¨m–anti-de
Sitter black hole and its event horizon radius.

Substituting Eq.~10! in Eq. ~3! yields

I g* 5
1

2E0

2p

dtE
0

1

dyS 22
rb8r 8

a
22

br82

a

22
brr 88

a
12

bra8r 8

a2
2

r 2

ab
At8

2D
2

1

2E0

2p

dt
~br2!8

a U
y50

2I subtr

52E
0

2p

dtE
0

1

dyS brr 8

a D 8

2
1

2
bef2

1

2E0

2p

dt
b8r 2

a U
y50

2I subtr, ~14!

where we have used the topology conditions given in Sec
and to evaluate the term inAt , we used Eq.~6!, since this
term is identical toI m .

The first term after the second equality in Eq.~14! can be
evaluated by integrating and substituting Eqs.~12! and~13!.
The respective third term is integrated and using the top
ogy conditions gives2pr 1

2 . Following this procedure, we
obtain

I g* 52br Bf ~r B ;r 1 ,e,a!2 1
2 bef2pr 1

2 2I subtr, ~15!

where the inverse temperature at the boundaryb is given by
the proper length of the time coordinate at the boundarb
[T215*0

2pb(1)dt52pb(1) and

f ~r B ;r 1 ,e,a!5A12
r 1

r B
2

e2

r 1r B
2a2

r 1
3

r B
1

e2

r B
2

1a2r B
2.

~16!

Adding Eqs.~6! and ~15!, yields the reduced action

I * 52br Bf ~r B ;r 1 ,e,a!2bef2pr 1
2 2I subtr. ~17!
12400
-
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The termI subtr is of the formbEsubtr, whereEsubtr is a con-
stant that does not depend onb or f, sinceI subtr is an arbi-
trary term that can be used to fix the zero of the energy
cannot affect other thermodynamical variables@5#. For con-
venience, we use for the zero of the energy

EADS5E~r 150,e50!50, ~18!

where EADS is the thermal energy of anti–de Sitter spac
time.

To evaluateI subtr, we compute the thermal energy of th
Reissner–Nordstro¨m–anti-de Sitter black hole from Eq.~17!
and use condition~18!. The thermal energy is given by@16#

E5F1bS ]F

]b D
f,r B

2S ]F

]f D
b,r B

f5S ] Ĩ

]b
D

f,r B

2
f

b
S ] Ĩ

]f
D

b,r B

52r Bf ~r B ;r 1 ,e,a!2Esubtr, ~19!

whereF is the grand canonical potential and we have us
Eq. ~5!. Although the reduced actionI * is not the classical
action ~therefore we cannot writeI * 5bF), the energy
has the form given in Eq.~19!. This is because the
classical action Ĩ corresponds to the minimum of th
reduced action and therefore the equalities (] Ĩ /]b)f,r B

5(]I * /]b)f,r B ,r 1 ,e and (] Ĩ /]f)b,r B
5(]I * /]f)b,r B ,r 1 ,e

hold. However,r 1 ande in Eq. ~19! are not free parameters
they depend on the boundary conditions~i.e., on the values
of b, f, and r B) and on the cosmological constant. Th
functionsr 15r 1(b,f,r B ,a) ande5e(b,f,r B ,a) are ob-
tained from the equilibrium conditions]I * /]r 150 and
]I * /]e50 as will be seen later.

Using Eq.~18! on Eq.~19!, yields

Esubtr52r Bf 0~r B ;a!, ~20!

wheref 0(r B ;a)5 f (r B ;0,0,a)5A11a2r B
2. Substituting Eq.

~20! in Eq. ~17!, we finally obtain the reduced action for th
Reissner–Nordstro¨m–anti-de Sitter black hole

I * 5br B@ f 0~r B ;a!2 f ~r B ;r 1 ,e,a!#2bef2pr 1
2 .

~21!

Similarly substituting Eq.~20! in Eq. ~19!, we obtain its
thermal energy

E5r B@ f 0~r B ;a!2 f ~r B ;r 1 ,e,a!#. ~22!

The mean value of the charge is

Q52S ]F

]f D
b,r B

52
1

b
S ] Ĩ

]f
D

b,r B

5e. ~23!

The entropy is obtained from

S5b2S ]F

]b D
f,r B

5bS ] Ĩ

]b
D

f,r B

2 Ĩ 5pr 1
2 , ~24!
7-3
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where Eq.~5! was used. SinceA1/45pr 1
2 , whereA1 is the

area of the event horizon, this is the usual Hawkin
Bekenstein entropy@19,20#.

As mentioned above, the event horizon radiusr 1 and
electric chargee of the black hole for the given boundar
conditions, i.e.,b, f, andr B , are obtained by evaluating th
locally stable stationary points of the reduced action w
respect tor 1 ande @11#. Effectively, once the values ofb,
f, andr B are held fixed by the boundary conditions, then t
reduced action is a function of onlyr 1 and e, i.e., I *
5I * (r 1 ,e). The local stability conditions are then~i! ¹I *
50 and~ii ! the Hessian matrix is positive definite. The latt
condition corresponds to a condition of dynamical as wel
thermodynamical stability@11# and will be discussed in Sec
V. We will start by investigating the first condition.

The condition of stationarity¹I * 50 gives

b5
2p

k
f ~r B ;r 1 ,e,a!, ~25!

where k5(r 1
2 2e213a2r 1

4 )/2r 1
3 is the surface gravity of

the horizon, and

f5S e

r 1
2

e

r B
D f ~r B ;r 1 ,e,a!21. ~26!

These are the inverse Hawking temperature and the di
ence in the electrostatic potential betweenr 1 and r B blue-
shifted from infinity tor B , respectively.

Inverting these two equations,r 1 and e are obtained as
functions of the boundary conditions and the cosmolog
constant. We define the more convenient variables

x[
r 1

r B
, q[

e

r B
, b̄[

b

4pr B
, ā2[a2r B

2 . ~27!

In these variables~25! and ~26! are written

b̄5xA12xA12
q2

x
1ā2~11x1x2!

3S 12
q2

x2
13ā2x2D 21

, ~28!

f5
q

x
A12xS 12

q2

x
1ā2~11x1x2! D 21/2

.

~29!

To invert these equations, we start by inverting Eq.~28! to
obtainq;

q25x2f2@11ā2~11x1x2!#~12x1xf2!21. ~30!

Substituting Eq.~30! in Eq. ~28! and taking its square, we
obtain a seventh degree equation inx with a double rootx
51 which is not a solution of the initial equations. Gettin
rid of that root, we obtain a fifth degree equation
12400
-

e

s

r-

l

b̄2~211f21ā2f2!214ā2b̄2f2~211f21ā2f2!x

1~212ā216ā2b̄2212ā2b̄2f226ā4b̄2f2

16ā2b̄2f4110ā4b̄2f4!x21~12f22ā2f2

212ā4b̄2f2112ā4b̄2f4!x31ā2~9ā2b̄22f2

218ā2b̄2f219ā2b̄2f4!x41ā2~12f2!x550.

~31!

However, not every solution of this equation corresponds
a physical solution of a black hole. This is because the rad
of the event horizon of the Reissner–Nordstro¨m–anti-de Sit-
ter must obey the following condition:

r 1
2 2e213a2r 1

4 >0, ~32!

where the equality defines the extremal Reissne
Nordström–anti-de Sitter black hole.

Comparing Eq.~32! with Eq. ~25!, yields thatb is real
and positive. Comparing it with Eq.~26! we obtain the fol-
lowing condition:

f2<
113a2r 1

2

11a2~112r 1r B13r 1
2 !

. ~33!

In the coordinates given in Eq.~27!, the inequality~33! be-
comes

f2<
113ā2x2

11ā2~112x13x2!
. ~34!

This is the condition that the solutions of Eq.~31! must obey
in order to represent physical black hole solutions.

Equation~31! has no known analytical solutions. How
ever, its solutions can be numerically computed and p
sented in graphics. This will be done in the next section.

IV. ANALYSIS OF THE BLACK HOLE SOLUTIONS

In this section we present in graphics an analysis of
solutions of Eq.~31! that obey condition~34!. This analysis
is done in two steps:~i! first, we analyze Figs. 1–4, tha
present the solutionsx as functions ofb̄ and f, for values
ā50, 0.5, 1, and 5;~ii ! afterwards we show in Figs. 5 –9
the regions with zero, one, and two solutions in the sp
spanned byf3ā for fixed values ofb̄.

~i! Analysis of Figs. 1–4:ā50. The solutions forā50
are presented in Fig. 1. These are obviously identical to
solutions of the Reissner-Nordstro¨m black hole, see Ref
@11#. We can see in Fig. 1 that for fixedf there is a maxi-
mum of b̄, b̄max(f), so that forb̄.b̄max(f) there are no
solutions. Forb̄,b̄max(f) one can have two or only on
solution depending on the precise value ofb̄. For f50
~Schwarzschild! one has always two solutions forb̄
,b̄max(0) @b̄max(0)52/A27#. In the limiting caseb̄→0
7-4
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~i.e., r BT→`), one finds there is a solution withx5r 1 /r B
→1 ~as will be seen in Sec. V this is the stable solution!, see
Ref. @5#. For f50, still, andb̄.b̄max(0) there are no solu
tions ~see comments at the end of this section!. For 0,f

,1/A3 one has one or two solutions up tob̄max(f), whereas
for b̄.b̄max(f) there are as well no solutions. Finally fo
f.1/A3 there is only one solution@again forb̄,b̄max(f)#
corresponding to the unstable branch as will be seen in
V. Note that, forā50, condition~34! implies that the elec-
trostatic potential has a maximum atfmax51. Notice also
that in the limit b̄→`(T→0), the curves in Fig. 1 tend to
the curvef51, which corresponds to the extremal Reissn
Nordström black hole (r 15e).

The casesāÞ0, which are now going to be analyze
require the following prior analysis. As in the caseā50, for

FIG. 1. Solutions of Eq.~31! for ā50 ~Reissner-Nordstro¨m! as
a function of the electrostatic potential at the boundaryf for fixed

values ofb̄50.1,0.3,0.6,0.9,3,9. The stable solutions correspon
the upper branch of the curves. This means that when there are

solutions for given values ofb̄ andf, only the solution with higher
value ofx is stable.

FIG. 2. Solutions of Eq.~31! for ā50.5 as a function of the

electrostatic potential at the boundaryf for fixed values ofb̄
50.1,0.3,0.6,0.9,3,9. Notice thatf&0.89, as imposed by conditio
~34!. The stable solutions correspond to the upper branch of
curves. This means that when there are two solutions for gi

values ofb̄ andf, only the solution with higher value ofx is stable.
12400
c.

-

āÞ0 there are solutions atT50 (b̄5`), that correspond to
the extremal black holes. This can be analytically verified
replacingb̄5` in Eq. ~31!, from where we obtain the equa
tion

12f22ā2f222ā2f2x13ā2~12f2!x250. ~35!

Notice this is the equation one obtains taking the equality
condition ~34!. In fact it corresponds to the condition of ex
tremality of the Reissner–Nordstro¨m–anti-de Sitter black
hole, which is in agreement with the well known fact th
only the extremal black holes have zero temperature.

Equation~35! has at least one solution that verifies 0,x
,1 if

to
wo

e
n

FIG. 3. Solutions of Eq.~31! for ā51 as a function of the

electrostatic potential at the boundaryf for fixed values ofb̄
50.1,0.3,0.6,0.9,3,9. The maximum value off for which there are
solutions,fmax.0.76 is imposed by condition~34!. The stable so-
lutions correspond to the upper branch of the curves. This me

that when there are two solutions for given values ofb̄ andf, only
the solution with higher value ofx is stable.

FIG. 4. Solutions of Eq.~31! for ā55 as a function of the

electrostatic potential at the boundaryf for fixed values ofb̄
50.1,0.3,0.6,0.9,3,9. The maximum value off for which there are
solutions,fmax.0.71, is imposed by condition~34!. The stable
solutions correspond to the upper branch of the curves. This m

that when there are two solutions for given values ofb̄ andf, only
the solution with higher value ofx is stable.
7-5
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ā2,
1

6
and

113ā2

116ā2
<f2<

1

11ā2
, ~36!

1

6
<ā2,

2

3
and

3ā2162A9ā4112ā2

4ā216
<f2<

1

11ā2
,

FIG. 6. Number of solutions of Eq.~31! with b̄50.3, in the
spacef3a, wherea is given by Eq.~40! 0 means that there ar
zero solutions in this region, i.e., there are no solutions of bl

holes in thermodynamical equilibrium for this set of values ofb̄, f,
anda. 1 means that there is one solution. 2 means that there are
solutions. In the shaded region the stable solutions are not glob
stable and therefore represent metastable black holes~see Sec.
V B!.

FIG. 5. Number of solutions of Eq.~31! with b̄→0, in the space
f3a, wherea is given by Eq.~40!. There is one black hole solu
tion in the confined region and also fora51 ~i.e., infinite cosmo-
logical constant!, for f,A0.5. There are two solutions forf50,
i.e., for the Schwarzschild–anti-de Sitter black hole.
12400
ā2>
2

3
and

3ā2162A9ā4112ā2

4ā216
<f2<

113ā2

116ā2
.

For these values off andā, the curves for fixedf presented
in the figures reach infiniteb̄. Furthermore, Eq.~35! has two
solutions if

1/6,ā2,2/3 and

3ā2162A9ā4112ā2

4ā216
,f2,

113ā2

116ā2
, ~37!

k

wo
lly

FIG. 7. Number of solutions of Eq.~31! with b̄52/A27.0.38,
in the spacef3a, wherea is given by Eq.~40! ~see caption of Fig.
6!.

FIG. 8. Number of solutions of Eq.~31! with b̄51, in the space
f3a, wherea is given by Eq.~40! ~see caption of Fig. 6!.
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ā2>2/3 and
3ā2162A9ā4112ā2

4ā216
,f2,

1

11ā2
.

ā50.5. The solutions forā50.5 are presented in Fig. 2
This figure presents the same properties mentioned pr
ously for the caseā50. Comparing Figs. 1 and 2, we verif
that the maximum value ofb̄, b̄max(f), for which there are
solutions is increasing, i.e., there are solutions for sligh
lower values of the temperature atā50.5 than atā50.
Furthermore there are solutions for infiniteb̄ in the interval
0.83&f&0.89, see Eq.~36!, this can be seen using the curv
b̄59 in Fig. 2, since it corresponds to a good approximat
of infinite b̄.

Condition ~34! implies, for ā2,2/3,

f<A 1

11ā2
. ~38!

This condition corresponds to the upper-limit of the interv
given in Eq.~36!, which in this case isf.0.89. Notice that
if in Eq. ~31! we do x50, we obtain preciselyf

51/A11ā2, as can be seen in Fig. 2.
ā51. Figure 3 plots the solutions forā51. We can see

that this figure presents similar properties to the ones
tained for lower values ofā. Using Eq.~36!, we can see tha
for f&0.66 there are solutions only forb̄,b̄max(f), where
b̄max(f) is finite and depends onf. On the contrary, the
curves for higher values off reach infiniteb̄. In particular,
for 0.66&f&0.71 @see Eq.~37!# there are two solutions a
low temperatures~i.e., highb̄) as can be seen in Fig. 3, sinc

FIG. 9. Number of solutions of Eq.~31! with b̄5`, in the space

f3a, wherea is given by Eq.~40!. Notice that forb̄→`, Eq. ~31!
becomes Eq.~35! which corresponds to the extremal Reissne
Nordström–anti-de Sitter black hole, see discussion following E
~35! ~see caption of Fig. 6!.
12400
vi-

y

n

l

b-

the curveb̄59 is representative of the curves with highb̄. It
can be seen that forb̄59 there are two solutions forf

,f0, wheref051/A11ā2.0.71 is the value off where
x50 for everyb̄. There is one solution for 0.71&f&0.76,
see Fig. 3, where the upper-limit is imposed by conditi
~34!. In fact, condition~34! imposes, forā2,2/3,

fmax5A113ā2

116ā2
. ~39!

Notice this is the upper-limit of the interval given in Eq
~36!.

ā55. Figure 4 presents the solutions forā55. Using Eq.
~36!, we can see that forf&0.19, there are solutions only fo
b̄,b̄max(f). For 0.19&f&0.71 there is one solution fo
high values ofb̄ ~consider the curveb̄59). For infinite b̄
this region is 0.195&f&0.196, see Eq.~37!. In Fig. 4, we
can also see that for 0.19&f&0.71 there is one solution
where the upper-limit is given by Eq.~39!. For higher values
of ā there are not new types of solutions and therefore i
not necessary to pursue our analysis.

~ii ! Analysis of Figs. 5–9. In order to clarify the dispos
tion of the number of solutions for given values ofā, f, and
b̄, we present, in the space spanned byā andf for fixed b̄,
the regions with zero, one, and two solutions. We do this
eleven different values ofb̄, b̄50,0.3,2/A27.0.38,1,̀ , see
Figs. 5–9, respectively. In these figures one can see the
lution of the number of solutions asb̄ increases. To presen
all possible values ofāe@0,̀ @ , we use in these figures th
parametera instead ofā, a is defined by

a5
2

p
arctanā, ~40!

such that 0<a<1. It is this variable that appears in th
ordinate axis in Figs. 5–9.

Due to condition~34! there are no physically possibl
solutions on the right-hand side of Figs. 5–9.

An important value ofb̄, first studied by York@5# in
connection with the Schwarzschild black hole (f5ā50), is
b̄52/A27.0.38, i.e.,b5(8p/A27)r B . For higher values of
b, lower values of the temperature, there are no black h
solutions. This is a quantum effect and following York@5#
can be understood as follows. One can associate a Com
type wavelengthl to the energykBT of the thermal particles,
by l5\c/kBT, or in Planck unitsl51/T5b. If this Comp-
ton wavelength is much larger than the radiusr B of the cav-
ity ~or more specificallyl.8p/A27r B.4.8r B) then the
thermal particles cannot be confined within the cavity and
not collapse to form a black hole.

By analyzing Figs. 6 and 7, we can see that for nonz
cosmological constant (āÞ0) this phenomenon starts a
even lowerb̄ ~higher T). Indeed using Eq.~28! ~with f

.
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50, i.e., q50) we can show that to first order i
a2 (a2r B

2!1), York’s criterion for no black hole solution
becomes

l5b.
8p

A27
r BS 12

5

18
a2r B

2 D . ~41!

From Eq.~41! we infer that the role of the negative cosm
logical constant (L523a2) is to produce an effective cav
ity radius r eff5r B(12 5

18 a2r B
2) smaller thanr B . Thus for a

given temperature, it is more difficult to confine the therm
particles, and harder to form black holes, in accord with
idea that a negative cosmological constant shrinks space

If we extend our previous first order analysis to inclu
the electrostatic potentialf, we obtain

l5b.
8p

A27
r BS 12

5

18
a2r B

212f2D . ~42!

We can see that the electrostatic potential has the opp
effect of the cosmological constant~see, for example, Figs
6, 7, and 8!.

V. STABILITY

A. Local stability

As mentioned before there is a second condition of lo
stability that has not yet been investigated. We will follo
the same procedure as given in Ref.@11#. This is the condi-
tion that the Hessian matrix of the reduced action be posi
definite. For convenience in this analysis we will use t
variableS5pr 1

2 insteadr 1 . The Hessian matrix ofI * (S,e)
is

I ,i j* 5S I ,ee* I ,eS*

I ,eS* I ,SS* D . ~43!

The matrix is positive definite if its pivots are all positiv
The pivots of Eq.~43! are

I ,ee* ~44!

and

det~ I ,i j* !

I ,ee*
. ~45!

The first condition of local stability,¹I * 50 yields

S ]I *

]e D
S

5bS ]E*

]e D
S

2bf50⇒f5S ]E

]eD
S

,

S ]I *

]S D
e

5bS ]E*

]S D
e

2150⇒b215T5S ]E

]SD
e

.

~46!

These are well-known thermodynamical relations@16#.
From Eq.~46!, we compute the second derivatives ofI *

in the stationary points ofI *
12400
l
e

ite

l

e
e

]2I *

]e2 U
eq

5b
]2E*

]e2 U
eq

5bS ]f

]e D
S

,

]2I *

]e]SU
eq

5b
]2E*

]e]SU
eq

5bS ]f

]SD
e

52
1

b S ]b

]eD
S

,

]2I *

]S2 U
eq

5b
]2E*

]S2 U
eq

52
1

b S ]b

]SD
e

, ~47!

where ‘‘eq’’ means quantities evaluated at equilibrium, i.
at the stationary points of the reduced actionI * .

The first pivot~44! is simply the first of these equations
The second pivot~45! is easily obtained from Eq.~47!

detI ,i j*

I ,ee*
52

1

b S ]b

]SD
e

1
1

b S ]b

]eD
S
S ]f

]SD
e
Y S ]f

]e D
S

52
1

b F S ]b

]SD
e

1S ]b

]eD
S
S ]e

]SD
f
G

52
1

b S ]b

]SD
f

5
1

Cf,r B

, ~48!

whereCf,r B
is the heat capacity at constantf and r B . No-

tice that in all this calculation we have implicitly heldr B
constant, since in the grand canonical ensemble the dim
sion of the system is held constant.

Imposing positive pivots for local stability yields

S ]f

]e D
S,r B

>0,

Cf,r B
>0. ~49!

These conditions are identical to the classical thermodyna
cal stability conditions@16#. Therefore one can conclude th
the dynamical stability conditions given in Eqs.~46! and~49!
are identical to the thermodynamical stability conditio
@11#.

For the Reissner–Nordstro¨m–anti-de Sitter black hole
the pivots obtained from Eqs.~47! and ~48! are

S ]f

]e D
S,r B

5S 1

r 1
2

1

r B
D

3S 12
r 1

r B
2

e2

r 1r B
2

a2r 1
3

r B
1

e2

r B
2

1a2r B
2 D 1/2

1
e2

r B
S 1

r 1
2

1

r B
D 2S 12

r 1

r B
2

e2

r 1r B
2

a2r 1
3

r B

1
e2

r B
2

1a2r B
2 D 3/2

, ~50!

which is positive, and
7-8



n

a
he
ab
s
lu

an

e-

l-

lu

5–
io

-

ly
d
it

tio
as
o-

m

le

is
not
is
n of

s

rti-
that
le.
ck

nd
in

not
ta-
not

s are

d in

fin-

r–

d

as
e

of
not

he

in

THERMODYNAMICS OF REISSNER–NORDSTRO¨ M–ANTI- . . . PHYSICAL REVIEW D 59 124007
Cf,r B
54pr 1

3 ~r 2r 1!~r 1
2 2e213a2r 1

4 !

3@11a2~r B
21r 1r B1r 1

2 !#

3$e41r 1
3 @~6a2r 1

2 22!~r B1a2r B
3 !

13r 112a2r 1
3 13a4r 1

5 #12e2r 1

3@22r 11r B„11a2~r B
222r 1r B22r 1

2 !…#%21.

~51!

The numerator ofCf,r B
is positive, therefore the conditio

Cf,r B
.0 is verified if the denominator in Eq.~51! is posi-

tive. Using Eqs.~27! and~30!, we obtain the following con-
dition of stability for the solutions of Eq.~31!:

@22~11ā2!13x16ā2~11ā2!x212ā2x313ā4x5#

3~12x1xf2!22$2f2@11ā2~11x1x2!#

3@2112x1ā2~2112x12x2!#%

3~12x1xf2!1f4x@11ā2~11x1x2!#2.0. ~52!

By numerical computation, we can verify the solutions th
obey this condition. We have found that the lower branc
of the curves presented in Figs. 1 to 4 correspond to unst
solutions, while the upper branches correspond to stable
lutions. Therefore we can say that in general only the so
tions with the higher value ofx, that is with higher event
horizon radius, are stable.

In more detail we can distinguish three cases.~i! for low
ā ~see Figs. 1 and 2!, and for values ofb andf for which
there is one solution, it corresponds to a lower branch
therefore this solution is unstable;~ii ! for high values ofā
~see Fig. 4!, whenever there is only one solution, it corr
sponds to an upper branch and therefore this solution
stable;~iii ! whenever there are two solutions, for given va
ues of b̄,f,ā, the smaller one is an instanton~i.e., it is an
unstable solution and dominates the semi-classical eva
tion of the rate of nucleation of black holes@21#! and the one
with larger event horizon radius is a stable black hole.

These three cases can easily be distinguished in Figs.
In these figures there are in general two separated reg
with one solution. The region with lower values ofa, i.e.,
lower values ofā, corresponds to case~i! and these are un
stable solutions. The region with higher values ofa corre-
sponds to case~ii ! and these are stable solutions. Obvious
the region with two solutions in each Fig. 5–9, correspon
to case~iii !, i.e., one of those solutions is stable, the one w
higher value ofx, and the other unstable.

B. Global stability

The stable solutions computed in the previous subsec
are not necessarily global minimum of the action. In this c
they will not dominate the partition function and the zer
loop approximation cannot be considered accurate@6,11#.
12400
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As the reduced action given in Eq.~21! grows without
bound in the directions wherer 1 or e tend to infinity, the
global minimum must be found either at the local minimu
or at r 15e50. The action tends to zero asr 1 ande tend to
zero, therefore the condition of global stability of the stab
solutions is that the classical actionI must be negative.

If the classical action is positive, the partition function
dominated by points near the origin. But these points do
correspond to a black hole in thermal equilibrium. In th
case, the black hole, that corresponds to the stable solutio
the reduced action, is metastable.

We verified numerically which boundary condition
~given by the values ofb, f, anda) correspond to globally
stable black holes, i.e., to solutions that dominate the pa
tion function. We can also see, using a simple argument,
for b̄, 8

27 all locally stable solutions are also globally stab
Indeed, York@6# has shown that for the Schwarzschild bla
hole the condition of global stability isb̄, 8

27 and since the
classical actionI is a decreasing function off and a, this
condition is still a bound for global stability for allf anda.
However, forb̄. 8

27 , there is always a certain region off
3a, for which the locally stable solutions do not correspo
to global minima of the action. We show these regions
Figs. 5–9, where the regions for which the solutions do
correspond to a global minimum of the action, i.e., the me
stable solutions, are shaded. In particular Figs. 5 and 9 do
present a shaded region because all the stable solution
dominant in the limitb̄→0 as said above and forb̄→` the
region with metastable solutions is too thin to be presente
graphic.

VI. THE r B˜` LIMIT AND THE HAWKING-PAGE
SOLUTIONS

One can study the case where the boundary goes to in
ity. There are two different ways for taking this limit:~i!
fixing the horizon radiusr 1 and the chargee of the black
hole; ~ii ! fixing the boundary conditions, i.e., fixingb andf.
In this section we will study only the pure Reissne
Nordström–anti-de Sitter cases, i.e., the cases witha,fÞ0.
Other cases, with eithera or f equal to zero are considere
in the next section.

We will start by studying the first case:~i! Fixing the
black hole solution, i.e., fixingr 1 ande and taking the limit
r B→`, we obtain from Eqs.~25! and~26! that the tempera-
ture T5b21 and electrostatic potentialf go to zero asT
;@(r 1

2 2e213a2r 1
4 )/4par 1

3 #r B
21 andf;(e/ar 1)r B

21 , re-
spectively. In this case the thermal energy goes to zero
E;M (11a2r B

2)21/2, whereM is the mass of the black hol
given in Eq.~13!. As also previously found in Ref.@12#, the
thermal energy at infinity is not equal to the ADM mass
the black hole, due to the the fact that the spacetime is
asymptotically flat. Note that in Refs.@13,17# it is found that
E5M due to a different definition of the temperature of t
ensemble.

To determine the stability of the black hole solutions
this limit, we compute the heat capacity, from Eq.~51! and
obtain
7-9
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Cf5
2pr 1

2 ~r 1
2 2e213a2r 1

4 !

e22r 1
2 13a2r 1

4
. ~53!

The numerator in Eq.~53! is necessarily positive due to con
dition ~32!, that r 1 must obey to represent the event horiz
radius. Therefore, the stability condition for these solutio
is simply e22r 1

2 13a2r 1
4 .0. Notice that Eq.~53! is a gen-

eralization toeÞ0 of the heat capacity found by Hawkin
and Page in Ref.@17#. Computing the action in this limit
yields

I 5
pr 1

2 ~r 1
2 2e22a2r 1

4 !

r 1
2 2e213a2r 1

4
. ~54!

This is precisely Hawking-Page action@17,13#, which here
we have recovered from York’s formalism taking the app
priate limit.

From Eq.~54!, we can verify the global stability of the
black hole by imposing thatI ,0. Therefore we conclude
that the solution given by (r 1 ,e) corresponds to a globally
stable black hole if conditionsr 1

2 2e22a2r 1
4 ,0 and Eq.

~32! are both verified. These conditions are similar to tho
found in Ref.@13#.

We conclude that taking different boundary condition
i.e., choosing to fix the boundary conditions in the bound
at infinity ~as done here! or in the region where spacetime
flat like Hawking and Page@17#, yields a different value for
the energy only. Furthermore this difference is so that all
other physical quantities~like the action, entropy, mean
value of the charge and heat capacity! remain the same.

On the other hand, we can take a different limit:~ii ! we
can fix the boundary conditions, i.e.,b andf, when taking
the limit. This is done by recovering the variablesb anda in
Eq. ~31!, using Eq.~27!. Taking the limitr B→`, we obtain
the equation a2b2@f2(112x13x2)23x2#22x2(11x
1x2)(12x1f2x)50. This is a fifth degree equation inx.
For fixedb, f, anda and taking the limitr B→`, we obtain
a solutionr 1 that tends to infinity asr 1;c1r B , wherec1 is
a constant that depends only onb, f, and a. Considering
now Eq.~30!, we can see that the chargee goes to infinity as
e;cer B

2 , where againce is a constant that depends only o
b, f, anda. Therefore the entropy~24! and the mean-value
of the charge~23! both go to infinity asr B

2 . In this limit the
action, the thermal energy and the heat capacity, given
Eqs. ~21!, ~22!, and ~51!, respectively, also diverge asr B

2 .
The heat capacity is always positive, which means these
lutions are stable. The action is always positive, therefore
solutions are not globally stable and represent metast
black holes.

VII. COMMENTS ON SPECIAL CASES

Several black holes may be considered as special cas
the Reissner–Nordstro¨m–anti-de Sitter black hole.
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~I! Puttingf50 andL50, we obtain the Schwarzschil
black hole studied in Ref.@5#. There are two solutions fo

b̄,b̄max52/A27. These solutions can be computed analy
cally, since Eq.~31! becomes a third degree equation forL
50. Only the solution with higher event horizon radius, i.
higher mass, is stable. In the limitr B→` the unstable solu-
tion, i.e., the solution with lower value of the horizon radiu
goes tor 151/(4pr 1), while the stable solution goes to in
finity as r 1;r B @5#.

~II ! Putting L50 we obtain the Reissner-Nordstro¨m
black hole. This has been studied in Ref.@11#. There are one

or two solutions forb̄,b̄max. These as stated above can
computed analytically. Once again only the solution w
higher event horizon radius, when it exists, is stable. In
limit r B→`, the black hole horizon radius isr 15(b/
4p)(12f2) and the charge is given bye5fr 1 . The ther-
mal energy of these solutions is equal to their ADM ma
E5M . The heat capacity is negativeCf522pr 1

2 . There-
fore the solutions are unstable.

~III ! Putting f50 we obtain the Schwarzschild–anti-d
Sitter. This black hole has been studied before in Re
@17,12#. This black hole has two solutions forb,bmax, and
again only the one with higher event horizon radius is stab
The limit r B→` can be taken in two ways:~i! fixing the
temperature and the cosmological constant, there is one
stable solution that tends to zero asr 1;(b/4pa)r B

21 and
one stable solution that tends to infinity asr 1;crB , wherec
is the solution of equationc31(3ab/4p)2c22150; ~ii ! fix-
ing the horizon radiusr 1 , the temperature goes to zero
T;(113a2r 1

2 )/4par 1r B
21 , these solutions are stable

3a2r 1
2 .1, see Ref.@12#.

~IV ! The extremal cases require special care@22–24# and
were not studied in any detail in this paper.

VIII. CONCLUSIONS

We have studied the thermodynamics of the Reissn
Nordström–anti-de Sitter black hole in York’s formalism. I
the grand canonical ensemble where the temperature an
electrostatic potential are fixed at a boundary with finite
dius, we have found one or two black hole solutions depe
ing on the boundary conditions and the value of the cosm
logical constant. In general when there are two solutions,
is stable, the one with larger event horizon radius, and
other is an instanton. On the other hand, the cases wi
single solution can correspond either to a stable or unst
solution. We have found that both high values of the cosm
logical constant and low temperatures favor stable solutio
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