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The complete phase diagram of objects in M theory compactified ofi fgpi=1,2,3, is elaborated. Phase
transitions occur when the object localizes on cigléhe Gregory-Laflamme transitipnor when the area of
the localized part of the horizon becomes one in string uitits Horowitz-Polchinski correspondence paint
The low-energy, near-horizon geometry that governs a given phase can match onto a variety of asymptotic
regimes. The analysis makes it clear that the matrix conjecture is a special case of the Maldacena conjecture.
[S0556-282(199)06010-3

PACS numbd(s): 04.70.Dy

I. INTRODUCTION AND SUMMARY tropy is large enough that a dual D-brane description is ap-
propriate; we hope this does not cause undue confusion.
The matrix and Maldacena conjectuffds-3] boldly pro- The statement of the Maldacena conjecture identifies a

pose a great simplification of the dynamics of M theory indual geometrical structure with tipossibly finite tempera-
certain limits. Both postulate that all of M theory—restricted ture) vacuum of a SYM quantum field theof@FT). Physics
to a sector of particular boundary conditions—is equivaleniof elementary excitations off this vacuum are mapped onto
to super Yang-Mills(SYM) theory. Conversely, we learn the physics of elementary probes in the background of the
that nonperturbative super Yang-Mills theory is of a com-near-horizon geometries of braridss]. A non-trivial UV-IR
plexity equivalent to M theory. Taking both conjectures into correspondence relates radial extent in the bulk geometry
account, we expect that maximally supersymmetric Yangand energy scale of such excitatid6s7]. On the other hand,
Mills theory on TP, p<3, has dynamics of perturbative equilibrium thermodynamic states of SYM theory excitations
gauge theory, of near-horizon D-brane geometry, and ofjet associated to geometries with thermodynamic character,
light-cone (LC) M theory, all as different regimes in some i.e., supergravity vacua with finite area horizons. The UV-IR
grand phase diagram. correspondence then amounts to essentially the holographic
The aim of this paper is to map out the thermodynamicrelation between area in the bulk and entropy in the SYM
phase diagram of this theory. The finite temperature vacuurtheory. Alternatively, it relates temperature in a QFT to ra-
will acquire various geometrical realizations, and a rich therdial extent in a non-extremal bulk].
modynamical structure will emerge. One conclusion is that, When studying the thermodynamics of M theory via that
taking as inputs the Maldacena conjecture and the variousf a SYM theory, we then encounter on the phase diagram
duality symmetries of M theory established at the level of thepatches with dual supergravity realizations. Geometrical con-
low energy dynamics, the matrix conjecture is a necessargiderations will identify stability domains, transition curves
output. The point is that one can glue a given near-horizorand various equations of state. The global structure of the
structure onto several descriptions of the asymptotic regiomliagram should reflect the myriad of duality symmetries that
at large distance from the object. The choice of asymptotitv theory is endowed with; geometry will paint the global
description fixes a duality frame, and hence the physical instructure of M theory’s finite temperature vacuum. The basic
terpretation of the parameters. Nevertheless, one can havelea then becomes a systematic analysis of various super-
e.g., a near-extremal D3-brane in type 11B theory whose thergravity solutions; the underlying strategy goes as follows: A
modynamics is described by the 11D Schwarzschild blackOD or lower-dimensional near-extremal supergravity solu-
hole geometry. Which is the appropriate low-energy geomiion must satisfy the following restrictions:
etry to describe the horizon physics is governed by the The dilaton at the horizon must be small. Otherwise, in a
proper size of the torus near the horizon, which depends otype IIA theory, we need to lift to an 11D M theory; in a type
the horizon radius or entropy of the object. Qualitatively, atlIB theory, we need to go to the S-dual geometry. This
high entropy the Dp brane perspective is appropriate, as th@mounts to a change of description—a reshuffling of the
horizon torus is large; at low entropies, the horizon torus isdominant degrees of freedom—uwithout any change in the
small, and a T-dualized DO brane description is appropriateequation of state.
This is the T duality used in matrix theory. To avoid cum-  The curvature at the horizon must be smaller than the
bersome changes of notation, we will phrase the discussiostring scale. Otherwise, the dynamics of massive string
in the language of light cone M theotyeven when the en- modes becomes relevant. By the Horowitz-Polchinski corre-
spondence principle[8], a string theory description
emerges—an excited string, or a perturbative SYM gas re-

*Email address: ejm@theory.uchicago.edu flecting weakly coupled D-brane dynamics. This is generally

"Email address: isaak@theory.uchicago.edu associated with a change of the equation of state; in the ther-

For instance, the charge quantinwill be referred to as longi-  modynamic limit, we may expect critical behavior associated
tudinal momentum rather than D-brane charge. with a phase transition. This criterion can easily be estimated
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for various cases when one realizes that the curvature scale i 1
set by the horizon area divided by cycle sizes measured a. lnS/lnNT 2
the horizon; i.e., the localized horizon area should be greate -

than order one in string units.

Cycles of tori on which the geometry may be wrapped, as
measured at the horizon, must be greater than the string scal
[9]. Otherwise, light winding modes become relevant and the
T-dual vacuum describes the proper phy$ig]. We expect
no critical behavior in the thermodynamic limit, since the
duality is merely a change of description.

The horizon size of the geometry must be smaller than the
torus cycles as measured at the horizbh,12. Otherwise,
the vacuum smeared on the cycles is entropically favored.
We expect this to be associated with a phase transition, on
due to finite size effects, and it is associated generally with a
change of the equation of state. However, it is also possible
that there is no such entropically favored transition by virtue
of the symmetry structure of a particular smeared geometry,
so we expect no change of phase. Intuitively, a system woulc
only localize itself in a more symmetrical solution to mini-
mize free energy. -7 = v IMN

On the other hand, given an 11D supergravity vacuum, a
somewhat different set of restrictions applies: FIG. 1. Phase diagram of light cone M theory ®k Sis en-

The curvature near the horizon must be smaller than theopy, V is the radius of the circle in Planck units, ahdis the
Planck scale. By the criterion outlined above, we see that, folongitudinal momentum. The geometry label dictionary is as fol-
unsmeared geometries, this is simply the statement $hat jows: DO: black DO;DO: black DO smeared oW; D1: black D1;
>1; i.e., quantum gravity effects are relevant for low entro-Fi: black type IIB string; W10: black type IIA wave; W11: 11D
pies. For large enough longitudinal momenttiythis region  plack wave;W11: 11D black wave smeared ov 10D BH: type
of the phase diagram is well away from the region of interest)|a | ¢ plack hole; 11D BH: LC M theory black hole; T1 BH: LC

The size of cycles of the torus as measured at the horizofy theory BH smeared oW. M, T andSstand for respectively an M
must be greater than the Planck scale. Otherwise, we need ¢Qality (such as reduction, lift or M flip of3), a T duality curve,

go to the type IIA solution descending from dimensionaland an S duality transition.
reduction on a small cycle. We expect no change of equation

of state or critical behavior. (T~E/S is the temperatuje On the diagram, the behavior
The size of the M theory cycles, including the light cone of the effective SYM coupling depends on the equation of
longitudinal box, as measured at the horizon, must be biggestate governing a given region under consideration. fFor
than the horizon size. Otherwise, the geometry gets smearedy  the effective coupling increases as we move vertically
along the small cycles. This is expected to be a phase trajtownward in the DO phase, and diagonally toward the
sition due to finite size physics. bottom-left in the Dp brane phase. The raw Yang-Mills cou-
Applying these criteria, we then select the near extremapjing (measured at the scale of the torircreases horizon-
geometry dual to a SYM theory on the torus, and navigatggly as we move toward smaller M theory voluméfor all
the phase diagram via duality transformations suggested by The unshaded areas are described by various supergravity
the various restrictions. We will then be mapping out theso|ytions, while the shaded regions do not have dual geo-
phase diagram of M theory, or alternatively SYM QFT; we metrical descriptions. On the upper right, there is a perturba-
now present the results of such an analysis. _ tive 1+ 1D SYM gas phase living on the circle; and a matrix
_ Figure 1 depicts the thermodynamic phase diagram Oktring phase in the IR of the SYM theory, characterized by
light cone M theory on the circle; the axes are entr&gnd  the emergence o, order, on the left at strong coupling.
the radius of the circle measured in Planck uMtsN, the  potted lines denote various duality transformations on the
longitudinal momentum charge, is fixed. In general, the efsypergravity solutions; the equation of state is unchanged
fective SYM coupling and torus radii are upon crossing such a line, since duality is merely a change of
2 TI2 \P-3 description. The solid lines denote localization transitions;
__ g NgzNTp—swv—pN<_p') (1) double solid lines are curves associated with the principle of
Ru1V eff =Y Rl correspondence of Horowitz-Polchinski. These lines demar-
cate phase boundaries, where the equation of state changes.
In total, we have six different thermodynamic phases. We

2| general, the horizon will be localized in some dimensions andobserve the emergence of a self-duality poinSatN"5 Vv
delocalized(stretchedl in others. The area of the “localized part of ~1. That the various patches do not overlap is a self-
the horizon” means the area along the dimensions in which th&onsistency check on the logical structure of the picture. For
horizon is localized. high entropies, localization effects are circumvented; the
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phases are the ones studied ¥8]. The triple point on the
upper right corner was the one studied ®. The lower left
triple point was the one studied ji4]. This picture patches
together these previous results on one diagram, in addition tc
identifying one additional triple point and the self-duality
point. The oblique correspondence curve in the upper right
corner can easily be seen to correspond to the point wher:
the effective dimensionless Yang-Mills coupling is of order

TlnS [/ InN

alongS~ N? starting atv~ N3, From the perturbative SYM
side, it is where the thermal wavelength becomes of order the
size of the box dual to/; from the DO phase side, it is a
Horowitz-Polchinski correspondence curve. As we will see
below, the temperature jumps discontinuously as function of
the entropy across this line. [®], a separate phase consist- IOD BH
ing of a gas of super quantum mechanics excitations was
identified with this curve when the phase diagram is plotted
on the temperature—'t Hooft coupling plane. This transition
may be associated with rich microscopic physics. From the
thermodynamic perspective, as the transition is crossed, dy=<—5—
namics is transferred from local excitations pa-1 SYM ™
theory to that of its zero modes; and Dp brane charge of the
perturbative SYM theory is traded for longitudinal momen-
tum charge of light cone M theory. This process is one of F|G. 2. Phase diagram of light cone M theory f V is the
several paths on the phase diagram relating the Maldacenadius of the circle in Planck units. The geometry label dictionary is
and matrix conjecture%. as follows: DO: black DODO: black DO smeared ol: D2: black
Figures 2 and 3 depict the phase diagrams of light cone %2; M2: black membraneyl2: black membrane smeared on a dual

2 3. ; ;
thic.)r% onT hand T ’bV her(;hls the égdllljasl of kthe .CyCIVSS circle; WB: black type IIB waveW B: black type 11B wave smeared
(which are chosen to be equateasured in Planck units. We on a dual circle; W1l: 11D black wav&y11: 11D black wave

Tivleslgl(i; %t;zeerv?r?(:;\]z tstr?negoggjp?r%jerggiro':]heofprse\\(/:aus_smeared ofV; 11D BH: light cone M theory black hole; DL BH:
> : . . light cone M theory black hole smeared dh 10D BH: type 1IB

theory on'T", the SYM dynamics approaches the |nfrared"ght cone black hole; 1D BH: type IIB light cone black hole

fixed point governing the dynamics of M2 branes—the con- d on a dual cir’cle '

formal field theory dual to M theory on AKX S’ (in “Poin- oo e '

care” coordinates The proper size of th&? shrinks toward ) .

the origin: at high entropy, the black M2 geometry aCcu__I\/Ialdacena conjecture asserts thz_it underl_ymg all t_hese phases

rately describes the low-energy physics, while at low entropy® SuPer Yang-Mills theory in various regimes of its param-

the near-horizon geometry is best described in terms of th§!er space. Having not known the matrix conjecture, we

type 1B theory dual to M theory ofi2 [18]. In the T3 case, would then have been led to it from Maldacena’s proposal.

the diagram reflects the self-duality of the D3 branes and v he matrix conjecture is a special realization of the more
theory onT? as reflection symmetry abos{~1. The 't general statement of Maldacena. Correspondingly, our abil-

Hooft scaling limit focuses in on the neighborhood of theity to discover the low-energy theories that Y.i?'d matrix
vertical line at Inv/InN— + 1 [see Eq(1)]. The structure of theory on some backgrou_nd depends on our ab'l'.ty to L{nQer—
all three of these phase diagrams can be checked by min?—tand duality structures with less supersymmetry in sufficient

mizing the Gibbs energies between the various phases ideH_etaillto'construc.t the phase diagram analogous to Figs.'1—3.
tified. This introduction and summary set forth all our qualita-

tive results and conclusions. The computational details can
be found in the next section.

InV /InN

Finally, we conclude with the following observation.
Starting with a thermodynamic phase in light cone M theory,
say for example the lower right corner phase of the 11D
boosted black hole, using geometrical considerations, the du- Il. THE DETAILS
ality symmetries of M theory, and the Horowitz-Polchinski
correspondence with the perturbative SYM phase, we would The theory is parametrized by the Planck sdglglongi-
be led to conclude that light cone M-theory thermodynamicdudinal radius R;;, and p circle radii R We defineV
is encoded in the thermodynamics of SYM QFT. Indeed, the=R/l,;. The Maldacena or matrix limit 1s

3ldeas relating the matrix and Maldacena conjectures were also“in other words,a’—0, with g$ andR/lg, fixed. Our notational
discussed in15-17. conventions are the same as[ii#].
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|
InS | InN qi P~ 6)

This last statement is valid fay>r, which is the case in the
limit (2) with S N andV finite. For largeN, when interested

in the thermodynamic limit of a large number of degrees of
freedom, this limit is certainly satisfied.

We will track the full form of the geometries; at the end
of the day, the conjecture requires us to look at the near
horizon regiong>r.

Dp brane phaseThis phase is described by the equation
of state of black Dp branes

Ry 2\ (7=p)/(9-p) .
~ > (N V2[p/(9-p)] (7
pl
- [ and comprises of the geometries of stretched black Dp
& [nV | InN branes, smeared DO branes, and smeared 11D black waves.
We now analyze each in turn.
FIG. 3. Phase diagram of light cone M theory Bh DO: black The black Dp brane (D1,D2,D3)s given by the solution

DO; DO: black DO smeared oN; D3: black D3; W11: 11D black [19]
wave;W11: 11D black wave smeared & 11D BH: light cone M

theory black hole; 1@ BH: light cone M theory black hole smeared ds?=H —1/2( —hdt?+ d%) +H 1/2(h_1d r2+ r2dQ§7p),

onV. (8
ly—0, with12/Ry; and 1,/R fixed. 2 eb=g HE P )
We will begin by treating various geometries fop<3 Frtyzgs’trlaerl. (10

collectively, withp a variable; we will then have to analyze
separately regions of the phase diagram where significarfthe theory is parametrized by
differences arise between the different cases. 5
' IpI _ ( Rll
- ’ str

Lo

(3-p)2
VTR, (11)

A. Stretched and smeared geometries « R_11

We first study the phases where the horizon is stretched or . - » . .
smeared along compact directions. The former case corrc%”dftlhe coordinatey are compactified on circles of size
sponds to situations where an extended object is wrapped dp¥_/Ruil. The relevant restrictions are:
compact directions; the geometry cannot localize on such Small coupling at the horizon requires
cycles by virtue of the symmetry structure of the metric. The 8 bep_ 713 _

. . PGP—7)3-py/3p(p—7)
latter case corresponds to solutions which are smeared along (NTZPSP)"7 PV <1. (12

cycles because they would otherwise not “fit in the box”; . B
these are prone to localization transitions to more symmetricOtherW'Se’ fop=1,3, we have to go to the S-dual geometry

entropically favored horizon geometries. Both cases are en?—f bIIa_Cl]f B fijgdamental (sjtrltngs orl black D3 br?jn%? reksp'\(/lag-
dowed with the isometries of translation along the cycles Ively, Tor p=2, we need o analyze smeare ac

: ; : - branes.
The solutions are parametrized by two harmonic functions . :
P y Curvature at the horizon smaller than the string scale re-

ro\ 7 P quires

o) g
r N6~ Py 3P G3-P, (13)

7_

H=1+ 9) P 4) Otherwise, we invoke the principle of correspondence—a

r ' perturbativep+ 1D SYM phase emerges.

Requiring the cycle size of thg’s at the horizon to be
From the area-entropy relation of the corresponding geomgreater than the string scale yields
etries, we have
S> N(B=P(7=p)\/3[(6-p)/(7T-pP)] (14)
ro P~(SIN)Io PV P, (5)
Otherwise, we go to the T-dual geometry of smeared DO
while Gauss’s law yields branes.
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The smeared DO bran€¢DO0) is the T dual of Eq(8) on
the torusTP of they;:

ds’= —H Y hde2+HYAdy;+h " tdr2+r2dQZ_ ),

(15
e?=gHY, (16)
A=0gr (H1-1). (17)
The theory is parametrized by
|3 R 3/2
1 P =2
o = R]_j_, gstr ( Ipl) ) (18)

and the new coordinate;7sare compactified on the scdlgV.
The restrictions are:
Small coupling at the horizon requires

S>N@—P(7T=P)\/p/(P=T7), (19

Otherwise, we have to lift to an 11D M theory black wave

solution.
The correspondence point is E4.3).

Requiring the “box” size of they; at the horizon to be

smaller than the object yields

S> V9/2N 1/2, (20)

independent op. Otherwise, the system collapses into a lo-
calized DO geometry along the torli parametrized by the

Yi-
The smeared 11D black wav@V11) is the M lift of Eq.
(15

ds2= (H—1)(dxy—dt)?+dxé,— dt2+H }(1—h)dt

+dy;+h~tdr2+r2d0g . (21)

PHYSICAL REVIEW D59 124005

S>N. (23)

Otherwise, the system collapses into an 11D black hole

smeared along.

Requiring the “box size associated with tlyg measured
at the horizon to be smaller than the object yields €§);
the new geometry would be an 11D black wave localized on
they;.

Smeared 11D black hold1D BH). This is the Schwarzs-
child black hole in light cone M theory ofP with Planck
scalel,, and torus radiR,; andR, such that the solution is
smeared onTP. The form of the metric will be discussed
later. The equation of state is given by

Rl _ —o)i(9—
EN(W F \2[p/(9-p)] g2[(8—p)/(9-P)] (24)
pl
The correspondence principle yields
S>VP, (25

which will always be satisfied. Particularly, fgr=0, we
have the statemer@>1. At largeN, this very low entropy
regime passes out of the region of interest.

For V<1, we reduce to a type IIA geometry; far=1,
this is a type IIA hole; fop=2, we need to go to the T-dual
type IIB hole solution for reasons discussed above; for
=3, we have a smeared 11D hole in the dual M theory on

Finally, the localization transition can be found by equat-
ing Eq. (24) to the energy of th@=0 phase, yielding

S~V°. (26)

B. Localized geometries

The localized solutions are obtained from the above ge-

The theory is parametrized by the light cone M theoryometries(15) and(21) when the box size associated with the

Planck scaldy, the coordinate§ are compactified o,V
as before, whilex;; lives onR;;. The new constraints are:

y; measured at the horizon becomes greater than the size of
the object. The system collapses then into a more symmetric,

Requiring the size ok,, measured at the horizon to be entropically favored solution by the substitution

greater than the Planck scale leads to the reverse dflBy.

patching back to the smeared DO geometry. dyp+h~tdr+r2d0g ,—h~dr2+r?dQg.  (27)
The size of they cycles measured at the horizon must be ) .
greater than the Planck scale The entropy-area relationship changes to
V>1. (22) ro~IpS¥oN~1%, (28)
Otherwise, we have to dimensionally reduce onta a type ~ and the functionsd andh become
[IA geometry. Forp=1, this will be a type IlA black wave. ;
For p=2, the new geometry will have cycles smaller than h—>1—(r—o) 29)
the string scale; so, we need to go to the T-dual vacuum r/’
representing a type IIB black wave; this is of course just the
well known duality between M theory on a shrinkiig and |9 1
type 1IB on the circle. Fop=3, we emerge into a dual M H—>1+c(—Z|N)—. (30)
theory with a black wave geometry. R, /r’

Requiring the “box” size associated witky; measured at

the horizon to be smaller than the object yields Herec is some numerical constant.
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In the subsequent subsections, parameters and solutioRg,/R. . We will not worry here about this additional map-
can be obtained from their smeared relatives, with theping, and keep statements in the light cone language, main-

changes just described. taining R4 in the limit (2).
DO phase The equation of state is given by EJ) with The black hole solution inl+ 3 dimensions is
p=0 o~
dg?=—fdt?+f " 1dr2+r2dQz, ,, (38)
~ WF) SIS, (3D with f=1—(r,/r)". To boost it, we first choose isotropic
pl

coordinates; this can be achieved by the coordinate transfor-
mation 9= (p9/4)[1+(ro/p)91?, with p?=x2,+r2. The

and consists of two patches, a localized black DO and a lo ;
metric becomes

calized 11D black wave.

The restrictions on th&calized black DO (DOjre: 1 L d\4/d
Coupling near the horizon must be small ds2= — 1= (ro/p)” a2+ (14" )
1+(I‘0/p)d p
S>N&7. (32
X (dx2,+dr2+r2dQ?). (39)

Otherwise, we lift to the localized 11D black wave solution.

The curvature near the horizon must be small with respecOW boost onxy, in the manner of Polchinski-Seiberg, and
to the string scale compactify onR;;— 0; the metric becomes of the for(87),

with 1= (ro/p)¢ replaced by
S<N?Z. (33 g
=3 o
Otherwise, by the correspondence principle, we go to the 1= n (r2+(N2/M2R§1)(x_+277nR11)2)d’2'
perturbativep+1D SYM phase. From the SYM point of
view, this point is where the thermal wavelength becomedn our case,d=8 for an 11D light cone black hole. The
the order of the box sizé&ual toR); the perturbative exci- smeared light cone hole encountered above, and other light
tations are frozen on the circle; this then naturally maps ont@one holes we will encounter, can be obtained from this ge-
the black DO geometry. ometry by smearing on cycles, and duality transformations.

The localized 11D black wave (W1Eews onto the pre- The equation of state is given by E@4) with p=0

vious one when the size of;; at the horizon is the Planck
scale, and localizes on this cycle unless (Rn 1

N |§|

(40)

S, (41)

S>N. (34)

) ) _ _ Minimizing this energy with respect to the one correspond-
Beyond this point, the vacuum is that of a light cone 11Ding to the light cone hole smeared 6h[Eq. (24) with p
Schwarzschild black hole which we discuss next. =1,2,3], one finds the transition curv@e).

11D light cone black hole (11D BH) et us discuss in
some generality the light cone black hole. This is a localized

Schwarzschild solution with momentum alomg,. Using C. Perturbative p+1D SYM theory

the Polchinski-Seiberg proceduf@0,21], a metric of the Here, weakly coupled gluonic excitations dominate the
form dynamics. The scaling of the equation of state is obtained by
dimensional analysis
ds?=gogdt?+gy,dx5,+ - - - (39
Rip 1
~ == (p—2)/pg(p+1)/p

is put in the light cone frame by a large boost N |§| VN S ' (42)

N This regime sews onto the localized DO brane solution by the

e~ (36)

correspondence principle at E@33). This can also be
checked by setting the thermal wavelength equal to the dual
whereM is the rest mass of the original solution, aRg,  box size in the perturbative field theory, or by minimizing
—0 in the matrix/Maldacena limi2). The metric becomes the Gibbs energies between the localized DO and perturba-

tive SYM phases. For large Yang-Mills couplings, this SYM

1 2 phase sews onto the Dp brane geometry at(E§),; this is
d§=§(g11— Joo)dx, dx_+ W(goﬁ g10)dx. again an application of the correspondence principle.
11
(37)

This can further be mapped onto the DLCQ frame by infinite  In [9], an additional phase labeled super quantum me-
booste’~ R, /Ry;1, with R, finite, multiplying thedx_ by  chanics was identified on the temperaturgsN plane. On

MRy’

D. Comments on correspondence curves

124005-6



BLACK HOLES AND THE SYM PHASE DIAGRAM. Il PHYSICAL REVIEW D59 124005

the InSInV plane, this corresponds to the single line segmengoupling in the field theory is to be always identified with
at S~N? separating the perturbative SYM phase from theCurvature scale in string units in the supergravity. This be-
black DO-brane phase in Figs. 1—-3. Two critical phenomens&omes a non-trivial statement about the effective degrees of
are identified with the same line. From the higher entropyfreedom and the dynamics of the field theory in its non-
side, the perturbative SYM theory freezes its dynamics orperturbative regimes.

the torus at temperatures of ordBf"~Ry,V/I53~3 "% us-

ing the perturbative SYM equation of state, this corresponds E. Specialized treatmentspp=1

to S~ NZ.. From the side of lower %ntro.pies, the corresppn— Black type IIA wave and the black type IIB stririghis
dence poin{33) occurs again &8~N-; using the DO phase’s region of the phase diagram is characterized by the equation
equat|0(r21) of Statsflz)' this corresponds to temperatures of ot giate (7) with p=1; it comprises of two geometries
orderT¢™~Ry; NI On this line, there is a phase whose patched against the D1 brane and M wave phases studied
entropy remains constant while the temperature changes; i.gypgve.

the specific heat vanishes. There may be interesting physics The type 1A black wave (W10¥ the dimensional reduc-

The two sides of the correspondence curve are both state-

ments about the effective SYM coupling becoming of order ds?=(H—1)(dxy;—dt)2+dx%,—dt?>+H~Y(1—h)dt?
one. Equatior(1) applies for allp:®

+h~tdr?+r2dQ32. (46)
2\p3
giﬁ“V_pN(R—i) : (43 The theory is parametrized by
’ 2yv/—1
We can use this also for DO branes on the dual torus; T a'~IgVvV, (47)

duality on the Dp branes is encoded in this relation, as can be a2

seen by comparing Eq$l1) and (18). The resulting SYM Ot~ V7. (48)
zero mode Lagrangian has a couplingg%/VoI
~g%(Ry;V/I12)P. Note also that we use the temperatdie
~E/S, not the energy.Using the equation of state of the
perturbative SYM theory, we translate the staterrgﬁﬂbl
with p#0 to Eq.(13). Using Eq.(7), we find the equipoten-
tials of the effective coupling in the Dp phase S>N. (49

The coordinatec,; is compactified orR;;. The two relevant
restrictions are:

The size of the cycle;; measured at the horizon must be
smaller than the size of the object

2 —pap—3y/— —p)/(9— . .
oy~ (N8 PSP~3y~3p)(5=p)(97p), (449 Otherwise, the system collapses into the smeared 11D black

. . ) ._hole; strictly speaking, its dimensional reduction on the
Forp<4 and in the Dp phase domain, the effective couplinggyaareq directioy.

Increases d'?‘gona”y on the diagrams as we move Foward The size ofx,; at the horizon being greater than the string
lower entropies and smaller volum®$. Using the equation scale is the statement
of state of the localized DO phase and E&p) with p=0, we
obtain Eq.(33) for g§ﬁ~1. The equipotentials change in the S< V2N (50)
DO phase for all three diagrams
Otherwise, we go to th&-dual geometry of black type 11B

,  [NZ°R fundamental strings.
et ™| 5| - (49 Theblack type 1B string (F1)s the T dual of Eq.(46) on
Xq1:

The coupling increases from one & N? as we lower the .
entropy toward the 11D black hole phase. From SYM phys- dg?=H }(dx},—hdt?®)+h~1dr?+r2Q2, (51
ics, both correspondence curves are where the effective cou-
pling is of order one; the localization effect &~ N2 e?=gH 2 (52)
changes this effective coupling appropriately. It is tempting
to generalize this observation and propose that the effective By, =H *-1. (53

The theory is parametrized by

Sldeas relating to the scaling of the effective coupling for 0 |
were also discussed [22]. o' = I2|V*1, gstr:L'V’ (54)
5The notation in7] is such thaE represented temperattife At P R
finite temperature, the energy scale relevant to the dynamics is set
naturally by the temperature. For supergravity probes with thermo2nd the new coordinate;, is compactified 0”§|V71/R11-
dynamic character, the UV-IR correspondence relates the field he two new constraints are:
theory temperature to extent in the bulk; this is the same as identi- Curvature at the horizon must be smaller than the string
fying area in the bulk with entropy in the field theory. scale
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S>V N2 (55) S<\/3/ONES, (60)

Beyond this point, we call upon the correspondence principlétherwise, we have to go to a type IIA geometry by T du-
and identify a new phase consisting of a matrix string; moredlity. This will be a black fundamental string. Its coupling at

on this phase later. the horizon is found to be large in this regime; we therefore
For strong couplings, we patch to the D1 geometryhave to also lift to an M theory, yielding black smeared
through S duality at Eq12). membranes.

10D type lIA black hole (10D BH)The 10D type lIA The size ofxy; measured at the horizon must be smaller
black hole is obtained by dimensional reduction of the than the size of the object
smeared 11D solution. Its equation of state is given by Eq.
(24). Its correspondence point occurs at S>N. (61)

Otherwise, the system collapses into a type 11D light cone
black hole smeared on thH®s; more accurately, the emerg-
ing phase is the M-IIB dual of such a hole, for the same

S~Vv73, (56)

The matrix string phase emerges beyond this point. i
Matrix string phaseCorrespondence curves delineate thel€asons discussed above. .

fundamental string and smeared black hole geometries iden- 1€ cycle size ofz measured at the horizon must be

tified above. Both of these transition cury&s) and(56) are ~ smaller than the size of the object

accounted for by Gibbs energy minimization with respect to S\ EN12 62)

the equation of state of a matrix string '

Otherwise, we localize the type 1B black wave on the circle
z

As mentioned above, we encountesraeared black mem-
brane(M2) phase by a chain of two dualitieg T duality of
We conclude that the new phase beyond these geometriestide previous solution, and then a lift to an M theory. The
that of a matrix string; i.e., &y holonomy is induced at geometry becomes
strong Yang-Mills coupling that sews the D-strings into a
coil or “slinky.” This physics is then associated with the ~ds=H ?dxg—hd®)+HY¥dZ+h"'dr’+rdQ}),
emergence of new order and symmetry. (63)

Ajx=1—-H1, (64)

VS (57)

F. Specialized treatments;p=2

The type 1IB black wave and smeared black membranedhe theory is parametrized by the Planck scale
The equation of state is given by ET); this region is com-
prised of two patches. T3__Pl\2 65)

Thetype 1IB black wavgdWB) is the dimensional reduc- PRy '
tion of Eq.(21) on one of they’s, and a further T dualization
on the other; the latter step is needed because, by virtue &€ coordmatexlzare compact|f|ed oV ™2 and the neve
focusing on a square torus, the intermediate type IIA theor)$'300rd'nate lives o oV !/Ry;. The only new constraint is:
lives on a circle smaller than its string scale. As mentioned Requiring the “box" size ofz measured at the horizon to
earlier, this is the well known M-11B duality. The vacuum is be smaller than the object yields

iven b
g y S>V N2 (66)

ds’=(H—1)(dx;;—dt)?+dxd,—dt?+H 11— h)dt? _ _
Otherwise, we need to analyze a black localized membrane

+dZ+h"tdr2+r2dQ3. (58 geometry.
. . Smeared type 1IB black holglOD BH). This phase de-
The theory is parametrized by scends by localization from the type 1IB wave encountered

above, or by dimensional reduction/T duality from the 11D
smeared light cone hole. The equation of state is given by
Eq. (24). It will undergo localization on the type IIB circle to

a delocalized 10D hole; the transition point is analyzed be-
The coordinatex,; is compactified orR,;, while z lives on  low.

IV~ 2. We note that we are at the self-dual point of the type ~LocalizationsThe membrane, type IIB wave and type I1B
lIB theory. By the S-duality symmetry of the low energy hole encountered above are all subject to localization transi-
effective dynamics, the structure of the geometry is valid ations on the dual circle; this corresponds to transtions be-

pii>)
i
o

a'~ |F2)|V—1, Ostr™ (59

this point. The new restrictions are: tween 7 and 8 noncompact transverse space dimensions. The
Cycle x,, measured at the horizon must be greater tharmetrics (58) and (63) undergo the substitutiondz?
the string scale +h Ydr2+r2dQ3—h"1dr2+r2dQ3, and
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(fo) 6 localization from the previous geometry; its equation of state
h—1-{—|, 67 s
r
NV~ [ 1 [ Rul) g
Ho1l-c¢ ’3'—2 =, (69) E N 2 VST, (73
RT; ré pl
ro~lp|N’l’8V’1’281’4. (69) Minimizing its Gibbs energy with respect to that of the

smeared 11D hol€24) yields the transition curve
We next discuss these three localized phases.
Membrane phaseThis phase consists of two patches. S~v 12 (74
There is thelocalized phase of black membranes (Mi23

equation of state is G. Specialized treatmentsp=3

For p= 3, both the type IIB S duality of the D3 brane and
VSN (700 the M theory duality orT® correspond to the transition curve
atV~1. The phase diagram has a reflection symmetry about
V~1 and no new phases arise.

Ry 1

N |§|

E~

It is restricted by
The correspondence point
H. The final picture

N>1. (72) Summarizing our analysis, we map out the thermody-

The requirement that the cycles on which it is Wrappednamic phase diagram of M theory o, or p+1D SYM

are bigger than the Planck scale theory on t_hg c_ir(_:Ie{Figs. 1.—3. Using _the various equations
of state, minimizing the Gibbs energies with respect to each
S>N76 (72 other, one finds the scaling properties of all the transition
curves identified through geometrical considerations. Finally,
We then lift to the localized black type IIB wave. we conclude by identifying the interesting self-dual point at
Thelocalized black type 11B wave (WBpatches onto this
membrane phase at E.2) whenx,, is the string scale, i.e., V~1, S~NEP/IT=p), (79

the T duality M lift point. It localizes orR,; unlessS>N.
Below this entropy, we have a fully localized type 1B black
hole.

Type IIB black hole (10D BH)This is the type 1IB hole This work was supported by DOE grant DE-FG02-90ER-
localized on the dual type IIB radius. It descends Ry,  40560.
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