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Black holes and the SYM phase diagram. II
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The complete phase diagram of objects in M theory compactified on toriTp,p51,2,3, is elaborated. Phase
transitions occur when the object localizes on cycle~s! ~the Gregory-Laflamme transition!, or when the area of
the localized part of the horizon becomes one in string units~the Horowitz-Polchinski correspondence point!.
The low-energy, near-horizon geometry that governs a given phase can match onto a variety of asymptotic
regimes. The analysis makes it clear that the matrix conjecture is a special case of the Maldacena conjecture.
@S0556-2821~99!06010-5#
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I. INTRODUCTION AND SUMMARY

The matrix and Maldacena conjectures@1–3# boldly pro-
pose a great simplification of the dynamics of M theory
certain limits. Both postulate that all of M theory—restricte
to a sector of particular boundary conditions—is equival
to super Yang-Mills~SYM! theory. Conversely, we lear
that nonperturbative super Yang-Mills theory is of a co
plexity equivalent to M theory. Taking both conjectures in
account, we expect that maximally supersymmetric Ya
Mills theory on Tp, p<3, has dynamics of perturbativ
gauge theory, of near-horizon D-brane geometry, and
light-cone ~LC! M theory, all as different regimes in som
grand phase diagram.

The aim of this paper is to map out the thermodynam
phase diagram of this theory. The finite temperature vacu
will acquire various geometrical realizations, and a rich th
modynamical structure will emerge. One conclusion is th
taking as inputs the Maldacena conjecture and the var
duality symmetries of M theory established at the level of
low energy dynamics, the matrix conjecture is a necess
output. The point is that one can glue a given near-hori
structure onto several descriptions of the asymptotic reg
at large distance from the object. The choice of asympt
description fixes a duality frame, and hence the physical
terpretation of the parameters. Nevertheless, one can h
e.g., a near-extremal D3-brane in type IIB theory whose th
modynamics is described by the 11D Schwarzschild bl
hole geometry. Which is the appropriate low-energy geo
etry to describe the horizon physics is governed by
proper size of the torus near the horizon, which depends
the horizon radius or entropy of the object. Qualitatively,
high entropy the Dp brane perspective is appropriate, as
horizon torus is large; at low entropies, the horizon torus
small, and a T-dualized D0 brane description is appropri
This is the T duality used in matrix theory. To avoid cum
bersome changes of notation, we will phrase the discus
in the language of light cone M theory,1 even when the en

*Email address: ejm@theory.uchicago.edu
†Email address: isaak@theory.uchicago.edu
1For instance, the charge quantumN will be referred to as longi-

tudinal momentum rather than D-brane charge.
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tropy is large enough that a dual D-brane description is
propriate; we hope this does not cause undue confusion

The statement of the Maldacena conjecture identifie
dual geometrical structure with the~possibly finite tempera-
ture! vacuum of a SYM quantum field theory~QFT!. Physics
of elementary excitations off this vacuum are mapped o
the physics of elementary probes in the background of
near-horizon geometries of branes@4,5#. A non-trivial UV-IR
correspondence relates radial extent in the bulk geom
and energy scale of such excitations@6,7#. On the other hand
equilibrium thermodynamic states of SYM theory excitatio
get associated to geometries with thermodynamic chara
i.e., supergravity vacua with finite area horizons. The UV-
correspondence then amounts to essentially the hologra
relation between area in the bulk and entropy in the SY
theory. Alternatively, it relates temperature in a QFT to
dial extent in a non-extremal bulk@7#.

When studying the thermodynamics of M theory via th
of a SYM theory, we then encounter on the phase diagr
patches with dual supergravity realizations. Geometrical c
siderations will identify stability domains, transition curve
and various equations of state. The global structure of
diagram should reflect the myriad of duality symmetries t
M theory is endowed with; geometry will paint the glob
structure of M theory’s finite temperature vacuum. The ba
idea then becomes a systematic analysis of various su
gravity solutions; the underlying strategy goes as follows
10D or lower-dimensional near-extremal supergravity so
tion must satisfy the following restrictions:

The dilaton at the horizon must be small. Otherwise, in
type IIA theory, we need to lift to an 11D M theory; in a typ
IIB theory, we need to go to the S-dual geometry. Th
amounts to a change of description—a reshuffling of
dominant degrees of freedom—without any change in
equation of state.

The curvature at the horizon must be smaller than
string scale. Otherwise, the dynamics of massive str
modes becomes relevant. By the Horowitz-Polchinski cor
spondence principle @8#, a string theory description
emerges—an excited string, or a perturbative SYM gas
flecting weakly coupled D-brane dynamics. This is genera
associated with a change of the equation of state; in the t
modynamic limit, we may expect critical behavior associa
with a phase transition. This criterion can easily be estima
©1999 The American Physical Society05-1
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 59 124005
for various cases when one realizes that the curvature sca
set by the horizon area divided by cycle sizes measure
the horizon; i.e., the localized horizon area should be gre
than order one in string units.2

Cycles of tori on which the geometry may be wrapped,
measured at the horizon, must be greater than the string s
@9#. Otherwise, light winding modes become relevant and
T-dual vacuum describes the proper physics@10#. We expect
no critical behavior in the thermodynamic limit, since th
duality is merely a change of description.

The horizon size of the geometry must be smaller than
torus cycles as measured at the horizon@11,12#. Otherwise,
the vacuum smeared on the cycles is entropically favo
We expect this to be associated with a phase transition,
due to finite size effects, and it is associated generally wi
change of the equation of state. However, it is also poss
that there is no such entropically favored transition by vir
of the symmetry structure of a particular smeared geome
so we expect no change of phase. Intuitively, a system wo
only localize itself in a more symmetrical solution to min
mize free energy.

On the other hand, given an 11D supergravity vacuum
somewhat different set of restrictions applies:

The curvature near the horizon must be smaller than
Planck scale. By the criterion outlined above, we see that
unsmeared geometries, this is simply the statement thS
.1; i.e., quantum gravity effects are relevant for low ent
pies. For large enough longitudinal momentumN, this region
of the phase diagram is well away from the region of intere

The size of cycles of the torus as measured at the hor
must be greater than the Planck scale. Otherwise, we ne
go to the type IIA solution descending from dimension
reduction on a small cycle. We expect no change of equa
of state or critical behavior.

The size of the M theory cycles, including the light co
longitudinal box, as measured at the horizon, must be big
than the horizon size. Otherwise, the geometry gets sme
along the small cycles. This is expected to be a phase t
sition due to finite size physics.

Applying these criteria, we then select the near extrem
geometry dual to a SYM theory on the torus, and navig
the phase diagram via duality transformations suggested
the various restrictions. We will then be mapping out t
phase diagram of M theory, or alternatively SYM QFT; w
now present the results of such an analysis.

Figure 1 depicts the thermodynamic phase diagram
light cone M theory on the circle; the axes are entropyS, and
the radius of the circle measured in Planck unitsV; N, the
longitudinal momentum charge, is fixed. In general, the
fective SYM coupling and torus radii are

S5
lpl
2

R111V
, geff

2 ;gY
2NTp23;V2pNS Tlpl

2

R111
D p23

~1!

2In general, the horizon will be localized in some dimensions a
delocalized~stretched! in others. The area of the ‘‘localized part o
the horizon’’ means the area along the dimensions in which
horizon is localized.
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(T;E/S is the temperature!. On the diagram, the behavio
of the effective SYM coupling depends on the equation
state governing a given region under consideration. Fop
,4, the effective coupling increases as we move vertica
downward in the D0 phase, and diagonally toward t
bottom-left in the Dp brane phase. The raw Yang-Mills co
pling ~measured at the scale of the torus! increases horizon-
tally as we move toward smaller M theory volumesVp for all
p. The unshaded areas are described by various supergr
solutions, while the shaded regions do not have dual g
metrical descriptions. On the upper right, there is a pertur
tive 111D SYM gas phase living on the circle; and a matr
string phase in the IR of the SYM theory, characterized
the emergence ofZN order, on the left at strong coupling
Dotted lines denote various duality transformations on
supergravity solutions; the equation of state is unchan
upon crossing such a line, since duality is merely a chang
description. The solid lines denote localization transitio
double solid lines are curves associated with the principle
correspondence of Horowitz-Polchinski. These lines dem
cate phase boundaries, where the equation of state cha
In total, we have six different thermodynamic phases. W
observe the emergence of a self-duality point atS;N7/6,V
;1. That the various patches do not overlap is a s
consistency check on the logical structure of the picture.
high entropies, localization effects are circumvented;

d

e

FIG. 1. Phase diagram of light cone M theory onT1; S is en-
tropy, V is the radius of the circle in Planck units, andN is the
longitudinal momentum. The geometry label dictionary is as f

lows: D0: black D0;D0̄: black D0 smeared onV; D1: black D1;
F1: black type IIB string; W10: black type IIA wave; W11: 11D

black wave;W11̄: 11D black wave smeared onV; 10D BH: type

IIA LC black hole; 11D BH: LC M theory black hole; 11D̄ BH: LC
M theory BH smeared onV. M, T andSstand for respectively an M
duality ~such as reduction, lift or M flip onT3), a T duality curve,
and an S duality transition.
5-2
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BLACK HOLES AND THE SYM PHASE DIAGRAM. II PHYSICAL REVIEW D59 124005
phases are the ones studied in@13#. The triple point on the
upper right corner was the one studied in@9#. The lower left
triple point was the one studied in@14#. This picture patches
together these previous results on one diagram, in additio
identifying one additional triple point and the self-duali
point. The oblique correspondence curve in the upper r
corner can easily be seen to correspond to the point w
the effective dimensionless Yang-Mills coupling is of ord
one. More interesting is the horizontal correspondence cu
alongS;N2 starting atV;N1/3. From the perturbative SYM
side, it is where the thermal wavelength becomes of order
size of the box dual toV; from the D0 phase side, it is
Horowitz-Polchinski correspondence curve. As we will s
below, the temperature jumps discontinuously as function
the entropy across this line. In@9#, a separate phase consis
ing of a gas of super quantum mechanics excitations
identified with this curve when the phase diagram is plot
on the temperature–’t Hooft coupling plane. This transiti
may be associated with rich microscopic physics. From
thermodynamic perspective, as the transition is crossed,
namics is transferred from local excitations inp11 SYM
theory to that of its zero modes; and Dp brane charge of
perturbative SYM theory is traded for longitudinal mome
tum charge of light cone M theory. This process is one
several paths on the phase diagram relating the Malda
and matrix conjectures.3

Figures 2 and 3 depict the phase diagrams of light con
theory on T2 and T3; V here is the radius of the cycle
~which are chosen to be equal! measured in Planck units. W
have similar observations to the ones made for the prev
111D SYM case. In the strong coupling region of SY
theory onT2, the SYM dynamics approaches the infrar
fixed point governing the dynamics of M2 branes—the co
formal field theory dual to M theory on AdS43S7 ~in ‘‘Poin-
care’’ coordinates!. The proper size of theT2 shrinks toward
the origin; at high entropy, the black M2 geometry acc
rately describes the low-energy physics, while at low entro
the near-horizon geometry is best described in terms of
type IIB theory dual to M theory onT2 @18#. In theT3 case,
the diagram reflects the self-duality of the D3 branes and
theory on T3 as reflection symmetry aboutV;1. The ’t
Hooft scaling limit focuses in on the neighborhood of t
vertical line at lnV/ ln N→6 1

3 @see Eq.~1!#. The structure of
all three of these phase diagrams can be checked by m
mizing the Gibbs energies between the various phases i
tified.

Finally, we conclude with the following observation
Starting with a thermodynamic phase in light cone M theo
say for example the lower right corner phase of the 1
boosted black hole, using geometrical considerations, the
ality symmetries of M theory, and the Horowitz-Polchins
correspondence with the perturbative SYM phase, we wo
be led to conclude that light cone M-theory thermodynam
is encoded in the thermodynamics of SYM QFT. Indeed,

3Ideas relating the matrix and Maldacena conjectures were
discussed in@15–17#.
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Maldacena conjecture asserts that underlying all these ph
is super Yang-Mills theory in various regimes of its para
eter space. Having not known the matrix conjecture,
would then have been led to it from Maldacena’s propos
The matrix conjecture is a special realization of the mo
general statement of Maldacena. Correspondingly, our a
ity to discover the low-energy theories that yield matr
theory on some background depends on our ability to und
stand duality structures with less supersymmetry in suffici
detail to construct the phase diagram analogous to Figs. 1

This introduction and summary set forth all our qualit
tive results and conclusions. The computational details
be found in the next section.

II. THE DETAILS

The theory is parametrized by the Planck scalelpl , longi-
tudinal radius R11, and p circle radii R. We define V
[R/ lpl . The Maldacena or matrix limit is4

so4In other words,a8→0, with gY
2 andR/ lstr fixed. Our notational

conventions are the same as in@14#.

FIG. 2. Phase diagram of light cone M theory onT2; V is the
radius of the circle in Planck units. The geometry label dictionary

as follows: D0: black D0;D0̄: black D0 smeared onV; D2: black

D2; M2: black membrane;M 2̄: black membrane smeared on a du

circle; WB: black type IIB wave;WB̄: black type IIB wave smeared
on a dual circle; W11: 11D black wave;W11: 11D black wave

smeared onV; 11D BH: light cone M theory black hole; 11D̄ BH:
light cone M theory black hole smeared onV; 10D BH: type IIB

light cone black hole; 10D̄ BH: type IIB light cone black hole
smeared on a dual circle.
5-3
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 59 124005
lpl→0, with lpl
2 /R11 and lpl /R fixed. ~2!

We will begin by treating various geometries for 1<p<3
collectively, withp a variable; we will then have to analyz
separately regions of the phase diagram where signifi
differences arise between the different cases.

A. Stretched and smeared geometries

We first study the phases where the horizon is stretche
smeared along compact directions. The former case co
sponds to situations where an extended object is wrappe
compact directions; the geometry cannot localize on s
cycles by virtue of the symmetry structure of the metric. T
latter case corresponds to solutions which are smeared a
cycles because they would otherwise not ‘‘fit in the box
these are prone to localization transitions to more symme
entropically favored horizon geometries. Both cases are
dowed with the isometries of translation along the cycl
The solutions are parametrized by two harmonic function

h512S r 0

r D 72p

, ~3!

H511S q

r D 72p

. ~4!

From the area-entropy relation of the corresponding ge
etries, we have

r 0
92p;~S2/N!lpl

92pV2p, ~5!

while Gauss’s law yields

FIG. 3. Phase diagram of light cone M theory onT3. D0: black

D0; D0̄: black D0 smeared onV; D3: black D3; W11: 11D black
wave;W11: 11D black wave smeared onV; 11D BH: light cone M

theory black hole; 11D̄ BH: light cone M theory black hole smeare
on V.
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92p

R11
2

N

Vp
. ~6!

This last statement is valid forq@r 0, which is the case in the
limit ~2! with S, N andV finite. For largeN, when interested
in the thermodynamic limit of a large number of degrees
freedom, this limit is certainly satisfied.

We will track the full form of the geometries; at the en
of the day, the conjecture requires us to look at the n
horizon region,q@r .

Dp brane phase. This phase is described by the equati
of state of black Dp branes

E;
R11

lpl
2 S S2

N D (72p)/(92p)

V2[p/(92p)] , ~7!

and comprises of the geometries of stretched black
branes, smeared D0 branes, and smeared 11D black w
We now analyze each in turn.

The black Dp brane (D1,D2,D3)is given by the solution
@19#

ds25H21/2~2hdt21dyW p
2!1H1/2~h21dr21r 2dV82p

2 !,
~8!

ef5gstrH
(32p)/4, ~9!

Frty5gstr
21] rH

21. ~10!

The theory is parametrized by

a85
lpl
3

R11
, gstr5S R11

lpl
D (32p)/2

V2p, ~11!

and the coordinatesyW are compactified on circles of siz
lpl
2 V21/R111. The relevant restrictions are:

Small coupling at the horizon requires

~N82pSp27!32pV3p(p27),1. ~12!

Otherwise, forp51,3, we have to go to the S-dual geomet
of black IIB fundamental strings or black D3 branes resp
tively; for p52, we need to analyze smeared black M
branes.

Curvature at the horizon smaller than the string scale
quires

N62pV23p.S32p. ~13!

Otherwise, we invoke the principle of correspondence—
perturbativep11D SYM phase emerges.

Requiring the cycle size of they’s at the horizon to be
greater than the string scale yields

S.N(82p)/(72p)V3[(62p)/(72p)] . ~14!

Otherwise, we go to the T-dual geometry of smeared
branes.
5-4
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BLACK HOLES AND THE SYM PHASE DIAGRAM. II PHYSICAL REVIEW D59 124005
The smeared D0 brane(D0̄) is the T dual of Eq.~8! on
the torusTp of the yi :

ds252H21/2hdt21H1/2~dyp
21h21dr21r 2dV82p

2 !,
~15!

ef5gstrH
3/4, ~16!

At5gstr
21~H2121!. ~17!

The theory is parametrized by

a85
lpl
3

R11
, gstr5S R11

lpl
D 3/2

, ~18!

and the new coordinatesyW are compactified on the scalelplV.
The restrictions are:

Small coupling at the horizon requires

S.N(82p)/(72p)Vp/(p27). ~19!

Otherwise, we have to lift to an 11D M theory black wa
solution.

The correspondence point is Eq.~13!.
Requiring the ‘‘box’’ size of theyi at the horizon to be

smaller than the object yields

S.V9/2N1/2, ~20!

independent ofp. Otherwise, the system collapses into a
calized D0 geometry along the torusTp parametrized by the
yi .

The smeared 11D black wave(W11) is the M lift of Eq.
~15!

ds25~H21!~dx112dt!21dx11
2 2dt21H21~12h!dt2

1dyp
21h21dr21r 2dV82p

2 . ~21!

The theory is parametrized by the light cone M theo
Planck scalelpl , the coordinatesyW are compactified onlplV
as before, whilex11 lives onR11. The new constraints are:

Requiring the size ofx11 measured at the horizon to b
greater than the Planck scale leads to the reverse of Eq.~19!,
patching back to the smeared D0 geometry.

The size of they cycles measured at the horizon must
greater than the Planck scale

V.1. ~22!

Otherwise, we have to dimensionally reduce on ay to a type
IIA geometry. Forp51, this will be a type IIA black wave.
For p52, the new geometry will have cycles smaller th
the string scale; so, we need to go to the T-dual vacu
representing a type IIB black wave; this is of course just
well known duality between M theory on a shrinkingT2 and
type IIB on the circle. Forp53, we emerge into a dual M
theory with a black wave geometry.

Requiring the ‘‘box’’ size associated withx11 measured at
the horizon to be smaller than the object yields
12400
-

m
e

S.N. ~23!

Otherwise, the system collapses into an 11D black h
smeared alongyW .

Requiring the ‘‘box’’ size associated with theyi measured
at the horizon to be smaller than the object yields Eq.~20!;
the new geometry would be an 11D black wave localized
the yi .

Smeared 11D black hole(11D̄ BH). This is the Schwarzs-
child black hole in light cone M theory onTp with Planck
scalelpl , and torus radiiR11 andR, such that the solution is
smeared onTp. The form of the metric will be discusse
later. The equation of state is given by

E;S R11

N

1

lpl
2 D V2[p/(92p)]S2[(82p)/(92p)] . ~24!

The correspondence principle yields

S.Vp, ~25!

which will always be satisfied. Particularly, forp50, we
have the statementS.1. At largeN, this very low entropy
regime passes out of the region of interest.

For V,1, we reduce to a type IIA geometry; forp51,
this is a type IIA hole; forp52, we need to go to the T-dua
type IIB hole solution for reasons discussed above; fop
53, we have a smeared 11D hole in the dual M theory
T3.

Finally, the localization transition can be found by equ
ing Eq. ~24! to the energy of thep50 phase, yielding

S;V9. ~26!

B. Localized geometries

The localized solutions are obtained from the above
ometries~15! and~21! when the box size associated with th
yi measured at the horizon becomes greater than the siz
the object. The system collapses then into a more symme
entropically favored solution by the substitution

dyW p
21h21dr21r 2dV82p

2 →h21dr21r 2dV8 . ~27!

The entropy-area relationship changes to

r 0; lplS
2/9N21/9, ~28!

and the functionsH andh become

h→12S r 0

r D 7

, ~29!

H→11cS lpl
9

R11
2

ND 1

r 7
. ~30!

Herec is some numerical constant.
5-5
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In the subsequent subsections, parameters and solu
can be obtained from their smeared relatives, with
changes just described.

D0 phase. The equation of state is given by Eq.~7! with
p50

E;S R11

N

1

lpl
2 D S14/9N2/9, ~31!

and consists of two patches, a localized black D0 and a
calized 11D black wave.

The restrictions on thelocalized black D0 (D0)are:
Coupling near the horizon must be small

S.N8/7. ~32!

Otherwise, we lift to the localized 11D black wave solutio
The curvature near the horizon must be small with resp

to the string scale

S,N2. ~33!

Otherwise, by the correspondence principle, we go to
perturbativep11D SYM phase. From the SYM point o
view, this point is where the thermal wavelength becom
the order of the box size~dual toR); the perturbative exci-
tations are frozen on the circle; this then naturally maps o
the black D0 geometry.

The localized 11D black wave (W11)sews onto the pre
vious one when the size ofx11 at the horizon is the Planc
scale, and localizes on this cycle unless

S.N. ~34!

Beyond this point, the vacuum is that of a light cone 11
Schwarzschild black hole which we discuss next.

11D light cone black hole (11D BH). Let us discuss in
some generality the light cone black hole. This is a localiz
Schwarzschild solution with momentum alongx11. Using
the Polchinski-Seiberg procedure@20,21#, a metric of the
form

ds25g00dt21g11dx11
2 1••• ~35!

is put in the light cone frame by a large boost

ea;
N

MR11
, ~36!

whereM is the rest mass of the original solution, andR11
→0 in the matrix/Maldacena limit~2!. The metric becomes

ds25
1

2
~g112g00!dx1dx21

N2

M2R11
2 ~g001g11!dx2

2 .

~37!

This can further be mapped onto the DLCQ frame by infin
boosted;R1 /R111, with R1 finite, multiplying thedx2 by
12400
ns
e
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R11/R1 . We will not worry here about this additional map
ping, and keep statements in the light cone language, m
taining R11 in the limit ~2!.

The black hole solution ind13 dimensions is

ds252 f dt21 f 21dr̃21 r̃ 2dVd11
2 , ~38!

with f [12(r 0 / r̃ )d. To boost it, we first choose isotropi
coordinates; this can be achieved by the coordinate trans
mation r̃ d5(rd/4)@11(r 0 /r)d#2, with r25x11

2 1r 2. The
metric becomes

ds252F12~r 0 /r!d

11~r 0 /r!dG 2

dt21X11S r 0

r D dC4/d

3~dx11
2 1dr21r 2dV2!. ~39!

Now boost onx11 in the manner of Polchinski-Seiberg, an
compactify onR11→0; the metric becomes of the form~37!,
with 16(r 0 /r)d replaced by

16(
n

r 0
d

„r 21~N2/M2R11
2 !~x212pnR11!

2
…

d/2
. ~40!

In our case,d58 for an 11D light cone black hole. Th
smeared light cone hole encountered above, and other
cone holes we will encounter, can be obtained from this
ometry by smearing on cycles, and duality transformatio
The equation of state is given by Eq.~24! with p50

E;S R11

N

1

lpl
2 D S16/9. ~41!

Minimizing this energy with respect to the one correspon
ing to the light cone hole smeared onR @Eq. ~24! with p
51,2,3#, one finds the transition curve~26!.

C. Perturbative p11D SYM theory

Here, weakly coupled gluonic excitations dominate t
dynamics. The scaling of the equation of state is obtained
dimensional analysis

E;S R11

N

1

lpl
2 D VN(p22)/pS(p11)/p. ~42!

This regime sews onto the localized D0 brane solution by
correspondence principle at Eq.~33!. This can also be
checked by setting the thermal wavelength equal to the d
box size in the perturbative field theory, or by minimizin
the Gibbs energies between the localized D0 and pertu
tive SYM phases. For large Yang-Mills couplings, this SY
phase sews onto the Dp brane geometry at Eq.~13!; this is
again an application of the correspondence principle.

D. Comments on correspondence curves

In @9#, an additional phase labeled super quantum m
chanics was identified on the temperature –gsN plane. On
5-6
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the lnS-lnV plane, this corresponds to the single line segm
at S;N2 separating the perturbative SYM phase from t
blackD0-brane phase in Figs. 1–3. Two critical phenome
are identified with the same line. From the higher entro
side, the perturbative SYM theory freezes its dynamics
the torus at temperatures of orderTc

(1);R11V/ lpl
2 ;S21; us-

ing the perturbative SYM equation of state, this correspo
to S;N2. From the side of lower entropies, the correspo
dence point~33! occurs again atS;N2; using the D0 phase’s
equation of state~31!, this corresponds to temperatures
orderTc

(2);R11N
1/3/ lpl

2 . On this line, there is a phase who
entropy remains constant while the temperature changes
the specific heat vanishes. There may be interesting phy
to be studied here via SYM dynamics.

The two sides of the correspondence curve are both s
ments about the effective SYM coupling becoming of ord
one. Equation~1! applies for allp:5

geff
2 ;V2pNS Tlpl

2

R11
D p23

. ~43!

We can use this also for D0 branes on the dual torus
duality on the Dp branes is encoded in this relation, as ca
seen by comparing Eqs.~11! and ~18!. The resulting SYM
zero mode Lagrangian has a couplinggY

2/Vol
;gY

2(R11V/ lpl
2 )p. Note also that we use the temperatureT

;E/S, not the energy.6 Using the equation of state of th
perturbative SYM theory, we translate the statementgeff

2 ;1
with pÞ0 to Eq.~13!. Using Eq.~7!, we find the equipoten-
tials of the effective coupling in the Dp phase

geff
2 ;~N62pSp23V23p!(52p)/(92p). ~44!

For p,4 and in the Dp phase domain, the effective coupl
increases diagonally on the diagrams as we move tow
lower entropies and smaller volumesVp. Using the equation
of state of the localized D0 phase and Eq.~43! with p50, we
obtain Eq.~33! for geff

2 ;1. The equipotentials change in th
D0 phase for all three diagrams

geff
2 ;S N2

S D 5/3

. ~45!

The coupling increases from one atS;N2 as we lower the
entropy toward the 11D black hole phase. From SYM ph
ics, both correspondence curves are where the effective
pling is of order one; the localization effect atS;N2

changes this effective coupling appropriately. It is tempt
to generalize this observation and propose that the effec

5Ideas relating to the scaling of the effective coupling forp50
were also discussed in@22#.

6The notation in@7# is such thatE represented temperatureT. At
finite temperature, the energy scale relevant to the dynamics i
naturally by the temperature. For supergravity probes with ther
dynamic character, the UV-IR correspondence relates the
theory temperature to extent in the bulk; this is the same as ide
fying area in the bulk with entropy in the field theory.
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coupling in the field theory is to be always identified wi
curvature scale in string units in the supergravity. This b
comes a non-trivial statement about the effective degree
freedom and the dynamics of the field theory in its no
perturbative regimes.

E. Specialized treatments:p51

Black type IIA wave and the black type IIB string. This
region of the phase diagram is characterized by the equa
of state ~7! with p51; it comprises of two geometrie
patched against the D1 brane and M wave phases stu
above.

The type IIA black wave (W10)is the dimensional reduc
tion of the previous geometry~21! on y:

ds25~H21!~dx112dt!21dx11
2 2dt21H21~12h!dt2

1h21dr21r 2dV7
2 . ~46!

The theory is parametrized by

a8; lpl
2 V21, ~47!

gstr;V3/2. ~48!

The coordinatex11 is compactified onR11. The two relevant
restrictions are:

The size of the cyclex11 measured at the horizon must b
smaller than the size of the object

S.N. ~49!

Otherwise, the system collapses into the smeared 11D b
hole; strictly speaking, its dimensional reduction on t
smeared directiony.

The size ofx11 at the horizon being greater than the stri
scale is the statement

S,V1/2N7/6. ~50!

Otherwise, we go to theT-dual geometry of black type IIB
fundamental strings.

Theblack type IIB string (F1)is theT dual of Eq.~46! on
x11:

ds25H21~dx11
2 2hdt2!1h21dr21r 2V7

2 , ~51!

ef5gstrH
21/2, ~52!

B11,t5H2121. ~53!

The theory is parametrized by

a85 lpl
2 V21, gstr5

lpl

R11
V, ~54!

and the new coordinatex11 is compactified onlpl
2 V21/R11.

The two new constraints are:
Curvature at the horizon must be smaller than the str

scale
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S.V23/2N1/2. ~55!

Beyond this point, we call upon the correspondence princ
and identify a new phase consisting of a matrix string; m
on this phase later.

For strong couplings, we patch to the D1 geome
through S duality at Eq.~12!.

10D type IIA black hole (10D BH).The 10D type IIA
black hole is obtained by dimensional reduction of th
smeared 11D solution. Its equation of state is given by
~24!. Its correspondence point occurs at

S;V23. ~56!

The matrix string phase emerges beyond this point.
Matrix string phase.Correspondence curves delineate t

fundamental string and smeared black hole geometries i
tified above. Both of these transition curves~55! and~56! are
accounted for by Gibbs energy minimization with respect
the equation of state of a matrix string

E;S R11

N

1

lpl
2 D VS2. ~57!

We conclude that the new phase beyond these geometri
that of a matrix string; i.e., aZN holonomy is induced a
strong Yang-Mills coupling that sews the D-strings into
coil or ‘‘slinky.’’ This physics is then associated with th
emergence of new order and symmetry.

F. Specialized treatments:p52

The type IIB black wave and smeared black membran
The equation of state is given by Eq.~7!; this region is com-
prised of two patches.

The type IIB black wave(WB̄) is the dimensional reduc
tion of Eq.~21! on one of they’s, and a further T dualization
on the other; the latter step is needed because, by virtu
focusing on a square torus, the intermediate type IIA the
lives on a circle smaller than its string scale. As mention
earlier, this is the well known M-IIB duality. The vacuum
given by

ds25~H21!~dx112dt!21dx11
2 2dt21H21~12h!dt2

1dz21h21dr21r 2dV6
2 . ~58!

The theory is parametrized by

a8; lpl
2 V21, gstr;

R

R
[1. ~59!

The coordinatex11 is compactified onR11, while z lives on
lplV

22. We note that we are at the self-dual point of the ty
IIB theory. By the S-duality symmetry of the low energ
effective dynamics, the structure of the geometry is valid
this point. The new restrictions are:

Cycle x11 measured at the horizon must be greater th
the string scale
12400
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S,V3/10N6/5. ~60!

Otherwise, we have to go to a type IIA geometry by T d
ality. This will be a black fundamental string. Its coupling
the horizon is found to be large in this regime; we therefo
have to also lift to an M theory, yielding black smeare
membranes.

The size ofx11 measured at the horizon must be smal
than the size of the object

S.N. ~61!

Otherwise, the system collapses into a type 11D light co
black hole smeared on theR’s; more accurately, the emerg
ing phase is the M-IIB dual of such a hole, for the sam
reasons discussed above.

The cycle size ofz measured at the horizon must b
smaller than the size of the object

S.V26N1/2. ~62!

Otherwise, we localize the type IIB black wave on the circ
z.

As mentioned above, we encounter asmeared black mem

brane(M 2̄) phase by a chain of two dualities; a T duality of
the previous solution, and then a lift to an M theory. T
geometry becomes

ds25H22/3~dx2
22hdt2!1H1/3~dz21h21dr21r 2dV6

2!,
~63!

A12t512H21. ~64!

The theory is parametrized by the Planck scale

l̃ Pl
3 5

lpl
4

R11
V22, ~65!

the coordinatesx1,2 are compactified onlplV
22 and the newz

coordinate lives onlpl
2 V21/R11. The only new constraint is:

Requiring the ‘‘box’’ size ofz measured at the horizon t
be smaller than the object yields

S.V26N1/2. ~66!

Otherwise, we need to analyze a black localized membr
geometry.

Smeared type IIB black hole(10D̄ BH). This phase de-
scends by localization from the type IIB wave encounte
above, or by dimensional reduction/T duality from the 11
smeared light cone hole. The equation of state is given
Eq. ~24!. It will undergo localization on the type IIB circle to
a delocalized 10D hole; the transition point is analyzed
low.

Localizations.The membrane, type IIB wave and type II
hole encountered above are all subject to localization tra
tions on the dual circle; this corresponds to transtions
tween 7 and 8 noncompact transverse space dimensions
metrics ~58! and ~63! undergo the substitutiondz2

1h21dr21r 2dV6
2→h21dr21r 2dV7

2, and
5-8
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h→12S r 0

r D 6

, ~67!

H→12cS lpl
8 NV24

R11
2 D S 1

r 6D , ~68!

r 0; lplN
21/8V21/2S1/4. ~69!

We next discuss these three localized phases.
Membrane phase.This phase consists of two patche

There is thelocalized phase of black membranes (M2); its
equation of state is

E;S R11

N

1

lpl
2 D VS3/2N1/4. ~70!

It is restricted by
The correspondence point

N.1. ~71!

The requirement that the cycles on which it is wrapp
are bigger than the Planck scale

S.N7/6. ~72!

We then lift to the localized black type IIB wave.
The localized black type IIB wave (WB)patches onto this

membrane phase at Eq.~72! whenx11 is the string scale, i.e.
the T duality M lift point. It localizes onR11 unlessS.N.
Below this entropy, we have a fully localized type IIB blac
hole.

Type IIB black hole (10D BH).This is the type IIB hole
localized on the dual type IIB radius. It descends byR11
y

tt

in

y
.

12400
.

d

localization from the previous geometry; its equation of st
is

E;S R11

N

1

lpl
2 D VS7/4. ~73!

Minimizing its Gibbs energy with respect to that of th
smeared 11D hole~24! yields the transition curve

S;V212. ~74!

G. Specialized treatments:p53

For p53, both the type IIB S duality of the D3 brane an
the M theory duality onT3 correspond to the transition curv
at V;1. The phase diagram has a reflection symmetry ab
V;1 and no new phases arise.

H. The final picture

Summarizing our analysis, we map out the thermod
namic phase diagram of M theory onTp, or p11D SYM
theory on the circle~Figs. 1–3!. Using the various equation
of state, minimizing the Gibbs energies with respect to e
other, one finds the scaling properties of all the transit
curves identified through geometrical considerations. Fina
we conclude by identifying the interesting self-dual point

V;1, S;N~82p!/~72p!. ~75!
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