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Analytic solutions of the Wheeler-DeWitt equation in spherically symmetric space-time
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The canonical quantum theory of Einstein gravity with a cosmological constant in spherically symmetric
space-time is analyzed. A mass operator can be introduced as a dynamical variable due to spherically symme-
try. The operator ordering in the Hamiltonian, the momentum, and the mass operator is properly fixed so that
they form a closed algebra. In this scheme, we obtain the analytic solution which simultaneously satisfies the
Wheeler-DeWitt equation, the momentum constraint, and the mass congiBai5§6-282(99)00312-4

PACS numbg(s): 04.70.Dy, 04.20.Jb, 04.60.Ds

[. INTRODUCTION scheme, we explored solutions of three constraint equations.
It is fortunate that we are able to find analytic solutions

. ! . which satisfy three constraints simultaneously. To our
developed by Arnowitt, Deser and Misn@DM), and DiraC |, viedge, our solution is the first one which is consistent

[1]. According to the ADM decomposition the canonical ith a1 quantum requirements.

gravity theory reduces to a totally constrained system: the Tpis paper is organized as follows. In Sec. II, we review
Hamiltonian and the momenturtor the diffeomorphism  the canonical formalism of the Einstein theory with a cosmo-
constraintg2]. With the Dirac approach these constraints areggical constant in spherically symmetric space-time. We in-
imposed as operator restrictions on the wave function. Th@oduce the mass function as a dynamical variable. In Sec.
quantum version of the Hamiltonian constraint is called thej|l, the canonical quantization is presented and the operator
Wheeler-DeWitt equatiof3]. There are various difficulties ordering in the Hamiltonian, the momentum and the mass
to solve the constraint equations. So some simplifications obperators is fixed. Then, it is shown that these constraints
the problem are adopted. In particular, the quantum cosmderm a closed algebra. In Sec. IV, the analytic solutions of
logical black hole solutions in spherically symmetric space-three constraints are presented. Summary and discussion are
time have been investigated extensively. Even in this case @iven in Sec. V.

is not easy to solve the constraints analytically and further

simplifications have been made: to assume a special coordi- |I. CANONICAL FORMALISM OF THE EINSTEIN

nate conditior{4], to restrict the theory in the semiclassical THEORY IN SPHERICALLY SYMMETRIC SPACE-TIME

approach5], and to take the reduced Hamiltonian method in _ ) . . . :
asymptotically flat geometr§6,7]. In this section, we briefly review the canonical formalism

One of the serious problems of quantum gravity is opera®f the Einstein theory of the spherically symmetric space-
tor ordering, which is related to the regularization in definingimé with a cosmological constant in four dimensions. We
the product of operators at the same space-time pgjnand ~ US€ the natural units=£=G=1 and follow mainly the
the question of whether the constraints form a closed algebreonvention adopted in Kuchiarwork [6].

[9]. There is no resolution of the ordering problem, and the We start to consider the general metric for spherically
ordering is often neglected for simplicityl0]. Then, the Symmetric space-time
problem is reduced to semiclassical one.

In this paper, we consider the canonical quantization of ds’=—N2dt*+ A%(dr+N'dt)>+R*dQ?, (2.
Einstein gravity with a cosmological constant. Particularly
we seek spherically symmetric solutions. In the sphericallywheredQ? is the line element on the unit sphere. The lapse
symmetric geometry, there appears the mass constraint fnctionN, the shift vectoN’, and the metrics\ andR are
addition to the Hamiltonian and the momentum constraintsfunctions of the time coordinateand the radial coordinate
In order to set a consistent theoretical framework, we con- The action of the Einstein theory is of the form
sider the operator ordering in these constraints seriously. We
succeeded in fixing the ordering such that the commutation -
relations between them form a closed algebra. Then, in this 167

The canonical quantum theory of Einstein gravity was

d*x— @g(WR-2)), (2.2

where \ denotes the cosmological constant, afitR and
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. _ _ function is studied by Nambu and Sasfki|, who identified
|=f dtdr| =N~ (R(—A+(AN“)’)(—R+ R'N") it with the energy of the inner part of the black hole. The
canonical treatment of the mass function was considered by
Fischler, Morgan, and Polchinsl], and by Kuchaf6]. The

+N mass function can also be considered as a constraint,

+ - A(—R+R'N")2 —AIRR

M —m=~0. 2.9
A71R12+A72RR1A/ ( )

1
2
1
2

1

+§NA(1—)\R2) ,
Thus, we have three constraints. The Poisson brackets at

(2.3 the same timé among these constraints form involution re-

where the superscripts, dot and prime, denote the derivati\/lgt'onS:

with respect td andr, respectively. This action can describe [H.(N),H ()Y =H, (18 (r—=r")—(rer’)

the space-time structure of the black holes and the universe, ' "~ " ' ’

but does not include the gravitational waves, as the gravita- TH(OH(FY=H/ (D) 8(r—=r )+ H(r) & (r—r")

tional field depends only on the time and radial coordinates. nr ’
The canonical momenta are HDHE )Y =A2(DH, (N6 (r—1")—=(rer'),

P,=—N"1R(R—R'N"), {M(r),H (r")}=M"(r)s(r—r"),

Pr=—N"{R(A—(AN")")+A(R-R'N")]. 2.4 {M(r),H(r")}=—=A(r) 3RI(NH, () d(r—r"),
The action can be written in the canonical form {M(r),M(r")}=0, (2.10
) , wherer andr’ are different space coordinate8,(r—r")
|=f dtdr[PRR+P,A—=(NH+N'H)], (25  =98(r—r')/dr, and ¢<r’') indicates the interchange of
the argument in the preceding term. The Poisson brackets,
where Eqg. (2.10 show that the mass function is a constant of mo-

tion in a weak sense.
1
H=—-R 'P,Pr+ R 2AP:+ A 'RR’
2 Ill. THE QUANTIZATION AND THE OPERATOR
ORDERING
—A—zRR'A'+1A—1R’2— 1A+ EAR2 ; : ;
2 2 2 ' We quantize the spherically symmetric geometry con-
structed in Sec. Il. In the Schdinger picture, the momenta
H,=R'Pg— AP} . (2.6) corresponding to the metrigs andR in Eq. (2.4) are repre-
sented by functional differential operators
The quantitiesH and H, are called the super-Hamiltonian
and the super-momentum of gravity and should vanish by the N .
variational principle with respect thl andN', Palr)=-i SA(r)’

H~0, H,~0. 2.7 s

PR(r):—im. (31)

They reflect the general covariance of the spherically sym-
metric space-time and form the first class constraints. ) ) )
In order to study the canonical theory of the black hole, it/n the following we use the notation “hat” for the quantized
is very useful to introduce the mass function, which is de-Operators and we do not express the tiregplicitly, because
fined by the integration with respect to the space coordinat®e always treat the product of operators at the same time.
r of a linear combination of the super-Hamiltonian and the According to the Dirac approach, the constraints of the
supermomentum as system, Eq(2.7), are treated as operator restrictions on the

wave function¥':

r
—f dr(A"'R'"H+R P, A" H,) "

HV=0,
1 IV A ~
=-3|-R PA+A ZRR’Z—R+§R3 -m H¥=0,
=M-m , (2.9 MW =mV. (3.2

wherem is a integration constant, which is assigned to aThe first equation is the Wheeler-DeWiWD) equation of a
mass of the black hole. The physical meaning of the masspherically symmetric geometry, and the integration constant

124004-2



ANALYTIC SOLUTIONS OF THE WHEELER-DeWIT . ..

PHYSICAL REVIEW D 59 124004

m has the meaning of the eigenvalue of the mass operatdorm of operator ordering, for example the symmetric order-

which is interpreted as a mass of the quantum black hole. jng for the momentum constraift, , is related to that in Eq.
In order to construct the quantum theory, we have to de¢3.3) py a similarity transformatioi12]. So our choice of

fine the operator ordering iA, H, andM. The ordering is

operator ordering does not lose generality.

fixed such that the commutation relations between these op-

erators form a closed algebra. Then, we proceed to solve the

constraint equations.

A. The operator ordering

We fix the ordering as

L1 < oya L
H=EAR‘zPE\C)PA—R‘lPRAPE\B)A‘l

. 1 ams 1
M—m=§R PY PA—ER(X—F), (3.3
where
XEA_ZR,Z,
A
F=1—2mR‘1—§R2. (3.9

Here the quantitie®, P{® and P(© are

PP =AP,A L,

N . 1. N
PA(AB):Al/ZPAA* 1/2:§(PA+ PS\A))’

5A
(C)— 1_B(A)_ =1 A—
P CP (o P iRR (A 5A)
(3.5
where
C=A deR’lfdAAlaA’ (3.6)
ex r SA . .

The above ordering is taken by the following reasdisin

the limit of neglecting operator ordering, all operators reduce
to the classical ones defined in E@2.6) and (2.8); (ii) the

B. The choice of the ordering factorA

The ordering factorA is chosen such that the algebra
among constraints closes and also the constraint equations
can be solved analytically. We takeas a function oR and
x=(R’/A)2. The reason is that these quantities have a good
property in the sense that they satisfy the following commu-
tation relation:

[o(r),H(r")]=ig'(r)8(r—r"), (3.9

where =R or y. We call the operator that satisfies the
commutation relation in Eq(3.8) a good operator. In addi-

tion toRandy, P, is a good operator. Furthermore, we can
defineZ as a functional oR and y,

z=f drAf(R,X):fdrfAdAf_(R,X), (3.9

wheref andf are arbitrary functions and the integrationrof
extends up to boundaries. The functidrandf are related as

X

1/2 x dxX —
f(R,)():—Tf X_—3/2f(R,X). (31@

The quantityZ has a special property

~ . oz S5Z \'
[Z’Hr(r)]zl(R,(r)m_/\(r)(m) )=0,

(3.1)
thusZ is also a good operator, sinZé=0 by the definition,
Eq. (3.9.

Now we chooseA as
A=Az (Z)A(R,X), (3.12

thenA and, resultantlyP{® are good operators. It is worth-
while to note that we chose the factorizable formAowhich
is to guarantee
[A(N),PO(r)=isr—r"), [POr),PM(r")]=0.
(3.13

Hamiltonian and the mass operators are defined such th&tow, we observe that the mass operavbnn Eq. (3.3 con-

they satisfy the relation
(M)'=—A"'R'A-RPEAIA,, (3.7)

which is a quantum version of E¢R.9).

It is worthwhile to note that reasofii) in the above is

tains good operators only, so thst also becomes a good
operator.

C. Commutation relations

The straightforward calculation leads to

important, because once we find the wave function that sat-

isfies the momentum and also the mass constraint, then this [H(r),H,(r)]=iA (1) & (r=r")—(rer"), (3.14
wave function satisfies the Hamiltonian constraint automati- R R
cally by virtue of the relation in Eq3.7). Note that another [M(r),M(r")]=0, (3.19
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[M(r),H,(r")]=iM"(r)s(r—r"). (3.1

The above expression corresponds to the Poisson brackets in

Eqg. (2.10. The commutation relations involvirﬁ are com-
plicated. By differentiating the commutator betweldnand

H, in Eqg. (3.16 with respect tor, we find the commutator
betweenH(r) andH,(r’). Similarly, by differentiating the
commutator betweeM’s in Eq. (3.15 with respect ta and

alsor’, we find the commutators betweéhandM or H’s.
The result is as follows:

[H(r),H,(r")]=iA"(r)8(r—r")+iHr) 8 (r—r"),
(3.17

[H(r),M(r')]=iA 2R A (r)8(r—r")
+AT2RIA(r)8(0)8(r—r")
1 A
4R (NR(NR(r")
—PQ(r)g(r,r AT NA(),
(3.18

{g(r,r")PA(r")

[H(r),H(r)]=iA2(N)H(r) &' (r=r")
—h(r,r")H (r")—=(r<r"). (3.19
The functionsg andh are defined by

0117 = <2 | A | = (a7 tag) T
’ SA(r) SA(r") s
A A, o, A1) 50 scr—r
Az Az o (9_/\() (r=r’),
h(r,r')={— iﬁ><c>ﬁ>A—Fe—lpRAﬁJ(B)A—l
’ R/ [\2rR* " A -

(RPEAY,, (3.20

where the dash foA; denotes the derivative with respect to

Z such asA,=dA,/dZ, and the functiorh(r,r’) is deter-
mined once functional forms &%, andA are given.

In comparison with the Poisson brackets, there appear

new terms in the commutators betwelnand M, and be-

tween H’s. In particular, these terms are nonlocal in the

PHYSICAL REVIEW D 59124004

IV. SOLUTIONS OF THE WHEELER-DEWITT
EQUATION AND OTHER CONSTRAINTS

In general, it is quite hard to obtain the solution which
satisfies the Wheeler-DeWitt equation and the momentum
equation simultaneously. However, by our construction of
the Hamiltonian, the simultaneous solution of both the mo-
mentum and the mass constraints satisfies the Wheeler-
DeWitt equation automatically, as we can see in 877).
Therefore, we concentrate on obtaining solutions of the mo-
mentum and the mass constraints.

As for the momentum constraint, we can immediately ob-
tain the solution by observing the commutation relation in
Eq. (3.11). That is, the momentum constraint requires that
the wave function is the function & only,

T =U(Z). 4.1

Next, the mass operat® —m is applied to the above solu-
tion of the momentum constraint, E@.1). It leads to

(52 2d%¥(2) ) 152) dw(2)
SN  gz72 SA SA|| dz
+(RYy—F)2¥(z)=0. (4.2

The functionA is an arbitrary function oR andy. We fix A
such that the above equation becomes an ordinary differen-
tial equation with respect t@. If we take

— Y4
AR x)= Sy —RVX—F, 4.3
then we find

LA LA, 4.4
dz2 % 6A dz T “.4
Only the unfixed part i#\,, for which we take some special
form such that solutions of this equation become some spe-
cial functions.

(i) Hypergeometric type solutiondf we choose A,
=Z%(Z-1)? and transform the wave function as

W(@(Z)=27(Z-1) 1y(2), .
we find
, [ot2 6+2 ot+6+2 —
vl S e o

sense that they are not proportional to the delta function. AlSolutions are given by hypergeometric function as

nonlocal terms appear as coefficient§bf. These are due to
the introduction of a functiona;(Z). Since the commutator

betweerH andM contains only terms proportional f and
H,, the mass operatd¥l is a conserved quantity.

\I,(o-,ﬁ)(z)zza-%—l(z_1)5+1{a1|:(a’ﬂ’,y;z)

+a,Z "F(a—y+1,8—y+1,2— y,2)},
4.7

We computed all commutators and observed that the al-
gebra is closed. We can also check that these operators s#therea; anda, are integration constants, amd 8 and y

isfy the Jacobi identities.

are given by
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aB=0c+6+2, a+B=0c+6+3, y=o0+2. (4.8  Wherec,, c, are constants and

(ii) Bessel type solution#\s a special case df), we take _ A —=
A,=272""1 Then, the equation becomes Zwie= | dr [ dARVY—F,
d>¥(z) 2v—1d¥(2) “F
- +W(Z)=0. (4.9 :f _F _NTF

Solutions of Eq.(4.9) are given by the Hankelor Bessel

< .
functions as (for F<0), (5.2

where y andF have been defined in E3.4). The function
Zywkg turns out to be the same form @sin Eq. (3.9) and,
therefore, the WKB solution agrees with our Bessel type
solution forv=1/2. Our Bessel type solutions with arbitrary
v approach the WKB solution for large values &f
2 Our solutions are general since we did not impose any
v2)(Z)= \ﬁ {b,e' @~ ™24, 1(Z= 2} coordinate conditions. All known solutions are derived by
m imposing some coordinate conditions. In the following, we
413 see whether our solutions reduce to some known solutions of
the Schwarzschild or the de Sitter geometry by imposing
V. SUMMARY AND DISCUSSION some coordinate conditions. Our solutions are given as a

Under the anzatz of spherical symmetry, we have studie nction of Z which is determined by Eq<3.9) and (4.3).

the canonical quantum theory of the Einstein action with a h.us, the "”."“”9 procedure is the process to find the re-
stricted functional form ofZ.

gosmolqgical constant. We gave the operator orderingfor (1) The Schwarzschild black hole case=Q). As for the
H, andM and showed that they form a closed algebra. Thﬁ:oordinate conditions, we impose=1 andR’=0, which
commutators reproduced all terms that appeared in the_Po'féads to y=A"2R’2=0. Furthermore, we requireA
son bracket, but we found some terms which are proportional. J—F.
to H, . All these terms contain the nonlocal terms in a sense
that they are not proportional té function and its deriva- A
tives. In this operator ordering, we derived analytic solutions Z:[f drf dARVx—F
which satisfy the Hamiltonian, the momentum and the mass
constraints. Extension to include the electromagnetic field i . . :
also interesting in view of extremal black holes and cosmo—ﬁ_he Be'ssel type solution with the aboZeagrees W'th.the
logical black holeq13]. Its corresponding quantum theory ones given b_y Nakamurat al. [14] and by our previous
can be done in a straightforward way in our formalism. Work_[15]. This case was extended to the casa.ef0 and
In our analysis, the constraint equations, E8.2), are solutions were qbtame@G]. .
imposed on an arbitrary Cauchy surface. On the surface, (2)_ _The de Sitter universe case @)' The coo_rdlnat_e
through Eq.(3.7), the Hamiltonian and the momentum con- conditions,y=1 andR= JVAI3R', are imposed. If, in addi-
straints require that the dynamical operaibitakes a same tion, we require the relationA = |\/3R=a(t)e’, where
value. Using this property, we introduced the massa(t)=exp(/A/3t), Z is determined ag=a(t)* for largeZ.
eigenequation as a constraint. As a result, the mass operatibrwe choose the index of the Bessel type solution:as
is reduced to constant value and substantially nondynamicai: 1/3 (Airy function), our solution agrees with that of
and the remaining quantum fluctuation is the ambiguity ofHoriguchi[17] asymptotically.
the choice of the Cauchy surface. Such separation of the In summary, our solutions will be used to investigate the
quantum fluctuation is justified by the closed algebra beearly universe, the inflation epoch, and the quantum black
tween the new constraint and the Hamiltonian and momenhole. In order to study the quantum epoch beyond the semi-
tum constraints. Therefore, our procedure is allowed if and:lassical region, we have to adopt some interpretation of the
only if the operator ordering in the Wheeler-DeWitt equationquantum universe. The de Broglie—Botfpilot wave, quan-
is chosen as Eq3.3). tum potential interpretation 18] lies in a unique position in
We now compare our solutions with the WKBemiclas- the sense that this provides the notion of trajectory in the full
sical) solution. The WKB wave function is given §%,7,10  quantum region. The study of the cosmological quantum
‘ . black hole is now under investigation by using the de
W5~ C e 4WKB+ e 12WKB | (5.9 Broglie—Bohm interpretatiofl19].

T(2)=2"{bHM(Z)+b,HP(2)},  (4.10

whereb,,b, are integration constants. In a casevef 1/2,
the solution takes a simple form of an exponential type as

Then, the functior? is obtained as

=f dr(—R+2m).

x=0A=y"F
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