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Analytic solutions of the Wheeler-DeWitt equation in spherically symmetric space-time
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The canonical quantum theory of Einstein gravity with a cosmological constant in spherically symmetric
space-time is analyzed. A mass operator can be introduced as a dynamical variable due to spherically symme-
try. The operator ordering in the Hamiltonian, the momentum, and the mass operator is properly fixed so that
they form a closed algebra. In this scheme, we obtain the analytic solution which simultaneously satisfies the
Wheeler-DeWitt equation, the momentum constraint, and the mass constraint.@S0556-2821~99!00312-4#
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I. INTRODUCTION

The canonical quantum theory of Einstein gravity w
developed by Arnowitt, Deser and Misner~ADM !, and Dirac
@1#. According to the ADM decomposition the canonic
gravity theory reduces to a totally constrained system:
Hamiltonian and the momentum~or the diffeomorphism!
constraints@2#. With the Dirac approach these constraints a
imposed as operator restrictions on the wave function.
quantum version of the Hamiltonian constraint is called
Wheeler-DeWitt equation@3#. There are various difficulties
to solve the constraint equations. So some simplification
the problem are adopted. In particular, the quantum cos
logical black hole solutions in spherically symmetric spa
time have been investigated extensively. Even in this cas
is not easy to solve the constraints analytically and furt
simplifications have been made: to assume a special co
nate condition@4#, to restrict the theory in the semiclassic
approach@5#, and to take the reduced Hamiltonian method
asymptotically flat geometry@6,7#.

One of the serious problems of quantum gravity is ope
tor ordering, which is related to the regularization in defini
the product of operators at the same space-time point@8#, and
the question of whether the constraints form a closed alge
@9#. There is no resolution of the ordering problem, and
ordering is often neglected for simplicity@10#. Then, the
problem is reduced to semiclassical one.

In this paper, we consider the canonical quantization
Einstein gravity with a cosmological constant. Particula
we seek spherically symmetric solutions. In the spherica
symmetric geometry, there appears the mass constrain
addition to the Hamiltonian and the momentum constrain
In order to set a consistent theoretical framework, we c
sider the operator ordering in these constraints seriously.
succeeded in fixing the ordering such that the commuta
relations between them form a closed algebra. Then, in
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scheme, we explored solutions of three constraint equati
It is fortunate that we are able to find analytic solutio
which satisfy three constraints simultaneously. To o
knowledge, our solution is the first one which is consiste
with all quantum requirements.

This paper is organized as follows. In Sec. II, we revie
the canonical formalism of the Einstein theory with a cosm
logical constant in spherically symmetric space-time. We
troduce the mass function as a dynamical variable. In S
III, the canonical quantization is presented and the oper
ordering in the Hamiltonian, the momentum and the m
operators is fixed. Then, it is shown that these constra
form a closed algebra. In Sec. IV, the analytic solutions
three constraints are presented. Summary and discussio
given in Sec. V.

II. CANONICAL FORMALISM OF THE EINSTEIN
THEORY IN SPHERICALLY SYMMETRIC SPACE-TIME

In this section, we briefly review the canonical formalis
of the Einstein theory of the spherically symmetric spa
time with a cosmological constant in four dimensions. W
use the natural unitsc5\5G51 and follow mainly the
convention adopted in Kucharˇ’s work @6#.

We start to consider the general metric for spherica
symmetric space-time

ds252N2dt21L2~dr1Nrdt!21R2dV2, ~2.1!

wheredV2 is the line element on the unit sphere. The lap
function N, the shift vectorNr , and the metricsL andR are
functions of the time coordinatet and the radial coordinater.

The action of the Einstein theory is of the form

I 5
1

16pE d4xA2 (4)g~ (4)R22l!, ~2.2!

where l denotes the cosmological constant, and(4)R and
(4)g are the scalar curvature and the determinant of met
in four dimensions, respectively.

Substituting the metrics~2.1! into the action~2.2!, the
action in the ADM decomposition is given as
©1999 The American Physical Society04-1
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I 5E dtdrF2N21S R„2L̇1~LNr !8…~2Ṙ1R8Nr !

1
1

2
L~2Ṙ1R8Nr !2D1NS 2L21RR9

2
1

2
L21R821L22RR8L8D1

1

2
NL~12lR2!G ,

~2.3!

where the superscripts, dot and prime, denote the deriva
with respect tot andr, respectively. This action can describ
the space-time structure of the black holes and the unive
but does not include the gravitational waves, as the grav
tional field depends only on the time and radial coordina

The canonical momenta are

PL52N21R~Ṙ2R8Nr !,

PR52N21@R„L̇2~LNr !8…1L~Ṙ2R8Nr !#.
~2.4!

The action can be written in the canonical form

I 5E dtdr@PRṘ1PLL̇2~NH1NrHr !#, ~2.5!

where

H52R21PLPR1
1

2
R22LPL

2 1L21RR9

2L22RR8L81
1

2
L21R822

1

2
L1

l

2
LR2,

Hr5R8PR2LPL8 . ~2.6!

The quantitiesH and Hr are called the super-Hamiltonia
and the super-momentum of gravity and should vanish by
variational principle with respect toN andNr ,

H'0, Hr'0. ~2.7!

They reflect the general covariance of the spherically sy
metric space-time and form the first class constraints.

In order to study the canonical theory of the black hole
is very useful to introduce the mass function, which is d
fined by the integration with respect to the space coordin
r of a linear combination of the super-Hamiltonian and t
supermomentum as

2E r

dr~L21R8H1R21PLL21Hr !

52
1

2 S 2R21PL
2 1L22RR822R1

l

3
R3D2m

[M2m , ~2.8!

where m is a integration constant, which is assigned to
mass of the black hole. The physical meaning of the m
12400
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function is studied by Nambu and Sasaki@11#, who identified
it with the energy of the inner part of the black hole. Th
canonical treatment of the mass function was considered
Fischler, Morgan, and Polchinski@5#, and by Kucharˇ @6#. The
mass function can also be considered as a constraint,

M2m'0. ~2.9!

Thus, we have three constraints. The Poisson bracke
the same timet among these constraints form involution r
lations:

$Hr~r !,Hr~r 8!%5Hr~r !d8~r 2r 8!2~r↔r 8!,

$H~r !,Hr~r 8!%5H8~r !d~r 2r 8!1H~r !d8~r 2r 8!,

$H~r !,H~r 8!%5L22~r !Hr~r !d8~r 2r 8!2~r↔r 8!,

$M ~r !,Hr~r 8!%5M 8~r !d~r 2r 8!,

$M ~r !,H~r 8!%52L~r !23R8~r !Hr~r !d~r 2r 8!,

$M ~r !,M ~r 8!%50, ~2.10!

where r and r 8 are different space coordinates,d8(r 2r 8)
5]d(r 2r 8)/]r , and (r↔r 8) indicates the interchange o
the argument in the preceding term. The Poisson brack
Eq. ~2.10! show that the mass function is a constant of m
tion in a weak sense.

III. THE QUANTIZATION AND THE OPERATOR
ORDERING

We quantize the spherically symmetric geometry co
structed in Sec. II. In the Schro¨dinger picture, the momenta
corresponding to the metricsL andR in Eq. ~2.4! are repre-
sented by functional differential operators

P̂L~r !52 i
d

dL~r !
,

P̂R~r !52 i
d

dR~r !
. ~3.1!

In the following we use the notation ‘‘hat’’ for the quantize
operators and we do not express the timet explicitly, because
we always treat the product of operators at the same tim

According to the Dirac approach, the constraints of t
system, Eq.~2.7!, are treated as operator restrictions on t
wave functionC:

ĤC50,

ĤrC50,

M̂C5mC. ~3.2!

The first equation is the Wheeler-DeWitt~WD! equation of a
spherically symmetric geometry, and the integration cons
4-2
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m has the meaning of the eigenvalue of the mass oper
which is interpreted as a mass of the quantum black hol

In order to construct the quantum theory, we have to
fine the operator ordering inĤ, Ĥr and M̂ . The ordering is
fixed such that the commutation relations between these
erators form a closed algebra. Then, we proceed to solve
constraint equations.

A. The operator ordering

We fix the ordering as

Ĥ5
1

2
LR22P̂L

(C)P̂L2R21P̂RL P̂L
(B)L21

1LR821S R

2
~x2F ! D 8

,

Ĥr5R8P̂R2L~ P̂L!8,

M̂2m5
1

2
R21P̂L

(A)P̂L2
1

2
R~x2F !, ~3.3!

where

x[L22R82,

F5122mR212
l

3
R2. ~3.4!

Here the quantitiesP̂L
(A) , P̂L

(B) and P̂L
(C) are

P̂L
(A)5AP̂LA21,

P̂L
(B)5A1/2P̂LA21/25

1

2
~ P̂L1 P̂L

(A)!,

P̂L
(C)5CP̂LC215 P̂L

(A)2 iRR821S A21
dA

dL D 8
,

~3.5!

where

C5A expF2E r

drRR821EL

dLS A21
dA

dL D 8G . ~3.6!

The above ordering is taken by the following reasons:~i! In
the limit of neglecting operator ordering, all operators redu
to the classical ones defined in Eqs.~2.6! and ~2.8!; ~ii ! the
Hamiltonian and the mass operators are defined such
they satisfy the relation

~M̂ !852L21R8Ĥ2R21P̂L
(B)L21Ĥr , ~3.7!

which is a quantum version of Eq.~2.8!.
It is worthwhile to note that reason~ii ! in the above is

important, because once we find the wave function that
isfies the momentum and also the mass constraint, then
wave function satisfies the Hamiltonian constraint autom
cally by virtue of the relation in Eq.~3.7!. Note that another
12400
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form of operator ordering, for example, the symmetric ord
ing for the momentum constraintĤr , is related to that in Eq.
~3.3! by a similarity transformation@12#. So our choice of
operator ordering does not lose generality.

B. The choice of the ordering factorA

The ordering factorA is chosen such that the algeb
among constraints closes and also the constraint equa
can be solved analytically. We takeA as a function ofR and
x[(R8/L)2. The reason is that these quantities have a g
property in the sense that they satisfy the following comm
tation relation:

@f~r !,Ĥr~r 8!#5 if8~r !d~r 2r 8!, ~3.8!

where f5R or x. We call the operator that satisfies th
commutation relation in Eq.~3.8! a good operator. In addi
tion to R andx, P̂L is a good operator. Furthermore, we c
defineZ as a functional ofR andx,

Z5E drL f ~R,x!5E drEL

dL f̄ ~R,x!, ~3.9!

wheref and f̄ are arbitrary functions and the integration ofr

extends up to boundaries. The functionsf and f̄ are related as

f ~R,x!52
x1/2

2 Ex dx

x23/2
f̄ ~R,x!. ~3.10!

The quantityZ has a special property

@Z,Ĥr~r !#5 i XR8~r !
dZ

dR~r !
2L~r !S dZ

dL~r ! D 8C50,

~3.11!

thusZ is also a good operator, sinceZ850 by the definition,
Eq. ~3.9!.

Now we chooseA as

A5AZ~Z!Ā~R,x!, ~3.12!

thenA and, resultantly,P̂L
(A) are good operators. It is worth

while to note that we chose the factorizable form forA which
is to guarantee

@L~r !,P̂L
(A)~r 8!#5 id~r 2r 8!, @ P̂L

(A)~r !,P̂L
(A)~r 8!#50.

~3.13!

Now, we observe that the mass operatorM̂ in Eq. ~3.3! con-
tains good operators only, so thatM̂ also becomes a goo
operator.

C. Commutation relations

The straightforward calculation leads to

@Ĥr~r !,Ĥr~r 8!#5 iĤ r~r !d8~r 2r 8!2~r↔r 8!, ~3.14!

@M̂ ~r !,M̂ ~r 8!#50, ~3.15!
4-3
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@M̂ ~r !,Ĥr~r 8!#5 iM̂ 8~r !d~r 2r 8!. ~3.16!

The above expression corresponds to the Poisson bracke
Eq. ~2.10!. The commutation relations involvingĤ are com-
plicated. By differentiating the commutator betweenM̂ and
Ĥr in Eq. ~3.16! with respect tor, we find the commutator
betweenĤ(r ) and Ĥr(r 8). Similarly, by differentiating the
commutator betweenM̂ ’s in Eq. ~3.15! with respect tor and
alsor 8, we find the commutators betweenĤ andM̂ or Ĥ ’s.
The result is as follows:

@Ĥ~r !,Ĥr~r 8!#5 iĤ 8~r !d~r 2r 8!1 iĤ ~r !d8~r 2r 8!,
~3.17!

@Ĥ~r !,M̂ ~r 8!#5 iL23R8Ĥr~r !d~r 2r 8!

1L22R21Ĥ~r !d~0!d~r 2r 8!

2
1

4

L~r !

R8~r !R~r !R~r 8!
$g~r ,r 8!P̂L~r 8!

2 P̂L
(A)~r 8!g~r ,r 8!%L21~r !Ĥr~r !,

~3.18!

@Ĥ~r !,Ĥ~r 8!#5 iL22~r !Ĥr~r !d8~r 2r 8!

2h~r ,r 8!Hr~r 8!2~r↔r 8!. ~3.19!

The functionsg andh are defined by

g~r ,r 8!5
d

dL~r ! S A21~r !
dA~r !

dL~r 8!
D 5~AZ

21AZ8 !8 f̄ ~r ! f̄ ~r 8!

1H AZ
21AZ8

] f̄

]L
1

]

]L
S Ā21

]Ā

]L
D d~0!J d~r 2r 8!,

h~r ,r 8!5S L

R8
D

r 8
F S L

2R2
P̂L

(C)P̂L2R21PRL P̂L
(B)L21D

r

,

~R21P̂L
(B)L21!r 8G , ~3.20!

where the dash forAZ denotes the derivative with respect
Z such asAZ85dAZ /dZ, and the functionh(r ,r 8) is deter-

mined once functional forms ofAZ and Ā are given.
In comparison with the Poisson brackets, there app

new terms in the commutators betweenĤ and M̂ , and be-
tween Ĥ ’s. In particular, these terms are nonlocal in t
sense that they are not proportional to the delta function.
nonlocal terms appear as coefficients ofĤr . These are due to
the introduction of a functionalAZ(Z). Since the commutato
betweenĤ andM̂ contains only terms proportional toĤ and
Ĥr , the mass operatorM̂ is a conserved quantity.

We computed all commutators and observed that the
gebra is closed. We can also check that these operators
isfy the Jacobi identities.
12400
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IV. SOLUTIONS OF THE WHEELER-DEWITT
EQUATION AND OTHER CONSTRAINTS

In general, it is quite hard to obtain the solution whic
satisfies the Wheeler-DeWitt equation and the momen
equation simultaneously. However, by our construction
the Hamiltonian, the simultaneous solution of both the m
mentum and the mass constraints satisfies the Whe
DeWitt equation automatically, as we can see in Eq.~3.7!.
Therefore, we concentrate on obtaining solutions of the m
mentum and the mass constraints.

As for the momentum constraint, we can immediately o
tain the solution by observing the commutation relation
Eq. ~3.11!. That is, the momentum constraint requires th
the wave function is the function ofZ only,

C5C~Z!. ~4.1!

Next, the mass operatorM̂2m is applied to the above solu
tion of the momentum constraint, Eq.~4.1!. It leads to

S dZ

dL D 2 d2C~Z!

dZ2
1AF d

dL S A21
dZ

dL D G dC~Z!

dZ

1~RAx2F !2C~Z!50. ~4.2!

The functionĀ is an arbitrary function ofR andx. We fix Ā
such that the above equation becomes an ordinary diffe
tial equation with respect toZ. If we take

Ā~R,x!5
dZ

dL
5RAx2F, ~4.3!

then we find

d2C

dZ2
2AZ

21 dAZ

dL

dC

dZ
1C50. ~4.4!

Only the unfixed part isAZ , for which we take some specia
form such that solutions of this equation become some s
cial functions.

(i) Hypergeometric type solutions.If we choose AZ
5Zs(Z21)d and transform the wave function as

C (s,d)~Z!5Zs11~Z21!d11c~Z!, ~4.5!

we find

c91S s12

Z
1

d12

Z21Dc81
s1d12

Z~Z21!
c50. ~4.6!

Solutions are given by hypergeometric function as

C (s,d)~Z!5Zs11~Z21!d11$a1F~a,b,g;Z!

1a2Z12gF~a2g11,b2g11,22g;Z!%,
~4.7!

wherea1 anda2 are integration constants, anda, b andg
are given by
4-4
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ab5s1d12, a1b5s1d13, g5s12. ~4.8!

(ii) Bessel type solutions.As a special case of~i!, we take
AZ5Z2n21. Then, the equation becomes

d2C~Z!

dZ2
2

2n21

Z

dC~Z!

dZ
1C~Z!50. ~4.9!

Solutions of Eq.~4.9! are given by the Hankel~or Bessel!
functions as

C (n)~Z!5Zn$b1Hn
(1)~Z!1b2Hn

(2)~Z!%, ~4.10!

whereb1 ,b2 are integration constants. In a case ofn51/2,
the solution takes a simple form of an exponential type a

C (1/2)~Z!5A2

p
$b1ei (Z2p/2)1b2e2 i (Z2p/2)% .

~4.11!

V. SUMMARY AND DISCUSSION

Under the anzatz of spherical symmetry, we have stud
the canonical quantum theory of the Einstein action with
cosmological constant. We gave the operator ordering forĤ,
Ĥr andM̂ and showed that they form a closed algebra. T
commutators reproduced all terms that appeared in the P
son bracket, but we found some terms which are proportio
to Hr . All these terms contain the nonlocal terms in a se
that they are not proportional tod function and its deriva-
tives. In this operator ordering, we derived analytic solutio
which satisfy the Hamiltonian, the momentum and the m
constraints. Extension to include the electromagnetic fiel
also interesting in view of extremal black holes and cosm
logical black holes@13#. Its corresponding quantum theor
can be done in a straightforward way in our formalism.

In our analysis, the constraint equations, Eq.~3.2!, are
imposed on an arbitrary Cauchy surface. On the surfa
through Eq.~3.7!, the Hamiltonian and the momentum co
straints require that the dynamical operatorM takes a same
value. Using this property, we introduced the ma
eigenequation as a constraint. As a result, the mass ope
is reduced to constant value and substantially nondynam
and the remaining quantum fluctuation is the ambiguity
the choice of the Cauchy surface. Such separation of
quantum fluctuation is justified by the closed algebra
tween the new constraint and the Hamiltonian and mom
tum constraints. Therefore, our procedure is allowed if a
only if the operator ordering in the Wheeler-DeWitt equati
is chosen as Eq.~3.3!.

We now compare our solutions with the WKB~semiclas-
sical! solution. The WKB wave function is given by@5,7,10#

CG;c1eiZWKB1c2e2 iZWKB , ~5.1!
12400
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wherec1 , c2 are constants and

ZWKB5E drEL

dLRAx2F ,

5E drRLS Ax2F1Ax logU A2F

Ax1Ax2F
U D

~ for F,0!, ~5.2!

wherex andF have been defined in Eq.~3.4!. The function
ZWKB turns out to be the same form asZ in Eq. ~3.9! and,
therefore, the WKB solution agrees with our Bessel ty
solution forn51/2. Our Bessel type solutions with arbitrar
n approach the WKB solution for large values ofZ.

Our solutions are general since we did not impose a
coordinate conditions. All known solutions are derived
imposing some coordinate conditions. In the following, w
see whether our solutions reduce to some known solution
the Schwarzschild or the de Sitter geometry by impos
some coordinate conditions. Our solutions are given a
function of Z which is determined by Eqs.~3.9! and ~4.3!.
Thus, the limiting procedure is the process to find the
stricted functional form ofZ.

(1) The Schwarzschild black hole case (l50). As for the
coordinate conditions, we imposeṘ51 and R850, which
leads to x5L22R8250. Furthermore, we requireL
5A2F. Then, the functionZ is obtained as

Z5F E drEL

dLRAx2F G
x50,L5A2F

5E dr~2R12m!.

The Bessel type solution with the aboveZ agrees with the
ones given by Nakamuraet al. @14# and by our previous
work @15#. This case was extended to the case oflÞ0 and
solutions were obtained@16#.

(2) The de Sitter universe case (m50). The coordinate
conditions,x51 andṘ5Al/3R8, are imposed. If, in addi-
tion, we require the relationL5Al/3R5a(t)er , where
a(t)5exp(Al/3t), Z is determined asZ}a(t)3 for largeZ.
If we choose the index of the Bessel type solution asn
51/3 ~Airy function!, our solution agrees with that o
Horiguchi @17# asymptotically.

In summary, our solutions will be used to investigate t
early universe, the inflation epoch, and the quantum bl
hole. In order to study the quantum epoch beyond the se
classical region, we have to adopt some interpretation of
quantum universe. The de Broglie–Bohm~pilot wave, quan-
tum potential! interpretation@18# lies in a unique position in
the sense that this provides the notion of trajectory in the
quantum region. The study of the cosmological quant
black hole is now under investigation by using the
Broglie–Bohm interpretation@19#.
4-5
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@6# K.V. Kuchař, Phys. Rev. D50, 3961~1994!.
@7# H.A. Kastrup and T. Thiemann, Nucl. Phys.B425, 665~1994!;

T. Thiemann,ibid. B436, 681 ~1995!; J. Mäkela and P. Repo
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(sym)D5Ĥr5R8P̂R2L P̂L8 ,

whereD5exp@2 1
2*dr ln R8(r)L(r)#.

@13# J.B. Hartle and S.W. Hawking, Commun. Math. Phys.26, 87
~1972!; D. Kastor and J. Traschen, Phys. Rev. D47, 5370
~1993!.

@14# K. Nakamura, S. Konno, Y. Oshiro, and A. Tomimatsu, Pro
Theor. Phys.90, 861 ~1993!.

@15# M. Kenmoku, H. Kubotani, E. Takasugi, and Y. Yamaza
Phys. Rev. D57, 4925~1998!.

@16# M. Kenmoku, H. Kubotani, E. Takasugi, and Y. Yamaza
e-print gr-qc/9810039.

@17# T. Horiguchi, Mod. Phys. Lett. A9, 1429~1994!.
@18# L. de Broglie,Tentative d’interpretation causale et nonlineair

de la mechanique ondulaire~Gauthier-Villars, Paris, 1956!; D.
Bohm, Phys. Rev.85, 166 ~1952!; 85, 180 ~1952!; J.S. Bell,
Speakable and Unspeakable in Quantum Mechanics~Cam-
bridge University Press, Cambridge, England, 1987!; P.R. Hol-
land, The Quantum Theory Of Motion~Cambridge University
Press, Cambridge, England, 1993!; S.P. de Alwis and D.A.
MacIntire, Phys. Rev. D50, 5164 ~1994!; M. Kenmoku, K.
Otsuki, K. Shigemoto, and K. Uehara, Class. Quantum Gr
13, 1751~1996!.

@19# M. Kenmoku, H. Kubotani, E. Takasugi, and Y. Yamaza
‘‘de Broglie-Bohm interpretation for analytic solutions of th
Wheeler-DeWitt equation in spherically symmetric spac
time’’ ~in preparation!.
4-6


