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Exact universal gravitational lensing equation
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We first define what we mean by gravitational lensing equations in a general space-time. A set of exact
relations is then derived that can be used as the gravitational lens equations in all physical situations. The
caveat is that into these equations there must be inserted a function, a two-parameter family of solutions to the
eikonal equation, not easily obtained, that codes all the relevant~conformal! space-time information for this
lens equation construction. Knowledge of this two-parameter family of solutions replaces knowledge of the
solutions to the null geodesic equations. The formalism is then applied to the Schwarzschild lensing problem.
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I. INTRODUCTION

The purpose of this paper is to firstdefine, on an arbitrary
Lorentzian space-time, what we mean by exact gravitation
lensing equations and then derive a version of these e
equations~which we believe should be of universal applic
bility !. Our definition reduces to the more usual lens eq
tions @1# when we consider approximations: namely sm
observation angle and perturbation calculations off either
or Robertson-Walker space-times. The basic idea will be
consider the one parameter family ofpastlight cones with an
apex on a time-like world line that should be considered
the history of an observer; i.e., it defines what an obser
can ‘‘see’’ and when the observer can see it. The grav
tional lens equations are to be, loosely stated, the space-
positions of potential light sources, given in terms of t
position and time of the observation and the direction
observation~direction on the observers past tangent sp
light cone!.

In Sec. II we will make precise what we mean by t
‘‘lens equation’’ and in Sec. III, using techniques obtain
from Arnold’s @2–5# theory of Lagrangian and Legendr
maps, we derive a set of general relations, ‘‘lens equation
that with appropriate linearization reduces to the stand
approximate lens equation@1#.

A caveat should be expressed here. First of all in any fo
of lensing equations one must be looking at the past
geodesics and one thus musthave the metric tensor~needed
only up to a conformal factor since onlynull geodesics are
relevant! in order to calculate, from the geodesic equatio
the null geodesics themselves.Though in our version, this
information clearly must still be there, its specific appeara
is circumvented by the assumed knowledge of a tw
parameter family of solutions,u5Z(xa,z,z̄), to the eikonal
equation:

gab~xa!]aZ]bZ50. ~1!

The two parameters, (z,z), are the complex stereograph
0556-2821/99/59~12!/124001~5!/$15.00 59 1240
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coordinates on the sphere. The~null! gradient ofZ(xa,z,z̄)
at xa, namely pa5]aZ(xa,z,z̄), sweeps out the sphere o
null directions as (z,z̄) ranges over the sphere. The functio
Z(xa,z,z̄), which encodes all the conformal information o
the space-time, is not easily obtained. It can be found exa
in spaces with sufficient symmetries, e.g., all conforma
flat spaces~Robertson-Walker!, Schwarzschild, Kerr, etc.
but in most applications it will have to be found by pertu
bation methods. In any case, our lensing equations will
given explicitly and exactly in terms ofZ(xa,z,z̄) though
when applied to physical situations, approximations w
have to be made.

Our starting point will be to assume that we have globa
~perhaps given in different patches! the level surfaces of the
function,u5Z(xa,z,z̄).

Remark 1. For simplicity of discussion, we have assum
that the solutions to the eikonal equation will have be
given by a function of the local coordinates,xa. Actually
there might be singular regions~caustics! or self-
intersections, where this is not possible; the surfaces co
then be given in parametric form. We will nevertheless u
the language of the simple function,Z(xa,z,z̄).

II. DEFINING THE LENS EQUATION

We first assume that our space-time allows the null g
desics to be infinitely extendable into both the future and
past. In any region local coordinates will exist such that
world line, L, of an observer can be given parametrically

xa5X0
a~t! ~2!

and the one parameter family of light cones,C„X0
a(t)…, by

xa5Xa
„X0

a~t!,h,h̄,s…[Xa~t,h,h̄,s! ~3!

where (h,h̄) label the sphere’s worth of null directions a
xa5X0

a(t) and s is an affine parameter along each of t
©1999 The American Physical Society01-1
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geodesics labeled by (t,h,h̄). La5]sX
aÞ0 is the~null! tan-

gent vector to the geodesics.@Derivatives ofXa with respect
to the other parameters yield connecting vectors. They
not directly interest us here though they often are used in
study of the caustics of the light cones,C„X0

a(t)…. We will
approach the caustic issue from a slightly different point
view.# We further assume that the local coordinatesxa are
such that three of them,xi , are space-like and one,x0, is
time-like. From this and from the non-vanishing null chara
ter of La, using the implicit function theorem, one~at least
one! of the space-like equations~3! can be solved fors. Let
us call that special coordinatex* and the other two space
like coordinates,xa. We then have that

s5S~x* ,t,h,h̄ ! ~4!

and the remaining three Eqs.~3! become, whens is replaced
by S(x* ,t,h,h̄)

x05X0
„t,h,h̄,S~x* ,t,h,h̄ !…[X̂0~x* ,t,h,h̄ !, ~5!

xa5Xa
„t,h,h̄,S~x* ,t,h,h̄ !…[X̂a~x* ,t,h,h̄ !.

~6!

If we think of a light source at the spatial position (x* ,xa)
emitting light at timex0, then Eq.~5! relates the time of
emissionx0 at x* , with the time of arrivalt and arrival
direction, (h,h̄). We will refer to Eq. ~5! as the time of
arrival relation or function.

The lens equationis definedby Eq. ~6!; it expresses two
of the spatial coordinates,xa, in terms of the arrival time a
the observer,t, the direction at the observer, that the o
server sees the source andone of the source coordinates
Most often in applications the two coordinatesxa are iden-
tified with some angular position coordinates (u,w) of the
source and thex* as some form of ‘‘radial’’ or ‘‘distance
from observer coordinate,’’ sayD. In this case the lens equa
tion reads

u5Q~D,t,h,h̄ !, ~7!

w5F~D,t,h,h̄ !.

Much of conventional lensing theory is based on finding
proximate versions of Eq.~7!. An important issue is the in
version of these equations, i.e., finding the observa
angles in terms of the source position, namely when can
rewrite them as

~h,h̄ !5„N~D,t,u,w!,N̄~D,t,u,w!… ~8!

and the multiplicity of these solutions. The condition f
caustics on the past light cone atD @the non-invertibility of
Eq. ~7!# is the vanishing of the Jacobian of Eq.~7!;

J5
]~u,w!

]~h,h̄ !
. ~9!
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We return to this issue in the next section in a more gen
context.

III. THE CONSTRUCTION OF THE PAST LIGHT CONE

The construction of the light cones,C„X0
a(t)…, Eq. ~3! and

hence, the time of arrival function and the lens equatio
Eqs. ~5! and ~6! was based on the integration of the nu
geodesic equations. In this section we will give an alternat
construction of Eqs.~5! and ~6! based on the solution to th
eikonal equation.

As discussed in the Introduction, we assume that we h
the two-parameter family of solutions,u5Z(xa,z,z), to the
eikonal equation where for each value of (z,z̄) the level
surfaces ofZ are null surfaces, i.e.,]aZ is a null covector.
Furthermore it is assumed that at each pointxc,]aZ sweeps
out the entire null cone atxa as (z,z̄) goes thru its range,S2.

Remark 2. We repeat and emphasize that the level
faces of the solutions to Eq.~1! though referred to as ‘‘null
or characteristic surfaces’’ are not strictly speaking surfac
they can have self-intersections and in general are o
piece-wise smooth. Though Arnold@2# refers to them as
‘‘big-wave-fronts’’ we will continue to call them null sur-
faces. The intersection of a big wave front with a gene
three surface yields a two-dimensional~small! wave front.

The first thing that we want to show is that the lig
cones,C„X0

a(t)…, with an apex on an arbitrary curve,L, can
be constructed from knowledge of the functionZ.

One sees immediately, from the eikonal equation, that
function

F~xa,t,z,z̄ ![Z~xa,z,z̄ !2Z„X0
a~t!,z,z̄…50, ~10!

for each fixed valueof t, defines a two-parameter family o
surfaces which all pass thru the pointX0

a(t) and which are
all null surfaces.

Remark 3. Note that]tF[2]tZ52Va(t)]aZÞ0, with
Va(t)5]tX0

a(t). The non-vanishing of]tF is because the
scalar product of a non-vanishing null vector with a no
vanishing time-like vector is different from zero. It now fo
lows from the implicit function theorem that Eq.~10! is the
implicit version of the functiont5T(xa,z,z), i.e., we have

Z~xa,z,z̄ !2Z„X0
a~t!,z,z̄…50⇔t5T~xa,z,z̄ !. ~11!

The functionT(xa,z,z̄) ~or F) defines, what Arnold@3,5#
calls a generating family and is used to construct, via
envelope, the light cone for each value oft.

Specifically the envelope of this family is constructed
demanding that@6#

]zF~xa,t,z,z̄ !50, ~12!

]z̄F~xa,t,z,z̄ !50

where (]z ,]z̄) denote the derivatives with respect to th
(z,z̄). Assuming for the moment that Eq.~12! could be
1-2
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solved for the (z,z̄)5„G(xa,t),Ḡ(xa,t)… then when they are
substituted into Eq.~10! one obtains the function

F̂~xa,t![F„xa,t,G~xa,t!,Ḡ~xa,t!…5Z~xa,G,Ḡ !

2Z„X0
a~t!,G,Ḡ…50. ~13!

Once again using the implicit function theorem with E
~12!, Eq. ~13!, can be written as

F̂~xa,t![Z~xa,G,Ḡ !2Z„X0
a~t!,G,Ḡ…50⇔t5T̂~xa!.

~14!

Using eitherF̂(xa,t)50 or t5T̂(xa) one can easily see
that they define a one parameter, (t), family of null surfaces
~and satisfy the eikonal equation!; this follows from either
]aF̂(xa,t)ut5]aZ(xa,z,z̄) or from ]aT(xa)}]aZ(xa,z,z̄).
Furthermore, at xa5X0

a(t), the gradients pa

5]aZ(X0
a(t),z,z̄) sweep out all null directions.@At xa

5X0
a(t), Eq. ~12! is identically satisfied and can not b

solved for the (z,z̄)5„G(xa,t),Ḡ(xa,t)…; all values of (z,z̄)
are allowed. See discussion below.# We thus see tha
F̂(xa,t)50 @or t5T̂(xa)] represents the family of nul
cones,C„X0

a(t)…, with an apex alongL.

The assumption that Eq.~12! could be solved for (z,z̄)
5„G(xa,t),Ḡ(xa,t)… depended on the non-vanishing of th
determinantJ of the matrix

Ji j [ I ]z]zF ]z̄]zF

]z̄]zF ]z̄] z̄F
I . ~15!

J does vanish at the singularities of the ‘‘surface
F(xa,t,z,z̄), e.g., at the apexxa5x0

a , among other regions
In fact the vanishing ofJ defines@3,4# the caustics of the
family of the cones,C„X0

a(t)….
In general, whether or notJ50, Eqs.~12! and~10! can be

solved for other variables, namelysomeset of three~sayxI ,
which might be different in different regions! of the fourxa,
in terms of the fourth one~sayx#), t and the (z,z̄), i.e.,

xI5xI~x#,t,z,z̄ !. ~16!

Note the important point that if the coordinatesxa are such
that three of them~sayxj5$xa,x* %) are space-like and on
of them is a time coordinate,x0, then Eq.~16! has a stronger
version, namely

x05X̂0~x* ,t,z,z̄ !, ~17!

xa5X̂a~x* ,t,z,z̄ ! ~18!

where the twoxj and thex* are the three space-like coord
nates. That one can solve for thex05X̂0(t,x* ,z,z̄) follows
from the implicit function theorem and from the fact th
T̂(xa) satisfies the eikonal equation and hence]T̂(xa)/]x0

Þ0.
12400
.

Equations~17! and~18! are a parametric representation
C„X0

a(t)… via the null geodesics that rule it. For the differe

given values of the (z,z̄), they are the null geodesics thr
x0

a . They are theexplicit versionof the implicit relations of
Eqs.~10! and ~12!.

We thus see that Eqs.~10! and ~12! are equivalent to the
lens and the time of arrival equations, Eqs.~5! and~6!, of the
previous section.

IV. EXAMPLES; FLAT-SPACE AND SCHWARZSCHILD
SPACE-TIME

First, as a rather trivial example, using a family
Z(xa,z,z̄) in flat space, we construct the familyC„X0

a(t)…. A
particularly useful two-parameter family of solutions to th
flat-space eikonal equation are the family of all plane-wa
which can be represented@7# in the following fashion:

Z~xa,z,z̄ !5xal a~z,z̄ ! ~19!

where]aZ5 l a(z,z̄) represents the covariant version of th
null vectorsl a, pointing in all possible directions, with Car
tesian components given as

l a~z,z̄ !5
1

A2~11zz̄ !
„~11zz̄ !,~z1 z̄ !,i ~ z̄2z!,~zz̄21!….

~20!

Using the null basis set@for each value of (z,z̄)#, $ l a(z,z̄),
ma(z,z̄), m̄a(z,z̄), na(z,z̄)% where

ma5~11zz̄ !]zl
a, m̄a5~11zz̄ !]z̄l

a, ~21!

na5 l a1~11zz̄ !2]z]z̄l
a

that have all vanishing scalar products except forl ana5

2mam̄a51.
The lens and time of arrival equations, i.e., Eqs.~10! and

~12!, are then

„xa2Xa~t!…l a~z,z̄ !50, ~22!

„xa2Xa~t!…ma50,

„xa2Xa~t!…m̄a50 ~23!

wherexa5Xa(t), is an observers world line,L. Equations
~22! and ~23!, using Eq.~21!, are easily solved for a para
metric form of the light cone as

xa5Xa~t!1sla~z,z̄ !, ~24!

with s a parameter along the null geodesic. If the observat
is to be at an angle close to~say! the x* 5x32axis, thens

5„x32X3(t)…/ l 3(z,z̄) and eliminatings from the remaining
equations~24!, we have for Eqs.~17! and ~18!
1-3
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x05X0~t!1„x32X3~t!…
l 0~z,z̄ !

l 3~z,z̄ !
, ~25!

x15X1~t!1„x32X3~t!…
l 1~z,z̄ !

l 3~z,z̄ !
, ~26!

x25X2~t!1„x32X3~t!…
l 2~z,z̄ !

l 3~z,z̄ !

the trivial time of arrival function and lens equation.
simple calculation of the Jacobian,

J5]~x1,x2!/]~z,z̄ ! ~27!

verifies that it is different from zero and hence in the flat ca
there are no caustics.

There are two ways to find the equations equivalent
Eqs.~25! and~26! in a Schwarzschild space-time; one cou
integrate the eikonal equation directly to obtain theZ func-
tion or by direct integration of the null geodesic equatio
with appropriate initial conditions.~This integration can also
be performed by the use of Hamilton-Jacobi techniques
the Eikonal equation@8#.! For simplicity, instead of the use
of theZ function we quote the recent work by Tom Kling i
which the exact Schwarzschild lensing equations were fo
@9# by means of the second method.

Because of spherical symmetry of the Schwarzschild le
ing problem, with no loss of generality, one could place
observer at an arbitrary point on a fixed radial line—w
chose the negativez axis—and place the sources in a spec
plane—thex2z plane. In polar coordinates that means t
observer is at the angular positionu05p, f050. ~For sim-
plicity of discussion, since we work in a fixed plane, we
0<u<2p, f50, rather than 0<u<p with f50 andp.!.
The angular position of a source is then given by 0<u
<2p andf50. Rather than the usual Schwarzschild rad
coordinater, it is much more useful to use

l 5
1

A2r
~28!

and the retarded time coordinate,u5t2r 22M log(r22M).
The time of arrival equation and the lens equation ha

the form

u5u02U~ l 0 ,c,l ! ~29!

u5Q~ l 0 ,c,l ! ~30!

where (l 0 ,u0) are the position coordinates of the observ
who is assumed to be at the fixed positionl 0 on the negative
z axis. The coordinates of the source are (u,u,l ) andc is the
observation angle, namely the angle between the incom
null geodesic projected into the rest-frame of the obser
and the inward directed radial vector at the observer, i.e
the positivez direction. The roles oft and x* , in Eqs.~17!
and~18!, are played here byu0 and l. The exact expression
for U andQ are given by the integral expressions,
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u5u02E
l 0

l̂

dl8S 11A12
sin2c l 82f ~ l 8!

l 0
2f ~ l 0!

D
2l 82f ~ l 8!A12

sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

1E
l̂

l

dl8S 12A12
sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

D
2l 82f ~ l 8!A12

sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

~31!

~ l 0 ,c,l !5p2
sinc

l 0 Af ~ l 0!
E

l 0

l̂ dl8

AS 12
sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

D
1

sinc

l 0 Af ~ l 0!
E

l̂

l dl8

AS 12
sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

D
~32!

where

f ~ l !512
2M

r
5~122A2Ml ! ~33!

and l̂ is the positive root of the cubic equation

~sinc!2 l̂ 2~122A2M l̂ !2 l 0
2 ~122A2Ml 0!50. ~34!

If the source is situated on the positivez axis, i.e., atu
50 then Eq.~32! becomes

05p2
sinc

l 0 Af ~ l 0!
E

l 0

l̂ dl8

AS 12
sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

D
1

sinc

l 0 Af ~ l 0!
E

l̂

l dl8

AS 12
sin2c l 82f ~ l 8!

l 0
2 f ~ l 0!

D
~35!

which can be considered as an implicit function,F(c,l ,l 0)
50, that defines the observation anglec when the source
and observer are co-linear with the origin;c is then the
observation angle of the Einstein ring.
1-4
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Note that in this case we have cheated slightly in that
have used null coordinates for the time of arrival and le
equations rather than the spatial or time coordinates of S
II and III.

Simple approximations@9# to Eqs. ~31!, ~32!, and ~35!
yield the standard linearized Schwarzschild time of arriva
lens equation and Einstein angle.

V. DISCUSSION

In Sec. II, we gave a general definition of an exact time
arrival or lens equation that, in principle, is applicable to
physical situations. Its application depended on know
how to construct the past light cones from an observ
world line or on the construction of a two-parameter fam
of solutions to the eikonal equation.

We are studying the possibility of applying these tec
niques to statistical perturbations of the homogeneous,
tropic cosmological models for which the eikonal solutio
are known.
cs
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From the point of view of contact with observation,
appears extremely unlikely that the exact equations discu
here, and their associated corrections from the linearized
proach to lensing, implicit in the exact equations, will ha
observational consequences in the near future. Neverthe
the extraordinarily rapid advances in observational te
niques must make one dubious of absolute statements
something is unobservable. To emphasize this point we
with a quote from Einstein’s 1936 paper@10# on lensing:
‘‘ . . . .there is no great chance of observing this pheno
enon.’’
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