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Exact universal gravitational lensing equation
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We first define what we mean by gravitational lensing equations in a general space-time. A set of exact
relations is then derived that can be used as the gravitational lens equations in all physical situations. The
caveat is that into these equations there must be inserted a function, a two-parameter family of solutions to the
eikonal equation, not easily obtained, that codes all the reldieamforma) space-time information for this
lens equation construction. Knowledge of this two-parameter family of solutions replaces knowledge of the
solutions to the null geodesic equations. The formalism is then applied to the Schwarzschild lensing problem.
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. INTRODUCTION coordinates on the sphere. Thaull) gradient ofZ(x?,¢,¢)

a — a

The purpose of this paper is to fidefine on an arbitrary atx | narT\er Pa=daZ(x",{,0), sweeps out the sphere .Of
Lorentzian space-timavhat we mean by exact gravitational MUl directions as {,{) ranges over the sphere. The function
lensing equations and then derive a version of these exaé(X*.{,{), which encodes all the conformal information of
equationgwhich we believe should be of universal applica- the space-time, is not easily obtained. It can be found exactly
bility). Our definition reduces to the more usual lens equal spaces with sufficient symmetries, e.g., all conformally
tions [1] when we consider approximations: namely smallflat spaces(Robertson-Walker Schwarzschild, Kerr, etc.,
observation angle and perturbation calculations off either flaPut in most applications it will have to be found by pertur-
or Robertson-Walker space-times. The basic idea will be tdation methods. In any case, our lensing equations will be
consider the one parameter familygsstlight cones with an  given explicitly and exactly in terms oZ(x?,¢,¢) though
apex on a time-like world line that should be considered asvhen applied to physical situations, approximations will
the history of an observer; i.e., it defines what an observehave to be made.
can “see” and when the observer can see it. The gravita- Our starting point will be to assume that we have globally
tional lens equations are to be, loosely stated, the space-tinfperhaps given in different patchethe level surfaces of the
positions of potential light sources, given in terms of thefunction,u=2z(x?,¢,¢).
position and time of the observation and the direction of Remark 1. For simplicity of discussion, we have assumed
observation(direction on the observers past tangent spacgnhat the solutions to the eikonal equation will have been
light cong. given by a function of the local coordinates?. Actually

In Sec. Il we will make preCise what we mean by thethere m|ght be Singu]ar regionicausticg or self-
“lens equation” and in Sec. lll, using techniques obtainedintersections, where this is not possible; the surfaces could

from Arnold’s [2-5] theory of Lagrangian and Legendre then be given in parametric form. We will nevertheless use
maps, we derive a set of general relations, “lens equations,’;

H H a
that with appropriate linearization reduces to the standaréhe language of the simple functio(x,¢,¢).
approximate lens equatidi].

A caveat should be expressed here. First of all in any form
of lensing equations one must be looking at the past null e first assume that our space-time allows the null geo-
geodesics and one thus mirstve the metric tensdineeded  desics to be infinitely extendable into both the future and the
only up to a conformal factor since ontull geodesics are past. In any region local coordinates will exist such that the

relevant in order to calculate, from the geodesic equationsyyorid line, £, of an observer can be given parametrically by
the null geodesics themselveBhough in our version, this

information clearly must still be there, its specific appearance x2=X5(7) 2
is circumvented by the assumed kngwledge of a two- _ _

parameter family of solutions)=Z(x?,¢,7), to the eikonal ~and the one parameter family of light con€€Xg()), by
equation:

II. DEFINING THE LENS EQUATION

x*=X4X3(7), 7, 17,9)=X3(7,7,7,5) ()
9%°(x*) 9,23, Z=0. () _
B where (,7) label the sphere’s worth of null directions at
The two parameters,{({), are the complex stereographic x®=X§(7) ands is an affine parameter along each of the
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geodesics labeled byr(7, 7). L2= d-X2#0 is the(null) tan- ~ We return to this issue in the next section in a more general

gent vector to the geodesid®erivatives ofX? with respect ~ CONtext.

to the other parameters yield connecting vectors. They will

not directly interest us here though they often are used in thejll. THE CONSTRUCTION OF THE PAST LIGHT CONE
study of the caustics of the light cone&(X§(7)). We will . ) a
approach the caustic issue from a slightly different point of ~1he construction of the light cone&(Xq(7)), Eg.(3) and

view.] We further assume that the local coordinax@sare hence, the time of arrival function and the lens equations,
such that three of themx', are space-like and one?, is Egs. (5) and (6) was based on the integration of the null

time-like. From this and from the non-vanishing null charac-9€0desic equations. In this section we will give an alternative
ter of L2, using the implicit function theorem, orfat least construction of Eqs(5) and(6) based on the solution to the

one of the space-like equatior8) can be solved fos. Let ~ €ikonal equation. _
us call that special coordinatef and the other two space- As discussed in the Introduction, we assume that we have

like coordinatesx®. We then have that the two-parameter family of solutiona= Z(xa,_g,Z), to the
eikonal equation where for each value df,{) the level
s=S(x*,T,77,;) (4) surfaces ofZ are null surfaces, i.ed,Z is a null covector.

Furthermore it is assumed that at each paint,Z sweeps

and the remaining three Eq8) become, whess is replaced  out the entire null cone a as (¢,£) goes thru its ranges?.
by S(x*,7,7,7) Remark 2. We repeat and emphasize that the level sur-
faces of the solutions to E@l) though referred to as “null
X0=X(r, 5, 7,9(x* , 7,3, 7)) =X(x* ,7,,3), (5) O characteristic surfaces” are not strictly speaking surfaces;
they can have self-intersections and in general are only
piece-wise smooth. Though Arnol®] refers to them as
©6) “big-wave-fronts” we will continue to call them null sur-
faces. The intersection of a big wave front with a generic
If we think of a light source at the spatial positiox*(x?) three su_rface y|elds a two-d|menS|omamaID.wave front. .
emitting light at timex®, then Eq.(5) relates the time of The first thing that we want to show is that the light
emissionx° at x*, with the time of arrivalr and arrival  CONes.E(X5(7)), with an apex on an arbitrary curve, can
be constructed from knowledge of the functign
One sees immediately, from the eikonal equation, that the
function

X¥=Xr, 77,;, S(x*, 7, 77,;))5 )A(“(X* , T, 77,;).

direction, (7,7). We will refer to Eq.(5) as the time of
arrival relation or function.

The lens equations definedby Eg. (6); it expresses two
of the spatial coordinateg?, in terms of the arrival time at a = e .= a —
the observer;, the direction at the observer, that the ob- F(X%,7,¢,0)=2(x*{,0) = Z(Xy(7),£,0)=0, (10
server sees the source ande of the source coordinates. ) ] )
Most often in applications the two coordinate® are iden- for each flxe.d valuef 7, defines a two-parameter famlly of
tified with some angular position coordinates,¢) of the  Surfaces which all pass thru the pok§(7) and which are
source and the* as some form of “radial” or “distance all null surfaces.

from observer coordinate,” say. In this case the lens equa- _Remark 3. Note that F=—d,Z= —V&(1)d,Z#0, with
tion reads V8(7)=9,X§(7). The non-vanishing of,F is because the
scalar product of a non-vanishing null vector with a non-
6=0(D,r,7,7), (7)  Vanishing time-like vector is different from zero. It now fol-
lows from the implicit function theorem that E¢LO) is the

(pZCD(D,T,’l?,;). implicit version of the functionr=T(x%,¢,?), i.e., we have

Much of conventional lensing theory is based on finding ap- Z(x3,4,0)~Z(X§(7),£,0)=0er=T(x%{,0). (1D
proximate versions of Eq7). An important issue is the in-

version of these equations, i.e., finding the observatioThe functionT(xa,g,Z) (or F) defines, what Arnold3,5]
angles in terms of the source position, namely when can onealls a generating family and is used to construct, via its

rewrite them as envelope, the light cone for each valueof
o - Specifically the envelope of this family is constructed by
(n,7)=(N(D,7,0,¢),N(D,T,0,0)) (8  demanding thaf6]
and the multiplicity of these solutions. The condition for agF(Xa,T,g,?)ZO, (12
caustics on the past light cone @t[the non-invertibility of
Eq. (7)] is the vanishing of the Jacobian of EQ); azF(xa,r,g,Z)=O
J= a(6,¢) 9) whire @;.d;) denote the derivatives with respect to the

Cap ) (Z,0). Assuming for the moment that Eq12) could be
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solved for the (Z) = (T (x, r)f(xa, 7)) then when they are Equationg17) and(18) are a parametric representation of

substituted into Eq(10) one obtains the function ¢(X5(7)) via the null geodesics that rule it. For the different
given values of the {,{), they are the null geodesics thru
F(xd, r)=F(®,7(x37),[(x27)=2Z(x3,T) x§. They are theexplicit versionof the implicit relations of
_ Egs.(10) and(12).
—Z(X§(7),I',I")=0. (13 We thus see that Eq§10) and (12) are equivalent to the

lens and the time of arrival equations, E@s.and(6), of the
Once again using the implicit function theorem with Eg. previous section.

(12), Eq. (13), can be written as
. — — ~ IV. EXAMPLES; FLAT-SPACE AND SCHWARZSCHILD
F(x3,71)=Z(x3T,T)-Z(X3(7),I . [)=0e7=T(x?). SPACE-TIME

14
A A (49 First, as a rather trivial example, using a family of
Using eitherF(x? 7)=0 or 7=T(x*) one can easily see Z7(x?¢,?) in flat space, we construct the famititX3(7)). A

that they define a one parameter) (family of null surfaces  particularly useful two-parameter family of solutions to the

(and satisfy the eikonal equatiprthis follows from either flat-space eikonal equation are the family of all plane-waves

0F (X3, 7)|,=0,Z(x3,£,&) or from d,T(x?)xd,Z(x?¢,Z).  which can be represent¢d] in the following fashion:

Furthermore, at x?=X}(7), the gradients p, o o

=0,Z(X3(7),£,¢) sweep out all null directions[At x? Z(x%,4,0)=x%4(¢,0) (19

=X§(7), Eqg. (12 is identically satisfied and can not be _

solved for the ¢,7) = (I'(x?,7),T'(x3,7)); all values of ¢.7) whereé’aZZI:(g,g) represents theT cova_lrian_t versiqn of the

are allowed. See discussion beldwiWe thus see that nul! vectorsl|?, pointing in all possible directions, with Car-

F(x2,7)=0 [or 7=T(x¥] represents the family of null tesian components given as

cones,&(X§(7)), with an apex along. - 1 B - B
The assumption that E¢12) could be solved for&f) 12(¢,0)=—=———=((1+20),(L+ 0),i(L—0),(LL—1)).

=(I'(x3,7),['(x%,7)) depended on the non-vanishing of the V2(1+¢0) (20)

determinant] of the matrix

(94«9{!: ﬁzﬁgF

Using the null basis sdfor each value of £,0)1, {12(£,2),
. (19 m¥(£,0), m*(Z,0), n(£,0)} where

i]

doF  doF
J does vanish at the singulariies of the “surface” m?=(1+£{)d,l?, mé=(1+£{)d ?, (21
F(x?,1,¢,0), e.g., at the apex®=x§, among other regions. —,
In fact the vanishing of) defines[3,4] the caustics of the n?=12+(1+)%9,04%

family of the conesg(X§(7)). o
In general, whether or ndt=0, Egs.(12) and(10) can be  that have all vanishing scalar products except Iftw, =

solved for other variables, namebpmeset of threg(sayx', —mm,=1.
which might be different in different regiopsf the fourx?, The lens and time of arrival equations, i.e., EG$) and
in terms of the fourth on¢sayx®), r and the ¢,¢), i.e., (12), are then

X' =x'(x*,7,£,0). (16) (x*=XA(T)a(¢,) =0, (22
Note the important point that if the coordinate$ are such (X2—=X?3(7))m,=0,
that three of thenisayx! ={x*,x*}) are space-like and one
of them is a time coordinate?, then Eq.(16) has a stronger (x— X¥( T))Ea:o (23)

version, namely

O S0 — wherex?=X?(7), is an observers world line. Equations
X“=X(x*,7,4,0), (17 (22 and (23), using Eq.(21), are easily solved for a para-
. o metric form of the light cone as
X¥=XYx*,7,{,{) (18) B
. _ ) x2=X3(1)+sl3(Z,0), (29
where the twax! and thex* are the three space-like coordi-
nates. That one can solve for tR&= X°(7,x*,¢,£) follows  with sa parameter along the null geodesic. If the observation

from the implicit function theorem and from the fact that is to be at an angle close tsay the x* = x3—axis, thens

T(x?) satisfies the eikonal equation and hemdgx?)/ax° = (x3—X3(7))/13(¢,¢) and eliminatings from the remaining
#0. equationg24), we have for Eqs(17) and (18)
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x0=XO(7) + (x3—X3(7))|0(§'§ (25) sirfyl 2f(1")
1%2,0) |1+ \/1-——
i 15t (10)

|
11(¢,0) ”Zuo_f
1_y1 3_y3 lo ,
x*=X (T)+(X X (T))|3(§,z), (26) . SanlM Zf(lr)
21 “f(1") 1-——
— 12f(1,)
12(£,0) o
X2=X2(1)+ (= X3(1)) 5=
1°(¢,) , [ sirkgl 21"
the trivial time of arrival function and lens equation. A Idl 1 1 |(2)f(|0)
simple calculation of the Jacobian, +J'T (32)
=a(x x3)1(L.0) | sinfyl 2(1"
J=a(x1,x?)19(¢,0) (27 221" - ;ﬂ (")
verifies that it is different from zero and hence in the flat case 15 f(lo)
there are no caustics.
There are two ways to find the equations equivalent to siny 7 dl’
Egs.(25) and(26) in a Schwarzschild space-time; one coul®(l,,,1)=7— J’
integrate the eikonal equation directly to obtain théunc- lo Vi(lg) “lo \/( sirty 172f(1 ,))
tion or by direct integration of the null geodesic equations 1-—
with appropriate initial conditiongThis integration can also |§ f(lo)
be performed by the use of Hamilton-Jacobi techniques via )
the Eikonal equatiofig].) For simplicity, instead of the use N sings ! dl’
of the Z function we quote the recent work by Tom Kling in o~ ) _ . .
which the exact Schwarzschild lensing equations were found lo Vf(lo) ! \/ - sinyl"2£(17)
[9] by means of the second method. |(2) f(lo)

Because of spherical symmetry of the Schwarzschild lens-
ing problem, with no loss of generality, one could place the (32
observer at an arbitrary point on a fixed radial line—we
chose the negativeaxis—and place the sources in a specialwhere
plane—thex—z plane. In polar coordinates that means the
observer is at the angular positiédg= =, ¢o=0. (For sim- M
plicity of discussion, since we work in a fixed plane, we let f()=1- T=(1—2\/§MI) (33
0<60<2m, ¢=0, rather than & <= with $=0 andw.).
The angular position of a source is then given by ®
=<2 and ¢=0. Rather than the usual Schwarzschild radia
coordinater, it is much more useful to use

|andT is the positive root of the cubic equation

(sing)412(1—-2\2M1) =12 (1-2\2MIg)=0. (34)

1
I = E (28) If the source is situated on the positizeaxis, i.e., atf
=0 then Eq.(32) becomes
and the retarded time coordinatest—r —2M log(r —2M).
The time of arrival equation and the lens equation have siny ; dl’
the form O=m—
lo Vf(lg) o sirfyl "2£(1")
U:UO_U(lo,IJI,l) (29) (1_—2 )
I f(l
0=0(l5,4,1) (30 o fllo)
sinys I dl’
where (g,Ug) are the position coordinates of the observer, + A (35
who is assumed to be at the fixed positigron the negative lo V(lo) 7! sinfyl "2f(1")
z axis. The coordinates of the source afeu,l) and is the 1- T
observation angle, namely the angle between the incoming lo f(lo)

null geodesic projected into the rest-frame of the observer,
and the inward directed radial vector at the observer, i.e., invhich can be considered as an implicit functiéi{,1,1,)

the positivez direction. The roles of- and X, in Eqgs.(17) =0, that defines the observation anglewhen the source
and(18), are played here by, andl. The exact expressions and observer are co-linear with the origit; is then the
for U and® are given by the integral expressions, observation angle of the Einstein ring.
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Note that in this case we have cheated slightly in that we From the point of view of contact with observation, it
have used null coordinates for the time of arrival and lensappears extremely unlikely that the exact equations discussed
equations rather than the spatial or time coordinates of Sechere, and their associated corrections from the linearized ap-
Il and III. proach to lensing, implicit in the exact equations, will have

Simple approximation$9] to Egs.(31), (32), and (35  observational consequences in the near future. Nevertheless,
y|e|d the standard linearized Schwarzschild time of arrival Orthe extraordinar”y rapid advances in Observationa' tech_

lens equation and Einstein angle. niques must make one dubious of absolute statements that
something is unobservable. To emphasize this point we end
V. DISCUSSION with a quote from Einstein’s 1936 papgtO] on lensing:

In Sec. II, we gave a general definition of an exact time of - - -theéreé is no great chance of observing this phenom-

arrival or lens equation that, in principle, is applicable to all€non.”

physical situations. Its application depended on knowing

how to construct the past light cones from an observers

world line or on the construction of a two-parameter family ACKNOWLEDGMENTS
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