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Andrei Linde
Department of Physics, Stanford University, Stanford, California 94305

Misao Sasaki and Takahiro Tanaka
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

~Received 14 January 1999; published 19 May 1999!

The possibility to have an infinite open inflationary universe inside a bubble of a finite size is one of the most
interesting realizations extensively discussed in the literature. The original idea was based on the theory of
tunneling and bubble formation in the theories of a single scalar field. However, for a long time we did not
have any consistent models of this type, so it was impossible to compare predictions of such models with the
observational data on the CMB anisotropy. The first semi-realistic model of this type was proposed only very
recently@A. Linde, Phys. Rev. D59, 023503~1999!#. Here we present the results of our investigation of the
scalar and tensor perturbation spectra and the resulting CMB anisotropy in such models. In all models which
we have studied there are no supercurvature perturbations. The spectrum of scalar CMB anisotropies has a
minimum at smalll and a plateau atl 5O(10) for low V0. Meanwhile tensor CMB anisotropies are peaked at
l 52. The relative magnitude of the scalar CMB spectra versus tensor CMB spectra at smalll depends on the
parameters of the models.@S0556-2821~99!00712-2#

PACS number~s!: 98.80.Cq, 98.70.Vc
rs
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I. INTRODUCTION

Inflationary theory has a robust prediction: Our unive
must be almost exactly flat, V05Vmatter1VL51
6O(1024). If this result is confirmed by observational dat
we will have decisive confirmation of inflationary cosmo
ogy. However, what if observational data show that the u
verse is open?

Until very recently, we did not have any consistent co
mological models, inflationary or otherwise, describing a h
mogeneous open universe. An assumption that all parts o
infinite universe can be created simultaneously and have
same value of energy density everywhere did not have
justification. This problem was solved only after the inve
tion of inflationary cosmology. It was found that each bubb
of a new phase formed during the false vacuum decay in
inflationary universe looks from the inside like an infini
open universe@1,2#. The process of bubble formation in th
false vacuum is described by the Coleman–De Luccia~CDL!
instantons@1#. If this universe continues inflating inside th
bubble, then we obtain an open inflationary universe. T
by a certain fine-tuning of parameters one can get any v
of V0 in the range 0,V0,1 @3,4#.

Even though the basic idea of this scenario was pr
simple, it was very difficult to find a realistic open inflatio
model. The general scenario proposed in@3,4# was based on
investigation of chaotic inflation and tunneling in the the
ries of a single scalar fieldf. However, no models wher
this scenario could be successfully realized have been
posed so far. As it was shown in@5#, in the simplest models
with polynomial potentials of the type of (m2/2)f2

2(d/3)f31(l/4)f4 the tunneling occurs not by bubbl
formation, but by jumping onto the top of the potential ba
rier described by the Hawking-Moss instanton@6#. This pro-
cess leads to formation of inhomogeneous domains of a
phase, and the whole scenario fails. The main reason for
0556-2821/99/59~12!/123522~8!/$15.00 59 1235
e

i-

-
-
an
he
y

-

e

n
e

ty

-

o-

-

w
is

failure is rather generic@7#. Typically, CDL instantons exist
only if u]2Vu.H2 during the tunneling~here and in the res
of the paper]2V stays for]2V/]f2). Meanwhile, inflation,
which, according to@3,4#, begins immediately after the tun
neling, typically requiresu]2Vu!H2. These two conditions
are almost incompatible.

This problem can be avoided in models of two sca
fields @5#. However, in this paper we will concentrate on th
one-field open inflation. We will remember why it was s
difficult to realize this scenario. Then we will describe tw
models where this can be accomplished; one of these mo
was proposed recently in@7#. The main purpose of this pape
is to investigate the CMB anisotropy in these models. As
will see, cosmic microwave background~CMB! anisotropy
in these models has some distinguishing features, which
serve as a signature for the one-field open inflation mod

II. TOY MODELS OF ONE-FIELD OPEN INFLATION

To explain the main features of the one-field open infl
tion models, let us consider an effective potentialV(f) with
a local minimum atf0, and a global minimum atf50,
whereV50. In anO(4)-invariant Euclidean spacetime wit
the metric

ds25dt21a2~t!~dxE
21sin2 xEdV2

2!, ~2.1!

the scalar fieldf and the three-sphere radiusa obey the
equations of motion

f̈13
ȧ

a
ḟ5]V, ä52

8p

3
a~ḟ21V!, ~2.2!

where dots denote derivatives with respect tot. Here and in
what follows we will use the units whereM p5G21/251.
©1999 The American Physical Society22-1
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An instanton which describes the creation of an open u
verse was first found by Coleman and De Luccia@1#. It is
given by a slightly distorted de Sitter four-sphere of rad
H21(f0), with a'H21sinHt. The fieldf lies on the ‘‘true
vacuum’’ side of the maximum ofV in a region neart50,
and it is very close to the false vacuum,f0, in the opposite
part of the four-sphere neart i'p/H. The scale factora(t)
vanishes at the pointst50 and t5t i . In order to get a
singularity-free solution, one must haveḟ50 andȧ561 at
t50 and t5t i . This configuration interpolates betwee
some initial pointf i'f0 and the final pointf f . After an
analytic continuation to the Lorentzian regime, it describ
an expanding bubble which contains an open universe@1#.

Solutions of this type can exist only if the bubble can
into de Sitter sphere of radiusH21(f0). To understand
whether this can happen, remember that at smallt one has
a;t, and Eq.~2.2! coincides with equation describing cre
ation of a bubble in Minkowski space, witht being replaced

by the bubble radiusr: f̈1(3/r )ḟ5]V @8#. Here the radius
of the bubble can run from 0 tò . Typically the bubbles
have size greater than the Compton wavelength of the sc
field, r *m21;(]2V)21/2 @9#.

In de Sitter spacet cannot be greater thanp/H, and in
fact the main part of the evolution of the fieldf must end at
t;p/2H. Indeed, once the scale factor reaches its maxim
at t;p/2H, the coefficientȧ/a in Eq. ~2.2! becomes nega
tive, which corresponds to anti-friction. Therefore if the fie
f still changes rapidly att.p/2H, it experiences eve
growing acceleration neart f , and typically the solution be
comes singular@10#. Thus the Coleman-De Luccia~CDL!
instantons exist only ifp/2H.(]2V)21/2, i.e., if ]2V.H2.
This condition must be satisfied at smallt, which corre-
sponds to the end point of the tunneling, where inflat
should begin in accordance with the scenario of Refs.@3,4#.
But this condition is opposite to the standard inflationa
condition]2V!H2.

This means that immediately after the tunneling the fi
begins rolling much faster than it was anticipated in@3,4#. As
a result, in many models, such as the models with the ef
tive potential V(f)5(m2/2)f22(d/3)f31(l/4)f4, the
open inflation scenario simply does not work@5,7#. This
problem is very general, and for a long time we did not ha
any model where this scenario could be realized. We w
describe two of these models here, one of which was p
posed recently in@7#. We do not know as yet whether it i
possible to derive these models from some realistic theor
elementary particles, so for the moment we consider th
simply as toy models of open inflation. Still we believe th
these models deserve investigation because they shar
generic property of all models of this class: As we expect
immediately after the tunneling one has]2V.H2. As we
will see, this condition suppresses scalar perturbations
metric produced soon after the tunneling. The supercurva
perturbations are also suppressed, whereas the tensor p
bations in these models may be quite strong. These feat
may help us to distinguish one-field models of open inflat
based on the Coleman-De Luccia tunneling from other m
els of open inflation.
12352
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The first model which we are going to consider has
effective potential of the following type:

V~f!5
m2f2

2 S 11
a2

b21~f2v !2D . ~2.3!

Here ab and v are some constants; we will assume thatb
!v. The first term in this equation is the potential of th
simplest chaotic inflation modelm2f2/2. The second term
represents a peak of widthb with a maximum nearf5v.
The relative hight of this peak with respect to the poten
m2f2/2 is determined by the ratioa2/b2.

As an example, we will consider the theory withm5
1.531026, which is necessary to have a proper amplitude
density perturbations during inflation in our model. We w
take v53.5, which, as we will see, will provide about 6
e-folds of inflation after the tunneling. By changing this p
rameter by few percent one can get any value ofV0 from 0
to 1. For definiteness, in this section we will takeb2

52a2, b50.1. This is certainly not a unique choice; oth
values of these parameters to be considered in the next
tion can also lead to a successful open inflation scenario.
shape of the effective potential in this model is shown in F
1.

As we see, this potential coincides withm2f2/2 every-
where except a small vicinity of the pointf53.5, but one
cannot roll fromf.3.5 tof,3.5 without tunneling through
a sharp barrier. We have solved Eq.~2.2! for this model
numerically and found that the Coleman-De Luccia instan
in this model does exist. It is shown in Fig. 2.

The upper panel of Fig. 2 shows the CDL instantonf(t).
Tunneling occurs fromf i'3.6 tof f'3.4. The energy den
sity decreases in this process,V(f f),V(f i). The lower
panel of Fig. 2 shows the ratio]2V/H2. Almost everywhere
along the instanton trajectoryf(t) one hasu]2Vu.H2. That
is exactly what we have expected on the basis of our gen
arguments concerning CDL instantons.

An interesting feature of the CDL instantons is that t
evolution of the fieldf does not begin exactly at the loca
minimum of the effective potential. This is similar to wha
happens in the Hawking-Moss case@6#, where tunneling be-
gins and ends not at the local minimum but at the top of
effective potential; see@11# for a recent discussion of thi

FIG. 1. Effective potential our first model; see Eq.~2.3!. All
values are given in units whereM p51.
2-2
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CMB IN OPEN INFLATION PHYSICAL REVIEW D 59 123522
issue. This unconventional feature of the CDL instanto
was not emphasized in@1# because the authors concentrat
on the thin wall approximation where this effect disappea
For a proper interpretation of these instantons, just as in
Hawking-Moss case, one may either glue to the pointt f a de
Sitter hemisphere corresponding to the local minimum of
effective potential@11#, or use a construction proposed
@12#. It would be very desirable to verify the Coleman-D
Luccia approach by a complete Hamiltonian analysis of
tunneling in inflationary universe.

The second model has the effective potential of the
lowing type:

V~f!5
m2

2 S f21B2
sinhA~f2v !

cosh2 A~f2v ! D . ~2.4!

HereA, B andv are some constants. As an example, we w
consider the theory withm51.031026, v53.5, A520, and
B54. The shape of the effective potential in this model
shown in Fig. 3.

The Coleman-De Luccia instanton in this model is sho
in Fig. 4. The upper panel of Fig. 4 shows the instan
f(t). Tunneling occurs fromf i'3.54, which almost ex-
actly coincides with the position of the local minimum
V(f), to f f'3.30. The energy density increases in this p
cess,V(f f).V(f i). This may seem unphysical, but in fa
such jumps are possible because of the gravitational effe
A similar effect occurs during the Hawking-Moss tunnelin
to the local maximum of the effective potential@6#. The
lower panel of Fig. 4 shows that almost everywhere alo

FIG. 2. Coleman-De Luccia instanton in the first model. T
upper panel shows the functionf(t); the lower panel demonstrate
that most of the time during the tunneling one hasu]2Vu@H2.
12352
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the trajectoryf(t) one hasu]2Vu@H2. After the tunneling
the scalar field slowly rolls down and then oscillates near
minimum of the effective potential atf50. During the stage
of the slow rolling, the scale factor in the models which w
investigated expands approximatelye65 times.

III. CMB ANISOTROPY IN THE OPEN
INFLATION MODELS

Just as we expected, in both models the tunneling bri
the field to the region whereu]2Vu.H2. Therefore the usua
scalar perturbations of density are not produced in th
models immediately after the open universe formation.
we will see now, this leads to a suppression of the contri

FIG. 3. Effective potential in our second model, Eq.~2.4!. All
values are given in units whereM p51.

FIG. 4. Coleman-De Luccia instanton in our second model. T
upper panel shows the functionf(t); the second one shows th
ratio u]2Vu/H2, which remains very large during the tunneling.
2-3
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ANDREI LINDE, MISAO SASAKI, AND TAKAHIRO TANAKA PHYSICAL REVIEW D 59 123522
tion of these perturbations to the CMB anisotropy atl &10.
In addition to these perturbations, we could encounter

percurvature perturbations which are produced in the fa
vacuum outside the bubble and may later penetrate into
interior during the bubble expansion. However, we did n
find any supercurvature perturbations in these models.

The reason why there are no supercurvature perturbat
in the second model is pretty simple: The curvature of
effective potential in the false vacuum is much greater th
H2, so these perturbations are not produced outside
bubble.

For the first model the reason for the absence of the
percurvature modes is less obvious because in the f
vacuum there one has]2V!H2. However, all information
about the interior of the bubble can be obtained by the a
lytical continuation of the CDL instanton, which begin
away from the false vacuum, in a state with]2V.H2. The
fact that there is no region where]2V!H2 in the CDL in-
stanton implies that the initial distance from the center of
bubble to the place where]2V becomes smaller thanH2 ~in
the false vacuum outside of the CDL instanton! is greater
than 2H21, i.e., it is greater than twice the size of the eve
horizon in de Sitter space. As a result, the fluctuations p
duced in the false vacuum do not penetrate into the bub

In addition to the scalar perturbations, there also e
tensor perturbations. Unlike the standard inflation scenari
is known that the fluctuations of the bubble wall contribu
to the low frequency spectrum of tensor perturbations
the contribution can dominate over the scalar spectrum@13#.
In fact, we shall see that they can be quite significant a
dominate the CMB anisotropy spectrum for smalll.

Below we present the scalar and tensor spectra for th
models: Two of them are those discussed in the previ
section. The third model is the one with the same poten
form as the first model but with a different value ofb; b2

5a2/250.0025. To compute the spectra, we adopt a gau
invariant method developed by Garriga, Montes, Sasaki
Tanaka@14,15#. Then we show the resulting CMB aniso
ropy spectra on large angular scales.

A. Scalar and tensor perturbation spectra

Let us first summarize the procedure to obtain the sc
and tensor spectra. The metric describing the Lorentz
bubble configuration is given by the analytic continuation
Eq. ~2.1! with xE52 ixC1p/2:

ds25dt21a2~t!~2dxC
2 1cosh2 xCdV2

2!. ~3.1!

The scalar field configuration is still given byf5f(t). In
the one-field models of one-bubble open inflation, the sc
perturbation is conveniently described by a variableq, which
is essentially equivalent to the gravitational potential pert
bationCN in the Newton gauge,

q5
CN

4pGḟ
. ~3.2!
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Here and below we recoverG in equations. The~even parity!
tensor perturbation is described by a variablew, whose rela-
tion to the transverse-traceless metric perturbation in
open universe will be given later. There are also odd pa
modes for the tensor perturbation. But since the odd pa
modes do not contribute to the CMB anisotropy, we shall
discuss them. Here we just mention that the form of
Lagrangians for bothq and w is that for a scalar field with
t-dependent mass@14,15#.

We quantize the variablesq andw on thexC5const hy-
persurface which is a Cauchy surface and which contains
the information of the bubble configuration. We expand th
in terms of the spherical harmonicsYlm and spatial eigen-
functionsqp andwp with eigenvaluep2:

q5( âplmf pl~xC!qp~t!Ylm~V2!1H.c., ~3.3!

w5( b̂plmf pl~xC!wp~t!Ylm~V2!1H.c.,

~3.4!

whereâplm andb̂plm are the annihilation operators. The sp
tial eigenfunctionsqp andwp satisfy, respectively,

F2
d2

dhC
2 1US~hC!Gqp5p2qp;

US54pGf821f8S 1

f8
D 9

24, ~3.5!

F2
d2

dhC
2 1UT~hC!Gwp5p2wp; UT54pGf82,

~3.6!

wheredhC5dt/a(t) and primes denote derivatives with re
spect tohC . The potentialsUS andUT both vanish forhC
→6`, but US is not necessarily positive definite. It the
follows that if there exists a bound state for this eigenva
equation, it exists discretely at somep2,0 and corresponds
to a supercurvature mode of the scalar spectrum. On
other hand,UT is manifestly positive definite and there is n
supercurvature mode in the tensor spectrum. For both sc
and tensor perturbations, the spectrum is continuous forp2

.0. As noted before, we found no supercurvature mode
all of the three models.

The equation forf pl turns out to be model-independe
and is given by

F2
1

cosh2 xC

]

]xC
cosh2 xC

]

]xC
2

l ~ l 11!

cosh2 xC
G f pl

5~p211! f pl. ~3.7!

In accordance with the Euclidean approach to the tunnel
we take the quantum states ofq and w to be the Euclidean
vacua. This implies that the positive frequency functionf pl is
regular atxE5p/2 (xC50). Apart from the normalization
the solution is
2-4
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CMB IN OPEN INFLATION PHYSICAL REVIEW D 59 123522
f pl~xC!}
1

AcoshxC

Pip21/2
2 l 21/2~ i sinhxC!, ~3.8!

where Pn
m is the associated Legendre function of the fi

kind. The normalizations of the mode functionsf plqp and
f plwp are determined by the standard Klein-Gordon norm
ization of a scalar field.

We then analytically continueq andw to the region just
inside the lightcone emanating from the center of the bub
i.e., to the region of the open universe, byx5xC1 ip/2 and
t52 i t ~or h5hC2 ip/2). The metric there is given by

ds252dt21a2~ t !~dx21sinh2 xdV2
2!

5a2~h!~2dh21dx21sinh2 x dV2
2!.

~3.9!

Then the functionf pl just becomes the radial function of
spatial harmonic function on a unit spatial 3-hyperboloid,

~D (3)1p211!Yplm50; Yplm5 f pl~x!Ylm~V2!.

~3.10!

On the other hand, the spatial eigenfunctionsqp andwp be-
come the temporal mode functions for the scalar and ten
perturbations, respectively, in the open universe. Note
p;1 corresponds to the comoving spatial curvature sc
The evolution equations forqp andwp take the same forms
as Eqs.~3.5! and ~3.6!, respectively, with the replacemen
hC→h. We solve Eqs.~3.5! and ~3.6! until the scale of the
perturbation is well outside the Hubble horizon scale, i
until

a2H2@p211. ~3.11!

Here and in what follows,H is not the inverse of the de Sitte
radius butH5ȧ/a.

The important quantity that determines the primord
density perturbation spectrum as well as the large angle
lar CMB anisotropies is the curvature perturbation on
comoving hypersurface,Rc . The comoving hypersurface i
the one on which the scalar field fluctuationdf vanishes. It
is related toq as

R c
p524pGḟqp1

H

aḟ2

d

dt
~aḟqp!. ~3.12!

Just as in the case of the flat universe inflation,Rc remains
constant in time until the perturbation scale re-enters
Hubble horizon@16#.

On the other hand, the even parity tensor perturbation
the open universe is described as

dgi j 5a2t i j ;

t i j 5( b̂plmUp~h!Yi j
(1)plm1H.c.,

~3.13!
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whereYi j
(1)plm are the even parity tensor harmonics on t

unit 3-hyperboloid@17#. After an appropriate choice of th
normalization factor,Up is given in terms ofwp as @15#

Up52
8pG

a~p211!

d

dt
~a wp!. ~3.14!

Similar to the case of the scalar perturbation,Up is known to
remain constant in time on superhorizon scales.

In Fig. 5, the scalar and tensor perturbation spectra for
first, second and third models~which we call Models 1, 2
and 3, respectively! are shown. Let us recall their mode
parameters:

Model 1: Eq.~2.3! with a250.005,b252a2,

v53.5, m51.531026.

Model 2: Eq.~2.4! with A520, B54,

v53.5, m51.031026.

Model 3: Eq.~2.3! with a250.005,b25a2/2,

v53.5, m51.531026.
First let us consider the scalar spectra. As mentioned

viously, there are no supercurvature modes in the pre
models. So the scalar perturbations are completely descr
by the continuous spectra shown in Fig. 5. As seen from
figure, the scalar spectra for the three models are all al
On the low frequency end, they decrease sharply asp de-
creases, while they gradually increase forp*10. As dis-
cussed in the previous section, one can interpret this fea
as due to the common evolutionary behavior of any succ
ful one-field model with the CDL tunneling. The scalar fie
evolves rapidly for the first few expansion times when]2V
.H2 and eventually decelerates as the slope of the effec
potential becomes flatter. Forp@1, the spectrum approache
the one given by the standard formula for the flat unive

FIG. 5. The spectra of scalar and tensor perturbations~per loga-
rithmic interval ofp) for Models 1, 2 and 3. The three curves th
gradually increase asp are the scalar spectra, and the other th
that level off at largep are the tensor spectra. The spectra for Mo
els 1, 2 and 3 are shown by the solid, dot-dashed and dotted cu
respectively.
2-5
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ANDREI LINDE, MISAO SASAKI, AND TAKAHIRO TANAKA PHYSICAL REVIEW D 59 123522
inflation models. As shown in@7#, the gradual increase give
rise to a peak in the spectrum atp;104, which may have
significant implications to the structure formation in the u
verse.

To understand the shape of the scalar spectrum m
quantitatively, it is useful to compare the computed spectr
with the following analytic formula@16,15#,

uR c
pu2

p3

2p2 5S H2

2pḟ
D

t5tp

2
coshpp1cosdp

sinhpp

p2

11p2 ,

~3.15!

wheretp is an epoch slightly after the perturbation scale go
out of the Hubble horizon. This formula assumes]2V!H2

and the slow time variation of]2V. The angledp describes
the effect of the bubble wall, which is known to behave
dp2p}p for p→0. The low frequency part of the spectru
is most suppressed whendp5p. This case corresponds t
the case when]2V@H2 on the false vacuum side of th
instanton@16#.

In our case the condition]2V!H2 is violated at the first
stages after the bubble formation. Therefore Eq.~3.15!
should be somewhat modified for smallp. Indeed, fluctua-
tions with smallp are produced soon after the tunneling. B
immediately after the tunneling one has]2V.H2 in all mod-
els where the Coleman-De Luccia instantons exist. There
the perturbations with the wavelength greater thanH21 will
not become ‘‘frozen’’ immediately after the tunneling. The
will freeze somewhat later, when the fieldf will roll to the
area with]2V!H2. But at that time their wavelength in
creases and their amplitude becomes smaller. As a result
~3.15! provides a good description of the spectrum at largep,
but at smallp the amplitude of perturbations will be som
what smaller than that given by Eq.~3.15!. This expectation
is confirmed by the results of our numerical investigation

In Fig. 6, this comparison is made for Model 1. In th

FIG. 6. Comparison of the scalar and tensor spectra of Mod
with the ones given by analytic formulas~3.15! and~3.18!, respec-
tively. The upper and lower dotted lines show the scalar and te
formulas, respectively. The solid lines that coincide with the up
and lower dotted lines forp@1 are, respectively, the compute
scalar and tensor spectra.
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re
m

s

s

t

re

q.

figure, the upper dotted line shows the formula~3.15! and the
solid line that approaches it forp@1 is the computed one
We choosetp to be the time whena2(2H22]2V)52(1
1p2) anddp5p. As one can see, the computed spectrum
small p is significantly more suppressed than the most s
pressed case of the analytic formula. As we shall see be
this large suppression relative to the analytic formula cau
a large suppression of the CMB anisotropy at smalll . The
suppression of scalar perturbations with smallp andl and the
absence of supercurvature perturbations seem to be a ge
property of the models of one-field open inflation based
the CDL tunneling. On the other hand, the spectrum beco
almost indistinguishable from the one given by Eq.~3.15! for
p@1. Thus the tilt of the spectrum~with a positive power-
law index! is due to the slowing down of the evolution off.

Now let us consider the tensor spectra. The spectra
Models 1 and 3 are indistinguishable atp*1, while the
spectrum for Model 2 is about a factor of 2 smaller. Th
difference is due to the difference in the choice of the m
parameter: The mass square for Models 1 and 3 is 12

52.25 greater than that for Model 2. This results in the d
ference inH2. In fact, if we multiply the spectrum of Mode
2 by 2.25, it becomes almost indistinguishable from the sp
trum of Model 3 for the whole range ofp. Turning to the low
frequency behavior, the spectrum of Model 1 atp&1 differs
considerably from that of Model 3: The former is larger b
an order of magnitude relative to the latter at smallp. This
enhancement is due to the wall fluctuation modes. Recall
the parameterb for Model 1 is larger than that for Model 3
Since a largerb means a lower potential barrier, the wa
tension is smaller for Model 1 than for Model 3. This mak
the wall of Model 1 easier to vibrate.

A non-dimensional quantity that represents the strength
the wall tension is given by the following integral over th
instanton background@13#:

Ds54pGE f82 dhC . ~3.16!

For Models 1, 2 and 3, the values ofDs are found as

Model 1: Ds50.1681,

Model 2: Ds50.6614, ~3.17!

Model 3: Ds50.6640.

In the thin-wall limit, Ds54pGRWS1, whereRW is the wall
radius andS1 is the surface tension. Further, in this limit,Ds
is always smaller than unity and the low frequency spectr
is enhanced by a factor;1/Ds2 for the widthDp;Ds @13#.
In the present case, as we have seen in Sec. II, the bu
walls are not at all thin. Nevertheless, this qualitative feat
expected from the thin-wall limit is in good agreement wi
the computed tensor spectra.

To see the effect of wall fluctuations more clearly, in F
6, the tensor spectrum for Model 1 is compared with th
given by the following approximate analytic formula derive
in @18,14,15#:

1

or
r
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uUpu2
p3

2p2 532pGS H

2p D
t5tp

2 coshpp21

sinhpp

p2

11p2 ,

~3.18!

where we took the large tension limit, which makes the w
fluctuations least effective. As seen from Fig. 6, the analy
formula agrees very well with the computed spectrum fop
*1. Hence the difference atp&1 is totally due to the wall
fluctuation modes. If one compares the analytic tensor sp
trum in Fig. 6 with the tensor spectrum of Model 3 in Fig.
one sees they almost coincide with each other. This is
accordance with the fact thatDs of Model 3 is large, as
shown in Eq.~3.17!. Thus the bubble wall fluctuations ar
highly suppressed in Model 3~and in Model 2! due to the
large wall tension.

B. Large angle CMB spectra

We now discuss the CMB anisotropies for Models 1
and 3. We focus on the CMB anisotropy spectrum fol

FIG. 7. The CMB spectra of Model 1 for several values ofV0.
The solid lines show the total CMB spectra. The dotted lines sh
the scalar contributions and the dot-dashed lines the tensor co
butions. The values ofV0 are 0.2, 0.4, 0.6 and 0.8 from top t
bottom ~at l 53) for each kind of curves.

FIG. 8. The same as Fig. 7, but for Model 2.
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<20. Since the contribution of scalar perturbations is dom
nated by the effect of gravitational potential perturbatio
we take account of only the so-called Sachs-Wolfe and in
grated Sachs-Wolfe effects. Although there is a possibi
that V0 is dominated byVL , here we assume the prese
universe is matter-dominated;V05Vmatter.

Before going into discussion, we note one subtlety. In
one-bubble open universe scenario, the duration of infla
inside the bubble is directly related to the value ofV0 today.
In other words, once the model parameters are fixed,
duration of inflation is fixed and consequently so is the va
of V0. However,V0 depends rather sensitively on the valu
of the model parameters. In particular, it takes a very sm
change inv to give a differentV0. But such a change will
not cause a change in the shape of perturbation spectra.
thermore, the efficiency of reheating~or preheating! at the
end of inflation will also affect the value ofV0. So, depend-
ing on a grand scenario one has in mind, the resultingV0
will be different. Because of these reasons, below we pre
the CMB anisotropies of Models 1, 2 and 3 for several d
ferent values ofV0 by artificially varying it.

The computed CMB spectral ( l 11)Cl for Models 1, 2
and 3 are shown in Figs. 7, 8 and 9, respectively. The a
plitudes shown there are the absolute amplitudes of the s
tra for the given parameter values. It should be noted, h
ever, that the amplitude can be tuned to fit the obser
value~at certainl ) by changing the value ofm if necessary.
So, the important point is the relative amplitudes of the s
lar and tensor contributions and their spectral shapes.

The scalar CMB anisotropies show similar spectral b
havior for all the models. Namely, their amplitudes are su
pressed at smalll . This behavior is due to the large suppre
sion of the scalar spectra atp&10 mentioned in the previou
subsection. If one compares the present results with the o
shown in Figs. 4, 5 and 6 of@4#, one sees that the tendency
opposite: The scalar spectra obtained in@4# have a feature
that they gradually decrease asl increases. This is due to th
integrated Sachs-Wolfe effect and it is usually what one
pects for open universe models. On the contrary, in
present case, because of the large suppression of the s

w
tri-

FIG. 9. The same as Fig. 7, but for Model 3.
2-7



s

n

al
es
t
re

B
ta
i

u
w
ld
s

on
i

e
e

in

ior
of

B

ro-

l-
that
e-
are
ies

B

of
too
ally

at
ld
lp

her

as
ork
nt-

ANDREI LINDE, MISAO SASAKI, AND TAKAHIRO TANAKA PHYSICAL REVIEW D 59 123522
spectra atp&10, the corresponding CMB spectra increa
for increasingl and level off aroundl;10.

As expected from the tensor perturbation spectra show
Fig. 5, the tensor CMB anisotropies atl &5 –10 are large in
Model 1 due to large wall fluctuations, while they are sm
in Models 2 and 3. For Model 1, this enhancement caus
rise in the total spectra forl &5, which does not seem to fi
with the observed spectrum by Cosmic Background Explo
~COBE! Differential Microwave Radiometer~DMR! @19#.
On the other hand, the tensor contribution to the CM
anisotropies of Models 2 and 3 is small. As a result, the to
spectra of Models 2 and 3 turn out to be rather flat, which
consistent with the COBE spectrum.

IV. CONCLUSIONS

Despite a lot of progress in our understanding of vario
versions of open inflation, until now we did not know ho
the spectrum of CMB may look in the simplest one-fie
open inflation models. Previous calculations have been ba
on the assumption that the usual inflationary perturbati
are produced inside the bubble immediately after it
formed.

However, as we have argued~see also@7#!, bubbles ap-
pear only if]2V.H2 at the moment of their formation in th
one-field models. This means that the usual inflationary p
turbations are not produced at that time.

In this paper we have studied the spectrum of CMB
several different models of one-field open inflation. Atl
@10 the spectrum coincides with the spectrum obtained
the earlier papers on open inflation, since the mechanism
12352
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the bubble production is not very important for the behav
of the perturbations on scale much smaller than the size
the bubble. The main difference in the spectrum of CM
occurs atl &O(10).

We have found that the spectrum of scalar CMB anisot
pies has a minimum at smalll , and reaches a plateau atl
5O(10). The existence of this minimum is a mode
independent feature of the spectrum related to the fact
]2V.H2 at the moment of the bubble formation in the on
field models. In all models which we have studied there
no supercurvature perturbations. Tensor CMB anisotrop
are peaked atl 52. Relative magnitude of the scalar CM
spectra versus tensor CMB spectra at smalll depends on the
parameters of the models, and in particular on the value
V0. In some of the models, tensor perturbations are
large, which rules these models out. This effect is especi
pronounced in the models withV0!1. In some other models
the tensor perturbations are very small even forV0!1, and
the combined spectrum of perturbations has a minimum
small l . We conclude that the spectrum of CMB in one-fie
models of open inflation has certain features which will he
us to verify these models and to distinguish them from ot
versions of inflationary theory.
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