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The possibility to have an infinite open inflationary universe inside a bubble of a finite size is one of the most
interesting realizations extensively discussed in the literature. The original idea was based on the theory of
tunneling and bubble formation in the theories of a single scalar field. However, for a long time we did not
have any consistent models of this type, so it was impossible to compare predictions of such models with the
observational data on the CMB anisotropy. The first semi-realistic model of this type was proposed only very
recently[A. Linde, Phys. Rev. 59, 023503(1999]. Here we present the results of our investigation of the
scalar and tensor perturbation spectra and the resulting CMB anisotropy in such models. In all models which
we have studied there are no supercurvature perturbations. The spectrum of scalar CMB anisotropies has a
minimum at small and a plateau dt= O(10) for low (},. Meanwhile tensor CMB anisotropies are peaked at
| =2. The relative magnitude of the scalar CMB spectra versus tensor CMB spectra at dehds on the
parameters of the modelsS0556-282(99)00712-7

PACS numbes): 98.80.Cq, 98.70.Vc

I. INTRODUCTION failure is rather generif7]. Typically, CDL instantons exist
only if |#?V|>H? during the tunnelinghere and in the rest
Inflationary theory has a robust prediction: Our universeof the paperd?V stays forg?V/d¢?). Meanwhile, inflation,
must be almost exactly flat, Qo=Q et Qa=1  Which, according td3,4], begins immediately after the tun-
+0(10™4). If this result is confirmed by observational data, neling, typically requiregs?V|<H?. These two conditions
we will have decisive confirmation of inflationary cosmol- are almost incompatible.
ogy. However, what if observational data show that the uni- This problem can be avoided in models of two scalar
verse is open? fields[5]. However, in this paper we will concentrate on the
Until very recently, we did not have any consistent cos-one-field open inflation. We will remember why it was so
mological models, inflationary or otherwise, describing a ho-difficult to realize this scenario. Then we will describe two
mogeneous open universe. An assumption that all parts of a@iiodels where this can be accomplished; one of these models
infinite universe can be created simultaneously and have th&as proposed recently [i7]. The main purpose of this paper
same value of energy density everywhere did not have anip to investigate the CMB anisotropy in these models. As we
justification. This problem was solved only after the inven-Will see, cosmic microwave backgrout@MB) anisotropy
tion of inflationary cosmology. It was found that each bubblein these models has some distinguishing features, which may
of a new phase formed during the false vacuum decay in thé€rve as a signature for the one-field open inflation models.
inflationary universe looks from the inside like an infinite
open universél,Z]. The process of bubble formation in the 1. TOY MODELS OF ONE-FIELD OPEN INFLATION
false vacuum is described by the Coleman—De Lu@CRaL)
instantong 1]. If this universe continues inflating inside the ~ To explain the main features of the one-field open infla-
bubble, then we obtain an open inflationary universe. Theiion models, let us consider an effective potentétp) with
by a certain fine-tuning of parameters one can get any valug local minimum at¢,, and a global minimum at=0,
of Q) in the range 80 y<1 [3,4]. whereV=0. In anO(4)-invariant Euclidean spacetime with
Even though the basic idea of this scenario was prettyhe metric
simple, it was very difficult to find a realistic open inflation
model. The general scenario proposedidm] was based on d?=d7?+a?(7)(dy2+sir? xgdQ3), 2.1
investigation of chaotic inflation and tunneling in the theo-
ries of a single scalar fielp. However, no models where the scalar field and the three-sphere radiasobey the
this scenario could be successfully realized have been prequations of motion
posed so far. As it was shown |B], in the simplest models
with polynomial potentials of the type of nf?/2)¢? - 8
—(813)¢3+(N/4)¢* the tunneling occurs not by bubble £)§+BE<}5=&V, é:__wa(('ﬁzﬂ/), (2.2
formation, but by jumping onto the top of the potential bar- a 3
rier described by the Hawking-Moss instan{@}. This pro-
cess leads to formation of inhomogeneous domains of a newhere dots denote derivatives with respecttdiere and in
phase, and the whole scenario fails. The main reason for thighat follows we will use the units whend p=G‘1’2= 1.
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An instanton which describes the creation of an open uni-
verse was first found by Coleman and De Luciid It is 21071
given by a slightly distorted de Sitter four-sphere of radius
H™1(¢o), with a~H 1sinHr. The field¢ lies on the “true 1510
vacuum” side of the maximum o¥ in a region near=0, 174
and it is very close to the false vacuugg, in the opposite 1108
part of the four-sphere neaf~ w/H. The scale factoa(r)
vanishes at the points=0 and r=7;. In order to get a 10712
singularity-free solution, one must hayge=0 anda=*1 at
=0 and 7=17;. This configuration interpolates between
some initial pointg;~ ¢y and the final pointp;. After an
analytic continuation to the Lorentzian regime, it describes ¢
an expanding bubble which contains an open univite £ 1. Effective potential our first model; see E@.3. Al
Solutions of this type can exist only if the bubble can fit\4yes are given in units whend ,=1.
into de Sitter sphere of radiusl “1(¢). To understand P
whether this can happen, remember that at smalhe has The first model which we are going to consider has the
a~ 7, and Eq(22) coincides with equation describing Cre- effective potentia| of the fo”owing type:
ation of a bubble in Minkowski space, withbeing replaced

by the bubble radius: ¢+ (3/r) = aV [8]. Here the radius V(d)= m2¢2/ 1+ a? 23
of the bubble can run from 0O te. Typically the bubbles (d)= 2 \7 B (p—v)?) 23
have size greater than the Compton wavelength of the scalar

field, r=m~1~(4?Vv) Y2 [9]. Here a8 andv are some constants; we will assume tjgat

In de Sitter space cannot be greater than/H, and in  <v. The first term in this equation is the potential of the
fact the main part of the evolution of the fiedimust end at  simplest chaotic inflation modeh?¢?/2. The second term
7~m/2H. Indeed, once the scale factor reaches its maximumepresents a peak of widi with a maximum neaw=v.
at 7~ m/2H, the coefficien@a/a in Eq. (2.2 becomes nega- The relative hight of this peak with respect to the potential
tive, which corresponds to anti-friction. Therefore if the field M?¢%/2 is determined by the ratia®/ 8.
¢ still changes rapidly at->/2H, it experiences ever  As an example, we will consider the theory with=
growing acceleration near, and typically the solution be- 1.5X10"°, which is necessary to have a proper amplitude of
comes singulaf10]. Thus the Coleman-De LucciéCDL) density perturbations during inflation in our model. We will
instantons exist only ifr/2H>(2V) %2, i.e., if »V>H?.  takev=3.5, which, as we will see, will provide about 65
This condition must be satisfied at small which corre- ~ e-folds of inflation after the tunneling. By changing this pa-
sponds to the end point of the tunneling, where inflationrameter by few percent one can get any valuélgffrom 0
should begin in accordance with the scenario of Rgfgl].  to 1. For definiteness, in this section we will tal@?
But this condition is opposite to the standard inflationary=2a?® B=0.1. This is certainly not a unique choice; other
condition 92V <H?Z2. values of these parameters to be considered in the next sec-

This means that immediately after the tunneling the fieldtion can also lead to a successful open inflation scenario. The
begins rolling much faster than it was anticipated3m]. As  shape of the effective potential in this model is shown in Fig.
a result, in many models, such as the models with the effecl.
tive potential V(¢)=(m?/2)¢2—(5613)p3+ (N14)p*, the As we see, this potential coincides with?¢?/2 every-
open inflation scenario simply does not woik,7]. This  where except a small vicinity of the poirgi=3.5, but one
problem is very general, and for a long time we did not havecannot roll from¢> 3.5 to ¢< 3.5 without tunneling through
any model where this scenario could be realized. We willa sharp barrier. We have solved EQ.2) for this model
describe two of these models here, one of which was proaumerically and found that the Coleman-De Luccia instanton
posed recently if7]. We do not know as yet whether it is in this model does exist. It is shown in Fig. 2.
possible to derive these models from some realistic theory of The upper panel of Fig. 2 shows the CDL instanir).
elementary particles, so for the moment we consider thenfunneling occurs fromp;~ 3.6 to ¢¢~3.4. The energy den-
simply as toy models of open inflation. Still we believe thatsity decreases in this procesg(¢:)<V(¢;). The lower
these models deserve investigation because they share tpanel of Fig. 2 shows the rati@’VV/H?. Almost everywhere
generic property of all models of this class: As we expectedalong the instanton trajectok( ) one hags?V|>H?2. That
immediately after the tunneling one hadv>H?2. As we is exactly what we have expected on the basis of our general
will see, this condition suppresses scalar perturbations airguments concerning CDL instantons.
metric produced soon after the tunneling. The supercurvature An interesting feature of the CDL instantons is that the
perturbations are also suppressed, whereas the tensor pertavolution of the field¢ does not begin exactly at the local
bations in these models may be quite strong. These featuresinimum of the effective potential. This is similar to what
may help us to distinguish one-field models of open inflationhappens in the Hawking-Moss cd$d, where tunneling be-
based on the Coleman-De Luccia tunneling from other modgins and ends not at the local minimum but at the top of the
els of open inflation. effective potential; se¢ll] for a recent discussion of this
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T the trajectory¢(7) one hag#?V|>H?2. After the tunneling
the scalar field slowly rolls down and then oscillates near the

50000 100000 159000 200000

2 minimum of the effective potential a= 0. During the stage
of the slow rolling, the scale factor in the models which we

" investigated expands approximatel? times.

-6 Ill. CMB ANISOTROPY IN THE OPEN

INFLATION MODELS

FIG. 2. Coleman-De Luccia instanton in the first model. The Just as we expected, in both models the tunneling brings

. . 2
upper panel shows the functiah(7); the lower panel demonstrates the field to the region wherg V| >H?. Therefore the gsual
that most of the time during the tunneling one hadv|>H?2. scalar perturbations of density are not produced in these

models immediately after the open universe formation. As

issue. This unconventional feature of the CDL instantongve will see now, this leads to a suppression of the contribu-
was not emphasized iri] because the authors concentrated
on the thin wall approximation where this effect disappears. ¢
For a proper interpretation of these instantons, just as in the
Hawking-Moss case, one may either glue to the pejra de
Sitter hemisphere corresponding to the local minimum of the
effective potential[11], or use a construction proposed in
[12]. It would be very desirable to verify the Coleman-De
Luccia approach by a complete Hamiltonian analysis of the
tunneling in inflationary universe.

The second model has the effective potential of the fol-
lowing type: T

50000 100000 150000 200000 250000 300000 350000

m? SinhA(¢p—v)
=—| p?*+B°—m———|. .
Vié) 7 | ¢°TB costt A(¢p—v) 24
HereA, B andv are some constants. As an example, we will VI o
consider the theory witm=1.0x 10" ¢, y=3.5, A=20, and —
B=4. The shape of the effective potential in this model is H
shown in Fig. 3.

150

The Coleman-De Luccia instanton in this model is shown 100
in Fig. 4. The upper panel of Fig. 4 shows the instanton
¢(7). Tunneling occurs fromp;~3.54, which almost ex- 50

actly coincides with the position of the local minimum of
V(¢), to ¢;=~3.30. The energy density increases in this pro-
cess,V(¢:)>V(¢;). This may seem unphysical, but in fact
such jumps are possible because of the gravitational effects.
A similar effect occurs during the Hawking-Moss tunneling  FIG. 4. Coleman-De Luccia instanton in our second model. The
to the local maximum of the effective potentifd]. The  upper panel shows the functiop(7); the second one shows the
lower panel of Fig. 4 shows that almost everywhere alongatio |#?V|/H?, which remains very large during the tunneling.

S0000 100000 150000 200000 voo 300000 350000
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tion of these perturbations to the CMB anisotropystl0. ~ Here and below we recov& in equations. Theeven parity

In addition to these perturbations, we could encounter sutensor perturbation is described by a variaijevhose rela-
percurvature perturbations which are produced in the falsgon to the transverse-traceless metric perturbation in the
vacuum outside the bubble and may later penetrate into itgpen universe will be given later. There are also odd parity
interior during the bubble expansion. However, we did notmodes for the tensor perturbation. But since the odd parity
find any supercurvature perturbations in these models. ~ modes do not contribute to the CMB anisotropy, we shall not

The reason why there are no supercurvature perturbatiorf§scuss them. Here we just mention that the form of the
in the second model is pretty simple: The curvature of thd-agrangians for botly andw is that for a scalar field with
effective potential in the false vacuum is much greater tharr-dependent magd4,15.

H2, so these perturbations are not produced outside the We quantize the variablegandw on the yc=const hy-
bubble. persurface which is a Cauchy surface and which contains all

For the first model the reason for the absence of the suthe information of the bubble configuration. We expand them
percurvature modes is less obvious because in the faldg terms of the spherical harmonidg,, and spatial eigen-
vacuum there one ha#®V<H?2. However, all information functionsgP andwP with eigenvaluep?:
about the interior of the bubble can be obtained by the ana-
lytical continuation of the CDL instanton, which begins _ 2 pl p
away from the false vacuum, in a state withv>H?. The 4= 2 Gl (X P(7)Yin(Q2) +He., (33
fact that there is no region whesV<H? in the CDL in-
stanton implies that the initial distance from the center of the _ Q pl
bubble to the place wher®V becomes smaller thar? (in w= 2 boimfP (X)W (7) Yim(Q2) +H.c.,
the false vacuum outside of the CDL instantas greater (3.9
than H 1, i.e., it is greater than twice the size of the event - N N
horizon in de Sitter space. As a result, the fluctuations proWnere€@pim andby,y, are the annihilation operators. The spa-
duced in the false vacuum do not penetrate into the bubbldidl €igenfunctionsy® andw® satisfy, respectively,

In addition to the scalar perturbations, there also exist 2
tensor perturbations. Unlike the standard inflation scenario, it - —+Ug(70)
is known that the fluctuations of the bubble wall contribute dng
to the low frequency spectrum of tensor perturbations and
the contribution can dominate over the scalar spectrL®h 2
In fact, we shall see that they can be quite significant and Us=4nGd'"+ ¢
dominate the CMB anisotropy spectrum for sniall

Below we present the scalar and tensor spectra for three e
models: Two of them are those discussed in the previous [— W+UT( 7c)

C

o°=p?gP;

n

-4, (3.5

!

wP=p2wWP; U;=47G¢'?,

section. The third model is the one with the same potential
form as the first model but with a different value gf 82 3.6
= a?/2=0.0025. To compute the spectra, we adopt a gaug

invariant method developed by Garriga, Montes, Sasaki an
Tanaka[14,15. Then we show the resulting CMB anisot-

ropy spectra on large angular scales.

vhered nc=d7/a(7) and primes denote derivatives with re-
pect tonc. The potentialdJg and U, both vanish foryc
—*oo, but Ug is not necessarily positive definite. It then
follows that if there exists a bound state for this eigenvalue
equation, it exists discretely at sorpd<0 and corresponds
A. Scalar and tensor perturbation spectra to a supercurvature mode of the scalar spectrum. On the
i . . other handlU; is manifestly positive definite and there is no
Let us first summarize the procedure to obtain the scalag, o rvature mode in the tensor spectrum. For both scalar

and tensor spectra. _Th‘? metric desc”b'f_‘g the_ Lorgntmagnd tensor perturbations, the spectrum is continuougpfor
bubble configuration is given by the analytic continuation of>0 As noted before, we found no supercurvature mode in

Eq. (2.1 with xg= —ixc+7/2: all of the three models.

ds?=d2+ a2 —dyv2+ cosk v~d02). 31 The equation forf?' turns out to be model-independent
Train(-dxe xed®)- G s given by
The scalar field configuration is still given b= ¢(7). In __1 icost?x 9 Id+1) £pl
the one-field models of one-bubble open inflation, the scalar cosif xc dxc Coxc cost xc
perturbation is conveniently described by a variaplevhich — (p2+1)fP 3.7
is essentially equivalent to the gravitational potential pertur- =P : '

bation¥y in the Newton gauge, In accordance with the Euclidean approach to the tunneling,

we take the quantum states g@fandw to be the Euclidean

N vacua. This implies that the positive frequency functihis

= N_ (3.2 regular atyg=w/2 (xc=0). Apart from the normalization,
A7Go the solution is

q
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—1-1/2

1
fP! o« ———=P_ " 5(i sinhyc), 3.8
(xc) m ip 172 ( xc) (3.8

where P/ is the associated Legendre function of the first

kind. The normalizations of the mode functiof®g® and

fP'wP are determined by the standard Klein-Gordon normal-

ization of a scalar field.
We then analytically continug andw to the region just

inside the lightcone emanating from the center of the bubble,

i.e., to the region of the open universe, by xc+i#/2 and
t=—i7 (or p=nc—iw/2). The metric there is given by

ds’=—dt?+a?(t)(dy?+sint? xydQ3)

=a?(n)(—dn?+dy?+sint? y dQ3).
(3.9

Then the functionfP' just becomes the radial function of a
spatial harmonic function on a unit spatial 3-hyperboloid,
(AG+p2+1)YPIM=0;  YPIM=1PI(3)Y;n(Qy).

(3.10
On the other hand, the spatial eigenfunctigAsandw® be-

come the temporal mode functions for the scalar and tensor
perturbations, respectively, in the open universe. Note that
p~1 corresponds to the comoving spatial curvature scale. U,=

The evolution equations fay® andwP take the same forms
as Egs.(3.5 and (3.6), respectively, with the replacement
nc— 1. We solve Egs(3.5) and(3.6) until the scale of the

perturbation is well outside the Hubble horizon scale, i.e.,

until

(3.11

Here and in what followd is not the inverse of the de Sitter
radius butH = a/a.

a’H?>p2+1.

The important quantity that determines the primordial
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FIG. 5. The spectra of scalar and tensor perturbatipasloga-
rithmic interval ofp) for Models 1, 2 and 3. The three curves that
gradually increase ag are the scalar spectra, and the other three
that level off at large are the tensor spectra. The spectra for Mod-
els 1, 2 and 3 are shown by the solid, dot-dashed and dotted curves,
respectively.

WhereYi(J~+)plm are the even parity tensor harmonics on the
unit 3-hyperboloid[17]. After an appropriate choice of the
normalization factorlJ, is given in terms ofa” as[15]

87G d WP a1

ap?+ 1) ar@ ). (3.19
Similar to the case of the scalar perturbatibi,is known to
remain constant in time on superhorizon scales.
In Fig. 5, the scalar and tensor perturbation spectra for the
first, second and third modelsvhich we call Models 1, 2
and 3, respectivelyare shown. Let us recall their model
parameters:

Model 1: Eq.(2.3) with «®?=0.005, 82=2a?,

v=35 m=1.5x10"%.

density perturbation spectrum as well as the large angle scdodel 2: Eq.(2.4) with A=20, B=4,

lar CMB anisotropies is the curvature perturbation on the

comoving hypersurfacek.. The comoving hypersurface is
the one on which the scalar field fluctuatié vanishes. It
is related toq as

. H d .
R§=—4WG¢QD+?¢2&(3¢Q'})- 3.12

Just as in the case of the flat universe inflatiff, remains

v=3.5 m=1.0x106,
Model 3: Eq.(2.3) with «?=0.005, 8%= «?/2,

v=3.5, m=1.5x10"°.

First let us consider the scalar spectra. As mentioned pre-
viously, there are no supercurvature modes in the present
models. So the scalar perturbations are completely described
by the continuous spectra shown in Fig. 5. As seen from the

constant in time until the perturbation scale re-enters thdigure, the scalar spectra for the three models are all alike:

Hubble horizon16].

On the low frequency end, they decrease sharplyp a&-

On the other hand, the even parity tensor perturbation ireases, while they gradually increase foe10. As dis-

the open universe is described as

5gij:aztij;

tij= E l’:\)plmu p( 77)Yi(j+)plm+ H.c.,
(3.13

cussed in the previous section, one can interpret this feature
as due to the common evolutionary behavior of any success-
ful one-field model with the CDL tunneling. The scalar field
evolves rapidly for the first few expansion times whev

>H? and eventually decelerates as the slope of the effective
potential becomes flatter. Fpe>1, the spectrum approaches
the one given by the standard formula for the flat universe

123522-5
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10 * F——rrrrm—— figure, the upper dotted line shows the form(8al5 and the
i 3 solid line that approaches it fgr=1 is the computed one.
We chooset, to be the time whera?(2H?—#?V)=2(1
+p?) and dp,=. As one can see, the computed spectrum at
small p is significantly more suppressed than the most sup-
pressed case of the analytic formula. As we shall see below,
this large suppression relative to the analytic formula causes
a large suppression of the CMB anisotropy at srhallhe
suppression of scalar perturbations with srpahdl and the
absence of supercurvature perturbations seem to be a generic
property of the models of one-field open inflation based on
the CDL tunneling. On the other hand, the spectrum becomes
almost indistinguishable from the one given by Ej15 for
I £ 1 p>1. Thus the tilt of the spectrufwith a positive power-
107 gt — ol ol p law indeX is due to the slowing down of the evolution ¢t
Now let us consider the tensor spectra. The spectra for
FIG. 6. Comparison of the scalar and tensor spectra of Model Models 1 and 3 are indistinguishable p1, while the
with the ones given by analytic formul&8.15 and(3.18, respec-  spectrum for Model 2 is about a factor of 2 smaller. This
tively. The upper and lower dotted lines show the scalar and tensqijifference is due to the difference in the choice of the mass
formulas, respectively. The solid lines that coincide with the UpPeharameter: The mass square for Models 1 and 3 i€ 1.5
and lower dotted lines fop>1 are, respectively, the computed _5 55 greater than that for Model 2. This results in the dif-
scalar and tensor spectra. ference inH2. In fact, if we multiply the spectrum of Model
2 by 2.25, it becomes almost indistinguishable from the spec-
trum of Model 3 for the whole range @f Turning to the low
frequency behavior, the spectrum of Model IJpat1 differs
considerably from that of Model 3: The former is larger by

10”° 3

ook
10-11 :_

10-]2;

inflation models. As shown ifi7], the gradual increase gives
rise to a peak in the spectrum pt-10%, which may have
significant implications to the structure formation in the uni-

verse. an order of magnitude relative to the latter at snpallThis

u;—r?ti tl;gsglr St?tnig ngfuslkt]ge:?)n?f a;[rheethsecilc?r; Sftggt;urgctrpuor;gnhancement is due to the wall fluctuation modes. Recall that
q Y, P P P the parametep for Model 1 is larger than that for Model 3.

with the following analytic formulg 16,19, Since a largeiB3 means a lower potential barrier, the wall

3 2\2 2 tension is smaller for Model 1 than for Model 3. This makes
+ : :
|Rg|2p_2: H , ) COSh7.Tp cosdy _P 5 the wall of Model 1 easier to vibrate.
21 \2me) _, sinhzp  1+p A non-dimensional quantity that represents the strength of

(3.15 the wall tension is given by the following integral over the
instanton backgrounfl3]:
wheret, is an epoch slightly after the perturbation scale goes
out of the Hubble horizon. This formula assum&y <H? B '
and the slow time variation of?V. The angles, describes AS_4”GJ ¢'" dnc. (3.19
the effect of the bubble wall, which is known to behave as
6p— mop for p—0. The low frequency part of the spectrum For Models 1, 2 and 3, the values &k are found as
is most suppressed whef,= 7. This case corresponds to

the case wherw?V>H? on the false vacuum side of the Model 1: As=0.1681,
instanton[16].
In our case the condition?V<H? is violated at the first Model 2: As=0.6614, (3.17
stages after the bubble formation. Therefore Eg.15
should be somewhat modified for small Indeed, fluctua- Model 3: As=0.6640.
tions with smallp are produced soon after the tunneling. But
immediately after the tunneling one ha®/>H? in all mod-  In the thin-wall limit, As=47GR,S;, whereRy, is the wall
els where the Coleman-De Luccia instantons exist. Thereforeadius ands; is the surface tension. Further, in this limits
the perturbations with the wavelength greater thnt will is always smaller than unity and the low frequency spectrum

not become “frozen” immediately after the tunneling. They is enhanced by a factor 1/As? for the widthAp~As [13].
will freeze somewhat later, when the fiegdwill roll to the In the present case, as we have seen in Sec. Il, the bubble
area with9?V<H?2. But at that time their wavelength in- walls are not at all thin. Nevertheless, this qualitative feature
creases and their amplitude becomes smaller. As a result, Egxpected from the thin-wall limit is in good agreement with
(3.19 provides a good description of the spectrum at lagnge the computed tensor spectra.
but at smallp the amplitude of perturbations will be some-  To see the effect of wall fluctuations more clearly, in Fig.
what smaller than that given by E€.15. This expectation 6, the tensor spectrum for Model 1 is compared with that
is confirmed by the results of our numerical investigation. given by the following approximate analytic formula derived

In Fig. 6, this comparison is made for Model 1. In the in [18,14,15:

123522-6
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FIG. 7. The CMB spectra of Model 1 for several valueSky.
The solid lines show the total CMB spectra. The dotted lines show FIG. 9. The same as Fig. 7, but for Model 3.
the scalar contributions and the dot-dashed lines the tensor contri-
butions. The values of), are 0.2, 0.4, 0.6 and 0.8 from top to <20, Since the contribution of scalar perturbations is domi-
bottom (at|=3) for each kind of curves. nated by the effect of gravitational potential perturbations,
p3 H\2 coshmp—1 p? we take account of only the so-called Sachs—WoIfe anq i_n.te-
|Up|2_2:3277@(_> _ - grated Sachs-Wolfe effects. Although there is a possibility
2m 2m),_, sinhmp 1+p that Q)4 is dominated byQ),, here we assume the present
P (3.18 universe is matter-dominate@®,,=Q nater
Before going into discussion, we note one subtlety. In the
one-bubble open universe scenario, the duration of inflation

where we took the large tension limit, which makes the wall

fluctuations least effective. As seen from Fig. 6, the analytiqnside the bubble is directly related to the valuehf today.
formula agrees very well with the computed spectrumpfor In other words, once the model parameters are fixed, the

=1. Hence the difference gi=1 is totally due 1o the wall duration of inflation is fixed and consequently so is the value
fluctuation modes. If one compares the analytic tensor spec- q y

trum in Fig. 6 with the tensor spectrum of Model 3 in Fig. 5, Of £,. However (), depends rathgr sens_mvely on the values
one sees they almost coincide with each other. This is iﬁ’f the m_odel pa_ramete_rs. In particular, it takes a very s_mall
accordance with the fact thats of Model 3 is large, as change inv to give a different(lo. But such a_change will
shown in Eq.(3.17. Thus the bubble wall fluctuations are not cause a change in the shape of perturbation spectra. Fur-

- ; ; thermore, the efficiency of reheatirgr preheating at the
highl Model Model h
Ia:?geyv:alljllpferﬁzi)id in Model @nd in Model 2 due to the end of inflation will also affect the value &1,. So, depend-

ing on a grand scenario one has in mind, the resulfing
B. Large angle CMB spectra will be different. Because of these reasons, below we present
i i , the CMB anisotropies of Models 1, 2 and 3 for several dif-

We now discuss the CMB anlsqtrop|es for Models 1, 2¢qrant values o), by artificially varying it.

and 3. We focus on the CMB anisotropy spectrum Ifor The computed CMB spectrgl +1)C, for Models 1, 2

10° R — and 3 are shown in Figs. 7, 8 and 9, respectively. The am-
C plitudes shown there are the absolute amplitudes of the spec-
tra for the given parameter values. It should be noted, how-
ever, that the amplitude can be tuned to fit the observed
value (at certainl) by changing the value af if necessary.
So, the important point is the relative amplitudes of the sca-
lar and tensor contributions and their spectral shapes.

The scalar CMB anisotropies show similar spectral be-
havior for all the models. Namely, their amplitudes are sup-
pressed at small This behavior is due to the large suppres-
sion of the scalar spectra jpts 10 mentioned in the previous
subsection. If one compares the present results with the ones
shown in Figs. 4, 5 and 6 ¢#], one sees that the tendency is
opposite: The scalar spectra obtained 4 have a feature
that they gradually decrease lagicreases. This is due to the
integrated Sachs-Wolfe effect and it is usually what one ex-
pects for open universe models. On the contrary, in the
FIG. 8. The same as Fig. 7, but for Model 2. present case, because of the large suppression of the scalar

T e
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spectra atp=<10, the corresponding CMB spectra increasethe bubble production is not very important for the behavior
for increasing and level off around~ 10. of the perturbations on scale much smaller than the size of
As expected from the tensor perturbation spectra shown ithe bubble. The main difference in the spectrum of CMB
Fig. 5, the tensor CMB anisotropies lat5-10 are large in  occurs al =0O(10).
Model 1 due to large wall fluctuations, while they are small We have found that the spectrum of scalar CMB anisotro-
in Models 2 and 3. For Model 1, this enhancement causes pies has a minimum at smdl] and reaches a plateau lat
rise in the total spectra fdr<5, which does not seem to fit =0O(10). The existence of this minimum is a model-
with the observed spectrum by Cosmic Background Exploremdependent feature of the spectrum related to the fact that
(COBE Differential Microwave RadiometefDMR) [19]. #°V>H? at the moment of the bubble formation in the one-
On the other hand, the tensor contribution to the CMBfield models. In all models which we have studied there are
anisotropies of Models 2 and 3 is small. As a result, the totaho supercurvature perturbations. Tensor CMB anisotropies
spectra of Models 2 and 3 turn out to be rather flat, which isare peaked at=2. Relative magnitude of the scalar CMB

consistent with the COBE spectrum. spectra versus tensor CMB spectra at sthdikpends on the
parameters of the models, and in particular on the value of
IV. CONCLUSIONS Q,. In some of the models, tensor perturbations are too

) . ) . large, which rules these models out. This effect is especially
Despite a lot of progress in our understanding of variousyronounced in the models wihy<1. In some other models
versions of open inflation, until now we dl_d not know h_ow the tensor perturbations are very small evenigr<1, and
the spectrum of CMB may look in the simplest one-field iho combined spectrum of perturbations has a minimum at
open inflation models. Previous calculations have been basegai11. we conclude that the spectrum of CMB in one-field
on the assumption that the usual inflationary perturbationg,,qels of open inflation has certain features which will help
are produced inside the bubble immediately after it isg (o verify these models and to distinguish them from other

formed. versions of inflationary theory.
However, as we have arguésee alsd7]), bubbles ap-

pear only if>V>H? at the moment of their formation in the
one-field models. This means that the usual inflationary per-
turbations are not produced at that time. It is a pleasure to thank J. GaseBellido and R. Bousso

In this paper we have studied the spectrum of CMB infor useful and stimulating discussions. The work of A.L. was
several different models of one-field open inflation. 1At supported in part by NSF grant PHY-9870115, and the work
>10 the spectrum coincides with the spectrum obtained imf M.S. and T.T. was supported in part by Monbusho Grant-
the earlier papers on open inflation, since the mechanism df-Aid for Scientific Research No. 09640355.

ACKNOWLEDGMENTS

[1] S. Coleman and F. De Luccia, Phys. Rev2D) 3305(1980. [11] A.D. Linde, Phys. Rev. 58, 083514(1998.
[2] J.R. Gott, NaturéLondon) 295, 304(1982; J.R. Gottand T.S. [12] R. Bousso and A. Chamblin, Phys. Rev5DB, 084004(1999.

Statler, Phys. Lett136B, 157 (1984. [13] M. Sasaki, T. Tanaka, and Y. Yakushige, Phys. Re®6D616
[3] M. Bucher, A.S. Goldhaber, and N. Turok, Phys. RevcD) (1997.

3314(1995. [14] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Nucl. Phys.
[4] K. Yamamoto, M. Sasaki, and T. Tanaka, Astrophys455, B513 343(1998.

412 (1995. [15] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka,
[5] A.D. Linde, Phys. Lett. B351, 99 (1999; A.D. Linde and A. astro-ph/9811257.

Mezhlumian, Phys. Rev. 52, 6789(1995.
[6] S.W. Hawking and I.G. Moss, Phys. Lett10B, 35 (1982.
[7] A.D. Linde, Phys. Rev. 9, 023503(1999.
[8] S. Coleman, Phys. Rev. Db, 2929(1977).
[9] A.D. Linde, Nucl. PhysB216, 421(1983; B372, 421(1992.
[10] S.W. Hawking and N. Turok, Phys. Lett. 825 25 (1998;
432, 271(1998.

[16] K. Yamamoto, M. Sasaki, and T. Tanaka, Phys. Revs4)
5031(1996.

[17] K. Tomita, Prog. Theor. Phy$8, 310(1982.

[18] T. Tanaka and M. Sasaki, Prog. Theor. PHy&.243 (1997).

[19] G.F. Smootet al, Astrophys. J. Lett396, L1 (1992; C.L.
Bennettet al,, ibid. 464, L1 (1996.

123522-8



