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This paper deals with a study of the effects that spherically symmetric first-order metric perturbations and
vacuum quantum fluctuations have on the stability of the multiply connected de Sitter spacetime recently
proposed by Gott and Li. It is the main conclusion of this study that although such a spacetime is stable to the
classical metric perturbations for any size of the nonchronal region, it is only stable against the quantum
fluctuations of vacuum if the size of the multiply connected region is of the order of the Planck scale.
Therefore, boundary conditions for the state of the universe based on the notion that the universe created itself
in a regime where closed timelike curves were active and stable still appear to be physically and philosophi-
cally well supported as are those boundary conditions relying on the notion that the universe was created out
of nothing.[S0556-282(99)01612-4

PACS numbg(s): 98.80.Cq, 04.20.Gz, 04.25.Nx

I. INTRODUCTION less, recent measurements of the most distant supernovas
[17] may question the notion that the universe should be
When he was arguing in support of his favorite condition,open when one allows the presence of a nonzero effective
Hawking considerefil] that the choice of the boundary con- cosmological constant. This would open the possibility for
ditions for the quantum state of the universe should be madthe universe to be flat and then remove the need for open
on just compact metrics or noncompact metrics which arenflation and, thus, for the Hawking-Turok or Gott proposal.
asymptotic to metrics of maximal symmetry. While com- It is worth noting that as early as 1982 Gott already pro-
pleteness seems to be an appealing property, spaces whipbsed 18] a procedure leading to an open inflationary model
are maximally symmetric are desirable for their elegance anébr the universe. At the time, of course, it was largely disre-
great simplicity. At the time, the quest for the boundary con-garded, since it was then generally believed that the universe
ditions of the universe has already collected a number ofs closed. Motivated by the present observational status, Gott
proposals with the above or similar properties, includingand Li have now suggestdd 9] new boundary conditions
Vilenkin’s tunneling wave functiofi2], the vanishing Weyl- based on Gott's original model of open inflation. These
tensor condition of Penro$8&], and, perhaps most popularly, boundary conditions assume the existence of a nonchronal
the no-boundary proposal of Hartle and Hawkidd. They  region with closed timelike curve$CTC's) in de Sitter
have all been thoroughly discussed from different perpecspace, separated from the observable universe by a chronol-
tives[5], particularly by invoking their capability to generate ogy horizon[20]. The resulting model can be compared to,
a suitable inflationary mechanism able to solve the originak.g., the most popular no boundary paradigm as follows.
problems of standard cosmolo@$,6], giving at the same Consider first de Sitter space and visualize it by means of the
time rise to a scale-invariant spectrum of density fluctuationsschralinger five-hyperboloid with Minkowskian coordinates
[7,8], compatible with the present observational status of th¢21,22. If we slice this space along surfaces of constant
universe. timelike coordinate, then the slices become three-spheres and
Recent observations of the density of gravitational lensesepresent a closed universe. On this slicing both the no-
in the universg9,10] and estimates of the present value of boundary and the Vilenkin conditions hold, so that in these
the Hubble constariti1,12 have nevertheless led to the con- models the beginning of the universe can be pictiedhe
clusion that the critical densit§) has to be smaller than Euclidean frameworkas being the south pole of the Earth
unity, thus favoring an open rather than closed model for th¢23], with time running along the Earth’s meridians. Thus,
universal expansion. The problem then is that most of theasking what happened before the beginning of the universe is
inflationary models compatible with the proposed boundaryike asking what is south of the south pole. Therefore, these
conditions predict a value fd very close to unity. In order boundary conditions can be regarded to implement the idea
to solve this problem, Hawking and Turok have recently sugthat the universe was created out of nothing. Although slic-
gested[13] the existence of a singular instanton which isings in standard de Sitter space are, of course, completely
able to generate an open inflationay universe within therbitrary and, therefore, the key point about, e.g., the Hartle-
framework of the no-boundary proposal. Vilenkin has arguedHawking proposal is that there is no initial boundary, not
[14] that the singularity of this instanton may have cata-whether you consider time to begin at the south pole or any-
strophic consequences and, therefore, some procedures haviere else in the Euclidean region, the picture that follows
been advancedl5,1§ to make the instanton nonsingular, when one chooses the above particular slicing is highly illus-
while still inducing an open inflationary process. Neverthe-trative [23], so that we shall now choose another particular
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slicing of de Sitter space in order to visualize the Gott-Listructed, and show why its nonchronal region must be con-
boundary condition in Lorentzian quantum cosmology. Infined inside the cosmological horizon. The stability of the
contraposition to the above approach, one can also slic&hole de Sitter space has already been investigated in terms
Schralinger’s five-hyperboloid vertically, i.e., along the only of a global Friedmann-Robertson-Walker met{i29,30.
spacelike direction defined in terms of proper tifa6]. The =~ However, as far as | know, no corresponding research has
resulting slices are negatively curved surfaces, describable #€€n hitherto attempted for the de Sitter region covered by
terms of open cosmological solutions. It is on this slicing thatStatic coordinates, that is, the region where multiply connect-
the Gott-Li boundary condition can be defined. Since timeedness and CTC's should appear. We have performed this
should now lie along the Earth’s equaiar actually any of study here, first for the 'S|mply connected statlc case in S_ec.
its parallel$, the origin of time can by no means be visual- i ar_1d then for the_multlply connected case |r_1_Sec. V. T_hls
ized or fixed; so asking what was the earliest point is likeS€ction also contains an analysis of the stability of multiply

asking what is the easternmost point on the Earth’s equatofonnected de Sitter space against quantum fluctuations of
there will always be an eastefthat is, earlier point. This vacuum. Finally, we summarize and conclude in Sec. V.
was implied to meaf19] that on some region of the slices
there must be CTC's. These curves will take the job of al- Il. MULTIPLY CONNECTED de SITTER SPACE
ways shifting the origin of the cosmological time. Saying
then that the universe was created from nothing would b%
meaningless; what one should instead say is that it creat
itself [19].

We have thus two different types of boundary conditions
of the universe that may induce it to be open. Whereas the n
boundary condition does it by rather an indirect way which
involves some suitably modified version of the Hawking-
Turok instanton, the Gott-Li proposal creates the open uni- W2+ x2+y2+ 22— v2=p3, (2.1
verse directly. Is the latter proposal therefore more fashion-

able than the former? A positive answer to this questioth _ . - 5
; . : erepo=vy3/A. This hyperboloid is embedded & and
could only be made once the Gott-Li model satisfactorily he most general expression for the metric of the de Sitter

passes some important tests of its consistency. First of al . A e s
one has to check whether the multiply connected de SitterpaCe is then that which is induced in this embedding, i..,

space is classically and quantum-mechanically stable. Li and
Gott claimed[24] that all multiply connected spacetimes ds’= —dv?+dw?+dx*+dy*+dZ, (2.2
with a chronology horizor{derived from Misner spageare

stable to quantum fluctuations of vacuum, but previous workyhich has topologyRx S*, invariance group S@,1), and
by Kay, Radzikowski, and Wal25] and by Cassidy26]  gnows ten Killing vectorgfour boosts and six rotations

has rais_ed compelling_ c_Joubts on this conc_lusion. The present \etric (2.2 can be coveniently exhibited in either global
paper aims at partly filling the above requirements by studyy, static coordinates. Global coordinateés e (—o0,00),

ing the classical and quantum stability properties of multiply 0 and 0.27) can be defined b{30
connected de Sitter space. This will be done using both éb3’¢26( ™, V1€ (0.2m) 160]

first-order perturbation procedure paralleling the method de- ] ]

vised by Regge and Wheelf27] to investigate the stability Z=po COSHt'/po)sinyss siny, COSYy,

of Schwarzschild spacetime and a time-quantization proce-

dure [28] to analyze the regularity of the solution against

vacuum quantum fluctuations. Our main conclusion is that

multiply connected de Sitter space is stable both classically

and quantum mechanically. Clearly, a particular slicing of X=pg COsh{t'/pg)sinis; cOSir,, 2.3

the de Sitter space may be picked out by the surfaces of

constant inflation field, but this is relevant only when infla-

tion ends, because the topology of these slices will determine

whether we live in an open or closed Friedman-Robertson-

Walker universe. For the same reason, our stability analysis v=pgsinh(t'/pg).

for the static slicing is only developed as a tool to be used on

the nonchronal region of de Sitter space. Obviously, thdn terms of these coordinates met(®.2) becomes

property that ordinary de Sitter space is perturbatively stable

must be independent of the used coordinate system. Quan- ds?=—dt'?+ pj cost(t'/pg)dQ3, (2.4

tum stability is, however, restricted to hold only in the very

small regions where time shows its essential quantum chawhere dQ3 is the metric on the unit three-sphere. Metric

acter. (2.4 is a k=+1 Friedmann-Robertson-Walker metric
We outline the paper as follows. In Sec. Il we briefly whose spatial sections are three-spheres of radius

review how a multiply connected de Sitter space can be corngg cosh('/pg). Coordinates(2.3) entirely cover the four-

de Sitter space is usually identifi¢d2] as a maximally
mmetric space of constant negative curvat(pesitive
icci scalay which is a solution to the vacuum Einstein
equations with a positive cosmological constant0. Fol-
lowing Schralinger[21,30, it can be visualized as a five-
Ryperboloid defined by

Y= po COSHt'/pg)sinys singr, siny,

W= pg COsht'/pg)cosiys,
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dimensional de Sitter space which would first contract untilof the nonchronal region from the causal extefib®]. Such

t’=0 and expand thereafter to infinity. boundaries become then appropriate chronology horizons for
In order to exhibit metriq2.2) in static coordinate$ e de Sitter space.

(—,2), ¢3,¥,€(0,7), ¢, €(0,27), one can use the defi-

nitions [30] Ill. STABILITY OF STATIC de SITTER SPACE

Z=pg SiN 3 Sinyr, cosyy, While our discussion of Sec. Il made it clear that multiply
connected de Sitter space is mathematically rich and inter-

Y= po Sinrz Sinyr, singy, esting, we still need to know if such a space is indeed a
physical object. Therefore, in what follows we shall use a

X=pg SiNi3 COSY,, (2.5  general-relativity perturbation method to investigate the sta-
bility of the multiply connected de Sitter universe. Since

W= pg COStr5 cosh{t/py), multiply connectedness and CTC'’s only appear in the region
covered by static coordinates, the extension of the analysis of

v=po COSY3 Sinh(t/pg). the cosmologically perturbed global metric for simply con-

nected de Sitter spa¢29,30 to a multiply connected topol-
Settingr = pg sinys [i.e., definingr  (0,00) ], we obtain the ogy would unavoidably lead to rather inconclusive results.
static metric in de Sitter space: We instead shall proceed as follows. We first extend the
perturbative procedure originally devised by Regge and
-t Wheeler for the Schwarzschild probldii7] to a cosmologi-
1- —2) dr?+r?d0s3, cal de Sitter space in this section, and then in the next sec-
Po 26 tion, we conveniently include the effects derived from the
(26 identification(2.7) in the resulting formalism. In the present
paper we confine ourselves to a linear analysis, investigating
nates defined by Eq&2.5) cover only the portion of de Sitter f[he_stability of simply a_nd muttiply connected de Sitter space
space withwv>0 andx®+ v2+ 22< 2. ie.. the redion inside in first-order pertgrbatlon theory by means of a generaliza-
P ) y Pos 1€ gon tion from the refined method developed by Vishveshwara
the particle and event horizons for an observer moving alon?sl] and Zerilli [32].
r=0. .
In order to see whether the whole or some restricted rebe:{[\tlj?bftli(oen ajnt?te agﬁenera_ll_hbea(;kl?ggggcé mevgilﬁ; t;a en?a:(r;?
gion of the de Sitter space can be made to have mUItiphépecialized to be the gtgtic de Sitter metlrLch ie
connected topology, with CTC’s on it, we will follow the Y
procedure described by Gott and [19], thus checking d?=— (1—HZrA)d2+ (1— H2r2) " Ldr2+r2dQ2,
whether a symmetry like that is satisfied by the Minkowskian (3.1)
covering to Misner spac2] somewhere holding in de Sit-
ter space. On the Minkowskian five-hyperboloid visualizingwhere we have now denotét= pgl for the sake of simplic-
de Sitter space, such a symmetry would be expressible byy, and x°=t, x'=r, x>=6, x®=¢. Metric (3.1) corre-

2
2
5> |dto+

r2
dsz:_(l__
Po

whered(3 is the metric on the unit two-sphere. The coordi-

means of the identificatiof28] sponds to the initial time-independent equilibrium configura-
) tion; so the problem to be solved is, then, if meti&l) is
(v,w,x,y,2)= (v coshnb)+wsinh(nb), somehow perturbed, whether the perturbations will undergo
oscillations about the equilibrium state or will grow expo-
w cost{nb)+v sinh(nb),x,y,2), (2.7 nentially with time. The static de Sitter space will be stable
] ) ] ] ) in the first case and unstable in the second one.
whereb is a dimensionless arbitrary quantity ands any Since the background is spherically symmetric, any arbi-

integer number. The boost transformation in thew) plane  trary perturbation can be decomposed in normal modes given
implied by this identification will induce a boost tranforma- py [27]

tion in de Sitter space. Hence, since the boost group in de

Sitter space is a subgroup of the de Sitter group, either the

static or the global metric of de Sitter space can also be 2 fo(OfL(N)TA(0)T5(e).
invariant under symmetr{2.7).

It is easy to see that there cannot exist any symmetrAssociated with these modes we have an angular moment
associated with identificatiof2.7) on the ¢,w) plane which  and its projection on the axis, M. For any given value of
leaves metri€2.4) invariant for coordinate§2.3). It follows there will be two independent classes of perturbations which
that the whole of de Sitter spacetime can neither be multiplyare respectively characterized by their paritiesl(' (even
connected nor have CTC’s. However, for coordinates define@arity) and (—1)'** (odd parity. Furthermore, since the
by Egs.(2.5 leading to the static metric with an apparent background is time independent, all time dependence of the
horizon (2.6), the above symmetry can be satisfied in theperturbations will be given by the simple factor exkt),
region covered by such a metric, definedwy-|v|, where  wherek is the frequency of the given mode.
there are CTC’s, with the boundaries at=+v and x? In order to derive the equations governing the perturba-
+y%+ zz=p§ being the Cauchy horizons that limit the onsettions, we shall start with the Einstein equations
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R..(9)=Ag (3.20  In order to ensure holding of regularity on the cosmological
uv My . _ -1
horizon atr=H™*, we should transform the components of
with g denoting the de Sitter background metric. For thethe perturbations in Eq$3.7) and (3.8) to a representation
perturbed spacetime, these field equations transform into where the static metric is maximally extended and regular
also on the cosmological horizon. In Kruskal coordinates
R.u(9)+0R,,,(h)=A(g,,+hy,), (3.3 y,u, the static de Sitter metric can thus be written as

for small per.turbation, WitfﬁRW‘ assur_ned _to conta_in first- d?=F(r)2(du?—dv?)+r2d02, (3.9
order terms inh ,, only. Now, since Einstein equations are

still valid in the perturbation scheme, we obtain in this ap-yhere

proximation that the differential equations that govern the

perturbations should be derived from the equations 1+Hr
F?=—| =5~/ . (3.10
oR,,(h)=Ah,,. (3.9
The 6R,,’s will be here computed using the same general 2 , 1—Hr 31
formulas as those employed by Regge and Whe&@rand L T 317
Eisenhar{33], i.e.,
8 4 and
OR,, ==, st g, (3.5
v
where the semicolon denotes covariant differentiation, and Ht=—tanh‘1(a . (3.12

the variation of the Christoffel symbols is given by

1 In terms of the Kruskal coordinates, the components of
5Fﬁyz §9Ba(hua:v+ o™ D) (3.6)  the metric perturbations take the forfthe components that
invove only angular coordinates are the same in the two co-

After introducing suitable gauge transformatididd,32, ordinate systems

the most general perturbations in static de Sitter space can be

written in forms which are similar to those obtained for « =
Schwarzschild space; i.e., for odd parity, hoozm[uz(l— H?r?) " thootv3(1—H?r?)hyy
—U
0 0 0 hg(r) —2uphgy],
0 0 0 hyn)
"o 0 o0 o F?
hii=———[v2(1=H?) " thgg+ u’(1-H?r?)hy
sym sym 0 O U
9 —2UUh0ﬂ,
X sina(ﬁ) P (cosf)exp(—ikt) 3.7
F2
and, for even parity, ho1=———{(u?+v?)hos—Uv[(1—H?r?) " thg,
us—vu
.y +(1-H*?%hy]},
M Ho(1—H?r?) H, 0 0 1
_2,2y-1 1
H1 Hz(l Her ) 0 0 hggxﬁ[Uho3_v(l_H2r2)hl3]!
= 0 0 Kr2 0 U
0 0 0 Kr2sir? g 1
- - hig — ———[vhoa—u(1—H?r?)hyg], (3.13
uc—vu
X P (cos@)exp —ikt). (3.9

where the superscrif refers to Kruskal coordinates. For
In these expressions “sym” indicates thath,, future reference, we introduce here the relation
=h,,, Pi(cosd) is the Legendre polynomial, artth, hy,
Ho, Hy, H,, andK are given functions of the radial coordi- exp(Hr*)=u?-v?2, (3.19
nater which must be determined as solutions to the respec-

tive wave equations, subject to suitable boundary conditionsvhere the new variable* is defined by
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Hr—1

* -1
r=HN e

. (3.19

A. Wave equations for the perturbations

We derive in what follows the differential equations

PHYSICAL REVIEW D 59123513

oR,,=Ah,, and the general expressidB.8), we obtain

first the independent first-order perturbations of the Ricci

tensor:

. H2rK
(1-H%?)

dK K-=h

i1+ 1)h;
ar T

o 0, (3.29

which should be satisfied by the perturbations on the maxi-

mally extended de Sitter metric. We shall start with the odd-
parity solutions, and choose the perturbed Einstein equations

khg
1-H?*?

d
+a(1—H2r2)h1:o, (3.16

k(hg—khy—2ho/r)
(1-H?r?)

hy
+(1=1)(1+2) — =247GH?hy,
r
(3.17

where the prime denotes differentiation with respect to the
radial coordinate, =d/dr. Let us first introduce the defini-

tion
rQ=(1-H4?h,, (3.18
with which Egs.(3.16) and(3.17 becomes
khg d
m+ a(rQ)=0, (3.19
ho

2k
kh{—k2h; —

+(1=2)(l +2)$:24ﬂ-GH2(rQ).
(3.20
We eliminate therkh, from Eqgs.(3.19 and(3.20 to obtain

d? k?rQ

—(1-H¥?)—(rQ)— —— -+ Ei(FQ)
dr2 (1—H?%2) rdr

Q

+(I—1)(I+2)T=244TGH2(rQ). (3.2

From Eq.(3.15 we finally obtain the wave equation

d’Q 1

dr*2+z(k —Vet)Q=0, (3.22
where
I(1+1
Verr=(1—H?r?) ( 5 )—247TGH2 (3.23
r

is an effective potential and
hy= | d 3.2
o=l g)| 5+ Q- (3.24

_ dh dK
ikhy+(1—H?%?) 9 dr —2H2rh=0, (3.26

d .
a[(1—H2r2)hl]+|k(h+K)zo, (3.27
2

d%h 2 dh
2,22 _ 2.2 _ 2.2 _ 12
(1 Hr)dr2+r(1 H?r?)(1-3H2r?) - —k*h

2ik(1—H?r?) d
+—

I(1+1)h
r2 dr 2

(r?hy) = (1-H?r?)

dK
—4ikH2rh1+2(1—H2r2)H2rW—2k2K
=—6H*(1-H*?h, (3.28
dh
2ik(1—Hzrz)d—rl—ZikHzrhl—kzh
1-H?%??2[d [ _dh d/ . dK
+¥ —|r2—|-2—|r?——
r2 dr dr dr dr
[(I+1)h dh dK
2.2y N 2, 2.0
+(1-H4r9) 2 4H rdr+2Hrdr
=6H?(1—-H?r?)%h, (3.29
d 1—H?r? d 2K)—2rh K
ar| A—HT G (K —2r +m
—I(I+1)K—2ikrh;=—6H?rK, (3.30

where we have useH,=Hy=h, which is allowed by the
high symmetry of the de Sitter space, dig=h,. The three
first-order equation$3.25—(3.27) can be used to derive any
of the subsequent second-order equati@i28—(3.30), pro-
vided the following algebraic relationship is satisfied:

[(1-1)(1+2)—4H?r?(1—-3H?r?)]h

2(K?r2+1+2H?r?)

+
(1-H%?

=1(+1)+

3iH?rI(1+1)

" h,=0. (3.3)

—{2ikr+

The wave equation in a single unknown can now be de-

The derivation of the wave equation for the case of evenrived from Eqs.(3.25, (3.26), (3.27), and(3.31). After a lot
parity perturbations has more algebraic complications. Fronof algebraic manipulations we finally obtain
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= 22 S
d?s 1[ ,  A(1—-H* )[4H2r2(1—3H2r2)—(|—1)(|+2)]] ds

dr<2 2 TN dr*
1 (1-H%? 4  4(1-H?%?)
~ 2 2 2,2\ _ _ T S
+4[k +4H?%(2+H?r?) = (I-1)(1+2) r2+ 51
1-H?*? 3HA(I+1) || =
X 4H2(1—H2r2)(1—3H2r2)+2k2—%(l—l)(wzw% S=0, (3.32
r
in which we have introduced the definition
_ h,
s:(l—HZrZ)T (3.33
and the functiorD(r) has the form
2r2 6H2r2
D(r)=m—Z(I—l)(IJrZ)Jrm+4H2r2(1—3H2r2). (3.39

We note thaD (r) approaches infinity astends to the cosmological horizon. The wave equat®82) can also be expressed
in terms of another functio®=h /r:

d’s  2(1-H%? - s 1) _ ., , o (1=H%?)
TR [4H%r?(1—3H?r )_('_1)('+2)]ﬁ+2 3H2(3+HZr )—r—z(l—l)(l+2)
4  4(1-H%?) (1-3H?%?) 3H2
2_ 201 _ 2,2\2 2_ _ — =
+k =t ory |4 (1-3H%r?)2+2k = (I-1)(1+2)+ 7 —1(1+1)| 1$=0,  (3.39

with D(r) also as given by Eq3.34), which will be most The effective potentiaV.; is real and positive everywhere

useful in what follows. along this range, and vanishes @t=—c, i.e., on the
boundary ar =H 1. The asymptotic solution to E43.36)
B. Odd-parity perturbations asr approaches the cosmological horizon is
The stability of the static region of de Sitter space to the +1 .
odd-parity perturbations will be now examined. As in the Qu~exp £5ar” |. (339

Schwarzschild casgg1,32, we shall distinguish two differ-
ent cases: we first consider the situation when the frequencis r—0, i.e., as one approaches the other boundary where
k is pure imaginary, and then we analyze the wave problemve should require the perturbations to fall off to zero, one
that results when that frequency is kept real. can write Eq.(3.36 in the form

Setk=ia. Then, from Egs(3.22 and(3.24), we have

d? I(1+1
d’Q 1 Q20 + 7 24mGH2— ( ) _ az) Q,=0, (3.39
dr*zzz(a2+veff)Q=0, (3.36 dr r
whose general solution can be given in terms of the Bessel
functions[34]
h 1( d )( Q) (3.37)
0o~ rQ). . X
ne Qo~ Ve mrmyrr SVH?= azr) : (3.40

The coordinate* ranges from— toi/H. The upper limit
can of course be made zero by a redefinitiom®ofsuch that
now

Since we should require the pertutbations to vanishr as
—0, we have to choose for the Bessel function 7 [34].
However, if we take the functio® to be positive, one can
see from Eq(3.36) thatd?Q/dr*2 can never become nega-
tive within the entire range of, from 0 to H™!, and the
solution that goes to zero at the origin=0 [that is, Eq.

*_1|
r —H n

1—Hr
1+Hr|
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(3.40 with C=7] cannot be matched to the solution that Aexp—ik/2r*)
goes to zero on the horizon at=H ™! [that is, Eq.(3.39 hy=——————, (3.49
with the + sign in the argument of the exponentidt fol- H(1-H"%)
lows that the asymptotic solution nea=H ! has to be A
1 ho=ﬁexp(—ik/2r*). (3.47
QH=Aex;<—§ar*), (3.4)

For the cosmological perturbations in Kruskal coordinates
whereA is an arbitrary constant; so the radial solution nearye have then

r=H"1, Eq.(3.37, becomes
A(u/2—v)
o hK.oc ——— —~ axp( —ikr*/2+ikt).
ho=— 2.7 (3.42 - 7 |

We can now compute the Kruskal perturbations given by/Ve note that for ingoing waves the horizor-H™* should
Egs.(3.13. Let us concentrate on the expression that result§e taken ati= —v. Therefore,
for h§3 near the surface=H ™1 (i.e., onu=v). Suppressing 3A
all angular dependence, we have hggoc TR exik(t—r*/2)].
« [uhg—v(1-H?r?)h;Je” (u/2H +rv)Qy ' _
hos > 2 =- T 2 Using again exptr*)=1/(u?—v?)™ and e'=[(v—u)/(u
o u—v +v)]Y, we finally obtain, for this perturbation,

(v+ui2) Aexd —a(r*+t)] 3A
=—————Aexd —alr . ,
2_,,2 A —ik/H
Note that the sign of time has been reversed in the above . . , .
equation with respect to those perturbations that appear in Sinceu+v—0 on the horizon, at first glance this pertur-

Schwarzschild space. This reversal expresses the fact that tR@tion appears to be seriously divergent. However, as also
expansion of the universe is in many ways similar to the'@PPens in the Schwarzschild c48&], one can build wave

collapse of a star, except that the sense of time is reversd}fickets which are convergent everywhere in space out of
[22]. the monochromatic waves. If we form the purely ingoing

Using then exptr¥)=1/(u’—vd)™ and e'=[(v waves into a wave packet by taking to be a function
—u)/(u+v)]¥?, and taking into account that=v on the of k given by the Fourier transform of a function
surfacer =H 1, we finally get f(g) =S A(k)exp(—=ikg)dk, which vanishes fogq<1, by in-

tegrating ovelk, Eq. (3.48 transforms into

hg:;oc 2(_ 1)1+a/2HA(U_U)_(l+3a/2H)(U+U)_a/2H.
(3.43

Now, since at=0 (i.e., onu=0) this perturbation becomes There cannot be any singularity from the+v) ~* factor in

Eq. (3.49 becausé is nonzero only when(u+v)>1. Thus,

hgaoci(_l)leHAvf(l+2a/H), (3.44) hes dogs not diverge anywhere in space, but it is always
4H purely imaginary.
For outgoing waves, the asymptotic solutions near

which is clearly divergent at=0 on the horizon, and the —H-1 are given by g=v)
physically allowable perturbations should be regular every-
where in space dt=0, we see that this perturbation is physi- Qu=Aexp +ik/2r*), r*——oo, (3.50
cally unacceptable, and hence cannot exist. It follows that the

odd-parity perturbations with purely imaginary frequencyand, for wave packets formed as before, we finally obtain
ought to be ruled out.

. (3.49

he; > f 1| i
03Mm ﬁn[l(U"rU)]

Let us consider now solutions that correspond to real fre- K 1
quenciesk. We shall look first at the case of ingoing waves oz — mf:ﬁm[l(u—v)]], (3.5)
for which the asymptotic solutions near the horizonrat
=H"! are (Ve;=0) which, although coverging everywhere in space, is always
_ purely imaginary, such as happened for perturbat®A9.
Qu=A exp( B ik ) ¥ o (3.49 The reason for these perturbations to be imaginary resides in
H or* ' ' the fact that the argument of the logarithm in the above ex-
pressions should be larger than unity, which in turn requires
For these solutions it holds that that bothu andv be imaginary simultaneously. Note that this
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does not imply rotation of the timeinto the imaginary axis h; to one anothefwhich can be obtained by suitably com-
because Kruskal coordinatasandv appear in the fornw/u bining Eqs.(3.26 and(3.27)], after specializing to =H !
in Eq. (3.12. andk=ia, i.e.,

Thus, the main conclusion for odd-parity perturbations is
that either they cannot exist whenever their frequency is dh, d?h,
purely imaginary or they are stable and physically acceptable AH—=+4
if their frequency is real. Since in the latter case the solutions dr*
are purely imaginary, one can also conclude that such per-
turbations would not be observable. we get

+a?h,+2a
dr*? ! dr*

dh
Hh+2—)=o,

C. Even-parity perturbations 2HE+ AH?2— /2

a(26—H) (357

In terms of the most covenient functios=S/(1
—H?2r?), the second-order wave equation for the even-parity
perturbations given by Eq(3.35, near the horizon at  Letus now denoter=*eH, with e=242. Then the analy-
=H"! becomes sis of all possible resulting casfiscluding the use of both

signs in the exponent of E¢3.54)] will require considering

d?s

1
2 2ye—
dr*2+Z(k +8H<)S=0. (3.52 €2
g:i Z_ZH

Thus, the asymptotic form of the general solution rat
=H"1, s, would read

We shall look at three significant values @fnamely, 2/2,
3, andw, in the following cases{i) >0, £>0 (B= J2A
_ (3.53  for e=2\2, A=0 for e=3, andB=—A for e—x), (i) a
>0, £&<0 (B=2A for e=22, andA=B for e=3 and

As for the boundary at=0, one attains that no perturbation §—%). (i) @<0, £<0 (B=—2A for e=2,2, andB=

can consistently be expected, since from 335 we ob- A for e=3 and e—~), and (iv) «<0, £>0 (B=

tain Sy=0 (unless forl =0 for which caseS, is an arbitrary  — V2A for =22, A=0 for =3, andA=B for e—x).
constan, and thereforér=h,=0. Hence, we can readily get C_Iearly, if all of t_hese partlcul_ar cases led to §tablllty of de
an expression foh,, independently of the value of the fre- Sitter space against the considered perturbations, one could
quency. It follows that the two signs involved in the expo- conclude that de Sitter space is stable to such perturbations

nent of Eq.(3.53 are allowed and should therefore be takeni” all cases. Thus, for case I, the relation between the coef-

1
SH~exp( *i Zk2+ 2H?r*

into account in our analysis. ficients A and B for the asymptotic solutionk andh; must
Again we first consider the case where the frequeniyy ~ 'Un between the extreme values #r(B fixed), A=B and
purely imaginaryk=ia. Then A=—B, passing orA=0.

For A=B, the perturbation in the Kruskal coordinates,

1 e.g.,hgo, are given by(angular dependence suppregsed
Sy~exp *i\/2H?— Zazr* . (3.59

- . F?(u—v)?
We have two distinct cases: case |, for whigh|> a. hi;=————he
=2\2H, and case I, for whicHa|<a.. In case | the u?-v?
asymptotic solution reduces to
(Uu—p)t~ a?/4H% -2~ al2H
~exp( = &r), (3.59 =(—1)"“*MF2A :
SH q (u+v)1+ Va2/4H2 -2+ al2H

where

(3.58
\/ﬁ =
f—_ Zoz 2H (356 Att=0 (U 0)1

is real. Because case |l is qualitatively the same as that for hK :(_1)1—Va2/4H2—2—a/Hv—(2va2/4H2—2+a/H)_
real frequenciesto be dealt with later o we shall concen- 0o (3.59
trate now on case | only. Sin®=h, /r, nearr=H"1, one

can assume the asymptotic forms Equation(3.59 is divergent aw—0, except for the case

hy=Aexp(=£&r*), h=Bexp(*é&r). =—¢€H, &>0 or ¢ very large, for which casag,= — F?A.
Hence, except for this case, all perturbations are physically
Choosing first the minus sign in the exponent of these twainacceptable, as they all diverge at the initial titre0.
functions, from the equation relating radial functiamsnd ForB=—A, we have
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(u+u)1‘Vm+“/2H in which we have introduced the shorthand notation
hgo:(_l)wIZHFZA(u_v)u Va2IaH2—2+ al2H’ 1
(3.60 v=\2H+ 7 k2. (3.66
which att=0 (u=0) reduces to From Egs.(3.64) and(3.65 we get
hK =(—1)-(* Va2iaZ-2+ al)p2p ) —2aPiaH? -2 2v(k?>+5H?) 4iH3

(3.67

(3.6 K+ 9H?) | k(K24 9H?)

We note that all of these perturbations are physically UNacRestricting ourselves to the cak&>H?2, so thatv=k/2, we
ceptabIeK, e_xc;ept for the cage=—eH, £<0, with €=3, e that there are two solutions: whér=2v (ingoing
wherehgo=iF“Av. . waves, A=—B, and whenk=—2v (outgoing waveg A
Finally, whenA=0, we obtain =B. Suppressing again the angular dependence of the per-
turbations, we can then compute such perturbations in
yalH=1-V 214H% -2 P P

< oHe2e 2. o (u+v Kruskal coordinates. In the case of ingoing waves; —v
hoo=(—1)" ““"F*B(u“+v : the horizon, and we have
o= (= 1) ( )(u—v)” Va?i4H? -2+ al2H on
(3.62 _ U+p)L-ikH
: . . hoo=F*A(— 1)'”2'*% (369
Again att=0 (u=0), this perturbation reduces to u-v
o= (— 1)~ (1 Va"/an" =2+ alR)p2p,, ~2Va"/aH =2, and, for outgoing wavesu=v),
(3.63
o \1+ik/H
It can easily be checked that in all cases, without any excep- hgoz F2A(— 1)ik/2H&_ (3.69
tion, Eq.(3.63 diverges awv — 0, and therefore this pertur- ut+v

bation is physically unacceptable and should be ruled out.

We are in this way left with two physically acceptable Clearly, the perturbation§3.68 and (3.69 are stable near
even-parity perturbations for purely imaginary frequencies inthe cosmological horizon and everywhere inside it, even in
case I: that given by Eq.3.58 for negativea, positive&,  the forms given by these equations, without building suitable
and very larges and that given by Eq3.60 for negativea,  wave packets by superposing them. This analysis can readily
negativeé, ande about 3. Since negative values @fcorre-  be generalized to any values lofandH, obtaining the same
spond to the case of outgoing perturbations for whiefw conclusion.
on the horizorr =H ™1, these perturbations will be stable as
the resulting powers to the factau{ v) are positive definite V. STABILITY OF MULTIPLY CONNECTED
in both cases. Note, furthermore, that at least the perturbation de SITTER SPACE
given by Eq.(3.60 is always purely imaginary. Thus, even- ) ) - )
parity perturbations with purely imaginary frequency in case In Sec. Il we have investigated the stability properties of

| either are physically unacceptable or, unlike in Schwarzsthe simply connected de Sitter region covered by static co-
child space31], are stable and most of them imaginary. ~ ordinates. We had to do so because, as far as | know, such an

In the case thak is kept real the asymptotic general so- analysis had not been carried out so far, and we needed it to
lution on the cosmological horizon has already been given byrepare our system to study the perturbations when the co-
Eq. (3.53. The analysis to follow will also be valid for ©rdinates involved are identified in such a way that this re-
purely imaginary frequencies satisfying the condition im-9ion of de Sitter space becomes multiply connected topologi-
Eq. (3.54 in this case. For real frequencies, the relation be2n the static region, the de Sitter space is also stable to the

tweenh andh; is first-order perturbations that satisfy its symmetries.
1 dh; d2h1 dh A. Classical perturbations
| Khy =4l H dr* - dr*? =2k Hh+2d? ' We shall now study the effect that topological multiple

(3.64  connectedness has on the stability of de Sitter space. Because
of the high symmetry of this space, the time parameéter
where we have specialized to the regiocaH 1. Let us now  always appears in the form of a factorized exponential factor
assume, as was made for purely imaginary frequencies, that all perturbations, either as exp@t), if the frequency of
the asymptotic forms foh and h; near the cosmological the perturbative modes is purely imaginary, or as exki),
horizon are given by if that frequency is kept real. Thus, we can generically write
the time factor as exp(k)t], with g(k) a given function of
h;=Aexp(—ivr*), h=Bexp —ivr*), (3.69 the mode frequency. From our discussion in Sec. I, it fol-
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lows that de Sitter space can be made multiply connected by « 3e 1 i
simply including the time identificatiobt+nb/H, with b hos(b)=— mf ﬁ( In(u—v)+ -+ b) ,
a dimensionless arbitrary period andany integer number. (4.5
This will amount to the insertion of an additional factor '
exd nbg(k)/H] which is also always covergent and purely real if we simi-

larly let b be complex and given bp=b—i#/2. We can

for each value of the integerin the distinct expressions for then conclude that in the considered regime, multiply con-

; €g ) . P nected de Sitter space is stable to all odd-parity perturbations
the first-order perturbations obtained in Sec. lll. In order to :

. ; P that are physically acceptable.
take into account all possible values mfalong its infinite . . . .

. For even-parity perturbations which also are physically

range, one then should coveniently sum ovenaffom 0 to acceptable we ha@s]
o, introducing the statistical factor i/ to account for the P
equivalent statistical weight one must attribute to all of these

contributions. Thus, the general expression for the perturba- < « * @ nba/H «
tions in multiply connected de Sitter space would be hoo(b) = hoozo n—|=hooeXF[e_b“/H] (4.6)
= [
“. hSexgnbg(k)/H]
hﬁ(b)ano 2 v : (4.9 for any value ofkb/H. Thus, making the de Sitter space

multiply connected preserves the stability of these perturba-

K i i ) _ tions and increases their amplitude, especially for small val-
whereh;; generically denotes the first-order perturbations in,aq ofha/H.

Kruskal coordinates for simply connected de Sitter space Next we consider even-parity perturbations with real fre-

which were computed in Sec. Ill. quency. We first note that in this case the perturbations cor-

In what follows we shall perform the calculation of the responding to the asymptotic solutions nearH ~* can also
relevanthi'}(b) for all physically acceptable perturbations. pe expressed in terms of wave packets in the simply con-
We shall first restrict ourselves to the regime where bothhected case. They are

kb/H and ab/H are much smaller than unity; i.e., we will
work in the regime characterized by nonchronal regions and

CTC's whose size is very small. As will be seen below, this K _ ol UtV 1 i
is the regime of most physical interest where vacuum quan- hoo=F (_) f{ﬁ( In(utv)+ 2 } “.7
tum fluctuations can be kept convergent everywhere. Let us
start with odd-parity perturbations with real frequency. For, . .
the case of ingoing waves, we have, for the asymptotic sof—Or ingoing waves, and
lution atr=H"* [35], .
n=F2 U)o L nu—p)+ 2 4.8
o0=F\ oy Tl | N+ 5| 48

3A *° einkb/H

aar iUy —
(u+v) n=0 M for outgoing waves. Because of the form of the Kruskal-
3A coordinate-dependent prefactor, these expressions are real in
= 4|_|—+exqeikb/H)e*ik In[i(u+v)]/H_ (42) any case. - - .
(utv) When we multiply connect the de Sitter space in the re-

) gime of small values okb/H, Egs.(4.7) and(4.8) transform
For small values okb/H, Eq. (4.2) can be approximated to nto

his(b) =

3Ae ik u+ 1 i
hgg(b):mexp{ - g{ln[l(uw)]—b}]- hgo(b)=eF2(ﬁ>f[ﬁ(|n(u+v)+ 7—b”, (4.9
4.3
for ingoing waves, and
Forming again a wave packet out of monochromatic pertur-
bations(4.3), we finally obtain, for this type of wave, u—o\ 1 i
hi(b)=eF? e f[ﬁ(ln(u—v)+7+b }

. (4.4 (4.10

héya(b) =

L e SV L
AH(uro) A | MUt

for outgoing waves. Note that the argument of the funcfion
which still is a convergent expression for all times. If we let becomes real when we allolwto be complex and given by

b be complex, so thab=b+i#/2, then Eq.(4.4 becomes b=Db=*i#/2, with the + sign for ingoing waves and the

not only convergent but purely real as well. sign for outgoing waves. Anyway, the perturbations given by
For outgoing waves, an analogous calculation leads fiEgs.(4.9) and (4.10 keep being convergent and, therefore,
nally to the perturbation one can conclude that in the regime of very small values of
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b/H, multiply connected de Sitter space is also stable tavhich in fact is definite positive. Corresponding to this met-
first-order perturbations which respect the symmetry of thigic, Euclidean timer will be defined by the relation
space.

As to the perturbations for larger valueswfH and real
frequencies, we first note that the expressions for the com- exp(2iH 7)=
ponentshiy,(b) andh,(b), before forming any wave pack-
ets, are given by expressions which are the same as those
obtained above in the regime of very small valuesbfifl, = Wick rotating also in the identification~ng (where the
but with the parameteb replaced by th&-dependent func- nonperiodic time term is disregarded afeF b/H is the pe-
tion (—iH/k)exp(kb/H). The wave packets formed using riod), which makes de Sitter space multiply connected, Eq.
the same procedure as for all the above cases will therefor@.12 transforms into
involve characteristic functions of the form

H(t dxbé ex2inHg) = "7 (4.13
{Ejobﬂn[i(uiv)]]’ v

i 4.12

v
vtiny

wherex=exp(kb/H), and the sign+/— in the argument of from which one can get the complex relation
the logarithm stands for ingoing/outgoing waves. Now, for

b>In[i(u*v)] we can obtairf34,35 v—ip= e 2 expinHB). (4.14
H_
f EEI(X)|8 : It follows from Eq. (4.14) that Euclidean time preserves a

periodic character also on the Euclidean se@er2/H,

with Ei(x) the exponential integral function. Since the argu-that s to sayb= 2. This result can be interpreted along the

ment off is then always smaller than unity, we haive 0 on following lines. First of all, one can readily see that multiple
this regime. connectedness in de Sitter space is nothing but the Lorentz-

As (u+v) becomes very small, so thaty=|Re Ifi(u ian counterpart of the existing thermal states that are uncov-

+1)]|, the wave packet function approaches the 684,35 ered in the Euclidean descriptip87]. This relation might be
reflecting the origin of the excess of some perturbative waves

H d(y,y+1:1) which we have found above for multiply connected de Sitter
f[ Blim [ ' H =0, space with respect to its simply connected space.
y—o Quite more importantly, the value= 2= can be usedas

Li and Gott did[24]) to redefine a conformal vacuum in
with & the degeneratéconfluen} hypergeometric function. Euclidean space for whidff,,)e, does not diverge even on
ThUS, also for arbitrarily Iarge nonchronal regions, the mUl—the Chr0n0|ogy horizon. However, the meaning of this hori-
tiply connected de Sitter space is stable to all physicallyzon in such a vacuum has been discussed by Kay, Radz-

allowable classical perturbations. ikowski, and Wald25] and Cassidy26], so that some quite
well-founded doubts can be cast on its real existence and
B. Quantum fluctuations capability to restore quantum stability this way. But if we

In what follows we shall briefly discuss the possible in- a}dhgre to the a_Iso rﬁce”t'y sugge_s[@@ kind of time quan-
. tization by whicht=(n+y)t, (with t, a constant time
fluence that multiple connectedness may have on the quan-

tum stability of de Sitter space. Because of the presence ofvéllhose value is of the order of Planck time apdhe auto-

chronology horizon on the surface=H %, it could at first morphic parametei38,39, 0= y=1/2), and note the formal

sight be thought that the quantum renormalized stress—energ%ne e::;)ifci]é/a%f();h|f:;<irr?§7|;onvvwr:(tahnthvs(ta th'lfgb'szgn:“(;ﬂ db)t/ the
fcenso:t(_lexen fortv%cgurg_guantum flucturiti?nz_gg[%%ated:27”/“_' we see that quantum stability could be unambigu-
in multiply connected de Sitter space ought to div . ’ . ; .

However, it has recently been stressed that this could not b%l:f% restored ”t1 mutlt_lptl_y c?dr:nected hde S:tter space, dp{r?'
actually the case if either we consistently redefine the quan\é_l_eé, we z_atc;:e% restric 'tr.]g” et Tﬁ ncPlronak reg||<;r_1| &aAn €
tum vacuum[24] or we introduce a suitable quantization of 28] S on itio be essentially at the Flanck scalesi-xi,
the relevant time parameter, beyond semiclassical approxg- :

mation[28]. To see how these ideas apply to the case under

study, let us work in the Euclidean framework where the V. SUMMARY AND CONCLUSIONS

Kruskal metric is obtained by rotating coordinateandt to
the imaginary axis, starting with E@3.9), i.e.,u=i» andt
=i7. We get then

The main aim of this paper is to study the classical and
quantum stability of multiply connected de Sitter space. This
space arises when we introduce some periodicity conditions
4 on the coordinates describing the five-dimensional
=ﬁ(dn2+dv2)+r2 d02, (4.1  Minkowski hyperboloid and can only be exhibited on the

H 1+ n°+v°) region covered by static de Sitter coordinates. Using a first-
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order perturbation formalism analogous to that which wadility that the Hartle-Hawking and the Gott-Li conditions
originally developed by Regge and Wheeler for themight both be seen to imply initial physical pictures which,
Schwarzschild metrig27], we have shown that multiply at least in a way, appear to be complementary. In classical
connected de Sitter space is classically stable to these pertuyelativity time and spatial coordinates can still be distin-
bations, no matter the size of the static region. Althoughguished by the fact that, whereas spatial coordinates do not
stability against higher order perturbations has not beegjngle out a particular sign to run over, time can only run
checked in this paper, one would expect these perturbationgrwards. This does not help, nonetheless, to understand the
not to introduce any instabilities, such as occurs in_orentzian signature of the classical metrics which are not
Schwarzschild spacetini@7]. positive definite. However, as we approach the regime of the
By continuing the Kruskal extension of the multiply con- gquantum spacetime foam, the entirety of this distinction can
nected, static de Sitter metric into its Euclidean section, weye thought to vanish, since in such a regime there will be
have also argued that quantum vacuum fluctuations shouldTC's everywhere and hence the two time directions would
not induce any divergence on this space, provided the norhecome equally allowable and, at the same time, metrics can
chronal region and the CTC's on it are all sufficiently small, pe taken to be positive definite. In order to describe the quan-
probably of the order of the Planck sig28]. We therefore  tym origin of the universe, one then can either keep CTC's
consider multiply connected de Sitter universes to be genugnd Lorentzian signatures simultaneously, as assumed by
ine components of any future description of a well-definedgott and Li, or disregard CTC's while using the Euclidean
theory of quantum gravity. In particular, the consideredsjgnature where time becomes spacelike, as suggested by
stable little multiply connected universes should be includedyartie and Hawking. As seen in this way, the two pictures
together with Euclidean and multiply connected wormholesyould actually describe rather complementary aspects of the
[20], ringholes[40], Klein bottleholed41], and virtual black  jnitial physical situation.
holes[42], as components of the vacuum quantum spacetime
foam, where their CTC’s would contribute the required vio-
lation of causality that governs the foam. Thus, Planck-sized ACKNOWLEDGMENTS
de Sitter universes containing CTC’s can help to define the
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