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Perdurance of multiply connected de Sitter space
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This paper deals with a study of the effects that spherically symmetric first-order metric perturbations and
vacuum quantum fluctuations have on the stability of the multiply connected de Sitter spacetime recently
proposed by Gott and Li. It is the main conclusion of this study that although such a spacetime is stable to the
classical metric perturbations for any size of the nonchronal region, it is only stable against the quantum
fluctuations of vacuum if the size of the multiply connected region is of the order of the Planck scale.
Therefore, boundary conditions for the state of the universe based on the notion that the universe created itself
in a regime where closed timelike curves were active and stable still appear to be physically and philosophi-
cally well supported as are those boundary conditions relying on the notion that the universe was created out
of nothing.@S0556-2821~99!01612-4#

PACS number~s!: 98.80.Cq, 04.20.Gz, 04.25.Nx
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I. INTRODUCTION

When he was arguing in support of his favorite conditio
Hawking considered@1# that the choice of the boundary con
ditions for the quantum state of the universe should be m
on just compact metrics or noncompact metrics which
asymptotic to metrics of maximal symmetry. While com
pleteness seems to be an appealing property, spaces w
are maximally symmetric are desirable for their elegance
great simplicity. At the time, the quest for the boundary co
ditions of the universe has already collected a number
proposals with the above or similar properties, includi
Vilenkin’s tunneling wave function@2#, the vanishing Weyl-
tensor condition of Penrose@3#, and, perhaps most popularly
the no-boundary proposal of Hartle and Hawking@4#. They
have all been thoroughly discussed from different perp
tives @5#, particularly by invoking their capability to genera
a suitable inflationary mechanism able to solve the origi
problems of standard cosmology@5,6#, giving at the same
time rise to a scale-invariant spectrum of density fluctuati
@7,8#, compatible with the present observational status of
universe.

Recent observations of the density of gravitational len
in the universe@9,10# and estimates of the present value
the Hubble constant@11,12# have nevertheless led to the co
clusion that the critical densityV has to be smaller than
unity, thus favoring an open rather than closed model for
universal expansion. The problem then is that most of
inflationary models compatible with the proposed bound
conditions predict a value forV very close to unity. In order
to solve this problem, Hawking and Turok have recently s
gested@13# the existence of a singular instanton which
able to generate an open inflationay universe within
framework of the no-boundary proposal. Vilenkin has argu
@14# that the singularity of this instanton may have ca
strophic consequences and, therefore, some procedures
been advanced@15,16# to make the instanton nonsingula
while still inducing an open inflationary process. Neverth
0556-2821/99/59~12!/123513~13!/$15.00 59 1235
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less, recent measurements of the most distant supern
@17# may question the notion that the universe should
open when one allows the presence of a nonzero effec
cosmological constant. This would open the possibility
the universe to be flat and then remove the need for o
inflation and, thus, for the Hawking-Turok or Gott propos

It is worth noting that as early as 1982 Gott already p
posed@18# a procedure leading to an open inflationary mod
for the universe. At the time, of course, it was largely dis
garded, since it was then generally believed that the unive
is closed. Motivated by the present observational status, G
and Li have now suggested@19# new boundary conditions
based on Gott’s original model of open inflation. The
boundary conditions assume the existence of a nonchr
region with closed timelike curves~CTC’s! in de Sitter
space, separated from the observable universe by a chro
ogy horizon@20#. The resulting model can be compared
e.g., the most popular no boundary paradigm as follo
Consider first de Sitter space and visualize it by means of
Schrödinger five-hyperboloid with Minkowskian coordinate
@21,22#. If we slice this space along surfaces of consta
timelike coordinate, then the slices become three-spheres
represent a closed universe. On this slicing both the
boundary and the Vilenkin conditions hold, so that in the
models the beginning of the universe can be pictured~in the
Euclidean framework! as being the south pole of the Ear
@23#, with time running along the Earth’s meridians. Thu
asking what happened before the beginning of the univers
like asking what is south of the south pole. Therefore, th
boundary conditions can be regarded to implement the i
that the universe was created out of nothing. Although s
ings in standard de Sitter space are, of course, comple
arbitrary and, therefore, the key point about, e.g., the Har
Hawking proposal is that there is no initial boundary, n
whether you consider time to begin at the south pole or a
where else in the Euclidean region, the picture that follo
when one chooses the above particular slicing is highly ill
trative @23#, so that we shall now choose another particu
©1999 The American Physical Society13-1
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PEDRO F. GONZA´ LEZ-DÍAZ PHYSICAL REVIEW D 59 123513
slicing of de Sitter space in order to visualize the Gott
boundary condition in Lorentzian quantum cosmology.
contraposition to the above approach, one can also s
Schrödinger’s five-hyperboloid vertically, i.e., along the on
spacelike direction defined in terms of proper time@19#. The
resulting slices are negatively curved surfaces, describab
terms of open cosmological solutions. It is on this slicing th
the Gott-Li boundary condition can be defined. Since ti
should now lie along the Earth’s equator~or actually any of
its parallels!, the origin of time can by no means be visua
ized or fixed; so asking what was the earliest point is l
asking what is the easternmost point on the Earth’s equa
there will always be an eastern~that is, earlier! point. This
was implied to mean@19# that on some region of the slice
there must be CTC’s. These curves will take the job of
ways shifting the origin of the cosmological time. Sayin
then that the universe was created from nothing would
meaningless; what one should instead say is that it cre
itself @19#.

We have thus two different types of boundary conditio
of the universe that may induce it to be open. Whereas th
boundary condition does it by rather an indirect way wh
involves some suitably modified version of the Hawkin
Turok instanton, the Gott-Li proposal creates the open u
verse directly. Is the latter proposal therefore more fashi
able than the former? A positive answer to this quest
could only be made once the Gott-Li model satisfactor
passes some important tests of its consistency. First of
one has to check whether the multiply connected de S
space is classically and quantum-mechanically stable. Li
Gott claimed @24# that all multiply connected spacetime
with a chronology horizon~derived from Misner space! are
stable to quantum fluctuations of vacuum, but previous w
by Kay, Radzikowski, and Wald@25# and by Cassidy@26#
has raised compelling doubts on this conclusion. The pre
paper aims at partly filling the above requirements by stu
ing the classical and quantum stability properties of multi
connected de Sitter space. This will be done using bot
first-order perturbation procedure paralleling the method
vised by Regge and Wheeler@27# to investigate the stability
of Schwarzschild spacetime and a time-quantization pro
dure @28# to analyze the regularity of the solution again
vacuum quantum fluctuations. Our main conclusion is t
multiply connected de Sitter space is stable both classic
and quantum mechanically. Clearly, a particular slicing
the de Sitter space may be picked out by the surface
constant inflation field, but this is relevant only when infl
tion ends, because the topology of these slices will determ
whether we live in an open or closed Friedman-Roberts
Walker universe. For the same reason, our stability anal
for the static slicing is only developed as a tool to be used
the nonchronal region of de Sitter space. Obviously,
property that ordinary de Sitter space is perturbatively sta
must be independent of the used coordinate system. Q
tum stability is, however, restricted to hold only in the ve
small regions where time shows its essential quantum c
acter.

We outline the paper as follows. In Sec. II we briefl
review how a multiply connected de Sitter space can be c
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structed, and show why its nonchronal region must be c
fined inside the cosmological horizon. The stability of t
whole de Sitter space has already been investigated in te
of a global Friedmann-Robertson-Walker metric@29,30#.
However, as far as I know, no corresponding research
been hitherto attempted for the de Sitter region covered
static coordinates, that is, the region where multiply conne
edness and CTC’s should appear. We have performed
study here, first for the simply connected static case in S
III and then for the multiply connected case in Sec. IV. Th
section also contains an analysis of the stability of multip
connected de Sitter space against quantum fluctuation
vacuum. Finally, we summarize and conclude in Sec. V.

II. MULTIPLY CONNECTED de SITTER SPACE

de Sitter space is usually identified@22# as a maximally
symmetric space of constant negative curvature~positive
Ricci scalar! which is a solution to the vacuum Einste
equations with a positive cosmological constantL.0. Fol-
lowing Schrödinger @21,30#, it can be visualized as a five
hyperboloid defined by

w21x21y21z22v25r0
2 , ~2.1!

wherer05A3/L. This hyperboloid is embedded inE5 and
the most general expression for the metric of the de Si
space is then that which is induced in this embedding, i.

ds252dv21dw21dx21dy21dz2, ~2.2!

which has topologyR3S4, invariance group SO~4,1!, and
shows ten Killing vectors~four boosts and six rotations!.

Metric ~2.2! can be coveniently exhibited in either glob
or static coordinates. Global coordinatest8P(2`,`),
c3 ,c2P(0,p), andc1P(0,2p) can be defined by@30#

z5r0 cosh~ t8/r0!sinc3 sinc2 cosc1 ,

y5r0 cosh~ t8/r0!sinc3 sinc2 sinc1 ,

x5r0 cosh~ t8/r0!sinc3 cosc2 , ~2.3!

w5r0 cosh~ t8/r0!cosc3 ,

v5r0 sinh~ t8/r0!.

In terms of these coordinates metric~2.2! becomes

ds252dt821r0
2 cosh2~ t8/r0!dV3

2 , ~2.4!

where dV3
2 is the metric on the unit three-sphere. Metr

~2.4! is a k511 Friedmann-Robertson-Walker metr
whose spatial sections are three-spheres of ra
r0 cosh(t8/r0). Coordinates~2.3! entirely cover the four-
3-2
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PERDURANCE OF MULTIPLY CONNECTED de SITTER SPACE PHYSICAL REVIEW D 59 123513
dimensional de Sitter space which would first contract u
t850 and expand thereafter to infinity.

In order to exhibit metric~2.2! in static coordinatestP
(2`,`), c3 ,c2P(0,p), c1P(0,2p), one can use the defi
nitions @30#

z5r0 sinc3 sinc2 cosc1 ,

y5r0 sinc3 sinc2 sinc1 ,

x5r0 sinc3 cosc2 , ~2.5!

w5r0 cosc3 cosh~ t/r0!,

v5r0 cosc3 sinh~ t/r0!.

Settingr 5r0 sinc3 @i.e., definingr P(0,r0)#, we obtain the
static metric in de Sitter space:

ds252S 12
r 2

r0
2D dt21S 12

r 2

r0
2D 21

dr21r 2 dV2
2 ,

~2.6!

wheredV2
2 is the metric on the unit two-sphere. The coord

nates defined by Eqs.~2.5! cover only the portion of de Sitte
space withw.0 andx21y21z2,r0

2, i.e., the region inside
the particle and event horizons for an observer moving al
r 50.

In order to see whether the whole or some restricted
gion of the de Sitter space can be made to have mult
connected topology, with CTC’s on it, we will follow th
procedure described by Gott and Li@19#, thus checking
whether a symmetry like that is satisfied by the Minkowsk
covering to Misner space@22# somewhere holding in de Sit
ter space. On the Minkowskian five-hyperboloid visualizi
de Sitter space, such a symmetry would be expressible
means of the identification@28#

~v,w,x,y,z!⇔„v cosh~nb!1w sinh~nb!,

w cosh~nb!1v sinh~nb!,x,y,z…, ~2.7!

whereb is a dimensionless arbitrary quantity andn is any
integer number. The boost transformation in the (v,w) plane
implied by this identification will induce a boost tranform
tion in de Sitter space. Hence, since the boost group in
Sitter space is a subgroup of the de Sitter group, either
static or the global metric of de Sitter space can also
invariant under symmetry~2.7!.

It is easy to see that there cannot exist any symm
associated with identification~2.7! on the (v,w) plane which
leaves metric~2.4! invariant for coordinates~2.3!. It follows
that the whole of de Sitter spacetime can neither be mult
connected nor have CTC’s. However, for coordinates defi
by Eqs. ~2.5! leading to the static metric with an appare
horizon ~2.6!, the above symmetry can be satisfied in t
region covered by such a metric, defined byw.uvu, where
there are CTC’s, with the boundaries atw56v and x2

1y21z25r0
2 being the Cauchy horizons that limit the ons
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of the nonchronal region from the causal exterior@19#. Such
boundaries become then appropriate chronology horizons
de Sitter space.

III. STABILITY OF STATIC de SITTER SPACE

While our discussion of Sec. II made it clear that multip
connected de Sitter space is mathematically rich and in
esting, we still need to know if such a space is indeed
physical object. Therefore, in what follows we shall use
general-relativity perturbation method to investigate the s
bility of the multiply connected de Sitter universe. Sin
multiply connectedness and CTC’s only appear in the reg
covered by static coordinates, the extension of the analys
the cosmologically perturbed global metric for simply co
nected de Sitter space@29,30# to a multiply connected topol-
ogy would unavoidably lead to rather inconclusive resu
We instead shall proceed as follows. We first extend
perturbative procedure originally devised by Regge a
Wheeler for the Schwarzschild problem@27# to a cosmologi-
cal de Sitter space in this section, and then in the next s
tion, we conveniently include the effects derived from t
identification~2.7! in the resulting formalism. In the presen
paper we confine ourselves to a linear analysis, investiga
the stability of simply and multiply connected de Sitter spa
in first-order perturbation theory by means of a generali
tion from the refined method developed by Vishveshw
@31# and Zerilli @32#.

We take as the general background metricgmn and the
perturbation on it ashmn . The quantitygmn will be later
specialized to be the static de Sitter metric, i.e.,

ds252~12H2r 2!dt21~12H2r 2!21dr21r 2 dV2
2 ,

~3.1!

where we have now denotedH5r0
21 for the sake of simplic-

ity, and x05t, x15r , x25u, x35f. Metric ~3.1! corre-
sponds to the initial time-independent equilibrium configu
tion; so the problem to be solved is, then, if metric~3.1! is
somehow perturbed, whether the perturbations will unde
oscillations about the equilibrium state or will grow exp
nentially with time. The static de Sitter space will be stab
in the first case and unstable in the second one.

Since the background is spherically symmetric, any ar
trary perturbation can be decomposed in normal modes g
by @27#

( f 0~ t ! f 1~r ! f 2~u! f 3~f!.

Associated with these modes we have an angular momel
and its projection on thez axis,M. For any given value ofl
there will be two independent classes of perturbations wh
are respectively characterized by their parities (21)l ~even
parity! and (21)l 11 ~odd parity!. Furthermore, since the
background is time independent, all time dependence of
perturbations will be given by the simple factor exp(2ikt),
wherek is the frequency of the given mode.

In order to derive the equations governing the pertur
tions, we shall start with the Einstein equations
3-3
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Rmn~g!5Lgmn , ~3.2!

with g denoting the de Sitter background metric. For t
perturbed spacetime, these field equations transform into

Rmn~g!1dRmn~h!5L~gmn1hmn!, ~3.3!

for small perturbation, withdRmn assumed to contain first
order terms inhmn only. Now, since Einstein equations a
still valid in the perturbation scheme, we obtain in this a
proximation that the differential equations that govern
perturbations should be derived from the equations

dRmn~h!5Lhmn . ~3.4!

The dRmn’s will be here computed using the same gene
formulas as those employed by Regge and Wheeler@27# and
Eisenhart@33#, i.e.,

dRmn52dGmn;b
b 1dGmb;n

b , ~3.5!

where the semicolon denotes covariant differentiation,
the variation of the Christoffel symbols is given by

dGmn
b 5

1

2
gba~hma;n1hna;m2hmn;a!. ~3.6!

After introducing suitable gauge transformations@31,32#,
the most general perturbations in static de Sitter space ca
written in forms which are similar to those obtained f
Schwarzschild space; i.e., for odd parity,

hmn5F 0 0 0 h0~r !

0 0 0 h1~r !

0 0 0 0

sym sym 0 0

G
3FsinuS ]

]u D GPl~cosu!exp~2 ikt ! ~3.7!

and, for even parity,

hmn

5F H0~12H2r 2! H1 0 0

H1 H2~12H2r 2!21 0 0

0 0 Kr 2 0

0 0 0 Kr 2 sin2 u
G

3Pl~cosu!exp~2 ikt !. ~3.8!

In these expressions ‘‘sym’’ indicates thathmn

5hnm , Pl(cosu) is the Legendre polynomial, andh0 , h1 ,
H0 , H1 , H2, andK are given functions of the radial coord
nater which must be determined as solutions to the resp
tive wave equations, subject to suitable boundary conditio
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In order to ensure holding of regularity on the cosmologi
horizon atr 5H21, we should transform the components
the perturbations in Eqs.~3.7! and ~3.8! to a representation
where the static metric is maximally extended and regu
also on the cosmological horizon. In Kruskal coordina
u,v, the static de Sitter metric can thus be written as

ds25F~r !2~du22dv2!1r 2 dV2
2 , ~3.9!

where

F~r !252S 11Hr

H D 2

, ~3.10!

v22u25
12Hr

11Hr
, ~3.11!

and

Ht52tanh21S v
uD . ~3.12!

In terms of the Kruskal coordinates, the components
the metric perturbations take the form~the components tha
invove only angular coordinates are the same in the two
ordinate systems!

h00
K 5

F2

u22v2
@u2~12H2r 2!21h001v2~12H2r 2!h11

22uvh01#,

h11
K 5

F2

u22v2
@v2~12H2r 2!21h001u2~12H2r 2!h11

22uvh01#,

h01
K 5

F2

u22v2
$~u21v2!h012uv@~12H2r 2!21h00

1~12H2r 2!h11#%,

h03
K }

1

u22v2
@uh032v~12H2r 2!h13#,

h13
K }2

1

u22v2
@vh032u~12H2r 2!h13#, ~3.13!

where the superscriptK refers to Kruskal coordinates. Fo
future reference, we introduce here the relation

exp~Hr * !5u22v2, ~3.14!

where the new variabler * is defined by
3-4
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r * 5H21 lnS Hr 21

Hr 11D . ~3.15!

A. Wave equations for the perturbations

We derive in what follows the differential equation
which should be satisfied by the perturbations on the m
mally extended de Sitter metric. We shall start with the od
parity solutions, and choose the perturbed Einstein equat

kh0

12H2r 2
1

d

dr
~12H2r 2!h150, ~3.16!

k~h082kh122h0 /r !

~12H2r 2!
1~ l 21!~ l 12!

h1

r 2
524pGH2h1 ,

~3.17!

where the prime denotes differentiation with respect to
radial coordinate,85d/dr. Let us first introduce the defini
tion

rQ5~12H2r 2!h1 , ~3.18!

with which Eqs.~3.16! and ~3.17! becomes

kh0

~12H2r 2!
1

d

dr
~rQ !50, ~3.19!

kh082k2h12
2kh0

r
1~ l 21!~ l 12!

Q

r
524pGH2~rQ !.

~3.20!

We eliminate thenkh0 from Eqs.~3.19! and~3.20! to obtain

2~12H2r 2!
d2

dr2
~rQ !2

k2rQ

~12H2r 2!
1

2

r

d

dr
~rQ !

1~ l 21!~ l 12!
Q

r
524pGH2~rQ !. ~3.21!

From Eq.~3.15! we finally obtain the wave equation

d2Q

dr* 2
1

1

4
~k22Ve f f!Q50, ~3.22!

where

Ve f f5~12H2r 2!F l ~ l 11!

r 2
224pGH2G ~3.23!

is an effective potential and

h05S i

kD S d

dr*
D ~rQ !. ~3.24!

The derivation of the wave equation for the case of ev
parity perturbations has more algebraic complications. Fr
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dRmn5Lhmn and the general expression~3.8!, we obtain
first the independent first-order perturbations of the Ri
tensor:

dK

dr
1

K2h

r
1

H2rK

~12H2r 2!
2

i l ~ l 11!h1

2kr2
50, ~3.25!

ikh11~12H2r 2!S dh

dr
2

dK

dr D22H2rh50, ~3.26!

d

dr
@~12H2r 2!h1#1 ik~h1K !50, ~3.27!

~12H2r 2!2
d2h

dr2
1

2

r
~12H2r 2!~123H2r 2!

dh

dr
2k2h

1
2ik~12H2r 2!

r 2

d

dr
~r 2h1!2~12H2r 2!

l ~ l 11!h

r 2

24ikH2rh112~12H2r 2!H2r
dK

dr
22k2K

526H2~12H2r 2!h, ~3.28!

2ik~12H2r 2!
dh1

dr
22ikH2rh12k2h

1
~12H2r 2!2

r 2 F d

dr S r 2
dh

dr D22
d

dr S r 2
dK

dr D G
1~12H2r 2!F l ~ l 11!h

r 2
24H2r

dh

dr
12H2r

dK

dr G
56H2~12H2r 2!2h, ~3.29!

d

dr H ~12H2r 2!F d

dr
~r 2K !22rh G J 1

r 2k2K

~12H2r 2!

2 l ~ l 11!K22ikrh1526H2r 2K, ~3.30!

where we have usedH25H0[h, which is allowed by the
high symmetry of the de Sitter space, andH1[h1. The three
first-order equations~3.25!–~3.27! can be used to derive an
of the subsequent second-order equations~3.28!–~3.30!, pro-
vided the following algebraic relationship is satisfied:

@~ l 21!~ l 12!24H2r 2~123H2r 2!#h

1F2 l ~ l 11!1
2~k2r 21112H2r 2!

~12H2r 2!
GK

2F2ikr 1
3iH 2rl ~ l 11!

k Gh150. ~3.31!

The wave equation in a single unknown can now be
rived from Eqs.~3.25!, ~3.26!, ~3.27!, and~3.31!. After a lot
of algebraic manipulations we finally obtain
3-5
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d2S̄

dr* 2
2

1

2 H 4H2r 1
4~12H2r 2!

rD ~r !
@4H2r 2~123H2r 2!2~ l 21!~ l 12!#J dS̄

dr*

1
1

4 H k214H2~21H2r 2!2
~12H2r 2!

r 2
~ l 21!~ l 12!2

4

r 2
1

4~12H2r 2!

D~r !

3F4H2~12H2r 2!~123H2r 2!12k22
~12H2r 2!

r 2
~ l 21!~ l 12!1

3H2l ~ l 11!

kr G J S̄50, ~3.32!

in which we have introduced the definition

S̄5~12H2r 2!
h1

r
~3.33!

and the functionD(r ) has the form

D~r !5
2k2r 2

~12H2r 2!
22~ l 21!~ l 12!1

6H2r 2

~12H2r 2!
14H2r 2~123H2r 2!. ~3.34!

We note thatD(r ) approaches infinity asr tends to the cosmological horizon. The wave equation~3.32! can also be expresse
in terms of another functionS5h1 /r :

d2S

dr* 2
2

2~12H2r 2!

rD ~r !
@4H2r 2~123H2r 2!2~ l 21!~ l 12!#

dS

dr*
1

1

4 H 3H2~31H2r 2!2
~12H2r 2!

r 2
~ l 21!~ l 12!

1k22
4

r 2
1

4~12H2r 2!

D~r ! F4H2~123H2r 2!212k22
~123H2r 2!

r 2
~ l 21!~ l 12!1

3H2

kr
l ~ l 11!G J S50, ~3.35!
th
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with D(r ) also as given by Eq.~3.34!, which will be most
useful in what follows.

B. Odd-parity perturbations

The stability of the static region of de Sitter space to
odd-parity perturbations will be now examined. As in t
Schwarzschild case@31,32#, we shall distinguish two differ-
ent cases: we first consider the situation when the freque
k is pure imaginary, and then we analyze the wave prob
that results when that frequency is kept real.

Setk5 ia. Then, from Eqs.~3.22! and ~3.24!, we have

d2Q

dr* 2
5

1

4
~a21Ve f f!Q50, ~3.36!

h05
1

a S d

dr*
D ~rQ !. ~3.37!

The coordinater * ranges from2` to ip/H. The upper limit
can of course be made zero by a redefinition ofr * , such that
now

r * 5
1

H
lnF12Hr

11Hr G .

12351
e
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The effective potentialVe f f is real and positive everywher
along this range, and vanishes atr * 52`, i.e., on the
boundary atr 5H21. The asymptotic solution to Eq.~3.36!
as r approaches the cosmological horizon is

QH;expS 6
1

2
ar * D . ~3.38!

As r→0, i.e., as one approaches the other boundary wh
we should require the perturbations to fall off to zero, o
can write Eq.~3.36! in the form

d2Q0

dr2
1

1

4 S 24pGH22
l ~ l 11!

r 2
2a2D Q0.0, ~3.39!

whose general solution can be given in terms of the Be
functions@34#

Q0;ArCAl ( l 11)11/2S 1

2
AH22a2r D . ~3.40!

Since we should require the pertutbations to vanish ar
→0, we have to choose for the Bessel functionC5J @34#.
However, if we take the functionQ to be positive, one can
see from Eq.~3.36! that d2Q/dr* 2 can never become nega
tive within the entire range ofr, from 0 to H21, and the
solution that goes to zero at the originr 50 @that is, Eq.
3-6
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~3.40! with C5J# cannot be matched to the solution th
goes to zero on the horizon atr 5H21 @that is, Eq.~3.38!
with the 1 sign in the argument of the exponential#. It fol-
lows that the asymptotic solution nearr 5H21 has to be

QH5A expS 2
1

2
ar * D , ~3.41!

whereA is an arbitrary constant; so the radial solution ne
r 5H21, Eq. ~3.37!, becomes

h052
QH

2H
. ~3.42!

We can now compute the Kruskal perturbations given
Eqs.~3.13!. Let us concentrate on the expression that res
for h03

K near the surfacer 5H21 ~i.e., onu5v). Suppressing
all angular dependence, we have

h03
K }

@uh02v~12H2r 2!h1#e2at

u22v2
52

~u/2H1rv !QH

u22v2

.2
~v1u/2!

H~u22v2!
A exp@2a~r * 1t !#.

Note that the sign of time has been reversed in the ab
equation with respect to those perturbations that appea
Schwarzschild space. This reversal expresses the fact tha
expansion of the universe is in many ways similar to
collapse of a star, except that the sense of time is reve
@22#.

Using then exp(2r* )51/(u22v2)1/H and et5@(v
2u)/(u1v)#1/2H, and taking into account thatu5v on the
surfacer 5H21, we finally get

h03
K }

3

4
~21!11a/2HA~u2v !2(113a/2H)~u1v !2a/2H.

~3.43!

Now, since att50 ~i.e., onu50) this perturbation become

h03
K }

3

4H
~21!22/HAv2(112a/H), ~3.44!

which is clearly divergent att50 on the horizon, and the
physically allowable perturbations should be regular eve
where in space att50, we see that this perturbation is phys
cally unacceptable, and hence cannot exist. It follows that
odd-parity perturbations with purely imaginary frequen
ought to be ruled out.

Let us consider now solutions that correspond to real
quenciesk. We shall look first at the case of ingoing wav
for which the asymptotic solutions near the horizon ar
5H21 are (Ve f f50)

QH5A expS 2
ik

2r *
D , r *→2`. ~3.45!

For these solutions it holds that
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h15
A exp~2 ik/2r * !

H~12H2r 2!
, ~3.46!

h05
A

2H
exp~2 ik/2r * !. ~3.47!

For the cosmological perturbations in Kruskal coordina
we have then

h03
K }

A~u/22v !

H~u22v2!
exp~2 ikr * /21 ikt !.

We note that for ingoing waves the horizonr 5H21 should
be taken atu52v. Therefore,

h03
K }

3A

4H~u1v !
exp@ ik~ t2r * /2!#.

Using again exp(2r* )51/(u22v2)1/H and et5@(v2u)/(u
1v)#1/2H, we finally obtain, for this perturbation,

h03
K }

3A

4H~u1v !
@ i ~u1v !#2 ik/H. ~3.48!

Sinceu1v→0 on the horizon, at first glance this pertu
bation appears to be seriously divergent. However, as
happens in the Schwarzschild case@31#, one can build wave
packets which are convergent everywhere in space ou
the monochromatic waves. If we form the purely ingoin
waves into a wave packet by takingA to be a function
of k given by the Fourier transform of a functio
f (q)5*A(k)exp(2ikq)dk, which vanishes forq,1, by in-
tegrating overk, Eq. ~3.48! transforms into

h03
K }

3

4H~u1v !
f H 1

H
ln@ i ~u1v !#J . ~3.49!

There cannot be any singularity from the (u1v)21 factor in
Eq. ~3.49! becausef is nonzero only wheni (u1v).1. Thus,
h03

K does not diverge anywhere in space, but it is alwa
purely imaginary.

For outgoing waves, the asymptotic solutions nearr
5H21 are given by (u5v)

QH5A exp~1 ik/2r * !, r *→2`, ~3.50!

and, for wave packets formed as before, we finally obtai

h03
K }2

3

4H~u2v !
f H 1

H
ln@ i ~u2v !#J , ~3.51!

which, although coverging everywhere in space, is alw
purely imaginary, such as happened for perturbation~3.49!.
The reason for these perturbations to be imaginary reside
the fact that the argument of the logarithm in the above
pressions should be larger than unity, which in turn requi
that bothu andv be imaginary simultaneously. Note that th
3-7
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does not imply rotation of the timet into the imaginary axis
because Kruskal coordinatesu andv appear in the formv/u
in Eq. ~3.12!.

Thus, the main conclusion for odd-parity perturbations
that either they cannot exist whenever their frequency
purely imaginary or they are stable and physically accepta
if their frequency is real. Since in the latter case the soluti
are purely imaginary, one can also conclude that such
turbations would not be observable.

C. Even-parity perturbations

In terms of the most covenient functionS5S̄/(1
2H2r 2), the second-order wave equation for the even-pa
perturbations given by Eq.~3.35!, near the horizon atr
5H21, becomes

d2S

dr* 2
1

1

4
~k218H2!S50. ~3.52!

Thus, the asymptotic form of the general solution atr
5H21, SH , would read

SH;expS 6 iA1

4
k212H2r * D . ~3.53!

As for the boundary atr 50, one attains that no perturbatio
can consistently be expected, since from Eq.~3.35! we ob-
tain S050 ~unless forl 50 for which caseS0 is an arbitrary
constant!, and thereforeh5h150. Hence, we can readily ge
an expression forh00

K , independently of the value of the fre
quency. It follows that the two signs involved in the exp
nent of Eq.~3.53! are allowed and should therefore be tak
into account in our analysis.

Again we first consider the case where the frequencyk is
purely imaginary,k5 ia. Then

SH;expS 6 iA2H22
1

4
a2r * D . ~3.54!

We have two distinct cases: case I, for whichuau.ac

[2A2H, and case II, for whichuau,ac . In case I the
asymptotic solution reduces to

SH;exp~6jr * !, ~3.55!

where

j5A1

4
a222H2 ~3.56!

is real. Because case II is qualitatively the same as tha
real frequencies~to be dealt with later on!, we shall concen-
trate now on case I only. SinceS5h1 /r , nearr 5H21, one
can assume the asymptotic forms

h15A exp~6jr * !, h5B exp~6jr * !.

Choosing first the minus sign in the exponent of these
functions, from the equation relating radial functionsh and
12351
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h1 to one another@which can be obtained by suitably com
bining Eqs.~3.26! and ~3.27!#, after specializing tor 5H21

andk5 ia, i.e.,

4H
dh1

dr*
14

d2h1

dr* 2
1a2h112aS Hh12

dh

dr*
D 50,

we get

B5
2Hj14H22a2

a~2j2H !
A. ~3.57!

Let us now denotea56eH, with e>2A2. Then the analy-
sis of all possible resulting cases@including the use of both
signs in the exponent of Eq.~3.54!# will require considering

j56Ae2

4
22H.

We shall look at three significant values ofe, namely, 2A2,
3, and`, in the following cases:~i! a.0, j.0 (B5A2A
for e52A2, A50 for e53, andB52A for e→`), ~ii ! a
.0, j,0 (B5A2A for e52A2, andA5B for e53 and
j→`), ~iii ! a,0, j,0 (B52A2A for e52A2, andB5
2A for e53 and e→`), and ~iv! a,0, j.0 (B5
2A2A for e52A2, A50 for e53, andA5B for e→`).
Clearly, if all of these particular cases led to stability of
Sitter space against the considered perturbations, one c
conclude that de Sitter space is stable to such perturbat
in all cases. Thus, for case I, the relation between the c
ficientsA andB for the asymptotic solutionsh andh1 must
run between the extreme values forA (B fixed!, A5B and
A52B, passing onA50.

For A5B, the perturbation in the Kruskal coordinate
e.g.,h00

K , are given by~angular dependence suppressed!

h00
K 5

F2~u2v !2

u22v2
he2at

5~21!2a/2HF2A
~u2v !12Aa2/4H2222a/2H

~u1v !11Aa2/4H2221a/2H
.

~3.58!

At t50 (u50),

h00
K 5~21!12Aa2/4H2222a/Hv2(2Aa2/4H2221a/H).

~3.59!

Equation~3.59! is divergent asv→0, except for the casea
52eH, j.0 or j very large, for which caseh00

K 52F2A.
Hence, except for this case, all perturbations are physic
unacceptable, as they all diverge at the initial timet50.

For B52A, we have
3-8



a

e
-
t.
le
i

s

ti
-
s
zs

o-
b

r
m
by
be

th
l

per-
in

in
ble
dily

of
co-
h an
it to
co-

re-
gi-
that
the

le
ause
r
tor

ite

ol-

PERDURANCE OF MULTIPLY CONNECTED de SITTER SPACE PHYSICAL REVIEW D 59 123513
h00
K 5~21!2a/2HF2A

~u1v !12Aa2/4H2221a/2H

~u2v !11Aa2/4H2221a/2H
,

~3.60!

which at t50 (u50) reduces to

h00
K 5~21!2(11Aa2/4H2221a/H)F2Av22Aa2/4H222.

~3.61!

We note that all of these perturbations are physically un
ceptable, except for the casea52eH, j,0, with e53,
whereh00

K 5 iF 2Av.
Finally, whenA50, we obtain

h00
K 5~21!2a/2HF2B~u21v2!

~u1v !a/2H212Aa2/4H222

~u2v !11Aa2/4H2221a/2H
.

~3.62!

Again at t50 (u50), this perturbation reduces to

h00
K 5~21!2(11Aa2/4H2221a/H)F2Bv22Aa2/4H222.

~3.63!

It can easily be checked that in all cases, without any exc
tion, Eq. ~3.63! diverges asv→0, and therefore this pertur
bation is physically unacceptable and should be ruled ou

We are in this way left with two physically acceptab
even-parity perturbations for purely imaginary frequencies
case I: that given by Eq.~3.58! for negativea, positive j,
and very largee and that given by Eq.~3.60! for negativea,
negativej, ande about 3. Since negative values ofa corre-
spond to the case of outgoing perturbations for whichu5v
on the horizonr 5H21, these perturbations will be stable a
the resulting powers to the factor (u2v) are positive definite
in both cases. Note, furthermore, that at least the perturba
given by Eq.~3.60! is always purely imaginary. Thus, even
parity perturbations with purely imaginary frequency in ca
I either are physically unacceptable or, unlike in Schwar
child space@31#, are stable and most of them imaginary.

In the case thatk is kept real the asymptotic general s
lution on the cosmological horizon has already been given
Eq. ~3.53!. The analysis to follow will also be valid fo
purely imaginary frequencies satisfying the condition i
plied by case II, with the asymptotic solution being given
Eq. ~3.54! in this case. For real frequencies, the relation
tweenh andh1 is

i Fk2h124S H
dh1

dr*
1

d2h1

dr* 2D G52kS Hh12
dh

dr*
D ,

~3.64!

where we have specialized to the regionr 5H21. Let us now
assume, as was made for purely imaginary frequencies,
the asymptotic forms forh and h1 near the cosmologica
horizon are given by

h15A exp~2 inr * !, h5B exp~2 inr * !, ~3.65!
12351
c-

p-

n

on

e
-

y

-

-

at

in which we have introduced the shorthand notation

n5A2H21
1

4
k2. ~3.66!

From Eqs.~3.64! and ~3.65! we get

B52F2n~k215H2!

k~k219H2!
1

4iH 3

k~k219H2!
GA. ~3.67!

Restricting ourselves to the casek2@H2, so thatn.k/2, we
see that there are two solutions: whenk.2n ~ingoing
waves!, A52B, and whenk.22n ~outgoing waves!, A
5B. Suppressing again the angular dependence of the
turbations, we can then compute such perturbations
Kruskal coordinates. In the case of ingoing waves,u52v
on the horizon, and we have

h00
K 5F2A~21! ik/2H

~u1v !12 ik/H

u2v
~3.68!

and, for outgoing waves (u5v),

h00
K 5F2A~21! ik/2H

~u2v !11 ik/H

u1v
. ~3.69!

Clearly, the perturbations~3.68! and ~3.69! are stable near
the cosmological horizon and everywhere inside it, even
the forms given by these equations, without building suita
wave packets by superposing them. This analysis can rea
be generalized to any values ofk andH, obtaining the same
conclusion.

IV. STABILITY OF MULTIPLY CONNECTED
de SITTER SPACE

In Sec. III we have investigated the stability properties
the simply connected de Sitter region covered by static
ordinates. We had to do so because, as far as I know, suc
analysis had not been carried out so far, and we needed
prepare our system to study the perturbations when the
ordinates involved are identified in such a way that this
gion of de Sitter space becomes multiply connected topolo
cally, such as was discussed in Sec. II. We have obtained
on the static region, the de Sitter space is also stable to
first-order perturbations that satisfy its symmetries.

A. Classical perturbations

We shall now study the effect that topological multip
connectedness has on the stability of de Sitter space. Bec
of the high symmetry of this space, the time parametet
always appears in the form of a factorized exponential fac
in all perturbations, either as exp(6at), if the frequency of
the perturbative modes is purely imaginary, or as exp(6ikt),
if that frequency is kept real. Thus, we can generically wr
the time factor as exp@g(k)t#, with g(k) a given function of
the mode frequency. From our discussion in Sec. II, it f
3-9
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lows that de Sitter space can be made multiply connecte
simply including the time identificationt↔t1nb/H, with b
a dimensionless arbitrary period andn any integer number
This will amount to the insertion of an additional factor

exp@nbg~k!/H#

for each value of the integern in the distinct expressions fo
the first-order perturbations obtained in Sec. III. In order
take into account all possible values ofn, along its infinite
range, one then should coveniently sum over alln, from 0 to
`, introducing the statistical factor 1/n! to account for the
equivalent statistical weight one must attribute to all of the
contributions. Thus, the general expression for the pertu
tions in multiply connected de Sitter space would be

hi j
K~b!5 (

n50

` hi j
K exp@nbg~k!/H#

n!
, ~4.1!

wherehi j
K generically denotes the first-order perturbations

Kruskal coordinates for simply connected de Sitter sp
which were computed in Sec. III.

In what follows we shall perform the calculation of th
relevanthi j

K(b) for all physically acceptable perturbation
We shall first restrict ourselves to the regime where b
kb/H and ab/H are much smaller than unity; i.e., we wi
work in the regime characterized by nonchronal regions
CTC’s whose size is very small. As will be seen below, t
is the regime of most physical interest where vacuum qu
tum fluctuations can be kept convergent everywhere. Le
start with odd-parity perturbations with real frequency. F
the case of ingoing waves, we have, for the asymptotic
lution at r 5H21 @35#,

h03
K ~b!5

3A

4H~u1v !
@ i ~u1v !#2 ik/H (

n50

`
einkb/H

n!

5
3A

4H~u1v !
exp~eikb/H!e2 ik ln[ i (u1v)]/H. ~4.2!

For small values ofkb/H, Eq. ~4.2! can be approximated to

h03
K ~b!.

3Ae

4H~u1v !
expH 2

ik

H
$ ln@ i ~u1v !#2b%J .

~4.3!

Forming again a wave packet out of monochromatic per
bations~4.3!, we finally obtain, for this type of wave,

h03
K ~b!.

3e

4H~u1v !
f F 1

H S ln~u1v !1
ip

2
2bD G , ~4.4!

which still is a convergent expression for all times. If we
b be complex, so thatb5b1 ip/2, then Eq.~4.4! becomes
not only convergent but purely real as well.

For outgoing waves, an analogous calculation leads
nally to the perturbation
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h03
K ~b!.2

3e

4H~u2v !
f F 1

H S ln~u2v !1
ip

2
1bD G ,

~4.5!

which is also always covergent and purely real if we sim
larly let b be complex and given byb5b2 ip/2. We can
then conclude that in the considered regime, multiply co
nected de Sitter space is stable to all odd-parity perturbat
that are physically acceptable.

For even-parity perturbations which also are physica
acceptable we have@35#

h00
K ~b!5h00

K (
n50

`
e2nba/H

n!
5h00

K exp@e2ba/H# ~4.6!

for any value ofkb/H. Thus, making the de Sitter spac
multiply connected preserves the stability of these pertur
tions and increases their amplitude, especially for small v
ues ofba/H.

Next we consider even-parity perturbations with real f
quency. We first note that in this case the perturbations c
responding to the asymptotic solutions nearr 5H21 can also
be expressed in terms of wave packets in the simply c
nected case. They are

h00
K 5F2S u1v

u2v D f F 1

H S ln~u1v !1
ip

2 D G , ~4.7!

for ingoing waves, and

h00
K 5F2S u2v

u1v D f F 1

H S ln~u2v !1
ip

2 D G , ~4.8!

for outgoing waves. Because of the form of the Krusk
coordinate-dependent prefactor, these expressions are re
any case.

When we multiply connect the de Sitter space in the
gime of small values ofkb/H, Eqs.~4.7! and~4.8! transform
into

h00
K ~b!5eF2S u1v

u2v D f F 1

H S ln~u1v !1
ip

2
2bD G , ~4.9!

for ingoing waves, and

h00
K ~b!5eF2S u2v

u1v D f F 1

H S ln~u2v !1
ip

2
1bD G ,

~4.10!

for outgoing waves. Note that the argument of the functiof
becomes real when we allowb to be complex and given by
b5b6 ip/2, with the1 sign for ingoing waves and the2
sign for outgoing waves. Anyway, the perturbations given
Eqs. ~4.9! and ~4.10! keep being convergent and, therefor
one can conclude that in the regime of very small values
3-10
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b/H, multiply connected de Sitter space is also stable
first-order perturbations which respect the symmetry of t
space.

As to the perturbations for larger values ofb/H and real
frequencies, we first note that the expressions for the c
ponentsh03

K (b) andh00
K (b), before forming any wave pack

ets, are given by expressions which are the same as t
obtained above in the regime of very small values ofb/H,
but with the parameterb replaced by thek-dependent func-
tion (2 iH /k)exp(ikb/H). The wave packets formed usin
the same procedure as for all the above cases will there
involve characteristic functions of the form

f H H

b E0

1 dxbex

b1 ln@ i ~u6v !#J ,

wherex5exp(ikb/H), and the sign1/2 in the argument of
the logarithm stands for ingoing/outgoing waves. Now,
b@ ln@i(u6v)# we can obtain@34,35#

f FH

b
Ei~x!u0

1G ,
with Ei(x) the exponential integral function. Since the arg
ment off is then always smaller than unity, we havef 50 on
this regime.

As (u6v) becomes very small, so thatb!y5uRe ln@i(u
6v)#u, the wave packet function approaches the form@34,35#

f H H

b
lim
y→`

FF~y,y11;1!

y G J 50,

with F the degenerate~confluent! hypergeometric function
Thus, also for arbitrarily large nonchronal regions, the m
tiply connected de Sitter space is stable to all physica
allowable classical perturbations.

B. Quantum fluctuations

In what follows we shall briefly discuss the possible i
fluence that multiple connectedness may have on the q
tum stability of de Sitter space. Because of the presence
chronology horizon on the surfacer 5H21, it could at first
sight be thought that the quantum renormalized stress-en
tensor^Tmn& ren for vacuum quantum fluctuations generat
in multiply connected de Sitter space ought to diverge@36#.
However, it has recently been stressed that this could no
actually the case if either we consistently redefine the qu
tum vacuum@24# or we introduce a suitable quantization
the relevant time parameter, beyond semiclassical appr
mation@28#. To see how these ideas apply to the case un
study, let us work in the Euclidean framework where t
Kruskal metric is obtained by rotating coordinatesu andt to
the imaginary axis, starting with Eq.~3.9!, i.e., u5 ih and t
5 i t. We get then

ds25
4

H2~11h21v2!
~dh21dv2!1r 2 dV2

2 , ~4.11!
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which in fact is definite positive. Corresponding to this me
ric, Euclidean timet will be defined by the relation

exp~2iH t!5
v2 ih

v1 ih
. ~4.12!

Wick rotating also in the identificationt↔nb ~where the
nonperiodic time term is disregarded andb5b/H is the pe-
riod!, which makes de Sitter space multiply connected, E
~4.12! transforms into

exp~2inHb!5
v2 ih

v1 ih
, ~4.13!

from which one can get the complex relation

v2 ih5Av21h2 exp~ inHb!. ~4.14!

It follows from Eq. ~4.14! that Euclidean time preserves
periodic character also on the Euclidean sectorb52p/H,
that is to say,b52p. This result can be interpreted along th
following lines. First of all, one can readily see that multip
connectedness in de Sitter space is nothing but the Lore
ian counterpart of the existing thermal states that are unc
ered in the Euclidean description@37#. This relation might be
reflecting the origin of the excess of some perturbative wa
which we have found above for multiply connected de Sit
space with respect to its simply connected space.

Quite more importantly, the valueb52p can be used~as
Li and Gott did @24#! to redefine a conformal vacuum i
Euclidean space for whicĥTmn& ren does not diverge even o
the chronology horizon. However, the meaning of this ho
zon in such a vacuum has been discussed by Kay, R
ikowski, and Wald@25# and Cassidy@26#, so that some quite
well-founded doubts can be cast on its real existence
capability to restore quantum stability this way. But if w
adhere to the also recently suggested@28# kind of time quan-
tization by which t5(n1g)t0 ~with t0 a constant time
whose value is of the order of Planck time andg the auto-
morphic parameter@38,39#, 0<g<1/2), and note the forma
analogy of this expression with that which is implied by t
identification t↔t1nb/H when we takeb52p and t
52pg/H, we see that quantum stability could be unambig
ously restored in multiply connected de Sitter space, p
vided we accept restricting the nonchronal region and
CTC’s on it to be essentially at the Planck scale, 1/H; l p
@28#.

V. SUMMARY AND CONCLUSIONS

The main aim of this paper is to study the classical a
quantum stability of multiply connected de Sitter space. T
space arises when we introduce some periodicity conditi
on the coordinates describing the five-dimensio
Minkowski hyperboloid and can only be exhibited on th
region covered by static de Sitter coordinates. Using a fi
3-11
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order perturbation formalism analogous to that which w
originally developed by Regge and Wheeler for t
Schwarzschild metric@27#, we have shown that multiply
connected de Sitter space is classically stable to these pe
bations, no matter the size of the static region. Althou
stability against higher order perturbations has not b
checked in this paper, one would expect these perturbat
not to introduce any instabilities, such as occurs
Schwarzschild spacetime@27#.

By continuing the Kruskal extension of the multiply co
nected, static de Sitter metric into its Euclidean section,
have also argued that quantum vacuum fluctuations sh
not induce any divergence on this space, provided the n
chronal region and the CTC’s on it are all sufficiently sma
probably of the order of the Planck size@28#. We therefore
consider multiply connected de Sitter universes to be ge
ine components of any future description of a well-defin
theory of quantum gravity. In particular, the consider
stable little multiply connected universes should be includ
together with Euclidean and multiply connected wormho
@20#, ringholes@40#, Klein bottleholes@41#, and virtual black
holes@42#, as components of the vacuum quantum spacet
foam, where their CTC’s would contribute the required v
lation of causality that governs the foam. Thus, Planck-si
de Sitter universes containing CTC’s can help to define
boundary conditions of the universe we live in, probab
along the lines recently suggested by Gott and Li@19# and
discussed in the Introduction of this paper.

To close up, I would like to refer to the interesting pos
ia
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bility that the Hartle-Hawking and the Gott-Li condition
might both be seen to imply initial physical pictures whic
at least in a way, appear to be complementary. In class
relativity time and spatial coordinates can still be dist
guished by the fact that, whereas spatial coordinates do
single out a particular sign to run over, time can only r
forwards. This does not help, nonetheless, to understand
Lorentzian signature of the classical metrics which are
positive definite. However, as we approach the regime of
quantum spacetime foam, the entirety of this distinction c
be thought to vanish, since in such a regime there will
CTC’s everywhere and hence the two time directions wo
become equally allowable and, at the same time, metrics
be taken to be positive definite. In order to describe the qu
tum origin of the universe, one then can either keep CT
and Lorentzian signatures simultaneously, as assumed
Gott and Li, or disregard CTC’s while using the Euclide
signature where time becomes spacelike, as suggeste
Hartle and Hawking. As seen in this way, the two pictur
would actually describe rather complementary aspects of
initial physical situation.
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