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Correlated adiabatic and isocurvature perturbations from double inflation
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It is shown that double inflatioritwo minimally coupled massive scalar fieJdsan producecorrelated
adiabatic and isocurvature primordial perturbationdepending on the two relevant parameters of the model,
the contributions to the primordial perturbations are computed, with special emphasis on the correlation, which
can be quantitatively represented by a correlation spectrum. Finally the primordial spectra are evolved numeri-
cally to obtain the CMBR anisotropy multipole expectation values. It turns out that the existence of mixing and
correlation can alter very significantly the temperature fluctuation predicti8@§56-282(199)00912-1

PACS numbdrs): 98.80.Cq, 98.65-r, 98.70.Vc

[. INTRODUCTION this is that they are less universal than adiabatic perturbations
because, on one hand, they can be produced only in multiple
In our present picture, cosmological fluctuations today arenflationary models(4], and, on the other hand, they can
seen as theombinationof an initial spectrum, which can be survive until the present epoch only if at least one of the
computed within the framework of high energy modg@sch inflaton fields remains decoupled from ordinary matter dur-
as inflation, with the subsequent processes occurring atng the whole history of the universe. However, not only the
lower energy where the physics is believed to be better unexistence of isocurvature perturbations is allowed in prin-
derstood(up to some unknowns such as the amount andiple, but candidates for inflatons with the required above
nature of dark matter, the mass of neutsno.). In the near conditions even exist in many theoretical modg&lgatons,
future, we expect new angreciseinformation on cosmo- axions.
logical fluctuations with the planned measurements of the What has already been established is that a pure isocur-
cosmic microwave background radiatigB MBR) anisotro-  vature scale-invariant spectrum must be rejected because it
pies by the satellites the Microwave Anisotropy Probepredicts on large scales too large temperature anisotropies
(MAP) [1] and PLANCK][2]. It has been emphasized in the with respect to density fluctuatiori§]. But other possibili-
recent years that the precision of these measurements couids can be envisaged. Several have been investigated in the
in principle allow us to determine with a high precision the literature: tilted isocurvature perturbatiof@], combination
cosmological parametef8]. These studies however all as- of isocurvature and adiabatic perturbatidi@$ In the latter
sume very simple initial perturbations, typically Gaussiancase, only combinations ahdependentisocurvature and
adiabatic perturbations with a power-law spectrum. How-adiabatic perturbations were considered. The aim of this pa-
ever, reality could turn out to be more subtle. This thenper is to investigate the possibility abrrelated mixtures of
would have the drawback to complicate the determination ofsocurvature and adiabatiperturbations.
the cosmological parameters but could open the fascinating To illustrate this, the simplest model of multi-field infla-
perspective to gain precious information on the primordialtion is considered here: double inflatip8], namely a model
universe. At present, at a time when data are still unpreciseyith two massive scalar fields without self-interaction or mu-
it is essential to identify broad categories of early universeual interaction(other than gravitational The production of
models and to determine their specificities as far as obsenfluctuations in this model has been studied in great detail by
able quantities are concerned, with the purpose to be able folarski and Starobinsky and, in the present work, their no-
discriminate between these various classes of models wheation and formalism will be followed closely. They were
detailed data will become available. interested essentially in adiabatic perturbati@@kbut also
Ultimately, inflation must be related to a high energy considered isocurvature perturbatiofi]. However, they
physics model. Today there are many viable models but did not investigate the range of parameters where this model
generic feature of these models is that they contain generallyas the striking property to produce correlated isocurvature
many scalar fields. A property of inflation with several scalarand adiabatic perturbations. By this, we mean the cases
fields is that it can generate, in addition to the ubiquitouswhere both isocurvature and adiabatic perturbations receive
adiabatic perturbations, isocurvature perturbations. In this resignificant contributions of at least one of the scalar fields, in
spect, it is important to consider the possible role of primor-contrast to the uncorrelated case where one of the scalar
dial isocurvature perturbations. Isocurvature perturbation§ields feeds essentially the adiabatic perturbations while the
are perturbations in the relative density ratio between variousecond one is at the origin of the isocurvature perturbations.
species in the early universe, in contrast with the more stan- The plan of this paper is the following. In Sec. I, the
dard adiabaticor isentropi¢ perturbations which are pertur- model of double inflation will be presented. Section Il will
bations in the total energy density with fixed particle numbere devoted to the analysis of adiabatic and isocurvature per-
ratios. Primordial isocurvature perturbations are, most of theurbations: their definition, how they are obtained from the
time, ignored in inflationary models. The main reason forinflation perturbations, the conditions to obtain correlated
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mixtures. Section IV considers formally the definition of whereR is the ratio of the masses of the two scalar fields
spectra for the perturbations as well as the notion of correla-
tion. In Sec. V, the predictions for the CMBR anisotropies _my
and matter power spectrum are given for the models with zﬂ' @)
correlated primordial perturbations.
Equation(6) was obtained by integrating the relation giving
Il. DOUBLE INFLATION de/d(Ins) as a function ofg, which can be established by
use of the slow-roll approximation of the equations of mo-

As mentioned in the Introduction, inflation needs at Ieasttion (), (3) (see[9] for the details of the calculationsAs
two scalar fields to produce isocurvature perturbations. Thaﬁoticed’ in[9], Eq. (6) can be approximated, whei>R !
is why we investigate the simplest model of inflation with by the simplé forﬁula ' '

two scalar fields: they are non-interacting, massive, mini-
mally coupled scalar fields. The Lagrangian corresponding to

; ) So
this model is S=%Zd" (8)
WrR 1 1.,, 1 _ _ _ o
L= 167G Eaﬂqbﬁ“qm— §m| ¢ — E&M¢ha“¢h Th|s_behaV|0r corresponds to th_e pgrlod Whe_n |m_°lat|qn is
dominated by the heavy scalar fielthis approximation is
1, ., valid as long as>s, ands—sy>s,/R?). This period ends
— 5 Mhdh, (1)  whené~R1, s~s, and is followed(possibly after a dust-

like transition periogl by a phase of inflation dominated by
where the subscriptsandh designate respectively the light the light scalar field.

and heavy scalar f|e|dand thugnh> ml)_ (4)R is the scalar It follows from EqS (2)—(4) that the Hubble parameter
spacetime curvature and G Newton’s constant. can be expressed in the form
. 2
A. The background equations Hz(s): §m,zs[1+(R2— 1)sin2 o(s)], 9

In a spatially flat Friedmann-Lentaé-Robertson-Walker
(FLRW) spacetime, with metrids’=—dt*+a*(t)dx* the  where the functiond(s) is obtained by inverting Eq(6)

equations of motion read (0< #<m/2). As inflation proceedss decreases and goes
) Voo 52 2.2 to smaller and smaller values, which implies a decreasing
BH =47G( ¢ + iyt My i + Midbyy) (2} Hubble parameter during inflation.
. . It will be convenient to definsy as the number of e-folds
$i+3H e +mip =0, before the end of inflation when the scale corresponding to
our Hubble radius today crossed out the Hubble radius dur-
én+3Hp+mip,=0. (3)  ing inflation. The value ofsy depends on the temperature

after the reheatingsee e.g[11]) but roughlys,=60. To
Following [9] it is convenient, during the phase when bothmake definite calculations, we shall take throughout this

scalar fields are slow-rollin§j.e., wheng? and ¢2 can be ~ work the value
neglected in Eq(2), ¢, and ¢y, in Eq. (3)], to write the

evolution of the two scalar fields in the following parametric SH=60. (10
form: Note that the class of models considered here depends on
S S three free parameters: the two massgsand my,, or alter-
én= \/msin 0, ¢= \/mcosa 4 natively m; and R, and the parametes,. In particular, the
choice of this last parametey, relatively to sy will deter-
where mine the specific phase of double inflation, “heavy” domi-
nated, intermediate or “light” dominated, during which the
s=—In(a/a,) (5)  perturbations on scales of cosmological relevance were pro-
duced.
is the number of e-folds between a given instant and the
end of inflation. This form(4) is a consequence of the ap- B. Perturbations

proximate relation d($2+ ¢?)/ds=—d(¢p2+ ¢7)/(Hdt)
=(2mwG) ! resulting from the(slow-roll) equations of mo-
tion. The angular variabl@ can then be related to the pa-
rameters by the expression

After having determined the evolution of the background
guantities, let us turn now to the evolution of the linear per-
turbations. We shall restrict our analysis to the so-called sca-
lar perturbationgin the terminology of Bardeefil2]). We

Co(R%—1 thus consider a spacetime linearly perturbed about the flat
(sing)?R-b
—e 6 FLRW spacetime of the previous subsection, endowed with
S=5% 2R%I(R?-1) 6) i
(cosb) the metric
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ds?=—(1+2d)dt*+a?(t)(1-2¥)§;dxdx. (11)

Although this metric is not the most geneaapriori, it turns
out that any perturbed metri@f the scalar typecan be
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tions due to the gravitational interaction. The two scalar
fields being independent, one simply duplicates the results of
single scalar field inflationsee e.g.[13]). Consequently,
6¢y, and §¢, can be written, for wavelengths crossing out

transformed into a metric of this form by a suitable coordi-the Hubble radius, as
nate transformation. This choice corresponds to the so-called

longitudinal gauge. In addition to the geometrical perturba-
tions® andW¥, one must also consider the matter perturba-
tions, which will simply be during inflation the perturbations
of the scalar fields, respectiveBep,, and 6¢,, with respect

to their homogeneous values.

Before writing down the equations of motion for the per-
turbations, it is convenient to use a Fourier decompositio
and to define the Fourier modes of any perturbed quahtity

by the relation

e KXf(x). (12

. _J d3x
k (27T)3/2

H
6¢h=¢?lk(3eh(k>, 5 Jz—lk(semk),

wheree,, and e, are classical Gaussian random fields with
(ei(k))=0, (e(k)ef (k))=&;8(k—k"), fori,j=I,h, and

(19

rﬂk is the Hubble parameter when the mode crosses the

ubble radius, i.e., whek=2maH. Neglecting the evolu-
tion of the Hubble parameter with respect to that of the scale
factor, the number of e-folds, corresponding to the instant
when the mode of wave numbé&rcrossed out the Hubble
radius, is given simply by

k=kp e+, (20)

The equations of motion for the perturbations are derived
from the perturbed Einstein equations and from the Kleinwherek, is the wave number corresponding to the present
Gordon equations for the scalar fields. They lead to the folHubble scale. In the present work, our interest will focus on

lowing four equationgsee e.g[13]):

d=", (13

O+ HD=47G(b,6bn+ b 6b)), (14)

2 - .
22+ | 8y =4 —2mi,®,

(19

Sb+3H b+

2

Sy =4 D —2m2 D,
(16)

Sy +3H 8+ | —5 +m?

aZ

where the subscrigh is here implicit, as it will be through-

out this paper.

the scales of cosmological relevance, typicatitk,=0.1
—2000. This means that the range of e-folds that will inter-
est us is 5Zs5,<63.

Ill. PRIMORDIAL PERTURBATIONS

The analysis of the solutions for the perturbations during
inflation obtained in the previous section will now enable us
to determine the “initial” (but post-inflationary conditions
for the perturbations in the radiation era taking place after
inflation and reheating.

A. Initial conditions in the radiation era

At some past instant deep in the radiation era, we shall
consider four species of particles. Two species will be rela-

In the slow-rolling approximation and for superhorizon tivistic: photons and neutrinos; two species will be non-

modes, i.e.k<aH, these equations can be solvesge[9])
and the dominant solutions read

o CiH o (mh-md)migim? g7 .
- H2 +2C3 3(m2¢2+m2¢2)2 17
h%h | ¥I
8¢ Ci Hm; 67
- - 375 5 5 o
# H Mi i+ miéf
S¢n  Cy Hm? ¢f (19
—_—— 3—,
én H Midh+m;

where C,(k) and C3(k) are time-independent constants of
integration and are fixed by the initial conditions. As usual in

inflation, perturbations are assumed to be initidilg., be-

fore crossing out the Hubble radjus their vacuum quan-

relativistic: baryons and cold dark matter. Their respective
energy density contrasts will be denotég, &,, é, and 6.
(0a=0palpn)-

At this point, it is useful to define precisely the notion of
adiabatic and isocurvature perturbations. Isocurvature pertur-
bations are defined by the condition that there is no pertur-
bation of the energy density in the total comoving gauge
[denoted by the subscript)], i.e.

; gC)pAZO! (21)

but that there are perturbations in the ratios of species par-
ticle numbers, i.e.
59(np/ng) #0 (22)

in general. By contrast, adiabat{or isentropi¢ perturba-

tum state. Perturbations outside the Hubble radius are thetions are defined by the prescription that the particle number
obtained by amplification of the vacuum quantum fluctua-ratios between various species is fixed, i.e.
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59(na/ng)=0, (23 B. Adiabatic initial perturbations

_ i The evolution of® is given by Eq.(17) only during the
whereas the total energy density perturbation can fluctuatey,,qe when both scalar fields are slow rolling. As soon as the
€. heavy scalar fieldp, ends its slow-rolling phase, the second

term on the right hand side of EQL7) will die out, and®
2 5(°)PA¢ 0. (24) can be given during all the subsequent evolution of the uni-
A verse in the simple form

It is clear from the above definitions that, if one considers N H (t

species, there will be in general one adiabatic mode and ‘chl(l—gf a(t’)dt’). (28
(N—1) isocurvature modes. Here, it will be assumed that the 0

light scalar field¢, decays into ordinary particles, i.e. gives

birth to the photons, neutrinos and baryons, while the darkt can be checked that, during inflation,

matter particles are associated exclusively with the heavy

scalar field¢y,. Note that part of the dark matter could be t

also produced by the light scalar field but we shall ignore this 1- (H/a) f a(t’)dt' =—H/H?,

possibility here for simplicity. As a consequence, the particle 0

number ratios between the three “ordinary” species will be

frozen, i.e. which ensures that the coefficie@t in the above formula is
the same as in Eq17).
c) (c) (c) . ; )
&n, _o%n, d%ny 25) It is thus essential to expre€y in terms of the perturba-
n, n, np tions of the two scalar fields, and therefore in termg,aind

e, in order to be able to determine the amplitude of the
and only one isocurvature mode will exist, which can beperturbations after the end of inflation. Combining the two
conveniently represented by the quantity equations in Eq(18) and using Eq.(19), as well as the

© © slow-roll approximation of the background equations of mo-
on; o ”725(0)_§5<c) (2¢) tion (2), (3), the expression for the coefficie®; during
ne n € 47 inflation is found to be

Y

Going back to the longitudinal gauge, and following Ma
and Bertschingef14], one can write the initial conditions Hy

deep in the radiation era for modes outside the Hubble radius Ca(k)=—4mG /_2k3[¢,e,(k)+ $nen(k)]. (29
in the form

5.,=—2d, As it is clear from this formulaC,(k) is a stochastic vari-
able, whose properties can be determined from the stochastic
properties ofe; ande;, .

—35 3 . v . )
%=1 0,710y, During the radiation era, the relation between the coeffi-
, cientC; and the gravitational potential is simply, using once
6.=S+796,, more Eq.(28),
0)/: 011: abza(::%(kzn)qji >
®=35Cy(k). (30)

o,=15 (ky)*®,
Therefore, the gravitational potential during the radiation era

V=(1+:R,)P, (270  for modes larger than the Hubble scale is given by the ex-
pression 9]
with R,=p,/(p,+p,) and whered stands for the diver-
gence of the fluid three-velocityr, for the shear stress of 4J7G
neutrinos(in the rest of this paper, the contribution of neu- $=~_— —k_3/2\/S—kH Jsin6,en(k) +cosbe (k)]
trinos in all analytical calculations will be ignored for sim- 3
plicity but it will be taken into account in the numerical 3D

calculation$ and % is the conformal time defined by

=dt/a(t). All the information about the initial conditions is whereH, is given as a function 0§, in Eq. (9) ands, is
thus contained in the two k-dependent quantifesandS,  given as a function ok in Eq. (20). The hat in the above
which are time-independent during the radiation 6o kK equation(and in all subsequent equatigrisdicates that the
<aH). The next subsections will be devoted to make thevalue of the corresponding quantity is taken deep in the ra-
link between these two quantities and the perturbations dudiation era when the wavelength of the Fourier mode is
ing inflation. larger than the Hubble radius.
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C. Isocurvature initial perturbations tion is dominant for ta> 1. For isocurvature perturbations,

As explained in subsection A, the isocurvature perturbal-€. in Eqg. (35), the light contribution dominates for
tions in the present model are due to variations in the relativéan6>R> whereas the heavy contribution is predominant in
proportions of cold dark matter, generated by the heavy scdhe opposite case. Assumiif>1, one can thus divide the
lar field, with respect to the three other main spec¢jgso-  Space of parameters for double inflation into three regions:
tons, baryons, neutringsall generated by the light scalar
field. Moreover, during the radiation era, the isocurvature
perturbationS rigorously defined by Eq(26) is essentially The adiabatic perturbations are dominated by the heavy
the comoving cold dark matter density contr&®t 6, so  scalar field while the isocurvature perturbations are domi-
that what is needed to obtain the primordial isocurvaturenated by the light scalar field. The two types of perturbations
spectrum is simply to compute the cold dark matter densitywill thus appear independent. Moreover, except fovery
contrast in terms of the scalar field perturbations during inclose ton/2, the isocurvature amplitude will be suppressed
flation. This task was carried out ifL0]. Only the main  with respect to the adiabatic amplitude by a faetpr In this

1. Regiontan #>1

points will be summarized here. parameter region, one recovers the standard results of a pure
Let us first give the comoving energy density perturbationadiabatic spectrum due to a single scalar field, here the heavy
associated with the heavy scalar field: scalar field.
8p{)= b, 6pn+ MEpnSchn+ 3H b Spp— p2D.  (32) 2. Regiontan <R 2

In this region, essentially only the light scalar field con-
tributes to the adiabatic perturbations while the isocurvature
perturbations are dominated by the heavy scalar field. The
two contributions are therefore independent and the isocur-

4 vature amplitude can be very high with respect to the adia-
8= — §mﬁC3. (33 batic one ifé is sufficiently small.

Matching the inflationary phase whety, is slow-rolling to
the inflationary phase whedy, is oscillating and then to the
post-reheating radiation dominated phase, one fihfb

H 2
The coefficientC; can then be obtained, during inflation, 3. Region R"<tan #<1

by substracting the two equations in Efi8) and then using This is the most interesting region. Here, both the adia-
the (slow-roll) background equations of motion and Ef9). batic and isocurvature perturbations are essentially feeded by
Inserting the result in Eq33), the density contrast of the the fluctuations of the light scalar fiel@ven if their ampli-
cold dark mattefassociated with the heavy scalar fieltbr ~ tude depends on the background value of the two scalar
modes larger than the Hubble radius, is found to be givenfields). This means that the adiabatic and isocurvature per-
during the radiation era, by the expression turbations are strongly correlated in this region. If one con-
siders the relative magnitude of these light scalar field con-
2 . m? . tributions, one sees that the isocurvature contribution can
)= EHK ¢nen(k)—— ¢ "e(k) |, (34 compensate the, ! suppressior{with respect to the adia-
m batic perturbationsby a suitable factoR?. Note also that in

where the value of the scalar fields is taken at Hubble radiu%1e upper part of this parameter region,l e, for&&nl, the.
crossing. This can be reexpressed, using Efjsand (7), in eavy and light contributions in the adiabatic perturbations
the form ’ ’ will be of similar order while the heavy contribution in the

isocurvature perturbations can be ignored. In contrast, in the
lower part of the region, i.ed~R ™2, the heavy contribution

. (39 in the adiabatic perturbations is negligible whereas the light
and heavy contributions in the isocurvature perturbations are

Note that the isocurvature perturbations have the sam@fSimilarweight. Thisis illustrated on Fig. 1, which displays
power-law dependence as the adiabatic perturbations multihe relative behavior of the four contributions as a function

plied by a weakly k-dependent expression which is differen®f the angled. . _ _
from the analogous expression in Ed). The expressions for the adiabatic and isocurvature pri-

mordial perturbations, Eq$31) and (35), can be simplified
further when one assumes that these perturbations are pro-
duced during some specific phases of inflation. For instance,
if all scales of cosmological relevance are produced during
As shown above, the quantities describing the primordiathe period of inflation dominated by the heavy scalar field,
adiabatic and isocurvature perturbations are in general lineahen the approximate relatidi8) relating the angled to the
combinations of the independent stochastic quantgjemd  number of e-folds applies, which enables us to simplify the
e, and are thus expected to be correlated. It is now necessalubble parameter expression, given in £9), into
to examine the actual value of the corresponding coefficients.

For adiabatic perturbations, i.e. in E®1), the light contri- _ E 577 o
bution is dominant for taf<<1 whereas the heavy contribu- H(s)= 3m' RE-1Vs=$o. (36)

€h 2

sing, cos6y

S=59=2\/7Gk %%, Y2H, g

D. Conditions for the existence of correlated adiabatic
and isocurvature perturbations
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30 T T T T T T T T T

three other are weakly scale dependaht:and S, have the

o0l | same dependence, wherebg has a stronger dependence.

g Another limiting case corresponds #&<R ™!, which oc-
10_'\\ i curs during the period of inflation dominated by the light
scalar field. In this case, one has s,6%R" and the Hubble
‘ parameter is approximately given by

2
H(s)= \[gml Vs, (39)

As a consequence, the “heavy” and “light” contributions

-30F . are approximated by
o} e . 4\/67G . 467G

0 k3/2q)h2_ Tm|sk0k, k3/2q3|:_ Tm|sk
0 o1 o2 03 04 05 06 07 08 09 1 (40)

theta . . .
for the adiabatic perturbations and

FIG. 1. Relative amplitude of the,, contributions to the adia-
batic pierturbationsti)h (dashed ling to the isocurvature perturba- k3/25h= 267G " k3’2§|= B 267G mR?
tions, S, (dotted dashed line and of the¢, contribution to the 3 Wi s 3 !
adiabatic perturbationsi)| (continuous ling and to the isocurva- (41

ture perturbationsS (dotted lin@. The last quantity, the only one . . " " . .
which depends oR, has been plotted fdR=5 (upper dotted ling for the isocurvature perturbations. The “heavy” adiabatic

andR= 10 (lower dotted ling. contribution is thus negligible and the perturbations due to
the heavy scalar field are therefore essentially isocurvature.

The various contributions to adiabatic and isocurvature per- NOte, to conclude this section, that in their wgeX, Po-

turbations then reduce to the form larski and Starobinsky, concentrated their attention on the
intermediate case where the scales of cosmological relevance

. 467G just correspond to the transition zone from the heavy scalar
k3%~ — Tml\/R —1(sk—s0), field driven inflation to the light scalar field driven inflation.
As a consequence, their spectrum has a stronger variation in
A 467G k than in the limiting cases considered above. Here, the em-
kK32, = — ———mVR?—1yso(s,—sp), (370 phasis is put on contributions to the isocurvature perturba-
9 tions. With another choice of parameters, one can also pro-
and duce a huge temperature anisotropy dipole due to
isocurvature perturbations on scales larger than the present
/ Hubble radiud15].
k3/2AShz @ml RZ_ 1,

IV. SPECTRA AND CORRELATION OF ADIABATIC

R 2\/% S.—s AND ISOCURVATURE PERTURBATIONS
K=~ = mR2VRP- 1/ kso %, (39

A. General definitions

where the indice$ and| refer to the corresponding coeffi- Itis usuall)_/ assumed in cosmology that the .perturpatlons
can be described bghomogeneous and isotropiGaussian

g:r)ergtrie%ftetrh(fsnedrzsmtsE\?vi.e(r?%naen\(ja(r?i. trl;zeatfruese br;g?net r%ndom fields. In the specific model under consideration
L par enere, where the perturbations are created during an inflation-
of the modelm;, R ands, (but remaining in the domain of

validity of the above approximate expressipréonsiderin ary phase, this is true by construction. What is new here is
y ot . PP xP 9 thatisocurvature and adiabatic perturbations are not assumed
the variations with respect to the first two parameters, on

% be independent. Indeed, as shown in the previous section,

can notice that all the contributions are proportional to the|n the case of double inflation, the two kinds of perturbations

termm; VR’ 1, exceptS which contains an addition®”  are correlated, at least for some region of the parameter
dependence. This means, ignoring for the moment th@pace. It will thus be our purpose to define statistical quan-
(weak scale dependence, that the relative amplitudes oOfities that can describe random fields which aaepriori,
three of the contributions are fixed, the relative amplitude of.qrrelated. Let us first recall, for any homogeneous and iso-
S being adjustable by the mass raRoOnceRis fixed, the  tropic random field, the standard definitiofup to a normal-
overall amplitude of the perturbations can be fixed by theization factoy of its power spectrum by the expression
scalem,. Concerning now the variation of the contributions

with the cosmological scal&, is scale-invariant, while the <fkf:'>:2772k_373f(k) S(k=k’). (42
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In addition to this definition, it will be useful to define a 1 - ' - - '
covariance spectrum between two random fidldsd g by
the following expression:

Re(fgl,)y =272k 3C; 4(K) 8(k—k'). (43)

In order to estimate the degree of correlation between two, |~ |
quantities, it is convenient to also define the correlation specs | )

trum "C'f,g(k) by normalizingCs 4(k):

correl

0.5} ]

Cf,g(k)

VP(K) Py (k)

Schwartz inequality implies, as usual, thatl<C; 4(k) <1.

The correlation(anticorrelation will be stronger as one is 0.1 s s . . .
52 54 56 58 60 62 64
closer to 1 or—1. ok

Cr g(k)= (44)

FIG. 2. Correlation spectrum for various parameters. Continu-
ous curves from bottom to tofon the left hand side of the figure
Let us now specialize the above formulas to the case oforrespond respectively toRES5, sp=30), (R=5, sp=50) and
perturbations generated by double inflation. By substituting R=10, s,=50). The dashed curve corresponds ®=(5, sy
the explicit expressions for the perturbations obtained in the=60), the dotted dashed curve tB<5, s,=70) and finally the

B. Double inflation generated perturbations

previous section, namely Eq&81) and(35), one finds dotted curve to R=5, sp=280).
P@=§stk (45) The correlation spectrurﬁé,‘sfor various choices of param-
9m K eters has been plotted on Fig. 2, as a functiog,o0fOne can,

as before, distinguish between the two extreme cases. For
for the initial adiabatic spectrum, models such thag#>R™ !, corresponding to a “heavy” in-
flationary phase, the various contributions vary slowly with
6, as can be seen from Fig. 1. This means that the correlation
will be almost constant. For models such ti#a¢R™ 2, cor-

responding to a “light” inflationary phaseS, increases
for the initial isocurvature spectrum and quickly with decreasing, i.e. with decreasing scales, which
implies that the correlation will decrease with decreasing
scales, i.e. smalles, . The models withsy<<sy belong to the
first category, while models witls,>s,, correspond to the
second. Finally, the models witl, close tosy have an in-
for the covariance spectrum. Combining the three abovéermediate behavior between the two extreme cases. They
spectra according to E¢44), one finds finally for the corre- also have the strongest correlation.
lation spectrum the expression

_ 2G H§

5= (46)

R* 1}

T S| CcoSH sl

C “=EH2(R2—1) (47)
d,S 3T k

V. PREDICTIONS FOR THE CMBR AND DENSITY

~ (Rz— 1)sin 20 CONTRAST SPECTRUM
2(R"sin” 6+cos 0) A. Analytical predictions for long-wavelength perturbations
It is instructive to study the dependence of this correlation 1. Evolution of the perturbations

spectrum with respect to the parameters of the model. If one | the case of perturbations whose wavelength is larger
takes 0 fixed, one sees that the correlation will vanish forthan the Hubble radius, the time evolution is particularly
R=1 and will then increase monotonously with increasitg  simple. For an initial isocurvature perturbation characterized
approaching the asymptotic value 6ol now one considers ., e initial amplitudeS, the entropy perturbatios is un-

R as fixed and study the variations of the correlation W'thchanged as long as the perturbation is larger than the Hubble

respect tod, one recovers the conclusions of Sec. Il D: the 4,5 whatever the evolution of the background equation of
correlation vanishes whe# approaches zero ar/2; in be-  ¢iqia e

tween, one can see that the correlation reaches a maximum
for sir? 6=(R?+1)"%, with the value

S=S (k<aH). (50)
2_
“C‘mixzu_ (490  However, the radiation-matter transition will generate a
*S R241 gravitational potential perturbatioisee e.g[11])
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) 1. 4X10
P's0= — gS (k<aH). (51
3.5 4
Of course, the initial adiabatic perturbation will also contrib-
ute to the gravitational potential perturbation: 3r ]
®=Td (k<aH), (52) 251 ;

whereT is a coefficient, close to 1, due to the evolution of
the universdif one ignores the anisotropic stress of the neu-
trinos, T=9/10).

10+1)C_
N

2. Large angular scale CMBR anisotropies T

At large angular scales, the temperature anisotropies ar: 0.5¢
essentially due to the sum of an intrinsic contribution and of
a Sachs-Wolfg 16] contribution. Except for the dipole for 05

10
which the Doppler terms are important, the Sachs-Wolfe [

FIG. 3. Temperature anisotropies for the double inflation sce-
1 nario with R=5, s,=30. The total anisotropiegontinuous ling

contribution can be writtefor a spatially flat background
(6)==D(Xs); (53) are the sum of a contribution due to the heavy scalar fidgécshed
SwW 3 line) and of a contribution of the light scalar fie{dotted ling. To

AT
5
make the comparison, the anisotropies due to stan¢didbatic
wheree on the left hand side is a unit vector correspondingscale-invariantperturbations are also plottédotted dashed line
to the direction of observation angy on the right hand side UsingCy, for normalization.
represents the intersection of the last scattering surface with
the light-ray of directiore. The intrinsic contribution is sim-
ply given, via the Stefan law, as the perturbat'tf%ﬁm at the Large scale structure is governed by the density contrast,
time of last scattering. Since last scattering occurred in ther equivalently the gravitational potential perturbatidn
matter era,&ﬁﬁ)za(c), and therefore for an adiabatic pertur- since the latter quantity can be related to (twal) contrast
bation (555)243‘1 5(;)), ATIT) = (3) 555), which can be densit_y in theT comoving gauge by tligeneralizefl Poisson
seen to be negligiblsee below Eq(56)] with respect to the  €duation, which readsee e.g[13])
Sachs-Wolfe contribution, whereas for an isocurvature per-

3. Large scale structure

i 3 0) k \?2 3
turbation 6= — 2 89 during matter erg —| ®d=— =50, (56)
Y aH 2
(E) e~ ES_ (54)  For modes inside the Hubble radius the evolution becomes
T Jint 3 quite complicated and depends on the specific ingredients of

To conclude, the temperature anisotropies will be given in 1 5x10°
general by '

AT 1 . 2,

T 3T<I> 58 (55

on angular scales larger than the an@léthe order of the
degreé corresponding to the size of the Hubble radius at thea.
time of the last scattering. This equation enables us to estig
mate easily the normalization of the temperatures anisotro™
pies for the low multipolegsee the definition62), (63)],
essentially constrained by Cosmic Background Explorer
(COBE) measurements. Note that for mixed primordial per-
turbations with isocurvature and adiabatic contributions of
the same order of magnitude, the low multipole anisotropies
can be significantly reduced by a compensation effect be-

0.5F

tween the isocurvature perturbation and the adiabatic one. |  1o° 10*
turns out that this is the case for the light scalar field contri-

bution in double inflation models witR~5 (see Fig. 1 and FIG. 4. Temperature anisotropies for the double inflation sce-
the consequence on Figs. 3-5 nario with R=5, s,=50 (same conventions as in Fig).3
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x10™ perturbations, with the possibility of correlation, then the ad-
ditional term due to correlation can change significantly
- these conclusions. lllustrations will be given in the next sub-
‘ section.
i Similarly, the spectrum for the gravitational potential is
given by

1 2
Po=Psp+ 2—573§— gC(i)js. (61

10+1)C_I
=

T B. All-scale predictions

After having considered long wavelength perturbations,
whose advantage is one can estimate analytically their ob-
servable amplitude and thus normalize easily the models, let
us analyze now smaller scales, which require the use of nu-
merical computation.

1. CMBR anisotropies
FIG. 5. Temperature anisotropies for the double inflation sce-

o As it is customary, one decomposes the CMBR anisotro-
nario withR=5, s;=280.

pies on the basis of spherical harmonics:

the model. But what is relevant for our purpose is that this AT o |

subhorizon evolution does not depend on the nature of the —(6,0)=2>, > amYim(6,0). (62
primordial perturbations. What matters is the total gravita- T =1 m=-I

tional potential perturbatiod which can be written, in the

The predictions of a model are usually given in terms of the
matter era, as

expectation values of the squared multipole coefficients

<D=q)ad_%8- (57) Ci=(laml?)- (63)
In the present model, the temperature anisotropies will be the
Note that the influence of primordial isocurvature perturba-superposition of a contribution due to the heavy scalar field
tions is smaller on the large scale density power spectrurand of a contribution due to the light scalar field. These two
[see Eq.(57)] than on large scale temperature anisotropiesontributions are independent, because the stochastic quanti-
[see Eq(55)]. tiese,, ande, are independent, and as such the coefficiénts

can be decomposed,
4. Spectra

Using the relation(55) (with T=1), the spectrum for the

large scale temperature anisotropies can be expressed where the upper index refers to the “light” or “heavy”
terms of the primordial isocurvature and adiabatic spectra, nature of the perturbations. It is important to emphasize that
only a decomposition of this type is allowed here. For ex-
ample, a decomposition of thg as a sum of an isocurvature
contribution and of an adiabatic contribution would be
wrong here. In practice, the heavy and light contributions to
When only primordial adiabatic perturbations are presentihe C, are computed independently, by using twice a Boltz-

ci=cV+c, (64)

1 4 4
Parr=gPa+ 5P~ 7eCa 5 (58

the previous expression implies mann codedeveloped in our group by Riazuelo, and used in
1 [17]). The first run takes as initial conditioh,, and S, and
’pk’%ng vz (59) vields the coefficient€{™ . Similarly, the second run com-

putes theC{" using as initial conditions the corresponding

. . . it el c | h
whereas for pure isocurvature perturbations, one finds ~ duantitiesd, and$,. The results forC{" andC{", as well
as their sunC,, are plotted on Figs. 3—6 for four illustrative

P2 =2pi2 (600  models(for all models, the Hubble parameter and the baryon
density correspond respectively gy=0.5, (,=0.052).

This is in agreement with the standard comment in the lit-For the first three models, the vallR=5 has been chosen
erature that isocurvature perturbations generate CMBRecause the isocurvature and adiabatic contributions of the
anisotropies six times bigger than equivalent adiabatic petlight scalar field are then of similar amplitude, as is visible
turbations. This is the reason why isocurvature perturbationsn Fig. 1, and the effects of mixing and correlation are par-
are in general rejected in comological mod@$ However, ticularly important. A consequence of the similar amplitude
when one takes into account both isocurvature and adiabatigvith the same sign of the two “light” contributions
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0.03 . . . 107

0.0251

0.02

1(+1)C_I
o
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¢

0.01

0.005

-7 L 1 1 L
~ 107 107 10
Kk (Mpch(=1))

10
FIG. 6. Temperature anisotropies for the double inflation sce-

nario withR=10, s,=50. FIG. 7. Power spectrum for the double inflation scenario with
R=5, s;=50. The total power spectrurftontinuous ling is the
sum of a contribution due to the heavy scalar figldshed lingand

a f a contribution of the light scalar fiel@lotted ling. The standard
édiabatic scale-invarianpower spectrum is also plotte@otted
dashed lingwith the same normalization fdZ,,.

is an important suppression of the light spectr(ﬂﬁﬁ) for
smalll, as noticed already in the previous subsection, and
is visible on Figs. 3-5. In contrast, one can check on Fig.
that this will not be the case for tHe=10 model, for which

S, is dominant.

The first two graphs have a roughly similar behavior for
the “heavy” contribution. What distinguishes them is the
“light” contribution, which illustrates its high sensitivity on ,

the relative amplitudes o, and®,. A systematic investi- 8w

. : . g P(k)= ————kPsp(k). (66)
gation of the effects of mixed correlated primordial spectra, 9(agHq)*
independently of the early universe model to produce them,
on the temperature anisotropies will be given elsewh&sg

Using the Poisson equatioi®6), it can be reexpressed in
terms of the gravitational potential spectrum,

For these two models, one notices an amplificatisaak in As with the tempe_rature qmsotroples, the power spectrum
for double inflation is obtainable by computing indepen-

the first case and strong in the secpofithe main acoustic dently th for the h lar field .
peak with respect to the standajmlre adiabatic and scale- ently the power spectrum for the heavy scalar field contri-
bution, then that for the light scalar field contribution, and

invariany model. In contrast, the third example shows a sup-

pression of the main peak, which is due to a strong contrilcinally by adding the two results

bution S,, which makes the “heavy” spectrum look
“isocurvature” and thus damps the main peak in the global P(k)=Py(k) +Pn(k). (67)
spectrum. Finally, the last example is characteristic of the

domination of the “light” spectrum, itself dominated by the |n contrast with the temperature anisotropies, the influence of
isocurvature contributiong), which thus makes the global the mixing and correlation of the primordial perturbations on
spectrum look “isocurvature.” It is rather remarkable that the density spectrum is less spectacular because the shapes of
modest variations of the two relevant parameters of thehe pure isocurvature and pure adiabatic density spectra are
model,R ands, (m; is useful simply for an overall normal- not extremely different. There is however a sensible differ-
ization of the parametexscan lead to a large variety of ence: the pure isocurvature spectrum has, relatively to the
temperature anisotropy spectra. large scales, less power on small scales than the pure adia-
batic spectrum. To illustrate what happens for mixed and
correlated primordial perturbations, Fig. 7 displays, for the

C. Power spectrum model specified by the parameteRs=5 and s;=50, the
Another quantity which is extremely important for the total power spectrum, together with the two independent
confrontation of models with the observations is thetal) light” and “heavy” contributions, as well as the standard

density power spectrum. In the literature, it is usually de-2diabatic CDM power spectrufmormalized as befojefor
noted P(k) and its relation to the corresponding spectrumcomparison. Note that the resulting spectrum has, relatively
P s (for the comoving density contradefined generically to large scales, less power than the standard adiabatic power

in Eq. (42) is spectrum. However, it has globally more power than the
standard spectrum for the same temperature anisotropy am-
P(k)=2m%k 3P 50. (65  plitude on small.
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VI. CONCLUSIONS It was not the purpose of the present work to exhibit a

model supposed to fit better the observations. However, one
of these models, surprisingly, turns out to present two char-
acteristics, which are at present favored by observations: a

The main conclusion of this work is that it is possible, in
the simplest model of multiple inflation, to obtain correlated
isocurvature and adiabatic primordial perturbations. Thes

erturbations slightly deviate from scale-invariance but theif o o spectrum with modest power at small scd .
P i gntly deviate e : paratively to the standard cold dark matt€DM) model
correlation can entail significant modifications with respect

to standard sinale scalar field models and a high peak on intermediate scales. It may be worth
9 ' seeing how well this model does when confronted with the

This class of models, both simple and rich, could prowdeCurrent observations.

an interesting field of experiment to investigate the fea§|b|I- Finally, it would be interesting to investigate the possibil-
ity to determine the cosmological parameters and the primor:

dial perturbations from expected data. The question W0U|(Ijt¥ (.)f correlated adiabatic a_nd i_socu_rvatur_e perturba_\tions

be, assuming nature has chosen this particular model, cou ithin the framevx_/ork of multiple inflation W|th interaction

we' infer from the expected temperature anisotropy da{ta th etween scalar fields and_gee how the main features pre-
) . o "&ented here would be modified.

cosmological parameters and to which precision? More im-

portant, would it possible to discriminate between a single

field inflation model and a multiple field model with corre-

lated perturbations and what would be the price to pay on the | would like to thank Alain Riazuelo for his help with the
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