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Correlated adiabatic and isocurvature perturbations from double inflation

David Langlois
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Observatoire de Paris, 92195 Meudon Cedex, France
~Received 20 January 1999; published 13 May 1999!

It is shown that double inflation~two minimally coupled massive scalar fields! can producecorrelated
adiabatic and isocurvature primordial perturbations. Depending on the two relevant parameters of the model,
the contributions to the primordial perturbations are computed, with special emphasis on the correlation, which
can be quantitatively represented by a correlation spectrum. Finally the primordial spectra are evolved numeri-
cally to obtain the CMBR anisotropy multipole expectation values. It turns out that the existence of mixing and
correlation can alter very significantly the temperature fluctuation predictions.@S0556-2821~99!00912-1#

PACS number~s!: 98.80.Cq, 98.65.2r, 98.70.Vc
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I. INTRODUCTION

In our present picture, cosmological fluctuations today
seen as thecombinationof an initial spectrum, which can b
computed within the framework of high energy models~such
as inflation!, with the subsequent processes occurring
lower energy where the physics is believed to be better
derstood~up to some unknowns such as the amount a
nature of dark matter, the mass of neutrinos . . .!. In the near
future, we expect new andprecise information on cosmo-
logical fluctuations with the planned measurements of
cosmic microwave background radiation~CMBR! anisotro-
pies by the satellites the Microwave Anisotropy Pro
~MAP! @1# and PLANCK@2#. It has been emphasized in th
recent years that the precision of these measurements c
in principle allow us to determine with a high precision t
cosmological parameters@3#. These studies however all a
sume very simple initial perturbations, typically Gaussi
adiabatic perturbations with a power-law spectrum. Ho
ever, reality could turn out to be more subtle. This th
would have the drawback to complicate the determination
the cosmological parameters but could open the fascina
perspective to gain precious information on the primord
universe. At present, at a time when data are still unprec
it is essential to identify broad categories of early unive
models and to determine their specificities as far as obs
able quantities are concerned, with the purpose to be ab
discriminate between these various classes of models w
detailed data will become available.

Ultimately, inflation must be related to a high ener
physics model. Today there are many viable models bu
generic feature of these models is that they contain gene
many scalar fields. A property of inflation with several sca
fields is that it can generate, in addition to the ubiquito
adiabatic perturbations, isocurvature perturbations. In this
spect, it is important to consider the possible role of prim
dial isocurvature perturbations. Isocurvature perturbati
are perturbations in the relative density ratio between vari
species in the early universe, in contrast with the more s
dard adiabatic~or isentropic! perturbations which are pertur
bations in the total energy density with fixed particle numb
ratios. Primordial isocurvature perturbations are, most of
time, ignored in inflationary models. The main reason
0556-2821/99/59~12!/123512~11!/$15.00 59 1235
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this is that they are less universal than adiabatic perturbat
because, on one hand, they can be produced only in mul
inflationary models@4#, and, on the other hand, they ca
survive until the present epoch only if at least one of t
inflaton fields remains decoupled from ordinary matter d
ing the whole history of the universe. However, not only t
existence of isocurvature perturbations is allowed in pr
ciple, but candidates for inflatons with the required abo
conditions even exist in many theoretical models~dilatons,
axions!.

What has already been established is that a pure iso
vature scale-invariant spectrum must be rejected becau
predicts on large scales too large temperature anisotro
with respect to density fluctuations@5#. But other possibili-
ties can be envisaged. Several have been investigated in
literature: tilted isocurvature perturbations@6#, combination
of isocurvature and adiabatic perturbations@7#. In the latter
case, only combinations ofindependentisocurvature and
adiabatic perturbations were considered. The aim of this
per is to investigate the possibility ofcorrelated mixtures of
isocurvature and adiabaticperturbations.

To illustrate this, the simplest model of multi-field infla
tion is considered here: double inflation@8#, namely a model
with two massive scalar fields without self-interaction or m
tual interaction~other than gravitational!. The production of
fluctuations in this model has been studied in great detai
Polarski and Starobinsky and, in the present work, their
tation and formalism will be followed closely. They wer
interested essentially in adiabatic perturbations@9# but also
considered isocurvature perturbations@10#. However, they
did not investigate the range of parameters where this mo
has the striking property to produce correlated isocurvat
and adiabatic perturbations. By this, we mean the ca
where both isocurvature and adiabatic perturbations rec
significant contributions of at least one of the scalar fields
contrast to the uncorrelated case where one of the sc
fields feeds essentially the adiabatic perturbations while
second one is at the origin of the isocurvature perturbatio

The plan of this paper is the following. In Sec. II, th
model of double inflation will be presented. Section III w
be devoted to the analysis of adiabatic and isocurvature
turbations: their definition, how they are obtained from t
inflation perturbations, the conditions to obtain correlat
©1999 The American Physical Society12-1
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DAVID LANGLOIS PHYSICAL REVIEW D 59 123512
mixtures. Section IV considers formally the definition
spectra for the perturbations as well as the notion of corr
tion. In Sec. V, the predictions for the CMBR anisotropi
and matter power spectrum are given for the models w
correlated primordial perturbations.

II. DOUBLE INFLATION

As mentioned in the Introduction, inflation needs at le
two scalar fields to produce isocurvature perturbations. T
is why we investigate the simplest model of inflation wi
two scalar fields: they are non-interacting, massive, m
mally coupled scalar fields. The Lagrangian correspondin
this model is

L5
(4)R

16pG
2

1

2
]mf l]

mf l2
1

2
ml

2f l
22

1

2
]mfh]mfh

2
1

2
mh

2fh
2 , ~1!

where the subscriptsl andh designate respectively the ligh
and heavy scalar fields~and thusmh.ml).

(4)R is the scalar
spacetime curvature and G Newton’s constant.

A. The background equations

In a spatially flat Friedmann-Lemaiˆtre-Robertson-Walker
~FLRW! spacetime, with metricds252dt21a2(t)dxW2, the
equations of motion read

3H254pG~ḟ l
21ḟm

2 1ml
2f l

21mh
2fh

2! ~2!

f̈ l13Hḟ l1ml
2f l50,

f̈h13Hḟh1mh
2fh50. ~3!

Following @9# it is convenient, during the phase when bo
scalar fields are slow-rolling@i.e., whenḟ l

2 and ḟh
2 can be

neglected in Eq.~2!, f̈ l and f̈h in Eq. ~3!#, to write the
evolution of the two scalar fields in the following paramet
form:

fh5A s

2pG
sinu, f l5A s

2pG
cosu ~4!

where

s52 ln~a/ae! ~5!

is the number of e-folds between a given instant and
end of inflation. This form~4! is a consequence of the ap
proximate relation d(fh

21f l
2)/ds52d(fh

21f l
2)/(Hdt)

.(2pG)21 resulting from the~slow-roll! equations of mo-
tion. The angular variableu can then be related to the pa
rameters by the expression

s5s0

~sinu!2/~R221!

~cosu!2R2/~R221!
~6!
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whereR is the ratio of the masses of the two scalar fields

R[
mh

ml
. ~7!

Equation~6! was obtained by integrating the relation givin
du/d(ln s) as a function ofu, which can be established b
use of the slow-roll approximation of the equations of m
tion ~2!, ~3! ~see@9# for the details of the calculations!. As
noticed in@9#, Eq. ~6! can be approximated, whenu@R21,
by the simple formula

s.
s0

cos2 u
. ~8!

This behavior corresponds to the period when inflation
dominated by the heavy scalar field~this approximation is
valid as long ass.s0 ands2s0@s0 /R2). This period ends
whenu;R21, s;s0 and is followed~possibly after a dust-
like transition period! by a phase of inflation dominated b
the light scalar field.

It follows from Eqs. ~2!–~4! that the Hubble paramete
can be expressed in the form

H2~s!.
2

3
ml

2s@11~R221!sin2 u~s!#, ~9!

where the functionu(s) is obtained by inverting Eq.~6!
(0,u,p/2). As inflation proceeds,s decreases andu goes
to smaller and smaller values, which implies a decreas
Hubble parameter during inflation.

It will be convenient to definesH as the number of e-folds
before the end of inflation when the scale corresponding
our Hubble radius today crossed out the Hubble radius d
ing inflation. The value ofsH depends on the temperatu
after the reheating~see e.g.@11#! but roughly sH.60. To
make definite calculations, we shall take throughout t
work the value

sH560. ~10!

Note that the class of models considered here depend
three free parameters: the two massesml and mh , or alter-
natively ml and R, and the parameters0 . In particular, the
choice of this last parameters0 relatively to sH will deter-
mine the specific phase of double inflation, ‘‘heavy’’ dom
nated, intermediate or ‘‘light’’ dominated, during which th
perturbations on scales of cosmological relevance were
duced.

B. Perturbations

After having determined the evolution of the backgrou
quantities, let us turn now to the evolution of the linear p
turbations. We shall restrict our analysis to the so-called s
lar perturbations~in the terminology of Bardeen@12#!. We
thus consider a spacetime linearly perturbed about the
FLRW spacetime of the previous subsection, endowed w
the metric
2-2
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CORRELATED ADIABATIC AND ISOCURVATURE . . . PHYSICAL REVIEW D 59 123512
ds252~112F!dt21a2~ t !~122C!d i j dxidxj . ~11!

Although this metric is not the most generala priori, it turns
out that any perturbed metric~of the scalar type! can be
transformed into a metric of this form by a suitable coor
nate transformation. This choice corresponds to the so-ca
longitudinal gauge. In addition to the geometrical perturb
tions F andC, one must also consider the matter perturb
tions, which will simply be during inflation the perturbation
of the scalar fields, respectivelydfh anddf l , with respect
to their homogeneous values.

Before writing down the equations of motion for the pe
turbations, it is convenient to use a Fourier decomposit
and to define the Fourier modes of any perturbed quantf
by the relation

f k5E d3x

~2p!3/2
e2 ik–xf ~x!. ~12!

The equations of motion for the perturbations are deriv
from the perturbed Einstein equations and from the Kle
Gordon equations for the scalar fields. They lead to the
lowing four equations~see e.g.@13#!:

F5C, ~13!

Ḟ1HF54pG~ḟhdfh1ḟ ldf l !, ~14!

df̈h13Hdḟh1S k2

a2 1mh
2D dfh54ḟhḞ22mh

2fhF,

~15!

df̈ l13Hdḟ l1S k2

a2 1ml
2D df l54ḟ lḞ22ml

2f lF,

~16!

where the subscriptk is here implicit, as it will be through-
out this paper.

In the slow-rolling approximation and for superhorizo
modes, i.e.,k!aH, these equations can be solved~see@9#!
and the dominant solutions read

F.2
C1Ḣ

H2
12C3

~mh
22ml

2!mh
2fh

2ml
2f l

2

3~mh
2fh

21ml
2f l

2!2
, ~17!

df l

ḟ l

.
C1

H
22C3

Hmh
2fh

2

mh
2fh

21ml
2f l

2
,

dfh

ḟh

.
C1

H
12C3

Hml
2f l

2

mh
2fh

21ml
2f l

2
, ~18!

whereC1(k) and C3(k) are time-independent constants
integration and are fixed by the initial conditions. As usua
inflation, perturbations are assumed to be initially~i.e., be-
fore crossing out the Hubble radius! in their vacuum quan-
tum state. Perturbations outside the Hubble radius are
obtained by amplification of the vacuum quantum fluctu
12351
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tions due to the gravitational interaction. The two sca
fields being independent, one simply duplicates the result
single scalar field inflation~see e.g.@13#!. Consequently,
dfh and df l can be written, for wavelengths crossing o
the Hubble radius, as

dfh5
Hk

A2k3
eh~k!, df l5

Hk

A2k3
el~k!, ~19!

whereeh and el are classical Gaussian random fields w
^ei(k)&50, ^ei(k)ej* (k8)&5d i j d(k2k8), for i , j 5 l ,h, and
Hk is the Hubble parameter when the mode crosses
Hubble radius, i.e., whenk52paH. Neglecting the evolu-
tion of the Hubble parameter with respect to that of the sc
factor, the number of e-foldssk corresponding to the instan
when the mode of wave numberk crossed out the Hubble
radius, is given simply by

k.kHesH2sk, ~20!

wherekH is the wave number corresponding to the pres
Hubble scale. In the present work, our interest will focus
the scales of cosmological relevance, typicallyk/kH.0.1
22000. This means that the range of e-folds that will int
est us is 52&sk&63.

III. PRIMORDIAL PERTURBATIONS

The analysis of the solutions for the perturbations dur
inflation obtained in the previous section will now enable
to determine the ‘‘initial’’ ~but post-inflationary! conditions
for the perturbations in the radiation era taking place a
inflation and reheating.

A. Initial conditions in the radiation era

At some past instant deep in the radiation era, we s
consider four species of particles. Two species will be re
tivistic: photons and neutrinos; two species will be no
relativistic: baryons and cold dark matter. Their respect
energy density contrasts will be denoteddg , dn , db anddc
(dA[drA /rA).

At this point, it is useful to define precisely the notion
adiabatic and isocurvature perturbations. Isocurvature pe
bations are defined by the condition that there is no per
bation of the energy density in the total comoving gau
@denoted by the subscript (c)], i.e.

(
A

d~c!rA50, ~21!

but that there are perturbations in the ratios of species
ticle numbers, i.e.

d (c)~nA /nB!Þ0 ~22!

in general. By contrast, adiabatic~or isentropic! perturba-
tions are defined by the prescription that the particle num
ratios between various species is fixed, i.e.
2-3
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DAVID LANGLOIS PHYSICAL REVIEW D 59 123512
d (c)~nA /nB!50, ~23!

whereas the total energy density perturbation can fluctu
i.e.

(
A

d~c!rAÞ0. ~24!

It is clear from the above definitions that, if one considers
species, there will be in general one adiabatic mode
(N21) isocurvature modes. Here, it will be assumed that
light scalar fieldf l decays into ordinary particles, i.e. give
birth to the photons, neutrinos and baryons, while the d
matter particles are associated exclusively with the he
scalar fieldfh . Note that part of the dark matter could b
also produced by the light scalar field but we shall ignore t
possibility here for simplicity. As a consequence, the parti
number ratios between the three ‘‘ordinary’’ species will
frozen, i.e.

d (c)ng

ng
5

d (c)nn

nn
5

d (c)nb

nb
, ~25!

and only one isocurvature mode will exist, which can
conveniently represented by the quantity

S[
d (c)nc

nc
2

d (c)ng

ng
5dc

(c)2
3

4
dg

(c) . ~26!

Going back to the longitudinal gauge, and following M
and Bertschinger@14#, one can write the initial conditions
deep in the radiation era for modes outside the Hubble ra
in the form

dg522F,

db5 3
4 dn5 3

4 dg ,

dc5S1 3
4 dg ,

ug5un5ub5uc5 1
2 ~k2h!F,

sn5 1
15 ~kh!2F,

C5~11 2
5 Rn!F, ~27!

with Rn5rn /(rg1rn) and whereu stands for the diver-
gence of the fluid three-velocity,sn for the shear stress o
neutrinos~in the rest of this paper, the contribution of ne
trinos in all analytical calculations will be ignored for sim
plicity but it will be taken into account in the numerica
calculations! and h is the conformal time defined bydh
5dt/a(t). All the information about the initial conditions i
thus contained in the two k-dependent quantitiesF and S,
which are time-independent during the radiation era~for k
!aH). The next subsections will be devoted to make
link between these two quantities and the perturbations
ing inflation.
12351
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B. Adiabatic initial perturbations

The evolution ofF is given by Eq.~17! only during the
phase when both scalar fields are slow rolling. As soon as
heavy scalar fieldfh ends its slow-rolling phase, the secon
term on the right hand side of Eq.~17! will die out, andF
can be given during all the subsequent evolution of the u
verse in the simple form

F5C1S 12
H

a E0

t

a~ t8!dt8D . ~28!

It can be checked that, during inflation,

12 ~H/a! E
0

t

a~ t8!dt8.2Ḣ/H2,

which ensures that the coefficientC1 in the above formula is
the same as in Eq.~17!.

It is thus essential to expressC1 in terms of the perturba-
tions of the two scalar fields, and therefore in terms ofel and
eh , in order to be able to determine the amplitude of t
perturbations after the end of inflation. Combining the tw
equations in Eq.~18! and using Eq.~19!, as well as the
slow-roll approximation of the background equations of m
tion ~2!, ~3!, the expression for the coefficientC1 during
inflation is found to be

C1~k!524pG
Hk

A2k3
@f lel~k!1fheh~k!#. ~29!

As it is clear from this formula,C1(k) is a stochastic vari-
able, whose properties can be determined from the stoch
properties ofel andeh .

During the radiation era, the relation between the coe
cientC1 and the gravitational potential is simply, using on
more Eq.~28!,

F5 2
3 C1~k!. ~30!

Therefore, the gravitational potential during the radiation
for modes larger than the Hubble scale is given by the
pression@9#

F̂.2
4ApG

3
k23/2AskHk@sinukeh~k!1cosukel~k!#,

~31!

whereHk is given as a function ofsk in Eq. ~9! and sk is
given as a function ofk in Eq. ~20!. The hat in the above
equation~and in all subsequent equations! indicates that the
value of the corresponding quantity is taken deep in the
diation era when the wavelength of the Fourier mode
larger than the Hubble radius.
2-4
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C. Isocurvature initial perturbations

As explained in subsection A, the isocurvature pertur
tions in the present model are due to variations in the rela
proportions of cold dark matter, generated by the heavy s
lar field, with respect to the three other main species~pho-
tons, baryons, neutrinos!, all generated by the light scala
field. Moreover, during the radiation era, the isocurvatu
perturbationS rigorously defined by Eq.~26! is essentially
the comoving cold dark matter density contrast,S.dc

(c) , so
that what is needed to obtain the primordial isocurvat
spectrum is simply to compute the cold dark matter den
contrast in terms of the scalar field perturbations during
flation. This task was carried out in@10#. Only the main
points will be summarized here.

Let us first give the comoving energy density perturbat
associated with the heavy scalar field:

drh
(c)5ḟhdḟh1mh

2fhdfh13Hḟhdfh2ḟh
2F. ~32!

Matching the inflationary phase whenfh is slow-rolling to
the inflationary phase whenfh is oscillating and then to the
post-reheating radiation dominated phase, one finds@10#

dh
(c).2

4

3
mh

2C3 . ~33!

The coefficientC3 can then be obtained, during inflatio
by substracting the two equations in Eq.~18! and then using
the ~slow-roll! background equations of motion and Eq.~19!.
Inserting the result in Eq.~33!, the density contrast of the
cold dark matter~associated with the heavy scalar field!, for
modes larger than the Hubble radius, is found to be giv
during the radiation era, by the expression

dh
(c).A 2

k3
HkS fh

21eh~k!2
mh

2

ml
2
f l

21el~k!D , ~34!

where the value of the scalar fields is taken at Hubble rad
crossing. This can be reexpressed, using Eqs.~4! and~7!, in
the form

Ŝ.dh
(c).2ApGk23/2sk

21/2HkF eh

sinuk
2

R2

cosuk
el G . ~35!

Note that the isocurvature perturbations have the sa
power-law dependence as the adiabatic perturbations m
plied by a weakly k-dependent expression which is differ
from the analogous expression in Eq.~31!.

D. Conditions for the existence of correlated adiabatic
and isocurvature perturbations

As shown above, the quantities describing the primord
adiabatic and isocurvature perturbations are in general lin
combinations of the independent stochastic quantitiesel and
eh and are thus expected to be correlated. It is now neces
to examine the actual value of the corresponding coefficie
For adiabatic perturbations, i.e. in Eq.~31!, the light contri-
bution is dominant for tanu,1 whereas the heavy contribu
12351
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tion is dominant for tanu.1. For isocurvature perturbations
i.e. in Eq. ~35!, the light contribution dominates fo
tanu.R2 whereas the heavy contribution is predominant
the opposite case. AssumingR2@1, one can thus divide the
space of parameters for double inflation into three region

1. Regiontan u@1

The adiabatic perturbations are dominated by the he
scalar field while the isocurvature perturbations are do
nated by the light scalar field. The two types of perturbatio
will thus appear independent. Moreover, except foru very
close top/2, the isocurvature amplitude will be suppress
with respect to the adiabatic amplitude by a factorsk . In this
parameter region, one recovers the standard results of a
adiabatic spectrum due to a single scalar field, here the he
scalar field.

2. Regiontan u!R22

In this region, essentially only the light scalar field co
tributes to the adiabatic perturbations while the isocurvat
perturbations are dominated by the heavy scalar field.
two contributions are therefore independent and the iso
vature amplitude can be very high with respect to the ad
batic one ifu is sufficiently small.

3. Region R22<tan u<1

This is the most interesting region. Here, both the ad
batic and isocurvature perturbations are essentially feede
the fluctuations of the light scalar field~even if their ampli-
tude depends on the background value of the two sc
fields!. This means that the adiabatic and isocurvature p
turbations are strongly correlated in this region. If one co
siders the relative magnitude of these light scalar field c
tributions, one sees that the isocurvature contribution
compensate thesk

21 suppression~with respect to the adia
batic perturbations! by a suitable factorR2. Note also that in
the upper part of this parameter region, i.e. for tanu&1, the
heavy and light contributions in the adiabatic perturbatio
will be of similar order while the heavy contribution in th
isocurvature perturbations can be ignored. In contrast, in
lower part of the region, i.e.u;R22, the heavy contribution
in the adiabatic perturbations is negligible whereas the li
and heavy contributions in the isocurvature perturbations
of similar weight. This is illustrated on Fig. 1, which display
the relative behavior of the four contributions as a functi
of the angleu.

The expressions for the adiabatic and isocurvature
mordial perturbations, Eqs.~31! and ~35!, can be simplified
further when one assumes that these perturbations are
duced during some specific phases of inflation. For instan
if all scales of cosmological relevance are produced dur
the period of inflation dominated by the heavy scalar fie
then the approximate relation~8! relating the angleu to the
number of e-folds applies, which enables us to simplify t
Hubble parameter expression, given in Eq.~9!, into

H~s!.A2

3
mlAR221As2s0. ~36!
2-5
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The various contributions to adiabatic and isocurvature p
turbations then reduce to the form

k3/2F̂h.2
4A6pG

9
mlAR221~sk2s0!,

k3/2F̂ l.2
4A6pG

9
mlAR221As0~sk2s0!, ~37!

and

k3/2Ŝh.
2A6pG

3
mlAR221,

k3/2Ŝl.2
2A6pG

3
mlR

2AR221Ask2s0

s0
, ~38!

where the indicesh and l refer to the corresponding coeffi
cients of eh and el in Eqs. ~31! and ~35!. Let us briefly
comment these results when one varies the free param
of the model,ml , R ands0 ~but remaining in the domain o
validity of the above approximate expressions!. Considering
the variations with respect to the first two parameters,
can notice that all the contributions are proportional to
term mlAR221, exceptŜl which contains an additionalR2

dependence. This means, ignoring for the moment
~weak! scale dependence, that the relative amplitudes
three of the contributions are fixed, the relative amplitude
Ŝl being adjustable by the mass ratioR. OnceR is fixed, the
overall amplitude of the perturbations can be fixed by
scaleml . Concerning now the variation of the contribution
with the cosmological scale,Ŝh is scale-invariant, while the

FIG. 1. Relative amplitude of thefh contributions to the adia-

batic perturbations,F̂h ~dashed line!, to the isocurvature perturba

tions, Ŝh ~dotted dashed line!, and of thef l contribution to the

adiabatic perturbations,F̂ l ~continuous line!, and to the isocurva-

ture perturbations,Ŝl ~dotted line!. The last quantity, the only one
which depends onR, has been plotted forR55 ~upper dotted line!
andR510 ~lower dotted line!.
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three other are weakly scale dependent:F̂ l and Ŝl have the
same dependence, whereasF̂h has a stronger dependence

Another limiting case corresponds tou!R21, which oc-
curs during the period of inflation dominated by the lig
scalar field. In this case, one hass.s0u2/R2

and the Hubble
parameter is approximately given by

H~s!.A2

3
mlAs. ~39!

As a consequence, the ‘‘heavy’’ and ‘‘light’’ contribution
are approximated by

k3/2F̂h.2
4A6pG

9
mlskuk , k3/2F̂ l.2

4A6pG

9
mlsk

~40!

for the adiabatic perturbations and

k3/2Ŝh.
2A6pG

3
mluk

21 , k3/2Ŝl.2
2A6pG

3
mlR

2

~41!

for the isocurvature perturbations. The ‘‘heavy’’ adiaba
contribution is thus negligible and the perturbations due
the heavy scalar field are therefore essentially isocurvatu

Note, to conclude this section, that in their work@9#, Po-
larski and Starobinsky, concentrated their attention on
intermediate case where the scales of cosmological relev
just correspond to the transition zone from the heavy sc
field driven inflation to the light scalar field driven inflation
As a consequence, their spectrum has a stronger variatio
k than in the limiting cases considered above. Here, the
phasis is put on contributions to the isocurvature pertur
tions. With another choice of parameters, one can also
duce a huge temperature anisotropy dipole due
isocurvature perturbations on scales larger than the pre
Hubble radius@15#.

IV. SPECTRA AND CORRELATION OF ADIABATIC
AND ISOCURVATURE PERTURBATIONS

A. General definitions

It is usually assumed in cosmology that the perturbatio
can be described by~homogeneous and isotropic! Gaussian
random fields. In the specific model under considerat
here, where the perturbations are created during an inflat
ary phase, this is true by construction. What is new here
that isocurvature and adiabatic perturbations are not assu
to be independent. Indeed, as shown in the previous sec
in the case of double inflation, the two kinds of perturbatio
are correlated, at least for some region of the param
space. It will thus be our purpose to define statistical qu
tities that can describe random fields which are,a priori,
correlated. Let us first recall, for any homogeneous and
tropic random fieldf, the standard definition~up to a normal-
ization factor! of its power spectrum by the expression

^ f k f k8
* &52p2k23Pf~k!d~k2k8!. ~42!
2-6
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In addition to this definition, it will be useful to define
covariance spectrum between two random fieldsf and g by
the following expression:

Re^ f kgk8
* &52p2k23Cf ,g~k!d~k2k8!. ~43!

In order to estimate the degree of correlation between
quantities, it is convenient to also define the correlation sp
trum C̃f ,g(k) by normalizingCf ,g(k):

C̃f ,g~k!5
Cf ,g~k!

APf~k!APg~k!
. ~44!

Schwartz inequality implies, as usual, that21<Cf ,g(k)<1.
The correlation~anticorrelation! will be stronger as one is
closer to 1 or21.

B. Double inflation generated perturbations

Let us now specialize the above formulas to the case
perturbations generated by double inflation. By substitut
the explicit expressions for the perturbations obtained in
previous section, namely Eqs.~31! and ~35!, one finds

PF̂5
8G

9p
Hk

2sk ~45!

for the initial adiabatic spectrum,

PŜ5
2G

p

Hk
2

sk
F R4

cos2 u
1

1

sin2 u G , ~46!

for the initial isocurvature spectrum and

CF̂,Ŝ5
4G

3p
Hk

2~R221! ~47!

for the covariance spectrum. Combining the three ab
spectra according to Eq.~44!, one finds finally for the corre-
lation spectrum the expression

C̃F̂,Ŝ5
~R221!sin 2u

2~R4 sin2 u1cos2 u!1/2
. ~48!

It is instructive to study the dependence of this correlat
spectrum with respect to the parameters of the model. If
takesu fixed, one sees that the correlation will vanish f
R51 and will then increase monotonously with increasingR
approaching the asymptotic value cosu. If now one considers
R as fixed and study the variations of the correlation w
respect tou, one recovers the conclusions of Sec. III D: t
correlation vanishes whenu approaches zero orp/2; in be-
tween, one can see that the correlation reaches a maxim
for sin2 u5(R211)21, with the value

C̃F̂,Ŝ
max

5
R221

R211
. ~49!
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The correlation spectrumC̃F̂,Ŝfor various choices of param
eters has been plotted on Fig. 2, as a function ofsk . One can,
as before, distinguish between the two extreme cases.
models such thatu@R21, corresponding to a ‘‘heavy’’ in-
flationary phase, the various contributions vary slowly w
u, as can be seen from Fig. 1. This means that the correla
will be almost constant. For models such thatu!R21, cor-
responding to a ‘‘light’’ inflationary phase,Ŝh increases
quickly with decreasingu, i.e. with decreasing scales, whic
implies that the correlation will decrease with decreas
scales, i.e. smallersk . The models withs0,sH belong to the
first category, while models withs0.sH correspond to the
second. Finally, the models withs0 close tosH have an in-
termediate behavior between the two extreme cases. T
also have the strongest correlation.

V. PREDICTIONS FOR THE CMBR AND DENSITY
CONTRAST SPECTRUM

A. Analytical predictions for long-wavelength perturbations

1. Evolution of the perturbations

In the case of perturbations whose wavelength is lar
than the Hubble radius, the time evolution is particula
simple. For an initial isocurvature perturbation characteriz
by the initial amplitudeŜ, the entropy perturbationS is un-
changed as long as the perturbation is larger than the Hu
radius, whatever the evolution of the background equation
state, i.e.

S5Ŝ ~k!aH!. ~50!

However, the radiation-matter transition will generate
gravitational potential perturbation~see e.g.@11#!

FIG. 2. Correlation spectrum for various parameters. Conti
ous curves from bottom to top~on the left hand side of the figure!
correspond respectively to (R55, s0530), (R55, s0550) and
(R510, s0550). The dashed curve corresponds to (R55, s0

560), the dotted dashed curve to (R55, s0570) and finally the
dotted curve to (R55, s0580).
2-7
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F iso52
1

5
Ŝ ~k!aH!. ~51!

Of course, the initial adiabatic perturbation will also contri
ute to the gravitational potential perturbation:

Fad5TF̂ ~k!aH!, ~52!

whereT is a coefficient, close to 1, due to the evolution
the universe~if one ignores the anisotropic stress of the ne
trinos,T59/10!.

2. Large angular scale CMBR anisotropies

At large angular scales, the temperature anisotropies
essentially due to the sum of an intrinsic contribution and
a Sachs-Wolfe@16# contribution. Except for the dipole fo
which the Doppler terms are important, the Sachs-Wo
contribution can be written~for a spatially flat background!

S DT

T D
SW

~e!5
1

3
F~xls!; ~53!

wheree on the left hand side is a unit vector correspond
to the direction of observation andxls on the right hand side
represents the intersection of the last scattering surface
the light-ray of directione. The intrinsic contribution is sim-
ply given, via the Stefan law, as the perturbationdg

(c)/4 at the
time of last scattering. Since last scattering occurred in
matter era,dm

(c).d (c), and therefore for an adiabatic pertu

bation (dm
(c)5 3

4 dg
(c)), (DT/T) int. ( 1

3) dm
(c) , which can be

seen to be negligible@see below Eq.~56!# with respect to the
Sachs-Wolfe contribution, whereas for an isocurvature p

turbation (S.2 3
4 dg

(c) during matter era!,

S DT

T D
int

.2
1

3
S. ~54!

To conclude, the temperature anisotropies will be given
general by

DT

T
5

1

3
TF̂2

2

5
Ŝ ~55!

on angular scales larger than the angle~of the order of the
degree! corresponding to the size of the Hubble radius at
time of the last scattering. This equation enables us to e
mate easily the normalization of the temperatures aniso
pies for the low multipoles@see the definition~62!, ~63!#,
essentially constrained by Cosmic Background Explo
~COBE! measurements. Note that for mixed primordial p
turbations with isocurvature and adiabatic contributions
the same order of magnitude, the low multipole anisotrop
can be significantly reduced by a compensation effect
tween the isocurvature perturbation and the adiabatic on
turns out that this is the case for the light scalar field con
bution in double inflation models withR;5 ~see Fig. 1 and
the consequence on Figs. 3–5!.
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3. Large scale structure

Large scale structure is governed by the density contr
or equivalently the gravitational potential perturbationF
since the latter quantity can be related to the~total! contrast
density in the comoving gauge by the~generalized! Poisson
equation, which reads~see e.g.@13#!

S k

aHD 2

F52
3

2
d (c). ~56!

For modes inside the Hubble radius the evolution becom
quite complicated and depends on the specific ingredient

FIG. 3. Temperature anisotropies for the double inflation s
nario with R55, s0530. The total anisotropies~continuous line!
are the sum of a contribution due to the heavy scalar field~dashed
line! and of a contribution of the light scalar field~dotted line!. To
make the comparison, the anisotropies due to standard~adiabatic
scale-invariant! perturbations are also plotted~dotted dashed line!,
usingC10 for normalization.

FIG. 4. Temperature anisotropies for the double inflation s
nario with R55, s0550 ~same conventions as in Fig. 3!.
2-8
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the model. But what is relevant for our purpose is that t
subhorizon evolution does not depend on the nature of
primordial perturbations. What matters is the total gravi
tional potential perturbationF which can be written, in the
matter era, as

F5Fad2
1

5
S. ~57!

Note that the influence of primordial isocurvature perturb
tions is smaller on the large scale density power spect
@see Eq.~57!# than on large scale temperature anisotrop
@see Eq.~55!#.

4. Spectra

Using the relation~55! ~with T51), the spectrum for the
large scale temperature anisotropies can be expresse
terms of the primordial isocurvature and adiabatic spectr

PDT/T5
1

9
PF̂1

4

25
PŜ2

4

15
CF̂,Ŝ . ~58!

When only primordial adiabatic perturbations are prese
the previous expression implies

P DT/T
1/2 5

1

3
PF

1/2, ~59!

whereas for pure isocurvature perturbations, one finds

P DT/T
1/2 52PF

1/2. ~60!

This is in agreement with the standard comment in the
erature that isocurvature perturbations generate CM
anisotropies six times bigger than equivalent adiabatic p
turbations. This is the reason why isocurvature perturbati
are in general rejected in comological models@5#. However,
when one takes into account both isocurvature and adiab

FIG. 5. Temperature anisotropies for the double inflation s
nario with R55, s0580.
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perturbations, with the possibility of correlation, then the a
ditional term due to correlation can change significan
these conclusions. Illustrations will be given in the next su
section.

Similarly, the spectrum for the gravitational potential
given by

PF5PF̂1
1

25
PŜ2

2

5
CF̂,Ŝ . ~61!

B. All-scale predictions

After having considered long wavelength perturbatio
whose advantage is one can estimate analytically their
servable amplitude and thus normalize easily the models
us analyze now smaller scales, which require the use of
merical computation.

1. CMBR anisotropies

As it is customary, one decomposes the CMBR aniso
pies on the basis of spherical harmonics:

DT

T
~u,f!5(

l 51

`

(
m52 l

l

almYlm~u,f!. ~62!

The predictions of a model are usually given in terms of
expectation values of the squared multipole coefficients

Cl[^ualmu2&. ~63!

In the present model, the temperature anisotropies will be
superposition of a contribution due to the heavy scalar fi
and of a contribution due to the light scalar field. These t
contributions are independent, because the stochastic qu
tieseh andel are independent, and as such the coefficientsCl
can be decomposed,

Cl5Cl
( l )1Cl

(h) , ~64!

where the upper index refers to the ‘‘light’’ or ‘‘heavy’
nature of the perturbations. It is important to emphasize t
only a decomposition of this type is allowed here. For e
ample, a decomposition of theCl as a sum of an isocurvatur
contribution and of an adiabatic contribution would b
wrong here. In practice, the heavy and light contributions
the Cl are computed independently, by using twice a Bol
mann code~developed in our group by Riazuelo, and used
@17#!. The first run takes as initial conditionF̂h and Ŝh and
yields the coefficientsCl

(h) . Similarly, the second run com
putes theCl

( l ) using as initial conditions the correspondin

quantitiesF̂ l and Ŝl . The results forCl
( l ) andCl

(h) , as well
as their sumCl , are plotted on Figs. 3–6 for four illustrativ
models~for all models, the Hubble parameter and the bary
density correspond respectively toh10050.5, Vb50.052).
For the first three models, the valueR55 has been chose
because the isocurvature and adiabatic contributions of
light scalar field are then of similar amplitude, as is visib
on Fig. 1, and the effects of mixing and correlation are p
ticularly important. A consequence of the similar amplitu
~with the same sign! of the two ‘‘light’’ contributions

-

2-9
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is an important suppression of the light spectrumCl
( l ) for

small l, as noticed already in the previous subsection, and
is visible on Figs. 3–5. In contrast, one can check on Fig
that this will not be the case for theR510 model, for which
Ŝl is dominant.

The first two graphs have a roughly similar behavior
the ‘‘heavy’’ contribution. What distinguishes them is th
‘‘light’’ contribution, which illustrates its high sensitivity on
the relative amplitudes ofŜl and F̂ l . A systematic investi-
gation of the effects of mixed correlated primordial spect
independently of the early universe model to produce th
on the temperature anisotropies will be given elsewhere@18#.
For these two models, one notices an amplification~weak in
the first case and strong in the second! of the main acoustic
peak with respect to the standard~pure adiabatic and scale
invariant! model. In contrast, the third example shows a s
pression of the main peak, which is due to a strong con
bution Ŝh , which makes the ‘‘heavy’’ spectrum loo
‘‘isocurvature’’ and thus damps the main peak in the glo
spectrum. Finally, the last example is characteristic of
domination of the ‘‘light’’ spectrum, itself dominated by th
isocurvature contribution (Ŝl), which thus makes the globa
spectrum look ‘‘isocurvature.’’ It is rather remarkable th
modest variations of the two relevant parameters of
model,R ands0 (ml is useful simply for an overall normal
ization of the parameters!, can lead to a large variety o
temperature anisotropy spectra.

C. Power spectrum

Another quantity which is extremely important for th
confrontation of models with the observations is the~total!
density power spectrum. In the literature, it is usually d
noted P(k) and its relation to the corresponding spectru
P d(c) ~for the comoving density contrast! defined generically
in Eq. ~42! is

P~k!52p2k23P d(c). ~65!

FIG. 6. Temperature anisotropies for the double inflation s
nario with R510, s0550.
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Using the Poisson equation~56!, it can be reexpressed i
terms of the gravitational potential spectrum,

P~k!5
8p2

9~a0H0!4
kPF~k!. ~66!

As with the temperature anisotropies, the power spectr
for double inflation is obtainable by computing indepe
dently the power spectrum for the heavy scalar field con
bution, then that for the light scalar field contribution, a
finally by adding the two results

P~k!5Pl~k!1Ph~k!. ~67!

In contrast with the temperature anisotropies, the influenc
the mixing and correlation of the primordial perturbations
the density spectrum is less spectacular because the shap
the pure isocurvature and pure adiabatic density spectra
not extremely different. There is however a sensible diff
ence: the pure isocurvature spectrum has, relatively to
large scales, less power on small scales than the pure a
batic spectrum. To illustrate what happens for mixed a
correlated primordial perturbations, Fig. 7 displays, for t
model specified by the parametersR55 and s0550, the
total power spectrum, together with the two independ
‘‘light’’ and ‘‘heavy’’ contributions, as well as the standar
adiabatic CDM power spectrum~normalized as before! for
comparison. Note that the resulting spectrum has, relativ
to large scales, less power than the standard adiabatic p
spectrum. However, it has globally more power than
standard spectrum for the same temperature anisotropy
plitude on smalll.

-
FIG. 7. Power spectrum for the double inflation scenario w

R55, s0550. The total power spectrum~continuous line! is the
sum of a contribution due to the heavy scalar field~dashed line! and
of a contribution of the light scalar field~dotted line!. The standard
~adiabatic scale-invariant! power spectrum is also plotted~dotted
dashed line! with the same normalization forC10.
2-10
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VI. CONCLUSIONS

The main conclusion of this work is that it is possible,
the simplest model of multiple inflation, to obtain correlat
isocurvature and adiabatic primordial perturbations. Th
perturbations slightly deviate from scale-invariance but th
correlation can entail significant modifications with resp
to standard single scalar field models.

This class of models, both simple and rich, could prov
an interesting field of experiment to investigate the feasi
ity to determine the cosmological parameters and the prim
dial perturbations from expected data. The question wo
be, assuming nature has chosen this particular model, c
we infer from the expected temperature anisotropy data
cosmological parameters and to which precision? More
portant, would it possible to discriminate between a sin
field inflation model and a multiple field model with corre
lated perturbations and what would be the price to pay on
precision of the cosmological parameters?
f
ro
8,

J
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It was not the purpose of the present work to exhibi
model supposed to fit better the observations. However,
of these models, surprisingly, turns out to present two ch
acteristics, which are at present favored by observation
power spectrum with modest power at small scales@com-
paratively to the standard cold dark matter~CDM! model#
and a high peak on intermediate scales. It may be wo
seeing how well this model does when confronted with
current observations.

Finally, it would be interesting to investigate the possib
ity of correlated adiabatic and isocurvature perturbatio
within the framework of multiple inflation with interaction
between scalar fields and see how the main features
sented here would be modified.
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