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Cosmological scaling solutions of nonminimally coupled scalar fields
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We study the existence and stability of cosmological scaling solutions of a nonminimally coupled scalar
field evolving in either an exponential or inverse power law potential. We show that, for inverse power law
potentials, there exist scaling solutions the stability of which does not depend on the coupling constantj. We
then study the more involved case of exponential potentials and show that the scalar field will asymptotically
behave as a baryotropic fluid whenj!1. The general casej!” 1 is then discussed and we illustrate these
results by some numerical examples.@S0556-2821~99!06510-8#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

On the one hand, recent cosmological observations,
particuarly the Hubble diagram for type Ia supernovae@1#,
have led to the idea that the universe may be dominated
component with negative pressure@2# and thus that today the
universe is accelerating. Such a component can also, if
sticks to the prediction of inflation thatV51, account for the
‘‘missing energy.’’ Yet many candidates have been p
posed, such as a cosmological constant, a ‘‘dynamical’’ c
mological constant@3#, cosmic strings@4#, or a spatially ho-
mogeneous scalar field rolling down a potential@5#.

On the other hand, potentials decreasing to zero for
infinite value of the field have been shown to appear in p
ticle physics models~see, e.g.,@6,7#!. For instance, exponen
tial potentials arise in high order gravity@8#, in Kaluza-Klein
theories which are compactified to produce the fo
dimensional observed universe@9#, or due to nonperturbative
effects such as gaugino condensation@10#. Inverse power
law potentials can be obtained in models where supers
metry is broken through fermion condensates@7#. This gives
one more theoretical motivation to study the cosmologi
implications of a field with such potentials.

The cosmological solutions with such a field were fi
studied by Ratra and Peebles@11# ~see also@12,13#! who
showed the existence and stability of scaling solutions
respectively, a field, radiation, or matter dominated unive
for a field evolving in an exponential and inverse power l
potential. A complete study in the framework of baryotrop
cosmologies in the case of the exponential potential@14,15#
shows that the solutions were stable to shear perturbat
and to curvature perturbations whenP/r,21/3, but that for
realistic matter~such as dust! these solutions were unstabl
essentialy to curvature perturbations. Liddle and Sche
@16# made a complete classification of the field potentials a
show that power law potentials also lead to scaling soluti
~i.e., to solutions such that the field energy densityrf be-
haves as the scale factor at a given power! and the coupling
of the field to ordinary matter has been considered in@17#.
Such solutions are indeed of interest in cosmology since t
provide a candidate for a component with negative press

Cosmological models with a scalar field have started to
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investigated@18,19# for different kind of potentials such a
the cosine potential@3#, exponential potential@20,21#, and
inverse power law potentials@22#. It has also been shown
that the luminosity distance as a function of redshift@23,24#
or the behavior of density perturbations in the dust era a
function of redshift@24# can be used to reconstruct the fie
potential.

However, all these studies have been done under the
pothesis that the field is minimally coupled to the metric. It
known that terms with such a nonminimal couplingR̄f (f)
between the scalar curvatureR̄ and the fieldf can appear
when quantizing fields in curved spacetime@25,26# and in
multidimensional theories@27# such as superstring and in
duced gravity theories@28#. Since these theories predict bo
the existence of scalar fields with potential or power la
potential and nonminimal coupling, it is of interest to stu
the influence of this coupling and, for instance, the robu
ness of the existence and stability of scaling solutions. T
influence of such a coupling during an inflationary peri
and the existence of inflationary attractors have yet been
amined~see, e.g.,@29#!.

In this article, we study the stability of scaling solution
of a nonminimally coupled scalar field. We first present~Sec.
II ! the main notations and equations. After having, in S
III, briefly recalled the standard approach for determining
potentials that can give rise to such behavior for a minima
coupled scalar field, we investigate the inverse power
potentials~Sec. IV! and the exponential potential~Sec. V!. In
the latter case, we study the two limiting situationsj!1 and
j@1 and then have a heuristic discussion for the gen
case.

II. DESCRIPTION OF THE MODEL

We assume that the universe is described by a Friedm
Lemaı̂tre model with Euclidean spatial sections so that
line element reads

ds252dt21a2~ t !@d i j dxidxj #[ḡmndxmdxn, ~1!

wherea(t) is the scale factor andt the cosmic time. Greek
indices run from 0 to 3 and latin indices from 1 to 3. Th
Hubble parameterH is defined asH[ȧ/a, where an overdot
©1999 The American Physical Society10-1
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JEAN-PHILLIPE UZAN PHYSICAL REVIEW D59 123510
denotes a derivative with respect tot. We also introduce¹̄m ,
the covariant derivative associated withḡmn .

We assume that the matter content of this universe
composed of a perfect fluid and a homogeneous scalar
f coupled to gravity and coupled to matter only throu
gravity. The fluid energy densityr

B
and pressureP

B
are

related through the equation of state

P
B
5v

B
r

B
, ~2!

where B refers to ‘‘background.’’ The conservation of th
energy momentum of the fluid reduces to

ṙ
B
13H~r

B
1P

B
!50. ~3!

The scalar fieldf evolves in a potentialV(f) and its
dynamics is given by the Lagrangian

Sf52
1

2E @]mf]mf12jR̄f ~f!12V~f!#A2ḡd4x,

~4!

where j is the field-metric coupling constant (j50 corre-
sponds to a minimally coupled field andj51/6 to a confor-
mally coupled field!, and R̄ is the scalar curvature of th
spacetime. No known fundamental principle predicts
functional form f (f) and we will assume thatf (f)5f2/2.
This is, however, the only choice that allows for a dime
sionlessj. The equation of evolution is then obtained b
varying the action~4! with respect to the field which leads t
the Klein-Gordon equation

dSf

df
50⇔hf2jR̄f2a2

dV

df
50, ~5!

where h[¹̄m¹̄m. For an homogeneous field in the spac
time ~1!, it reduces to

f̈13Hḟ1
dV

df
16j~2H21Ḣ !f50. ~6!

The energy density and the pressure of this field are defi
by

rf[a22T00, Pf[
1

3
a22Ti j d

i j , ~7!

and we definevf[Pf /rf . The energy-momentum tenso
Tmn is obtained by varying the action~4! with respect to the
metric ḡmn and reads

Tmn5~122j!¹̄mf¹̄nf1S 2j2
1

2D ḡmn¹̄lf¹̄lf

22jf¹̄m¹̄nf12jfhfḡmn1jḠmnf22V~f!ḡmn ,

~8!

Ḡmn being the Einstein tensor of the background metric. T
expression can be compared to standard results~see, e.g.,
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is
ld

e

-

-

ed

s

@25#!. Note, however, that when the signature of the metric
(1,2,2,2), one has to change the sign ofḡmn , h, R̄mn ,
andḠmn while Tmn andR̄ remain unaffected.

It is then straigthforward to check that the density and
pressure~7! of the scalar field are given by

rf5
1

2
ḟ21V~f!13Hjf~2ḟ1Hf!, ~9!

Pf5
1

2
ḟ22V~f!2j@~2Ḣ13H2!f214Hfḟ

12ff̈12ḟ2#, ~10!

and that the conservation of the energy momentum of
field (¹̄mTmn50) reduces to the Klein-Gordon equation~6!:

ṙf13H~rf1Pf!50

⇔f̈13Hḟ1
dV

df
16j~2H21Ḣ !f

50. ~11!

@We have used that the scalar curvature and the Eins
tensor are, respectively, given byR̄56(2H21Ḣ) and Ḡ00

53a2H2, Ḡi j 52(2Ḣ13H2)a2d i j .# The equation of state
of the field is defined by

vf5
Pf

rf
. ~12!

The matter content being described, we can write the E
stein equations which dictate the dynamics of the spacet
and, in our case, reduce to the Friedmann equations

H25
k

3
~r

B
1rf!, ~13!

Ḣ52
k

2
@~v

B
11!r

B
1rf1Pf# ~14!

with k58pG. One equation of the set~3!, ~11!, and ~13!,
~14! is redundant due to the Bianchi identities. It will also b
useful to introduce the density parameter of a componenX
asVX[krX/3H2. They must satisfy@from Eq.~13!# the con-
straint

V
B
1Vf51. ~15!

III. SCALING SOLUTIONS FOR MINIMALLY COUPLED
SCALAR FIELDS „j50…

In this section, we briefly recall the ‘‘standard’’ procedu
to show that there exist scaling solutions and to determ
the potentials that give rise to such solutions. This prese
tion will also enable us to understand the differences with
more general case of nonminimally coupled scalar fields.
follow the approach initiated by Ratra and Peebles@11# and
others@13,16# where one, assuming a scaling form forrf ,
derives an equation forf(a) and then uses Eqs.~9!, ~10! to
0-2
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COSMOLOGICAL SCALING SOLUTIONS OF . . . PHYSICAL REVIEW D59 123510
deduce the associated potential.
The equation of evolution~3! of the background fluid

density can be integrated to give

r
B
5r

B0
x2m with x[

a

a0
, ~16!

where a subscript 0 refers to quantities evaluated at a g
initial time. We now look for scaling solutions, i.e., solution
such that

rf5rf0x2n⇔Pf5S n

3
21D rf . ~17!

Since n/3215122V/rfP@21;1#, we deduce thatn
P@0,6# ~let us emphasize that this isa priori no longer true
whenjÞ0). Using Eqs.~9!, ~10!, such a solution must sat
isfy

ḟ25
n

3
rf and V~f!5S 12

n

6D rf . ~18!

Now, the Friedmann equation~13! implies that the field
should satisfy

df

dx
5

A

xA11B2xn2m
with B[ArB0

rf0
and

A[An

k
A rf0

rf01r0
5An

k
Vf0. ~19!

This can be integrated for different relative values ofm and
n.

A. m5n case

In that situation, Eq.~19! leads to

f2f05
n

l
ln x with l21[

Vf0

Ank
~20!

and, then using Eq.~18!, to the potential

V~f!5S 12
n

6D rf0e2l(f2f0). ~21!

This solution corresponds to the scalar field domina
universe of Ratra and Peebles@11# and to their scaling solu
tion in the casem53 and m54 ~i.e., radiation or matter
dominated universe!. Note that with such a potential,rf will,
by construction, mimic the evolution of the background flu
and that we do not have to assume thatVf!1.

Note, however, that, if the scalar field has reached
attractor from very early time,rf behaves like radiation an
thus contributes to a non-negligible part of the radiation c
tent during the nucleosynthesis and it has been shown th
implies the constraintVf0,0.15 @20,12#. Moreover, since
vf50 in the matter era, such a field will not explain th
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supernovae measurements~which seem to favorvf520.6
@30#! even if it can account for a substantial part of the da
matter.

B. mÞn case

In this case we have

df

dx
5

A

xA11B2xn2m
, ~22!

which can be integrated (B.0) to give @31#

f2f05
2A

m2n
ln@A11~B21x(m2n)/2!21B21x(m2n)/2#.

~23!

Again, using Eq.~18!, we can deduce the potential

V~f!5S 12
n

6D rf0x2n, ~24!

x being given by Eq.~23!. Indeed, we only get the potentia
in a parametric form, but whenB@1 ~i.e., when the perfect
fluid drives the evolution of the universe! x can be eliminated
from Eqs.~23!, ~24! to give

V~f!5S 12
n

6D rf0S m2n

2A
BD 22n/(m2n)

~f2f0!22n/(m2n).

~25!

Whenm53 andm54, we recover the Ratra-Peebles res
@11# as well as the Liddle-Scherrer result@16# for all m. This
parametric general form of the potential seems, however,
to have been exhibited before.

IV. NONMINIMALLY COUPLED SCALAR FIELDS WITH
A POWER LAW POTENTIAL

A. Existence of a scaling solution

The former procedure cannot be applied when the field
nonminimally coupled since it is impossible, for instance,
write a closed equation fordf/dx as in Eq.~19!. Moreover,
we are interested in a field evolving in a given potential. W
assume that the field evolves in an inverse power law po
tial and show that there exist scaling solutions, the stabi
of which is then studied.

We assume that the potential takes the form

V~f!5V0M p
4S f

M p
D 2a

with a.0, ~26!

with M p being the Planck mass. The universe is domina
by the perfect fluid so that~we assumemÞ0)

H5
2

m

1

t2t0
, a5a0~ t2t0!2/m, v

B
5

m

3
21. ~27!

RedefiningM p(t2t0)AV0 as t and f/M p as f, the Klein-
Gordon equation~6! becomes
0-3
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f̈1
6

m

1

t
ḟ1

12

m S 4

m
21D j

1

t2
f2af2(a11)50. ~28!

Looking for a solution of this equations of the formf}tb,
one obtains

f5f0tb, f0
a125

a

bS b1
6

m
21D1

12

m S 4

m
21D j

,

b5
2

a12
, ~29!

so thatrf}a2n with n/m5a/(a12). This solution is only
well defined if

6

m
2

a

a12
1

6

m S 4

m
21D ~a12!j.0. ~30!

One can then compute the energy and the pressure o
field by inserting this solution into Eqs.~9!, ~10! and verify,
after some algebra, that

vf5
v

B
a22

a12
, ~31!

whatever the value ofj. This shows that the scaling solutio
does not depend on the coupling in the sense thatvf is
independent ofj. This relation generalizes the one found f
minimally coupled scalar fields@2,11,16#.
s
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B. Stability

As emphasized in the previous section, the scaling so
tion does not depend on the couplingj. The stability of such
a solution is known whenj50 @11,16#; we now have to
study it whenjÞ0. Following@11#, we define the new set o
variables

t5et, ~32!

u~t!5
f~t!

fs~t!
, ~33!

wherefs is the scaling solution~29!. We setf8[df/dt.
Using ḟ5e2tf8, f̈5e22t(f92f8), and fs8/fs52/(a
12), Eq. ~28! reduces to

u91S 6

m
1

4

a12
21Du81S 2

a12 F 6

m
2

a

a12G
1

12

m F 4

m
21Gj D ~u2u2(a11)!50. ~34!

The scaling solution corresponds to the critical pointu51.
Introducingv5u8 and linearizing around this critical poin
@u511e#, we obtain
S e

v D 8
5S 0 1

22S F 6

m
2

a

a12G1
6~a12!

m F 4

m
21Gj D S 12

6

m
2

4

a12D D S e

v D . ~35!

The eigenvaluesl6 of this system are

2l65S 12
6

m
2

4

a12D6AS 12
6

m
2

4

a12D 2

28F S 6

m
2

a

a12D1
6

m
~a12!S 4

m
21D jG . ~36!
This expression reduces to the Liddle-Scherrer result@16#
whenj50 @with a/(a12)5n/m# and to the Ratra-Peeble
result @11# when eitherm53 or m54.

A necessary and sufficient condition for the critical po
to be stable is the negativity of the real part of the two
genvalues. Definingj̄ as

j̄5

S m262
4m

a12D 2

28mS 62
am

a12D
48~a12!~42m!

, ~37!

the two solutions of Eq.~36! are real when (j2 j̄)(m24)
>0. Thus,~i! when the two eigenvalues are complex,l5l1*
t
-

and their real part is given by Re(l6)5@126/m24/(a
12)#/2 and the scaling solution is stable if

12
6

m
2

4

a12
,0. ~38!

~ii ! When the two eigenvaluesl6 are real, their product is
@from Eq. ~34!#

l2l152S F 6

m
2

a

a12G1
6~a12!

m F 4

m
21Gj D.0,

~39!
0-4
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FIG. 1. ~left! The convergence towards the scaling solution whenj50. ~right! The convergence towards the equation of statevf50 for
different initial conditions.
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because of the condition~30!. They are thus of the sam
sign, their sum being

l11l2512
6

m
2

4

a12
; ~40!

they will both be negative ifl11l2,0, and thus the solu
tion will be stable only if

12
6

m
2

4

a12
,0, ~41!

as in the casej>j̄.
In conclusion, we find thatwhateverthe coupling constan

j, the scaling solution~29! will be stable if and only if

12
6

m
2

4

a12
,0. ~42!

The value ofj only determines the nature of the stable poi
i.e., wether it is a stable spiral or a stable node. This ge
alizes the study by Liddle and Scherrer@16# to a nonmini-
mally coupled scalar field.

V. NONMINIMALLY COUPLED SCALAR FIELD
IN AN EXPONENTIAL POTENTIAL

A. Scaling solutions

We now focus on potentials of the form

V~f!5V0M p
4e2lf/M p with l.0 ~43!

and work under the same assumptions as in Sec. IV. R
fining t andf as in Sec. IV, the Klein-Gordon equation no
reads

f̈1
6

m

1

t
ḟ1

12

m S 4

m
21D j

1

t2
f2le2lf50. ~44!

When the coeficient off vanishes, i.e., in a radiation dom
nated universe (m54) or whenj50, one can find a specia
solution of the formf5 ln(Atb). We get that~see Sec. III A
with k5M p

22)
12351
,
r-

e-

fs5 ln~Atb!, A2l5
2

l2 S 6

m
21D , b5

2

l
⇒vfs

5
m

3
21,

~45!

where the subscripts refers to the scaling solution. In th
radiation era, this implies, for instance, thatvfs

51/3 and the
scalar field behaves like radiation. Indeed, this is a very s
cial case since in that periodR̄50 and the field does no
‘‘feel’’ the nonminimal coupling and it evolves as if it wer
minimally coupled. The complete study of these solution
function of the two parameters (l,m) @14,15# shows that
when l2.m, the scaling solutionfs is a stable node or
spiral whereas, whenl2,m, the late time attractor is the
field dominated solution, which we do not consider here. T
convergence towards the solutionfs is illustrated in Fig. 1.

Now, in the most general case wheremÞ4, it is easy to
realize that a solution of the formf5 ln(Atb) cannot be a
solution of Eq.~44!.

1. zjz!1 case

Let us first look at the effect of a small perturbation inj
in the sense that the potential term dominates over the c
pling term in the Klein-Gordon equation. For that purpos
we set

u[ ln t,

f5fs1jc1O~j2!. ~46!

The equation of evolution forc can be deduced from th
Klein-Gordon equation~44!:

c91S 6

m
21Dc81

12

m S 4

m
21D jc

52
l

j
@12e2ljc#e2u2lfs2

12

m S 4

m
21Dfs ,

~47!

where a prime denotes a derivative with respect tou. Now, if
we restrict ourselves toj!1 and linearize this equation us
ing expression~45! for fs , we obtain, at zeroth order inj,
0-5
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FIG. 2. The deformation of the phase space from Fig. 1 due to the coupling forj51022,1021,21022. The solution converges toward
the attractor which drifts fromfs , sincef2fs}ju1O(j2).
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c91S 6

m
21Dc812S 6

m
21Dc5

12

ml S 4

m
21D @ ln A2l22u#,

~48!

the solution of which has the general form

c5B1ea1u1B2ea2u2
12

ml

42m

62m Fu2
11 ln A2l

2 G .
~49!

B1ea1u and B2ea2u are two independent solutions of th
homogeneous equation. Sincea1a252(6/m21)5
22(a11a2), we deduce that ifm,6, the real parts of both
a1 anda2 are negative, so that the two homogeneous so
tions correspond to decaying modes and the particular s
tion is then an attractor~if m,2/3, thena1 anda2 are real;
otherwise, they are complex and the homogeneous part
decay while oscillating!.

Indeed, this analysis is valid only as long as the poten
term dominates over the coupling term in Eq.~44!, that is, as
long as

UdV

dfU@U12

m S 4

m
21D jfe22uU⇔u!ueq ,

ueq[
1

12uju
m~62m!

u42mu
ln

1

l
A2S 6

m
21D . ~50!
12351
-
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We recover that whenj→0 or m→4, ueq→` and we are
back to the minimally coupled case~Sec. III A!. The behav-
ior of udV/dfu and (12/m)(4/m21)jf as a function ofu is
shown in Fig. 4, below. Whenj!1, we see that, as ex
pected, the solution is first dominated by the potential te
but that as time elapses the coupling term tends to bec
more dominant. In Fig. 2, we illustrate how the phase sp
trajectories are deformed due to the existence of this sm
coupling.

Now, as long asu!ueq , we can compute the equation o
state of the field by inserting the particular part of the so
tion ~49! in Eqs.~9!, ~10! which will take the form

vf~u!5vfs
@11A~m,l!u211B~m,l,j!u22

1O~u23!# ~ if mÞ3!

52
1

u
@11C~m,l!u211O~u22!# ~ if m53!.

~51!

The difference in these two behaviors comes from the f
thatPf}u2 if mÞ3 andPf}u whenm53. The exact forms
of the functionsA, B, andC can be obtained by doing a
expansion ofPf /rf in u21. In Fig. 3, we show the deviation
of the equation of state from pure scaling and compare
former expansion to the numerical integration. In conclus
we have that whenj!1 and u!ueq , the field converges
towards a barotropic fluid.
FIG. 3. The time varying equation of state and its deviation from the minimally coupling case forj50, 1023, 1022 and the comparaison
of this equation of state with the estimate~51! at first order and second order inu21.
0-6
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FIG. 4. The respective influence of the coupling term and the potential term in the Klein-Gordon equation. We have plottedudV/dfu and

uR̄jfu normalized to their sum forj51/2 ~left!. The two terms alternatively dominate and then converge. Whenj!1, after some
oscillations corresponding to the convergence towardsfs , the potential term dominates over the coupling as long asu!ueq . Whenj,0,
the coupling term will dominate forever.
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2. zjz@1 case

Let us now consider the case where initially the coupl
term dominates over the potential term in the Klein-Gord
equation. At lowest order, one has

f91S 6

m
21Df81

12

m S 4

m
21D jf50, ~52!

the solution of which is of the form

f5A1ea1u1A2ea2u. ~53!

When j.0, since a1a2}4/m21 and a11a252(6/m
21), we deduce that if 0,m,4, the real part of botha1

anda2 is negative so that Eq.~53! corresponds to two de
caying modes~it can be seen as a proof that the critical po
f50 is an attractor! so that

R̄jf→0 and le2lf→l when 0,m,4 and j.0,
~54!

and the potential term will rapidly catch up the couplin
term.

When j,0, a1a2}24/m11, and the real part of one
of the two quantities,a1 , say, is positive when 0,m,4 so
that

R̄jf→` and le2lf→0 when 0,m,4 and j,0,
~55!

and the coupling term dominates forever~see Fig. 4! andf
behaves asA1ea1u with

2a15S 12
6

mD1AS 6

m
21D 2

2
48

m S 4

m
21D j, ~56!

for which, since the potential term is negligible,

vf~m,j!.

a1
2 24jF 2

m2
~32m!1S 4

m
21Da112a1

2 G
a1

2 1
24

m
jFa11

1

mG .

~57!
12351
n

t

This solution has, however, to be excluded since one
check that it leads torf,0.

3. General case

The general case is more involved since we cannot
any analytic solution to Eq.~44!. First, whenj.0, we have
seen that when either the potential or the coupling te
dominates, the other slowly catches up. We thus expect a
time solution which satisfies

R̄jf.le2lf. ~58!

In Fig. 4, we plot the evolution of these two terms in the ca
wherej!1 and in a more general case. The two terms
ternatively dominate and then converge to the same va
Indeed, this is no proof.

We can, however, look for a general solution of the fo

f5 (
n50

n5`

jncn , ~59!

with c0 given by Eq.~45! andc1 given by Eq.~49!. Insert-
ing this expansion into the Klein-Gordon equation~44!, we
obtain the hierarchy of equations

cn91S 6

m
21Dcn812S 6

m
21Dcn

52
12

m S 4

m
21Dcn211lA2l f n~c0 , . . . ,cn21!

if n>1. ~60!

The functionf n depends on all the solutionsc i for i ,n. All
these equations have a solution of the form

c5B1ea1u1B2ea2u1ĉn . ~61!

As in Sec. V A 2, the two homogeneous modes decay
m,6 and;n,cn→ĉn . It can also be seen thatĉn will be a
polynomial inu of degreen. If the series(jnĉn converges,
then
0-7



JEAN-PHILLIPE UZAN PHYSICAL REVIEW D59 123510
FIG. 5. The phase space analysis and the evolution of the density, pressure, and equation of state in a case wherej!” 1. vf converges
towardsvfs

whatever the value ofj ~j50,1,3 in the upper right plot! with or without oscillations according to the value ofm (m52, 2.5,
3 from bottom to top in the lower right plot!.
ge
r

c
le

a-
s

.

tted
ttrac-
nd

e to

t

f→(
n50

n5`

jnĉn when u→`, ~62!

from which we can conclude that if(jnĉn converges, there
exists an attractor to Eq.~44! given by Eq.~62!. Indeed, we
cannot demonstrate the convergence of this series in the
eral case. In Fig. 5, we show the phase space trajecto
showing the convergence towards this attractor.

Whenm.2/3, the solution converges towards the attra
tor while oscillating so that the equation of state has wigg
and converges towardsvfs

~see Fig. 5!. Whenm,2/3, this

oscillatory behavior does not appear whateverj ~see Fig. 5!.

4. Case of a radiation dominated universe

As explained above, one has the solution~45! to the
Klein-Gordon equation and this solution is an attractor~see
the phase analysis of Fig. 6! and the field behaves as radi
tion. The solution~49! reduces to the two decaying mode
Indeed the derivation of Eq.~51! is no longer valid but, with
the same method, one can show that, to first order inu21,

vf5
1

3
@11A~l!u211B~l,j!u22#, ~63!
12351
n-
ies

-
s

.

where the two functionsA and B are obained as in Sec
V A 2. Note that foru@1 thej terms of Eqs.~9!, ~10! domi-
nate the density and the pressure. In Fig. 6, we have plo
the phase space showing the convergence towards the a
tor fs in the case of a conformally coupled scalar field a
the evolution of its equation of state.

B. Numerical results

We integrate numerically Eq.~44! and use Poincare´ pro-
jection @32# to represent the result in the plane (f,f8):

f5
r

12r
sinu,

f85
r

12r
cosu. ~64!

This projection shrinks all the trajectory in the phase spac
the unit disk. The pointsN[(0,1), E[(21,0), and W
[(1,0), respectively, correspond to (f5`,f850), (f
50,f852`), and (f50,f85`). Note that the system is
nonautonomous since Eq.~47! depends onu. Thus, curves
can cross in the Poincare´ representation but they will no
cross in a 3D representation (f,f8,u). The 1 to 6 plots
whatever
FIG. 6. The phase space analysis for a field in a radiation dominated universe. The scaling solution is the late time attractor
j @j50, 1022, and 1023].
0-8
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correspond to the situations studied in the previous p
graphs. We plot the evolution of the solution in the pha
space (f,f8) and the evolution of the equation of state wh
j!1. To finish, we give some examples of evolution in t
casej!” 1.

VI. CONCLUSION

In this article, we studied the influence of the coupli
between the scalar curvature and the scalar field on the
istence and stability of scaling solution of this field evolvin
in either an exponential or an inverse power law potent
The motivation for considering such solutions is first th
they can be a candidate for a matter component with ne
tive pressure and second that they appear for a large cla
potentials predicted by some theories of high energy phys

We first found a new parametric form of the potential th
reduces to the inverse power law potential when the ene
density of the fluid drives the evolution of the spacetime.

Concerning the inverse power law potentials, we show
analytically that the existence and stability of a scaling so
tion does not depend on the couplingj and that the equation
of state of the field was always given byvf5(v

B
a

22)/(a12). This generalizes the work by Ratra an
Peebles@11# and Liddle and Scherrer@16#.

The situation is more involved with exponential potentia
since one cannot find an analytic form for a scaling solut
~apart for a radiation dominated universe!. We then studied
the effect of a small perturbation coupled to the scalar c
vature and computedvf to first order inj!1 and showed
that there always exists a time after which one cannot neg
the effect of the coupling. In that limit, we show that th
in

12351
a-
e

x-

l.
t
a-
of

s.
t
y

d
-

n

r-

ct

equation of state was converging towards a baryotro
equation of state and some numerical examples tend to s
us that it should be the case whateverj.0 ~but this has not
been demonstrated!. Indeed, such potentials are not the mo
favored since they are constrained by nucleosynthesis
Vf0,0.15 @20# and cannot explain~whenj50) the super-
nova measurements sincevf50. Note, however, that the
convergence toward the baryotropic equationvfs

is much

slower whenjÞ0. Whenj,0, we have shown that ther
always exists a time after which the coupling term will dom
nate and thus that there exists a scaling solution but wit
different equation of state~as long as 0,m,4 and, thus, in
a matter dominated era!. Unfortunately, such a solution ha
to be rejected since it has negative energy.

As pointed out by Caldwellet al. @22#, a smooth time-
dependent field is unphysical since ‘‘one has to take i
account the back-reaction of the fluctuations in the ma
components.’’ The cosmological consequences of such
inhomogeneous coupled scalar field in both exponential
inverse power law potentials@such as the computation of th
cosmic microwave background anisotropies and the ma
power spectrum# will be presented later@33# and our present
study is only related to the implication of the homogeneo
part of such a field.
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