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Cosmological scaling solutions of nonminimally coupled scalar fields
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We study the existence and stability of cosmological scaling solutions of a nonminimally coupled scalar
field evolving in either an exponential or inverse power law potential. We show that, for inverse power law
potentials, there exist scaling solutions the stability of which does not depend on the coupling cénétant
then study the more involved case of exponential potentials and show that the scalar field will asymptotically
behave as a baryotropic fluid wher<1l. The general casé<1 is then discussed and we illustrate these
results by some numerical examplgS0556-282(99)06510-§

PACS numbdrs): 98.80.Cq

[. INTRODUCTION investigated 18,19 for different kind of potentials such as
the cosine potentidl3], exponential potentig]20,21], and
On the one hand, recent cosmological observations, aniiverse power law potential22]. It has also been shown
particuarly the Hubble diagram for type la supernoyap  that the luminosity distance as a function of redsfB, 24
have led to the idea that the universe may be dominated by § the behavior of density perturbations in the dust era as a
component with negative pressy and thus that today the unction of redshif 24] can be used to reconstruct the field
universe is accelerating. Such a component can also, if Or%otennal.

. L : , v However, all these studies have been done under the hy-
sticks to the prediction of inflation th& =1, account for the . L . .
o . . pothesis that the field is minimally coupled to the metric. It is

missing energy.” Yet many candidates have been pro-

posed, such as a cosmological constant, a “dynamical” cosknown that terms with such a nonminimal coupliig ()
mological constanf3], cosmic string$4], or a spatially ho- between the scalar curvatufe and the field¢ can appear
mogeneous scalar field rolling down a potenfil. when quantizing fields in curved spacetifb,26 and in

On the other hand, potentials decreasing to zero for amultidimensional theorie$27] such as superstring and in-
infinite value of the field have been shown to appear in parduced gravity theorie28]. Since these theories predict both
ticle physics modelgsee, e.g.[6,7]). For instance, exponen- the existence of scalar fields with potential or power law
tial potentials arise in high order gravifg], in Kaluza-Klein ~ potential and nonminimal coupling, it is of interest to study
theories which are compactified to produce the four-the influence of this coupling and, for instance, the robust-
dimensional observed univergg), or due to nonperturbative ness of the existence and stability of scaling solutions. The
effects such as gaugino condensat[dd]. Inverse power influence of such a coupling during an inflationary period
law potentials can be obtained in models where supersynmgnd the existence of inflationary attractors have yet been ex-
metry is broken through fermion condensdték This gives amined(see, e.g.[29)).
one more theoretical motivation to study the cosmological In this article, we study the stability of scaling solutions

implications of a field with such potentials. of a nonminimally coupled scalar field. We first presesec.
The cosmological solutions with such a field were firstll) the main notations and equations. After having, in Sec.
studied by Ratra and Peeblgsl] (see alsd12,13) who Il briefly recalled the standard approach for determining the

showed the existence and stability of scaling solutions inpotentials that can give rise to such behavior for a minimally
respectively, a field, radiation, or matter dominated universgoupled scalar field, we investigate the inverse power law
for a field evolving in an exponential and inverse power lawpotentials(Sec. IV) and the exponential potentigdec. \j. In
potential. A complete study in the framework of baryotropic the latter case, we study the two limiting situatigis1 and
cosmologies in the case of the exponential potefhfid|15  &>1 and then have a heuristic discussion for the general
shows that the solutions were stable to shear perturbatiorease.

and to curvature perturbations whBhp << —1/3, but that for

realistic mattersuch as dustthese solutions were unstable, Il. DESCRIPTION OF THE MODEL

essentialy to curvature perturbations. Liddle and Scherrer \ya 4ssume that the universe is described by a Friedmann-

[16] made a complete classification of the field potentials anq_emaftre model with Euclidean spatial sections so that the
show that power law potentials also lead to scaling solution§,e ejement reads

(i.e., to solutions such that the field energy dengiybe-

haves as the scale factor at a given poveerd the coupling ds?= —dt?+ az(t)[5ijdx‘dxj]E§M,,dx“de, (1)

of the field to ordinary matter has been consideredlir. . o

Such solutions are indeed of interest in cosmology since theyherea(t) is the scale factor antithe cosmic time. Greek

provide a candidate for a component with negative pressuréndices run from 0 to 3 and latin indices from 1 to 3. The
Cosmological models with a scalar field have started to bédubble parametelr is defined asd=a/a, where an overdot
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denotes a derivative with respectttdVe also introduc& ,,  [25]). Note, however, that when the signature of the metric is

the covariant derivative associated wil, . (+,=,—,—), one has to change the sign@f,, [J, R, ,
We assume that the matter content of this universe iandG,, while T,, andR remain unaffected.
composed of a perfect fluid and a homogeneous scalar field It is then straigthforward to check that the density and the
¢ coupled to gravity and coupled to matter only throughpressurg7) of the scalar field are given by
gravity. The fluid energy density)B and pressureP_ are

. 1. .
related through the equation of state po= §¢2+V(¢>)+3H EH(2h+HG), (9)
Py= 00 v .
where B refers to “background.” The conservation of the P¢:§¢2_V(¢)_f[(2H+3H2)¢2+4H¢¢

energy momentum of the fluid reduces to

+2dp+2¢7], (10)

and that the conservation of the energy momentum of the

The scalar field$ evolves in a potentiaV/(¢) and its  field (VMTW:O) reduces to the Klein-Gordon equati(®):
dynamics is given by the Lagrangian

,'JB+3H(pB+ P_)=0. (3)

pst+3H(py+Py)=0

1 — —
=__ “ \—ad? . .odv .
Sy ZJ[%(M ¢+ 2ER1($)+2V(¢)]IV—gdx, @ h+3HP+ g +6L2H7HH)
4
=0. (11
where ¢ is the field-metric coupling constant£0 corre-
sponds to a minimally coupled field ad=1/6 to a confor- [We have used that the scalar curvature and the Einstein

mally coupled field and R is the scalar curvature of the tensor are, respectively, given By=6(2H?+H) and Gy
spacetime. No known fundamental principle predicts the=3a2H?2, Eij:—(zH+3H2)a25ij,] The equation of state
functional formf(¢) and we will assume thdt(¢) = ¢>2/2. of the field is defined by

This is, however, the only choice that allows for a dimen-

sionless¢. The equation of evolution is then obtained by _Q
varying the actior(4) with respect to the field which leads to @e~ Py
the Klein-Gordon equation

(12

The matter content being described, we can write the Ein-

b — ,dV stein equations which dictate the dynamics of the spacetime
5_¢:0‘:’D¢_ §R¢o—a deé =0, (5 and, in our case, reduce to the Friedmann equations
v'vhereD'EVMV". For an homogeneous field in the space- H2= g(PB“L%)’ (13
time (1), it reduces to
i, AV 2, ¢ H=—Z[(w_+1)p_+py+Py] (14
¢+3H¢+@+Gg(2H +H)$=0. (6) o L@y PgTPsTFg
The energy density and the pressure of this field are defineith «=8mG. One equation of the s&8), (11), and(13),
by (14) is redundant due to the Bianchi identities. It will also be
useful to introduce the density parameter of a component
_ 1 , asQy= kpy/3H2. They must satisfyfrom Eq.(13)] the con-
pp=a *Too, Py=za ’T;;d", (") straint

3
and we definew ,=P,/p,. The energy-momentum tensor QB+Q¢:1' (19
T, is obtained by varying the actioi@) with respect to the
metricg,, and reads IIl. SCALING SOLUTIONS FOR MINIMALLY COUPLED
my SCALAR FIELDS (£=0)

T (1207, 7.0+ 26 58,5070 (o show that there exist sealing soltions and t6 determi

g solutions and to determine

e — o — the potentials that give rise to such solutions. This presenta-

—26¢V,V,$+284U G, + £G "= V(D) Gy, tion will also enable us to understand the differences with the

(8)  more general case of nonminimally coupled scalar fields. We
_ follow the approach initiated by Ratra and Peeljtes and
G, being the Einstein tensor of the background metric. Thisothers[13,16] where one, assuming a scaling form foy,
expression can be compared to standard resséte, e.g., derives an equation fap(a) and then uses Eg§9), (10) to
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deduce the associated potential.
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supernovae measuremeieghich seem to favow ,= —0.6

The equation of evolution3) of the background fluid [30]) even if it can account for a substantial part of the dark

density can be integrated to give

B ) a
M with x=—,
a

0

Py=PgeX (16)

where a subscript O refers to quantities evaluated at a given
initial time. We now look for scaling solutions, i.e., solutions

such that

n

Since n/3—1=1-2V/pye[—1;1], we deduce thatn
€[0,6] (let us emphasize that this @&priori no longer true

when ¢£+#0). Using Eqgs(9), (10), such a solution must sat-

isfy
., N n
¢ =3Ps and V(¢)=(1— 6)1%- (18)

Now, the Friedmann equatiofiL3) implies that the field
should satisfy

do A _ _ _[PBo
—=—————— with B=/— and
dx x1+BZ%"M Pgo

19

n n
K N pgotpo K

This can be integrated for different relative valuesoand
n.

A. m=n case

In that situation, Eq(19) leads to

b—do=—Inx with A1z 240 (20)
0 A \/ﬁ
and, then using Eq18), to the potential
I L) v
V($)=| 1= 5| pgoe . (D)

matter.

B. m#n case

In this case we have

dg A
dx  x{1+B%" ™

which can be integratedB(>0) to give[31]

(22)

d— o= mzfn In[ V1+ (B~ Ix(M=M/2)24 g=1x(m=m/2]
(23)
Again, using Eq(18), we can deduce the potential
V(9)=(1- g Jowor ™ 24

x being given by Eq(23). Indeed, we only get the potential
in a parametric form, but wheB>1 (i.e., when the perfect

fluid drives the evolution of the universe can be eliminated

from Egs.(23), (24) to give

m—n

n —2n/(m—n)
V(¢)=(1— g)quo(WB)

(6= o) 20,
(29

Whenm=3 andm=4, we recover the Ratra-Peebles result
[11] as well as the Liddle-Scherrer res[d6] for all m. This
parametric general form of the potential seems, however, not
to have been exhibited before.

IV. NONMINIMALLY COUPLED SCALAR FIELDS WITH
A POWER LAW POTENTIAL

A. Existence of a scaling solution

The former procedure cannot be applied when the field is
nonminimally coupled since it is impossible, for instance, to
write a closed equation fat¢/dx as in Eq.(19). Moreover,
we are interested in a field evolving in a given potential. We
assume that the field evolves in an inverse power law poten-
tial and show that there exist scaling solutions, the stability
of which is then studied.

We assume that the potential takes the form

This solution corresponds to the scalar field dominated

universe of Ratra and Peeblgsl] and to their scaling solu-
tion in the casem=3 andm=4 (i.e., radiation or matter

dominated univergeNote that with such a potentiad,, will,

-

with a>0,

V(</>)=VOM‘,§(Mi (26)
p

by construction, mimic the evolution of the background fluidwith M, being the Planck mass. The universe is dominated
and that we do not have to assume <1. by the perfect fluid so thatve assuman0)

Note, however, that, if the scalar field has reached the
attractor from very early timgp, behaves like radiation and _ E L A= an(t—t.)2m _m 1
thus contributes to a non-negligible part of the radiation con- T mt—ty’ =a(t—t)™, o = 3
tent during the nucleosynthesis and it has been shown that it
implies the constrainf ,,<0.15[20,12. Moreover, since RedefiningMp(t—to)\/V—o ast and /M, as ¢, the Klein-
w4=0 in the matter era, such a field will not explain the Gordon equatiori6) becomes

(27)
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B. Stability

. 61. 12(/4
R (

a+1l)__

N )ft_z p—ag (TD=0. (28 As emphasized in the previous section, the scaling solu-
tion does not depend on the couplifigThe stability of such

Looking for a solution of this equations of the forgect?,  a solution is known wher=0 [11,16; we now have to

one obtains study it whené+ 0. Following[11], we define the new set of
variables
_ tﬁ a+2__ @
¢_¢O ) 0 6 12 4 y t:eT, (32)
Bl B+—=—1|+ E a —
2 é(7)
= u(r)=——, 33
B=— (29 (=305 (33
so thatp gca™" with n/m=a/(a+ 2). This solution is only
well defined if where ¢ is the scaling solutior29). We set¢’=dg/dr.
6 o 6/4 Using ¢=e "¢', dp=e2"(¢"—¢'), and ¢./ps=2/(a
e m+ E(ﬁ_l (a+2)&>0. (30 +2), Eq.(28) reduces to

One can then compute the energy and the pressure of this

field by inserting this solution into Eq$9), (10) and verify, u”+( 6 n 4 _1) ( 2 E_ @
after some algebra, that m a+2 a+2m a+2
o a—2 20 4
_ % +—|=—-1[¢|(u—u(e*)=0, 34
Oy=—m (31) mlm f)( ) (34

whatever the value of. This shows that the scaling solution
does not depend on the coupling in the sense #hatis  The scaling solution corresponds to the critical paint1.
independent of. This relation generalizes the one found for Introducingv =u’ and linearizing around this critical point

minimally coupled scalar fieldg2,11,186. [u=1+ €], we obtain
|
, 0 1
€ €
( ): 6 «a | 6(at2) . 6 4 ( ) (35)
N ] I i 1 B ey
The eigenvaluei .. of this system are
2 =1 0 4 +\/1 6 4 ) ° 2 4 1 36
I e Y b B | iy A e (39

This expression reduces to the Liddle-Scherrer refd8l  and their real part is given by Re()=[1-6/m—4/(«a
when ¢=0 [with @/(a+2)=n/m] and to the Ratra-Peebles +2)]/2 and the scaling solution is stable if
result[11] when eithemm=3 orm=4.
A necessary and sufficient condition for the critical point 6 4
to be stable is the negativity of the real part of the two ei- 1—-—— ——<0. (39

L= +
genvalues. Defining as m a+2

4m \? am (i) When the two eigenvalues.. are real, their product is
_ (m—ﬁ—m —8m (G—Tz [from Eq. (34)]
¢= 48 a+2)(4—m) ' 37
6 a 6(a+2)[4
the two solutions of Eq(36) are real when §— &)(m—4) LM:ZHE_ a+2 m|m Y¢)70
=0. Thus,(i) when the two eigenvalues are complax,\?% (39
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FIG. 1. (left) The convergence towards the scaling solution wéem. (right) The convergence towards the equation of stgje=0 for
different initial conditions.

because of the conditiof80). They are thus of the same 206 2 m
sign, their sum bein = B A= — - _
19 | u Ing ¢S In(At )1 A~ )\2( )! ﬁ N :>w¢s 3 11
A+A_=1 ° 4 40 49
* B m a+2 (40

where the subscrips refers to the scaling solution. In the

they will both be negative if , +\ <0, and thus the solu- radiation era, this implies, for instance, th@,;s= 1/3 and the
tion will be stable only if scalar field behaves like radiation. Indeed, this is a very spe-

cial case since in that perio’E=O and the field does not

1— E_ i <0, (41) “feel” the nonminimal coupling and it evolves as if it were
m a+2 minimally coupled. The complete study of these solution in
. function of the two parameters\(m) [14,15 shows that
as in the casé=¢. when A?>m, the scaling solutiony is a stable node or
In conclusion, we find thawvhateverthe coupling constant  spiral whereas, whei?<m, the late time attractor is the
¢, the scaling solutiori29) will be stable if and only if field dominated solution, which we do not consider here. The
convergence towards the solutign is illustrated in Fig. 1.
1 6 4 <0 42) Now, in the most general case where~4, it is easy to
m a+2 realize that a solution of the formp=In(At®) cannot be a

solution of Eq.(44).
The value of¢ only determines the nature of the stable point,
i.e., wether it is a stable spiral or a stable node. This gener- 1.|4<1 case
alizes the study by Liddle and Scherfd6] to a nonmini-

X Let us first look at the effect of a small perturbation&n
mally coupled scalar field.

in the sense that the potential term dominates over the cou-

pling term in the Klein-Gordon equation. For that purpose,
V. NONMINIMALLY COUPLED SCALAR FIELD we set

IN AN EXPONENTIAL POTENTIAL

A. Scaling solutions u=int,
We now focus on potentials of the form b= st Eht+ O(£2). (46)
V(¢)=V0Mée‘“”“\"p with A>0 (43)  The equation of evolution fory can be deduced from the

_ _ Klein-Gordon equatiori44):
and work under the same assumptions as in Sec. IV. Rede-

fining t and ¢ as in Sec. IV, the Klein-Gordon equation now , |6 , 12/ 4
reads A It L el e 4§ 14
. 61. 12/4 12/ 4
bt — 1o+ 5—1)§—¢ re M=0. (49 =——[1 e Mgt WS_E(__ >¢S,

When the coeficient of vanishes, i.e., in a radiation domi- @0
nated universerg=4) or when{=0, one can find a special where a prime denotes a derivative with respect. thow, if
solution of the form¢=In(At®). We get that(see Sec. IIlA  we restrict ourselves t§<1 and linearize this equation us-
with k= M;Z) ing expressior(45) for ¢¢, we obtain, at zeroth order i&,

123510-5
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m=3, A=2, £&=0.01 m=3, =2, £=0.1

D8 08 4

oz 08 04

,nz(¢_%s), 0z o2 (¢_ﬂ¢s), 0z 04 08 08 1 W o8 06 04 o2 (q’_uq)s), 0z

FIG. 2. The deformation of the phase space from Fig. 1 due to the couplirg=f®0 2,10 %,—10~2. The solution converges towards
the attractor which drifts froms, since$— ¢gxéu+ O(£2).

6 12/ 4 N We recover that wheg—0 or m—4, ug— and we are
E_l) l//'+2(a—1) w=ﬁ(5—1)[ln A™"=2u],  back to the minimally coupled cag8ec. Ill A). The behav-
(48  forof |dV/d¢| and (12m)(4/m—1)é¢ as a function ofi is
shown in Fig. 4, below. Wheg<1, we see that, as ex-

W+

the solution of which has the general form pected, the solution is first dominated by the potential term
but that as time elapses the coupling term tends to become
12 4—m 1+InA-N more dominant. In Fig. 2, we illustrate how the phase space
y=B,e*+'+B_e* Y- — u— . trajectories are deformed due to the existence of this small
mA 6—m 2 coupling.

(49 Now, as long asi<uq, we can compute the equation of

" ol ) i state of the field by inserting the particular part of the solu-
B.e*+" andB_e"-" are two independent solutions of the {jon (49) in Egs.(9), (10) which will take the form
homogeneous equation. Sincea, a_=2(6/m—1)=

—2(a; +a_), we deduce that in<6, the real parts of both wy(U)= w¢s[1+,4(m,)\)u*1+ B(m,\,&)u2
a, anda_ are negative, so that the two homogeneous solu-
tions correspond to decaying modes and the particular solu- +0(u™¥]  (if m#3)
tion is then an attractdif m<2/3, thena, anda_ are real; 1
otherwise, they are complex and the homogeneous part will =—[1+C(mMu~+0wW"?3] (if m=3).
decay while oscillating u
Indeed, this analysis is valid only as long as the potential (51)
term dominates over the coupling term in E44), that is, as
long as The difference in these two behaviors comes from the fact
thatP ;o u?if m#3 andP ,ou whenm= 3. The exact forms
of the functions A, B, andC can be obtained by doing an
SU<Ueq, expansion oP ,/p, in u~ L. In Fig. 3, we show the deviation
of the equation of state from pure scaling and compare the
former expansion to the numerical integration. In conclusion
! _ 1 m@6-m) ni 2(2_1) 50 e have that wheg<1 andu<ue,, the field converges
€a 12/¢] |[4-—m| T\ towards a barotropic fluid.

dv| |(12(/4

e

m=3, A=2

— =107

- - E=5107

~0.09[¢ © o estimate O™ |

o ©  estimate O(u’g)
n

FIG. 3. The time varying equation of state and its deviation from the minimally coupling cage=for 10 2, 10" 2 and the comparaison
of this equation of state with the estimafsl) at first order and second orderin *.
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m=3, A=2, £=1/2 m=3, A=2, £=107 m=3, A=2, £=—0.01
= S S g
i P :
A Ry A1\
i R 2.
YA st N M ., i 2,
I 1 NN
g ..'U'J' ) [‘. ]
i iy - "= T N
| " ' [l "
| |
b ) B A N S S S b ]
10 15 20 25 30 o “ 5 = 10— 15 20 25 30 100
u u u

FIG. 4. The respective influence of the coupling term and the potential term in the Klein-Gordon equation. We havidpdigpand
|Rép| normalized to their sum fog=1/2 (left). The two terms alternatively dominate and then converge. When, after some
oscillations corresponding to the convergence towgigsthe potential term dominates over the coupling as long<&sq. When¢<o,
the coupling term will dominate forever.

2.|8>1 case This solution has, however, to be excluded since one can

Let us now consider the case where initially the couplingtheck that it leads tp,<0.
term dominates over the potential term in the Klein-Gordon
equation. At lowest order, one has 3. General case

The general case is more involved since we cannot find

6 12/ 4 . : g
E_l) b+ _(E_l> £b=0, (52) any analytic solution to Eq44). First, whené>0, we have

¢H +

m seen that when either the potential or the coupling term
] o dominates, the other slowly catches up. We thus expect a late
_ @ U a_u _
d=A e“+"+A_¢ . (53) R§¢27\e_)“/’. (58)
When ¢>0, sincea,a_x4/m—1 and o, +a_=—(6/m

In Fig. 4, we plot the evolution of these two terms in the case
whereé<1 and in a more general case. The two terms al-
ternatively dominate and then converge to the same value.
Indeed, this is no proof.

We can, however, look for a general solution of the form

—1), we deduce that if &m<4, the real part of botlw
and «_ is negative so that Eq53) corresponds to two de-
caying modesgit can be seen as a proof that the critical point
¢=0 is an attractgrso that

Rép—0 and e M\ when 0<m<4 and ¢>0, n=c

(4 6= &, (59

and the potential term will rapidly catch up the coupling "o

term. with o given by Eq.(45) and ¢, given by Eq.(49). Insert-
When <0, aa_x—4/m+1, and the real part of one ing this expansion into the Klein-Gordon equatiei), we

of the two quantitiese , , say, is positive when€m<4 so  optain the hierarchy of equations
that

o " 6 ’ 6
Rép—o and Ae **—0 when 0<m<4 and ¢<0, l/fn+(a_1 Un+2 E_l)’ﬂn
(59
) i i 12/ 4 .
and the coupling term dominates forevsee Fig. 4 and ¢ = E_l Y1t NATM (o, - W)
behaves a#& , e*+" with
6 6 2 48/ 4 if n=1. (60
2a+=(l—— +\/ —— ) ——(——1)5, (56)
m m mim

The functionf,, depends on all the solutiong for i <n. All

for which, since the potential term is negligible, these equations have a solution of the form

5 4 =B e*+U+B_e*U+ . (61)
af —4f —(B3-—m)+| ——1]a,+2a% _ .
_ m m As in Sec. VA2, the two homogeneous modes decay if
@g(m, &)= , 24 1 ' m<6 andVn,¢,— i, . It can also be seen that, will be a
oyt ﬁf et E} polynomial inu of degreen. If the seriesEg”fpn converges,
(57)  then
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FIG. 5. The phase space analysis and the evolution of the density, pressure, and equation of state in a cagelwhegreonverges
towardsquS whatever the value of (£=0,1,3 in the upper right plotwith or without oscillations according to the valuemf(m=2, 2.5,

3 from bottom to top in the lower right plpt

n=oo

¢— E_)o ", when u—os, (62)

from which we can conclude that ¥£"y,, converges, there
exists an attractor to E¢44) given by Eq.(62). Indeed, we

where the two functions4 and B are obained as in Sec.

V A 2. Note that foru>1 the ¢ terms of Eqs(9), (10) domi-

nate the density and the pressure. In Fig. 6, we have plotted
the phase space showing the convergence towards the attrac-
tor ¢ in the case of a conformally coupled scalar field and
the evolution of its equation of state.

cannot demonstrate the convergence of this series in the gen-

eral case. In Fig. 5, we show the phase space trajectories

showing the convergence towards this attractor.

Whenm>2/3, the solution converges towards the attrac-,

B. Numerical results

We integrate numerically Eq44) and use Poincarpro-

tor while oscillating so that the equation of state has wiggledeCtion[32] to represent the result in the plané, ¢'):

and converges towards¢s (see Fig. 5 Whenm<2/3, this
oscillatory behavior does not appear whategésee Fig. 5.

4. Case of a radiation dominated universe

As explained above, one has the solutigt) to the
Klein-Gordon equation and this solution is an attradsee

the phase analysis of Fig) @nd the field behaves as radia-
tion. The solution(49) reduces to the two decaying modes.

Indeed the derivation of E¢51) is no longer valid but, with
the same method, one can show that, to first orderih

1 -1 -2
wy=3[1+AMUH+ B0 Hu ], (63)

m=4, A=2.5, E=1/6

o8l

o6l

o4l

0.2]

@)

02

—0ab

-0

-08F

r .
— siné,

¢= 1-r

r

E Ccosé.

¢'=

(64)

This projection shrinks all the trajectory in the phase space to
the unit disk. The pointaN=(0,1), E=(—1,0), and W
=(1,0), respectively, correspond topEx,¢'=0), (¢
=0,¢p' =—x), and (»=0,¢’' ==»). Note that the system is
nonautonomous since E¢7) depends onu. Thus, curves
can cross in the Poincamepresentation but they will not
cross in a 3D representationp{(¢’,u). The 1 to 6 plots

m=4,2=2.2

i ; H
o6 04 04

o)

FIG. 6. The phase space analysis for a field in a radiation dominated universe. The scaling solution is the late time attractor whatever

£ [£=0, 102 and 103].
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correspond to the situations studied in the previous paraequation of state was converging towards a baryotropic
graphs. We plot the evolution of the solution in the phasesquation of state and some numerical examples tend to show
space b, ¢’) and the evolution of the equation of state whenus that it should be the case whate¢er0 (but this has not
£<1. To finish, we give some examples of evolution in thebeen demonstratgdndeed, such potentials are not the most
caseé«1. favored since they are constrained by nucleosynthesis to
0 ,40<<0.15[20] and cannot explaitwhen ¢=0) the super-

VI. CONCLUSION nova measurements sineg,=0. Note, however, that the

convergence toward the baryotropic equa’['u)gg'5 is much

In this article, we studied the influence of _the coupling slower wheng#0. When<0, we have shown that there
between the scalar curvature and the scalar field on the eX- . ; ; ; ) i
) - . . _— -~ “always exists a time after which the coupling term will domi-
istence and stability of scaling solution of this field evolving

S . ' .2 nate and thus that there exists a scaling solution but with a
in either an exponential or an inverse power law potential.

The motivation for considering such solutions is first thatdlfferent equation of stat@as long as &m<4 and, thus, in

they can be a candidate for a matter component with neg a matter dominated eraUnfortunately, such a solution has

: be rejected since it has negative energy.
tive pressure and second that they appear for a large class oF ; .
potentials predicted by some theories of high energy physics As pointed out by Caldwelet al. [22], a smooth time

We first found a new parametric form of the potential thatdependent field is unphysmal since - one has_ to take into
. . account the back-reaction of the fluctuations in the matter
reduces to the inverse power law potential when the energ

density of the fluid drives the evolution of the spacetime. Xomponents. The cosmological consequences of such an

Concerning the inverse power law potentials, we ShoV\Ie(llnhomogeneous coupled scalar field in both exponential and

analytically that the existence and stability of a scaling soly NVerse power law potentialsuch as the computation of the

tion does not depend on the coupli@nd that the equation cosmic microwave background anisotropies and the matter

. . N power spectrurhwill be presented latgi33] and our present
of state of the ] field was. always given bgod’_(wsa study is only related to the implication of the homogeneous
—2)/(a+2). This generalizes the work by Ratra and part of such a field.

Peebleg11] and Liddle and Scherrgd6].

_ The situation is more involveq with exponentia_l potentials ACKNOWLEDGMENTS
since one cannot find an analytic form for a scaling solution
(apart for a radiation dominated universg/e then studied It is a pleasure to thank Pierre Bingy who raised my

the effect of a small perturbation coupled to the scalar curinterest to the subject of quintessence, Luca Amendola,
vature and computea,, to first order iné<1 and showed Nuno Antunes, Nathalie Deruelle, and Alessandro Mel-

that there always exists a time after which one cannot negleathiorri for discussions, and Ruth Durrer and Patrick Peter for
the effect of the coupling. In that limit, we show that the discussions and comments on the early versions of this text.
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