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Early time perturbations behavior in scalar field cosmologies

Francesca Perrotta
SISSA/ISAS, Via Beirut 4, 34014 Trieste, Italy

Carlo Baccigalupi
INFN and Dipartimento di Fisica, Universita` di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy
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We consider the problem of the initial conditions and behavior of the perturbations in scalar field cosmology
with a general potential. We use the general definition of adiabatic and isocurvature conditions to set the
appropriate initial values for the perturbation in the scalar field and in the ordinary matter and radiation
components. In both the cases of initial adiabaticity and isocurvature, we solve the Einstein and fluid equations
at early times and on superhorizon scales to find the initial behavior of the relevant quantities. In particular, in
the isocurvature case, we consider models in which the initial perturbation arises from the matter as well as
from the scalar field itself, provided that the initial value of the gauge-invariant curvature is zero. We extend
the standard code to include all these cases, and we show some results concerning the power spectrum of the
cosmic microwave background temperature and polarization anisotropies. In particular, it turns out that the
acoustic peaks follow opposite behavior in the adiabatic and isocurvature regimes: in the first case their
amplitude is higher than in the corresponding pure cold dark matter model, while it is the opposite for pure
isocurvature initial perturbations.@S0556-2821~99!03110-0#

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

In recent times, the need for a ‘‘quintessence’’ compon
has come out due to the several difficulties of the stand
Vm51 cold dark matter~CDM! model which was unable to
explain the observed features of large scale structure. In
context of inflationary cosmologies, we expect that t
present spatial curvature of the Universe is negligible and
total energy density equals the critical energy density; on
other hand, there is growing observational evidence that
matter energy density is remarkably below the critical val
even taking into account the exotic and so far undetecta
particles known as cold dark matter. Thus, we are faced w
figuring out how to explain the missing-energy values of
much as 70% or 80% of the critical density.

Further, there is need to have the age of the Universet0,
exceed the age of globular clusters in our galaxy; the lim
on t0 are holding at about 13 Gyr or more@1#, and when
combined with current estimates of the Hubble expans
parameter, converging from different methods toH0'60
610 km/(sec Mpc)@2#, give rise to an observed value of th
‘‘expansion-age’’ parameterH0t0.0.8, sensibly higher than
2/3 as predicted by the standard Einstein–de Sitter mod

Preserving the flatness of the Universe, its age could
enhanced by lowering the matter content in models involv
a component whose equation of state is different from ma
and radiation, for example, in models including a cosmolo
cal constant. One more problem with the CDM model ari
from the mismatching of the galaxy clustering power sp
trum shape, when only Cosmic Background Explo
~COBE! normalized spectra are considered. All these m
vations have ratified the demise of the standard CDM mo
leaving cosmologists with the open question of what
missing-energy candidate could be.

Apart from the cosmological constant, introduced in so
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models in order to maintaining spatial flatness, but still
taining serious unsolved theoretical issues, several ‘‘quin
sence’’ models were proposed as candidates for the mis
energy, often modeled as scalar fields rolling down their
tentials@3–11# or, more generally, described in terms of a
unspecified equation of state different from that of mat
and radiation@12–14#. We refer to any component whos
properties are well described in terms of a scalar field evo
ing in a potential which couples to ordinary matter on
through gravity. In some sense, it can behave like a cos
logical constant when its kinetic energy is negligible wi
respect to the potential energy, so that the scalar field eq
tion of state approaches21; because of the strongly relativ
istic nature of such a component, the characteristic scal
clustering processes for a scalar field is just the horizon@11#,
giving a similarity with a cosmological constant in the und
tectability of quintessence energy concentrations on sc
smaller than the horizon.

The interesting feature of the ‘‘quintessence’’ compone
is just that, contrary to the cosmological constant, it is tim
varying and spatially inhomogeneous, so that it can deve
fluctuations which can be relevant in perturbation grow
and can leave a characteristic signature in the cosmic mi
wave background~CMB! and in the large scale structure
Even though many of these imprints have been studied
previous works, the issue of initial conditions and scalar fi
perturbations has often been underestimated; in particu
we found a gap regarding the opportunity to impose isoc
vature initial conditions in a several-component system
cluding a minimally coupled scalar field. Our aim is to giv
a complete prescription for describing adiabatic and isoc
vature initial conditions if an additional component is prese
in the form of such a scalar field; this can be acquired
giving the set of equations relating all the fluid compone
needed in the two cases.
©1999 The American Physical Society08-1
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FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW D59 123508
In order to do that, we need background and perturba
equations which we briefly review on Secs. II and III. T
original results of our work are presented in Secs. IV and
where we work in the formalism of the synchronous gau
by generalizing the work of Ma and Bertschinger@15# and
finding the super-horizon-scale behavior of perturbations
early times, starting from initial zero-entropy perturbatio
~adiabatic case! or initial zero-curvature perturbation
~isocurvature case!. We express the needed gauge-invari
quantities, namely, entropy and curvature perturbations
terms of synchronous perturbations of baryons, photo
massless neutrinos, cold dark matter, and a minim
coupled scalar field, as well as metric perturbations. In S
VI the results are translated in conformal Newtonian gau
and in Sec. VII we numerically investigate the growth
entropy and curvature perturbations starting from differ
initial conditions, and we compare them with the correspo
ing behavior in the standard CDM model. In that compu
tion, the adopted scalar field is associated with an ultrali
pseudo Nambu-Goldstone boson@16#, with global spontane-
ous symmetry breaking scalef .1018 GeV and explicit
breaking scaleM;1023 eV; such a field should be acting a
present like an effective cosmological constant and domi
ing the energy density of the Universe. Also we plot, a
discuss, the pure adiabatic and pure isocurvature C
anisotropies spectra, again making a comparison with
standard CDM.

II. EINSTEIN AND CONSERVATION EQUATIONS

We begin by a brief review of a homogeneo
Friedmann-Robertson-Walker~FRW! cosmology in which
there is an additional contribution coming from a minima
coupled real scalar fieldf evolving in a potentialV(f).

We consider only models with totalV51 in this paper,
and we work in conformal coordinates, so that the line e
ment isds25a2@2dt21d i j dxi dxj # wherea is the cosmic
scale factor andt is the conformal time.

The scalar field energy density and pressure, associ
with the Lagrangian describing the classical behavior off,

L52
1

2
A2g@gmn ]mf ]nf12V~f!#, ~1!

follow from the expression of the stress-energy tensor

Tn
m5f ;mf ;n2

1

2
~f ;af ;a12V!dn

m ~2!

and are given by

rf5
1

2a2
ḟ21V~f!, pf5

1

2a2
ḟ22V~f!, ~3!

where the overdot denotes a derivative with respect to c
formal timet. The above quantities evolve according to t
Friedmann equation, in which we separate the contribute
matter, radiation, and scalar field to the total energy dens
12350
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a
D 2

5
8pG

3
a2@rm1r r1rf#, ~4!

together with the conservation equations

f̈12Hḟ1a2
dV

df
5

1

a2

d

dt
~a2ḟ !1a2V8~f!50, ~5!

ṙn1nHrn50, ~6!

whereH is the conformal expansion rate of the Universe,rn
is the energy density contributed by radiation (n54) or non-
relativistic matter (n53), andV85dV/df. Note that, from
Eqs. ~3!, the second-order Klein-Gordon equation~5! is
equivalent to the conservation law

ṙf523H~rf1pf!. ~7!

Including all the modifications due to the additional sca
field component, we shall carry out a fully relativistic trea
ment of the perturbations of this background, based on
notation of Ma and Bertschinger@15#. We work in Fourier
space and we perform the parametrization of the pertur
quantities in the formalism of the synchronous gauge,
which the perturbed line element isds25a2@2dt21(d i j
1hi j )dxi dxj #. Since we are interested here only in scal
type perturbations, the metric perturbations can be par
etrized as

hi j ~x,t!5E d3k eik•xF k̂ik̂jh~k,t!1S k̂ik̂j2
1

3
d i j D6h~k,t!G ,

~8!

with k5kk̂ andh denoting the trace ofhi j .
Note that the synchronous potentialsh and h in k space

are related to the gauge-invariant variablesFA of Bardeen
@17# andC of Kodama and Sasaky@18# by the relation

FA5C5
1

2k2 F ḧ16ḧ1
ȧ

a
~ ḣ16ḣ !G , ~9!

which allows us to relateh and h to the gauge-invarian
curvature perturbationz ~see@19#!,

z5
2

3
~H21Ċ1C!/~11w!1C, ~10!

where w5p/r; the above expression will be useful in th
following. Now, focus on the equations describing the ev
lution of perturbations involving the various components.

As is well known, the scalar field can mimic a cosmolog
cal constant if its kinetic energy is negligible with respect
the potential one. However, a substantial difference is tha
admits perturbations around the homogeneous solution
Eq. ~5!; in linear theory, they are described by small fluctu
tions df and ḋf around the background values, driven b
the equation of motion
8-2
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d̈f12
ȧ

a
ḋf2¹2df1a2

d2V

df2
df1

1

2
ḟḣ50. ~11!

The density, pressure, and velocity perturbations for the
lar field are described as usual by the following quantitie

drf52dT0
05

ḟdḟ

a2
1V8df, ~12!

dpf5
1

3
dTi

i5
ḟdḟ

a2
2V8df, ~13!

~rf1pf!uf5dTi
05ka22ḟ df, ~14!

pfpf50, ~15!

df5
drf

rf
, uf5

k

a2

ḟdḟ

rf1pf
5k

dḟ

ḟ
, ~16!

therefore, we define the differential ratio

dpf

drf
5

ḟdḟ2a2V8df

ḟdḟ1a2V8df
5cf

2 1
pf

drf
Gf , ~17!

which differs from the scalar field sound velocity

cf
2 5

ṗf

ṙf

~18!

by the termGf describing the entropy contribution@18#.
It is useful to describe radiation in terms of the coef

cients characterizing the Legendre expansion of the temp
ture and polarization brightness functions,DT(k,n̂,t) and
DP(k,n̂,t):

DT~k,n̂,t!5(
l 50

`

~2 i l !~2l 11!DTl~k,t!Pl~ k̂•n̂!, ~19!

DP~k,n̂,t!5 (
l50

`

~2 i l !~2l 11!DPl~k,t!Pl~ k̂•n̂!. ~20!

Their evolution is completely determined by the Boltzma
equations; denoting bysT the Thomson scattering cross se
tion and byne the electron density, we have, for photons

ḋg52
4

3
ug2

2

3
ḣ, ~21!
12350
a-

ra-

u̇g5k2S 1

4
dg2sgD1anesT~ub2ug!, ~22!

2ṡg5
8

15
ug2

3

5
kDg31

4

15
ḣ1

8

5
ḣ2

9

5
anesTsg

1
1

10
anesT~DP0(g)1DP2(g)!, ~23!

ḊTl(g)5
k

2l 11
@ lDT( l 21)(g)2~ l 11!DT( l 11)(g)#

2anesTDTl(g) ~ l>3!, ~24!

ḊPl(g)5
k

2l 11
@ lDP( l 21)(g)2~ l 11!DP( l 11)(g)#

1anesTF1

2
~DT2(g)1DP0(g)1DP2(g)!

3S d l01
d l2

5 D2DPl(g)G , ~25!

where

dg5DT0 , ug5
3

4
kDT1 , sg5

1

2
DT2 . ~26!

The perturbed stress-energy tensor for radiation contrib
to the following nonzero quantities:

dT0
052rgdg , ~27!

ik idTi
05

4

3
rgug , ~28!

dTj
i 5

1

3
rgdg1S j

i , ~29!

S k̂ i k̂ j2
1

3
d i j DS j

i 52
4

3
rgsg . ~30!

The expansion~19! also applies for massless neutrinos; th
evolution equations in the synchronous gauge are given
the following system:

ḋn52
4

3
un2

2

3
ḣ, ~31!

u̇n5k2S 1

4
dn2snD , ~32!

ḊT2(n)52ṡn5
8

15
un2

3

5
kDT3(n)1

4

15
ḣ1

8

5
ḣ, ~33!

ḊTl(n)5
k

2l 11
@ lDT( l 21)(n)2~ l 11!DT( l 11)(n)# ~ l>3!.

~34!
8-3
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FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW D59 123508
Pressureless cold dark matter interacts only gravitation
with other particles and in the synchronous gauge its pecu
velocity is zero; settinguc50, the evolution of CDM density
perturbations is given by

ḋc52
1

2
ḣ, ~35!

and the nonzero component of its perturbed stress-en
tensor is

dT0
052rcdc . ~36!

Taking into account the coupling between photons and b
ons by Thomson scattering,

ḋb52ub2
1

2
ḣ, ~37!

u̇b5
ȧ

a
ub1cs

2k2db1
4rg

3rb
anesT~ug2ub!, ~38!

the perturbed stress-energy tensor for baryons contribute

dT0
052rbdb , ~39!

ik iTi
05

4

3
rgub . ~40!

All these ingredients are to be implemented in the pertur
Einstein equations

k2h2
1

2
Hḣ54pGa2dT0

0, ~41!

k2ḣ54pGa2ik idTi
0 , ~42!

ḧ12Hḣ22k2h528pGa2dTi
i , ~43!

ḧ16ḧ12H~ ḣ16ḣ !22k2h524pGa2S k̂ i k̂ j2
1

3
d i j DS j

i .

~44!

This system of differential equations can be integrated o
the appropriate initial conditions are fixed, which will be th
content of the following sections.

III. INITIAL CONDITIONS
AND SUPERHORIZON EVOLUTION

In order to start the numerical integration of the evoluti
equations given in the previous section, one has to imp
appropriate initial conditions to the fluid and metric pertu
bations. Although a general perturbation need not be ei
isothermal~entropic! or adiabatic~isoentropic!, it can always
be expressed as a linear superposition of adiabatic and
thermal components@20#. Also, it is useful to recall that
isocurvature perturbations may be present in this kind
model@21#. We explore both these conditions in scalar fie
cosmology. In particular we search for the initial values
12350
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the field perturbationsdf0 anddf t0 ~initial real time deriva-
tive! that realize initial adiabaticity and isocurvature, t
gether with appropriate initial conditions on the other p
turbed quantities. For this purpose, we will focus on t
initial fluctuation of the real time derivative of the scal
field perturbation, since the conformal time derivative is
ways zero ata50 by definition (dḟ5adf t). The same hap-
pens of course to the initial conformal time derivative of t
background scalar fieldf; if in general the latter has an
initial nonvanishing kinetic energy, so thatf t05(df/dt)0

Þ0, its conformal time velocityḟ0 is zero sinceḟ5af t .
In the following, we will need to use the scale fact

behavior at early times, whena!1. We will often use the
expansion of the scale factor in powers of the dimension
parametere:

e5A8pGrcV r

3
t5H0AV rt5Ct, ~45!

whererc andH0 are the present critical density and Hubb
parameter, respectively, andV r5Vg1Vn is the total radia-
tion density contribution at the present; indeed, as can
easily verified, the scale factor beinga!1 at early times, we
can neglect the scalar field contribution in Eq.~4!, which
admits the simple solution

a~e!5e1
1

4

Vm

V r
e21O~e3!; ~46!

besides, the expansion rate behaves as

H5CF1

e
1

1

4

Vm

V r
2

1

16S Vm

V r
D 2

e1O~e2!G . ~47!

Before going on, it is worth recalling some general resu
concerning the synchronous gauge behavior of metric
density perturbations on superhorizon scales~we refer to the
work of Ma and Bertschinger@15#, although they did not
include the scalar field component!. We impose initial con-
ditions at an early time, deep in the radiation era, when p
tons and baryons are tightly coupled and can be consid
as a single coupled fluid; as a result of the large Thom
scattering opacity, thel>2 moments of the photon tempera
ture brightness function~24! ~in particular, the shearsg) and
the polarization brightness function~25! are driven to zero;
similarly, to the lowest order inkt, one can ignore thel
>3 moments of the neutrino temperature brightness fu
tion. Thus, Eqs.~21!, ~22!, ~31!, and~32! become

ḋg1
4

3
ug1

2

3
ḣ50, u̇g2

1

4
k2dg50, ~48!

ḋn1
4

3
un1

2

3
ḣ50, u̇n2

1

4
k2~dn24sn!50, ~49!

ṡg2
2

15
~2ug1ḣ16ḣ !50,
8-4
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EARLY TIME PERTURBATIONS BEHAVIOR IN SCALAR . . . PHYSICAL REVIEW D 59 123508
ṡn2
2

15
~2un1ḣ16ḣ !50. ~50!

When we impose initial conditions, ate!1, to get starting
values for numerical integration, all thek modes are still
outside the horizon, i.e.,k!aH51/t ~the last equality holds
in a radiation-dominated universe!. Our aim is to extract the
analytical time dependence of superhorizon-sized pertu
tions at early times, once the initial conditions are realiz
thus we find the early time form of Eqs.~41!–~44!, ~48!–
~50!, and~11! and we find their solutions in successive po
ers of kt. To set up the growth of perturbations, we mu
assume that at least a single perturbation is nonzero at in
time, in order to generate all the others.

IV. ADIABATIC INITIAL CONDITIONS

The first necessary step to impose adiabatic condition
setting to zero the initial entropy perturbation; ultimately, t
origin of this result is that there is initially a single curvatu
perturbation~generated we suppose by inflation! and all later
perturbations are inherited from it. The entropy exchan
between any two fluid speciesa andb is ruled by the gauge
invariant quantity

Sab5
da

11wa
2

db

11wb
, ~51!

which must be set to zero initially@18#. The second reques
comes from setting to zero the first time derivative ofSab ;
actually,Sab obeys the following differential equation:

Ṡab52kVab23HGab , ~52!

whereGab is defined as

Gab5
wa

11wa
Ga2

wb

11wb
Gb , ~53!

Ga being the gauge-invariant amplitude of the entropy p
turbation of the fluid speciesa. The quantityVab5va2vb is
the gauge-invariant difference between the gauge-depen
velocity perturbations of the speciesa andb. In order to have
adiabatic initial conditions, both these terms on the rig
hand side of Eq.~52! are initially set to zero. Thus, for eac
pair of fluid components, we impose

Sab5Ṡab50. ~54!

In particular, applying Eq.~54! to the scalar field and anothe
component~which we leave unspecified and label withx)
will relate the initial values ofdf anddḟ to the other energy
component and metric perturbations. The first condition
Eq. ~54! gives

f tdf t1V8df5f t
2 dx

11wx
. ~55!

Posing Ṡfx5aSfxt50 and using the Klein-Gordon equa
tions ~5!,~11!, we obtain
12350
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t

n

df tS 12
k2f t

6a2HV8
D 5

1

6H F2
1

2
f tht2S dx

11wx
D

t

f t

1
dx

11wx
S 6Hf t12V82

k2f t
2

a2V8
D G .

~56!

Combining them together we find

df5
1

V8
S f t

2 dx

11wx
2f tdf tD , ~57!

df t5
1

6H2k2f t /~a2V8!
F2

1

2
f tht2S dx

11wx
D

t

f t

1
dx

11wx
S 6Hf t12V82

k2f t
2

a2V8
D G . ~58!

The above expressions specify the general adiabatic co
tions for the scalar field. Now, let us make a link to previo
works; in @15# the adiabatic initial values and early time b
havior of the matter and the radiation components w
found in the synchronous gauge; these results apply h
too. Indeed, as can be easily seen from the Einstein e
tions, the contribution of the scalar field fluctuations is ne
ligible at early timesa!1 with respect to the matter an
radiation ones, by a factor ofa3 anda4, respectively. Thus
the approximations and treatment developed in@15# are valid
also here for what concerns the ordinary fluid compone
i.e., photons, massless neutrinos, baryons, and dark ma
the time dependence of the resulting superhorizon-sized
turbations (kt!1) is found by expanding the Einstein equ
tions into powers ofkt and resolving the system of couple
differential equations to obtain the leading-order terms

dg5dn5
4

3
db5

4

3
dc52

2

3
N~kt!2, ~59!

ug5
1514Rn

2314Rn
un5ub52

1

18
Nk4t3, uc50, ~60!

sg50, sn5
4N

45112Rn
~kt!2, ~61!

h5N~kt!2, h52N2
514Rn

90124Rn
N~kt!2, ~62!

whereRn5rn /(rn1rg) andN is a normalization constant
Using these results, it is immediate to see from Eqs.~57!,
~58! that, imposing adiabatic initial conditions, the initia
values ofdf anddf t must be set to zero. Adiabatic cond
tions can be strictly verifiedonly at this initial time, due to
the effect of the mutual coupling between total density p
turbations and entropy perturbations which appear in a
neric multicomponent fluid. Starting from initial zero value
and using Eq.~62!, df anddḟ will evolve according to Eq.
8-5
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FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW D59 123508
~11! which can be easily integrated once terms of the high
order int are dropped; this gives the following behavior
early times (a!1):

df52
1

20
f t0NCk2t4, ~63!

dḟ52
1

5
f t0NCk2t3, ~64!

having considered the lowest terms int, thereby approximat-
ing the time derivative off with its value at the initial time
f t0. We have inserted these inputs into the standard C
code and in Sec. VII we shall give some numerical resu
Now, let us turn to the second class of initial conditions.

V. ISOCURVATURE INITIAL CONDITIONS

The isocurvature initial conditions are obtained by sett
to zero the gauge-invariant curvature perturbation. Its exp
sion is given in terms of the gauge-invariant perturbat
potentialC @19#:

z5
2

3
SH21Ċ1C

11w
D 1C; ~65!

we point out that here, as in@15,18#, C indicates the gauge
invariantFA of the original work of Bardeen@17#, while in
@19# the same quantity is indicated asF. Its expression in
terms of the metric perturbationsh andh in the synchronous
gauge is

C5
1

2k2 F ḧ16ḧ1
ȧ

a
~ ḣ16ḣ !G . ~66!

Therefore, the appropriate isocurvature initial conditions
realized by the time growing solutions of the system~41!–

~44! in which C andH21Ċ are zero initially. First, let us
see that, if the variables describing all the perturbations
regular enough to be derivable at least 4 times int50, then
the isocurvature initial conditions are simply imposed by s
ting the metric and radiation perturbations to zero initially

isocurvature initial conditions:

h05h05dg5ug5sg5dn5un5sn50. ~67!

This can be easily seen by using essentially the Eins
equation ~44!; multiplying both members bya4, deriving
once, and factoring out the present critical densityrc , it
takes the following form:

a2
d3

dt3
~h16h!14aȧ~ ḧ16ḧ !1~2ȧ212aä!~ ḣ16ḣ !

24k2aȧh22k2a2ḣ5232pGrc~Vgṡg1Vnṡn!.

~68!
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Since by hypothesish andh are derivable 4 times int50,
h16h admits the following early time expansion:

~h16h!~t!5
d

dt
~h16h!0t1

1

2

d2

dt2
~h16h!0t2

1
1

6

d3

dt3
~h16h!0t3

1
1

24

d4

dt4
~h16h!0t41O~t5!, ~69!

since with the initial condition~67! its initial value is zero.
At t50 the only term that survives in Eq.~68! is ȧ2(ḣ
16ḣ) since ȧ0

258pGrc(Vg1Vn)/3. Then, by using Eqs
~48!,~49!,~50! one obtains

~ ḣ16ḣ !0

48pG

5
rc~Vg1Vn!50⇒~ ḣ16ḣ !050.

~70!

In the same way, by deriving again Eq.~68! one obtains

~ ḧ16ḧ !050. ~71!

Instead, it may be easily seen thatd3(h16h)/dt3 can be
different from zero; in fact, deriving Eq.~68! 3 times would
bring d3(h16h)/dt3}k2ȧ2ḣ, which may be different from
zero by hypothesis~67!. This means that, fort→0, h16h
5O(t3); sinceH51/t to the lowest order, this is evidentl

enough to makeC05(H21Ċ)05z050, showing that the
initial condition ~67! implies isocurvature.

It is evident that the initial condition~67! can be realized
in several ways, depending on which matter componen
initially perturbed or, in other words, on whichdx is initially
different from zero. In the present case a further degree
freedom arises from the presence of the scalar field, and
will analyze separately two main situations: in the first ca
only one matter component~CDM or baryons! is initially
perturbed; in the second case the initially perturbed com
nent is only the scalar field.

A. Isocurvature conditions from matter perturbations

Let us consider first the case in which an initial dens
perturbation, with amplitudedc0, resides only on the CDM
component. By integrating Eq.~35!, one finds

dc5dc02
1

2
h. ~72!

By hypothesis, this is the only initially perturbed quantit
All the others must be set to zero att50. Let us search the
early time behavior of the perturbations. Since all the mo
are outside the horizon at early times, we first neglect all
terms proportional tok in the Einstein equations; then w
expand all the quantities in powers ofe defined in Eq.~45!
and we calculate the leading orders. In doing this, we
8-6
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assuming that all the perturbation quantities admit a Tay
expansion int50 of course. By making use of the abov
criteria and of Eqs.~46!,~47!, the Einstein equation~41! be-
comes

S 11
1

4

Vm

V r
e1O~e2! D S 11

1

2

Vm

V r
e1O~e2! D eḣ

5
8pG

C 2
@Vgdg1Vndn1Vcdce1Vbdbe1O~e2!#, ~73!

and it is immediate to gain the early time behavior ofh:

h5dc0

Vc

V r
e2

3

8
dc0

VcVm

V r
2

e21O~e3!. ~74!

From the arguments exposed at the beginning of this sec
up to the ordere2 we have also

h52
1

6
h. ~75!

Let us come now to the fluid perturbation quantities. As
evident from the fluid equations, theu ands quantities are
of higher order inkt with respect to the purely metric pe
turbationsh andh. Therefore, their early time behavior ca
be written as follows:

dg5dn5
4

3
db52

2

3
h, ~76!

ug5un5ub52
1

12
dc0

Vc

V rC
k2e21O~e3!,

uc50, sn5O~e3!. ~77!

The behavior ofh16h is interesting even if of high order in
t since it is directly related to the gauge-invariant curvat
by Eqs.~65!,~66! and it can be obtained by solving Eq.~44!:

h16h5
I 1

3
t3, ~78!

where we have defined

I15
4dc0Vc~Vn25V r !Ck2

36V r124Vn
. ~79!

Note thath16h}t3, according to the isocurvature nature
the present case, as we showed in the beginning of this
tion. Also, Eq.~78! can be used to find the behavior ofsn ,
by using again Eq.~44!.

It remains to find the early time behavior of the sca
field perturbationdf. This can be done by expandingdf in
powers ofe and looking at the perturbed Klein-Gordon equ
tion once the terms proportional tok2 have been neglected
The inhomogeneous term is2 1

2 ḟḣ; ḣ is of the order of zero
from Eq. ~74!, and ḟ5af t is at least of the order ofe;
thereby, to the lowest order ine, Eq. ~11! is satisfied by
12350
r

n,

s

e

c-

r

-

df52
1

24
f t0dc0

Vc

V r

e3

C , dḟ52
1

8
f t0dc0

Vc

V r
e2.

~80!

This completes the early time behavior of all the perturbat
quantities in this case of isocurvature initial conditions. A
these relations can be easily generalized to the case in w
the initial perturbed matter component is the baryonic one
the next subsection we study the other interesting ca
where the initial perturbed fluid component is the scalar fi
itself.

B. Isocurvature conditions from scalar field perturbations

Let us suppose that at the initial timea→0 the only non-
zero perturbed quantity is the scalar field, in a manner s
that the total gauge-invariant energy density contrast is z
all the other perturbations being zero; this means that at l
one of the two quantitiesdf0 ,uf0 must be different from
zero initially; from Eq.~16!, the corresponding expression
for df0 anddf t0 are

df05
1

V8~f0!
F1

2
f t0

2 S df022
uf0

k D1V~f0!df0G ,
df t05

f t0uf0

k
. ~81!

In order to have isocurvature, for the other quantities
impose again the initial condition~67!. The relevant differ-
ence with respect to the previous situation lies in the slow
rise of the metric and fluid perturbations starting from th
initial zero values: they will grow according to Eqs.~41!–
~44! and ~48!–~50!, the whole perturbation-growth machin
ery being initially driven only by theO(e4) contribution of
the scalar field through the perturbed Einstein equatio
while the perturbed Klein-Gordon equation starts its dyna
ics from the conditionsdf0Þ0, dḟ50 and generates th
inhomogeneous term driving the evolution ofh. From Eq.
~41!, together with Eqs.~48!–~50!, it is easy to find the early
time behavior of the metric perturbationh:

h5
3

4 S df0rf

rcV r
D C 4t41O~t5!. ~82!

Using the method applied in the previous sections, one fi
the leading-order behaviors:

dg5dn5
4

3
dc5

4

3
db52

2

3
h}t4, ~83!

un ,ug ,ub}t5, sn}t6, ~84!

and from Eq.~44! it can be seen that

h16h5
I 2

6
t6, ~85!

where
8-7
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I25
k2C 4

170V r18Vn
S df0rf

rcV r
D S 2

2

10
Vn2

125

10
V r D . ~86!

From the above formulas we see that the perturbations
garding the metric and the ordinary fluid components r
very slowly; indeed we found a substantial failure of th
model in providing a significant amount of perturbations. F
this reason we will not consider this case in the numer
integrations of Sec. VII.

It is interesting to find the behavior of scalar field pertu
bation at early times, which moves it away from its initi
valuedf0; this contains corrections in (kt2) together with a
term proportional tot4, as can be verified by integration o
Eq. ~11!:

df5df01df (2)t21df (3)t31df (4)t4

1df (5)t51df (6)t61O~t7!, ~87!

where the expansion coefficients are given by

df (2)52
1

6
df0k2, df (3)5

1

72

Vm

V r
Ck2df0 ,

df (4)5
1

20
df0S k4

6
2C 2V9D1

1

80S Vm

V r
D 2

C 2df (2)

2
3

40

Vm

V r
Cdf (3),

df (5)52
1

15

Vm

V r
Cdf (4)1F 1

80S Vm

V r
D 2

C 22k2Gdf (3),

df (6)52
5

84

Vm

V r
Cdf (5)1F 1

84S Vm

V r
D 2

C 22k2Gdf (4)

2C 2V9df (2)2
3

2 S df0rf

rcV r
D C 5f t0 . ~88!

We considered the expansion up to the sixth order int be-
cause, as we will see in the next section, going to the N
tonian gauge changes the last coefficient.

In the next section we extend the results of Secs. IV a
V to the conformal Newtonian gauge.

VI. RESULTS IN THE CONFORMAL
NEWTONIAN GAUGE

As is well known, the synchronous gauge is a coordin
system corresponding to observers at rest with respect to
collisionless matter component. These ‘‘Lagrangian coo
nates’’ are defined by the rest frame of a set of prefer
observers. More physical intuition can be achieved in
conformal Newtonian gauge, where the metric tensor is
agonal. Inside the horizon, the perturbation equations red
to the standard nonrelativistic Newtonian equations. In t
section we write the results of Secs. IV and V in the Ne
tonian gauge.

The connection between the two gauges is realized
12350
e-
e

r
l

-

d

e
he
i-
d
e
i-
ce
is
-

in

general by performing a coordinate transformation relat
the two frames. The link between the perturbations in
two gauges is expressed in the same coordinate point ins
of the same spacetime point; this is why in most cases
interesting to know the difference of the fluctuations in t
two gauges@18#.

First we write down the relations between the genu
metric perturbed quantities. In the Newtonian gauge the p
turbation tog00 exists and it is represented by the potent
C; the trace ofgi j is instead perturbed byF. Their relations
with h andh are

C5
1

2k2 F ḧ16ḧ1
ȧ

a
~ ḣ16ḣ !G , ~89!

F5
1

2k2

ȧ

a
~ ḣ16ḣ !2h. ~90!

They can be easily expressed fore!1, kt!1 by substitut-
ing directly the expressions forh andh contained in Secs. IV
and V.

Now we concentrate on the transformations regarding
ids and scalar field. They are the contained in the stress
ergy tensor, which transforms as

Tmn~ x̃!5
] x̃m

]xr

] x̃n

]xs
Trs~x!. ~91!

Using this and taking care to compare the perturbations
the same coordinate point, the relations between the qua
ties in the two gauges~synchronous and Newtonian labele
ass andN, respectively! for each fluid are

ds5dN2T
ṙ

r
, ~92!

us5uN2k2T, ~93!

ps5pN2pT, ~94!

ss5sN , ~95!

where

T5
ḣ16ḣ

2k2
~96!

is the lapse between the synchronous and Newtonian
coordinates. Regarding the scalar field, we compute
Newtonian gauge expression of the amplitude fluctuationdf
by using the transformation

dfs5dfN2ḟT. ~97!

In the following subsections we write the behavior of t
fluid quantities in thee!1, kt!1 regime and in the New-
tonian gauge, dropping theN subscript.
8-8
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A. Adiabaticity

The leading orders for matter and radiation perturbati
are

dg52
40N

1514Rn
5dn5

4

3
db5

4

3
dc , ~98!

ug5un5uc5ub5
10N

1514Rn
k2t, ~99!

sn5
4N

45112Rn
k2t2. ~100!

The scalar field perturbation amplitude is

df5Nt2f t0

10

1514Rn
. ~101!

Note that in this case the scalar field perturbations grow
time faster (}t2) than in the synchronous gauge (}t4); as
we point out below, this is not a feature of the isocurvatu
initial conditions.

B. Isocurvature from matter

Matter and radiation behave as

dg5dn5
4

3
db52

2

3
dc0

Vc

V r
Nt2

2I 1

k2
t, ~102!

dc5dc02
1

2
dc0

Vc

V r
Ct23

I 1t

2k2
, ~103!

ug5un5ub52
1

12
dc0

Vc

V r
k2Ct21

I 1t2

2
, uc5

I 1t2

2
,

~104!

sn5O~e3!. ~105!

The scalar field amplitude is given by

df52
1

24
f t0dc0

Vc

V r
C 2t31

I1Ct3

2k2
f t0 , ~106!

and shows that the gauge change does not touch the ord
the leading power int, although it modifies its numerica
coefficient.

C. Isocurvature from scalar field

Matter and radiation behave as

dg5dn5
4

3
db52

1

2S df0rf

rcV r
D C 4t422

I 2

k2
t4, ~107!

dc52
3

8S df0rf

rcV r
D C 4t42

3I 2t4

2k2
, uc5

I 2t5

2
,

~108!
12350
s

n

e

r of

ug5un5ub}t5, sn}t6. ~109!

The scalar field amplitude is given by

df5df01df (2)t21df (3)t31df (4)t4

1df (5)t51S df (6)1
I 2

2k2
f t0D t61O~t7!,

~110!

therefore, in this isocurvature case, the behavior ofdf is
affected by the gauge change only at high orders int, leav-
ing the leading terms unperturbed.

In the next section we will numerically solve the line
cosmological perturbation equations with the initial con
tions sets developed in Secs. IV and V.

VII. NUMERICAL INTEGRATIONS AND DISCUSSION

We performed the numerical integration applying o
considerations to a scalar field model based on ultrali
pseudo Nambu-Goldstone bosons; the potential assoc
with this field has the form@16#

V~f!5M4@cos~f/ f !11#. ~111!

Our working point corresponds to the parameter choicf
51.88531018 GeV andM51023 eV; assuming an initial
kinetic energy equal to the potential one, the starting val
of the scalar field and its initial time derivative are obtain
by requiring that the present contribution beVf50.6, fixing
H0570 km/~sec Mpc! andVb50.05. Furthermore, we hav
taken the primordial power spectrum to be exactly scale
variant.

Even though the main cosmological consequences of
kind of scalar field have been analyzed by many authors~see
@6,3#!, here we use the formulas developed in the previo
sections to accurately compare the pure adiabatic and
isocurvature regimes. Also we give particular emphasis
the behavior of entropy and curvature perturbations, ag
comparing their evolution starting from isocurvature~from
CDM! and adiabatic initial conditions; each case is co
pared with a pure CDM model with the same backgrou
parameters.

First, let us consider the power spectra of the microwa
background anisotropies, both temperature and polariza
They are expressed by the expansion coefficients of the t
point correlation function into Legendre polynomials~see,
e.g.,@20#! and admit the following expression in terms of th
quantities defined in the previous sections:

Cl
T54pE dk

k
uDTl~k,t0!u2, Cl

P54pE dk

k
uDPl~k,t0!u2.

~112!

The adiabatic case is shown in Fig. 1. The presence of
scalar field~solid line! produces an increase of the power
the acoustic oscillations with respect to the CDM mod
~dashed line!; this is due to the fact that the universe is n
completely matter dominated at decoupling: thus at this ti
8-9
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FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW D59 123508
the perturbations are growing faster than in the CDM mod
~we recall that density perturbations in adiabatic mod
grow asa2 and a, respectively, in the radiation and matt
eras! and this produces an early integrated Sachs-W
~ISW! effect found first in@6#. Also, the position of the first
peak is slightly shifted toward smaller angular scales due
the increase of the distance of the last scattering surface~pro-
jection effect!. Note how these features regard both the p
larization and temperature peaks. Finally, the tempera
spectra show that the ISW effect is active on the smal
multipoles due to the dynamics of the scalar field in t
present case; this is a distinctive feature with respect to
cosmological constant@6#.

Figure 2 shows the spectrum from isocurvature pertur
tions. While the projection effect is the same as in the ad
batic case, now the situation regarding the amplitude of
acoustic oscillations is inverted: the peaks are lower than
ordinary models, both for polarization and temperature. T
is simply due to the reduction of the matter/radiation ratio

FIG. 1. Power spectra of the CMB anisotropies from adiaba
initial conditions. The background parameters areVb50.05, h
50.7, three massless neutrino families, andVf50.6, Vc50.35
~solid line!, Vf50, Vc50.95~dash-dotted line!. Note the increase
of the acoustic peaks power in the scalar field model.
12350
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we includef by keepingV total51; in fact, the scalar field
hasno intrinsic dynamical effect at last scattering since m
ter and radiation components were largely dominant: it
well known the opposite behavior of the anisotropies in ad
batic and isocurvature models as one variesVmh2 ~see, e.g.,
@20#!. To better see this point, we plot in Figs. 3 and 4 t
power spectra for models having fixedVbh2 and Vch

2 but
varying Vm5Vb1Vc and h by means of differentVf .
Thus we expect the same amount of perturbations in
CMB except for effects that are genuinely linked to the s
lar field, such as the projection effect and the ISW effect
the smallest multipoles. This is precisely what happens
the spectra in Figs. 3 and 4. The dashed lines represent a
the curves forVf50.6 as in Figs. 1 and 2; the solid and th
lines representsVf50.5 and 0.7, respectively. Again, th
spectra show remarkably the same features for polariza
and temperature, even if it should be noted how the form
arising from acoustic oscillations occurring justat decou-

c FIG. 2. Power spectra of the CMB anisotropies from isocur
ture initial conditions. The background parameters areVb50.05,
h50.7, three massless neutrino families, andVf50.6, Vc50.35
~solid line!, Vf50, Vc50.95~dash-dotted line!. Note the decrease
of the acoustic peaks power in the scalar field model, an oppo
behavior with respect to the adiabatic case.
8-10
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EARLY TIME PERTURBATIONS BEHAVIOR IN SCALAR . . . PHYSICAL REVIEW D 59 123508
pling, is not influenced by the ISW effect, since it com
from the line-of-sight integration. All this shows how th
perturbation power at decoupling is not touched by the s
dominant scalar field; the opposite behavior in the adiab
and isocurvature cases is explained by the decrease of m
in favor of scalar field.

More insight into the perturbation behavior may be o
tained by looking at the time evolution of some significa
quantities; we look at one single scale, or wave numb
roughly entering in the horizon between matter and radia
equality and decoupling:

k5831022 Mpc21. ~113!

Let us begin with the gravitational potentialC, in Fig. 5; the
oscillatory dynamics is associated, both in the isocurvat
and adiabatic cases, to the horizon crossing of the scale

FIG. 3. Power spectra of the CMB anisotropies from adiaba
initial conditions with differentVf and fixedVbh250.0245 and
Vch

250.1715 (Vmh250.196) as in Figs. 1 and 2. The backgrou
parameters areVm50.4, h50.7 ~dashed line!, Vm50.3, h50.81
~thin line!, andVm50.5, h50.63~thick line!. The amplitude of the
peaks is the same, while they are slightly shifted because of
projection effect.
12350
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amined. The amplitude of the oscillations in the scalar fi
models is higher for the adiabatic case and lower for
isocurvature one when compared with the correspond
CDM models. These oscillations are the source of the CM
anisotropies on subhorizon angular scales (l>200) through
the acoustic driving effect and the early ISW effect@22#, and
therefore follow different behavior in the two cases.

We concentrate now on two particularly significant qua
tities regarding both adiabatic and isocurvature regimes,
total entropy perturbation, defined below, and the curvaturz
defined in Eq.~65!; we recall that these quantities are gau
invariant. The amplitude of the total entropy perturbation
given by

pG5pG int1pG rel

5(
a

~dpa2ca
2dra!1(

a
~ca

22cs
2!dra

5(
a

~dpa2cs
2dra!, ~114!

c

e

FIG. 4. Power spectra of the CMB anisotropies from isocur
ture initial conditions with differentVf and fixedVmh250.196.
The spectra show the same behavior for varyingVm as in Fig. 3.
8-11
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FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW D59 123508
wherep is the total pressure and the sound speed must
into account the scalar field contributioncf

2 5122V8ḟ/ ṙf

in the summation,

cs
25

(
a

haca
2

h
, ~115!

where

ha5ra1pa , h5(
a

ha . ~116!

While theG int term comes from the intrinsic entropy pertu
bation of each component, and is ultimately sourced only

FIG. 5. Gravitational potential~in arbitrary units! at the comov-
ing wave numberk5831022 Mpc21 as a function of the time for
adiabatic ~top! and isocurvature~bottom! initial conditions. The
background parameters are the same as in Figs. 1 and 2. The
latory dynamics is associated with the horizon crossing of the s
considered. In the adiabatic~isocurvature! scalar field models, the
oscillation amplitudes are larger~lower! than in the corresponding
CDM cases, according to the power spectra behaviors.
12350
ke

y

the scalar field component due to the spatial and temp
variations of the scalar field equation of state, theG rel term
arises from the different dynamical behavior of the comp
nents, and it is related to theSab quantities defined in Eq
~51! by the relation@18#

FIG. 6. Gauge-invariant entropy behavior~in arbitrary units! as
a function of the time in adiabatic models for scalar field~solid line!
and pure CDM~dashed line! models. Note the shift of the horizon
crossing~corresponding to the oscillations! toward late times due to
the effective cosmological constant.

FIG. 7. Gauge-invariant entropy behavior~in arbitrary units! as
a function of the time in isocurvature models for scalar field~solid
line! and pure CDM~dashed line! models. Note the decrease of th
oscillation amplitudes in scalar field models, due to the lack
matter with respect to the pure CDM case.
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pG rel5
1

2 (
a,b

hahb

h
~ca

22cb
2!Sab . ~117!

In Figs. 6 and 7 we plotG vs a ~solid line and arbitrary units!
using isocurvature CDM and adiabatic initial conditions,
spectively. We note that in both casesG→0 asa→0: in the
last case, this is an obvious consequence of the definitio
what adiabatic conditions are; on the other hand, tak
isocurvature CDM initial conditions, we started with nonze
values of theSab relative to the CDM component and th
other noncompensating components, but againG→0 as a
→0. This is because at early times the cosmic fluid is rad
tion dominated, so thatp}1/a4 in Eq. ~114!; this destroysG
for a→0, since no radiation perturbations are present
tially. Instead, the initial value of the first time derivative
G is different from zero only in selecting isocurvature initi
conditions, since it takes contributions directly from theSab
terms @18#. The behavior of entropy perturbations in bo
cases have been compared with those in the stan
Einstein–de Sitter modelVm51 ~dotted line!, with the same
choice of Vb and H0. The entropy perturbations rema
nearly constant before horizon crossing; at this time the p
turbation starts its oscillations that are damped in amplit
when the scale is well below the effective horizon. As
expected feature, note that in the scalar field model the pe
of the oscillations are shifted closer to the present when c
pared to the Einstein–de Sitter case, as the epoch of ma
radiation equality.

In Figs. 8 and 9 we plot the evolution of the gaug
invariant curvature perturbationz for isocurvature CDM and
adiabatic initial conditions, respectively. Ata!1, this quan-
tity is zero in the isocurvature case and nonzero in the a

FIG. 8. Gauge-invariant curvature behavior~in arbitrary units!
as a function of the time in adiabatic models for scalar field~solid
line! and pure CDM~dashed line! models. Note that the curvature
nonvanishing asa→0.
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batic one, being an explicit indicator of the nature of t
perturbations. Again the significant dynamics occurs in c
respondence with the horizon crossing, and the latter oc
slightly later than in the CDM model due to the presence
the scalar field.

Finally, note how in all the isocurvature cases~Figs. 6 and
8! the amplitude of the oscillations is lower than in the co
responding CDM models; as we mentioned above, this is
to the reduction of the matter component in favor of t
scalar field energy density. Most important, these gra
show that this is the only possible cause of this effect, si
at the times of oscillations for the scale examined, roug
between equivalence and decoupling, the scalar field is v
subdominant with respect to the other components.

The hypothesis of a cosmic vacuum energy stored in
potential of a scalar field enlarges naturally the possibility
gain insight into high energy physics from the traces left
the cosmic radiation and in the matter distribution. Beca
of the upcoming CMB experiments@23#, it will be interest-
ing to further study the cosmological imprints of these mo
els, in the context of different theories attempting to descr
the hidden sector of high energy physics.
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FIG. 9. Gauge-invariant curvature behavior~in arbitrary units!
as a function of the time in isocurvature models for scalar fi
~solid line! and pure CDM~dashed line! models. Note that the
curvature is vanishing asa→0.
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