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Early time perturbations behavior in scalar field cosmologies
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We consider the problem of the initial conditions and behavior of the perturbations in scalar field cosmology
with a general potential. We use the general definition of adiabatic and isocurvature conditions to set the
appropriate initial values for the perturbation in the scalar field and in the ordinary matter and radiation
components. In both the cases of initial adiabaticity and isocurvature, we solve the Einstein and fluid equations
at early times and on superhorizon scales to find the initial behavior of the relevant quantities. In particular, in
the isocurvature case, we consider models in which the initial perturbation arises from the matter as well as
from the scalar field itself, provided that the initial value of the gauge-invariant curvature is zero. We extend
the standard code to include all these cases, and we show some results concerning the power spectrum of the
cosmic microwave background temperature and polarization anisotropies. In particular, it turns out that the
acoustic peaks follow opposite behavior in the adiabatic and isocurvature regimes: in the first case their
amplitude is higher than in the corresponding pure cold dark matter model, while it is the opposite for pure
isocurvature initial perturbation§S0556-282(99)03110-Q

PACS numbes): 98.80.Cq, 98.70.Vc

[. INTRODUCTION models in order to maintaining spatial flatness, but still re-
taining serious unsolved theoretical issues, several “quintes-
In recent times, the need for a “quintessence” componensence” models were proposed as candidates for the missing
has come out due to the several difficulties of the standarénergy, often modeled as scalar fields rolling down their po-
Q.,,=1 cold dark mattefCDM) model which was unable to tentials[3—11] or, more generally, described in terms of an
explain the observed features of large scale structure. In thenspecified equation of state different from that of matter
context of inflationary cosmologies, we expect that theand radiation[12—14. We refer to any component whose
present spatial curvature of the Universe is negligible and theroperties are well described in terms of a scalar field evolv-
total energy density equals the critical energy density; on théng in a potential which couples to ordinary matter only
other hand, there is growing observational evidence that ththrough gravity. In some sense, it can behave like a cosmo-
matter energy density is remarkably below the critical valueogical constant when its kinetic energy is negligible with
even taking into account the exotic and so far undetectableespect to the potential energy, so that the scalar field equa-
particles known as cold dark matter. Thus, we are faced withion of state approaches1; because of the strongly relativ-
figuring out how to explain the missing-energy values of asistic nature of such a component, the characteristic scale of
much as 70% or 80% of the critical density. clustering processes for a scalar field is just the horjadn,
Further, there is need to have the age of the Univegse, giving a similarity with a cosmological constant in the unde-
exceed the age of globular clusters in our galaxy; the limitgectability of quintessence energy concentrations on scales
on ty are holding at about 13 Gyr or mofé], and when smaller than the horizon.
combined with current estimates of the Hubble expansion The interesting feature of the “quintessence” component
parameter, converging from different methods Hg~60 is just that, contrary to the cosmological constant, it is time
+10 km/(sec Mpc) 2], give rise to an observed value of the varying and spatially inhomogeneous, so that it can develop
“expansion-age” parametett,=0.8, sensibly higher than fluctuations which can be relevant in perturbation growth
2/3 as predicted by the standard Einstein—de Sitter model. and can leave a characteristic signature in the cosmic micro-
Preserving the flatness of the Universe, its age could bwave backgroundCMB) and in the large scale structure.
enhanced by lowering the matter content in models involvingeven though many of these imprints have been studied in
a component whose equation of state is different from matteprevious works, the issue of initial conditions and scalar field
and radiation, for example, in models including a cosmologi-perturbations has often been underestimated; in particular,
cal constant. One more problem with the CDM model arisesve found a gap regarding the opportunity to impose isocur-
from the mismatching of the galaxy clustering power spec~vature initial conditions in a several-component system in-
trum shape, when only Cosmic Background Explorercluding a minimally coupled scalar field. Our aim is to give
(COBE) normalized spectra are considered. All these moti-a complete prescription for describing adiabatic and isocur-
vations have ratified the demise of the standard CDM modelyature initial conditions if an additional component is present
leaving cosmologists with the open question of what then the form of such a scalar field; this can be acquired by
missing-energy candidate could be. giving the set of equations relating all the fluid components
Apart from the cosmological constant, introduced in someneeded in the two cases.
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In order to do that, we need background and perturbation
equations which we briefly review on Secs. Il and Ill. The H2=
original results of our work are presented in Secs. IV and V,
where we work in the formalism of the synchronous gauge
by generalizing the work of Ma and Bertschindds] and
finding the super-horizon-scale behavior of perturbations at

2l — 3 @ Lomtprtpgl, (4)

a\® 8nG
3

together with the conservation equations

: . D . . . dv 1 d )
early times, starting from initial zero-entropy perturbations P+2Hp+a%—=— —(a’p)+a?V'(¢)=0, (5
(adiabatic casge or initial zero-curvature perturbations d¢ a“dr
(isocurvature cagseWe express the needed gauge-invariant .
guantities, namely, entropy and curvature perturbations, in pnt+tNHp,=0, (6)

terms of synchronous perturbations of baryons, photons,

massless neutrinos, cold dark matter, and a minimallywhere is the conformal expansion rate of the Universg,
coupled scalar field, as well as metric perturbations. In Seds the energy density contributed by radiation<4) or non-

VI the results are translated in conformal Newtonian gaugerelativistic matter (=3), andV’'=dV/d¢. Note that, from
and in Sec. VII we numerically investigate the growth of Egs. (3), the second-order Klein-Gordon equati@d) is
entropy and curvature perturbations starting from differeniequivalent to the conservation law

initial conditions, and we compare them with the correspond-

ing behavior in the standard CDM model. In that computa- ps=—3H(py+py). (7)

tion, the adopted scalar field is associated with an ultralight

pseudo Nambu-Goldstone bosdr6], with global spontane- Including all the modifications due to the additional scalar
ous symmetry breaking scale=10"® GeV and explicit field component, we shall carry out a fully relativistic treat-
breaking scalé ~ 102 eV; such a field should be acting at ment of the perturbations of this background, based on the
present like an effective cosmological constant and dominataotation of Ma and Bertsching¢f5]. We work in Fourier

ing the energy density of the Universe. Also we plot, andspace and we perform the parametrization of the perturbed
discuss, the pure adiabatic and pure isocurvature CMBjuantities in the formalism of the synchronous gauge, in
anisotropies spectra, again making a comparison with thwh|ch the perturbed line element Bs=a’ —dr? + (6

standard CDM. )dx dx!]. Since we are interested here only in scalar-
type perturbations, the metric perturbations can be param-
[l. EINSTEIN AND CONSERVATION EQUATIONS etrized as

We begin by a brief review of a homogeneous N .1
Friedmann-Robertson-WalkgFRW) cosmology in which hij(X-T):f d3k €% * kikjh(k,7)+ kikj_géij)Gﬂ(k:T)}a
there is an additional contribution coming from a minimally ®)
coupled real scalar fielgp evolving in a potentiaV ().

We consider only models with tot&} =1 in this paper, \ith k=kk andh denoting the trace df;
and we work in conformal coordinates, so that the line ele-  \qta that the synchronous potentlddsand 7 in k space

2 j . . .
ment isds’=a’ —dr*+ §; dx dx] whereais the cosmic ;10 related to the gauge-invariant variabieg of Bardeen

scale factor and is the conformal time. .
7] andW¥ of Kodama and Sasaky 8| by the relation
The scalar field energy density and pressure, associatégi 1 18] by

with the Lagrangian describing the classical behaviotof

(€)

. .oa. .
h+6n+—(h+67)|,

1
O\, =V=—
. AT k2
£=—§\/__9[9W‘9u¢ I T2V(h)], @

which allows us to relatdn and » to the gauge-invariant

follow from the expression of the stress-energy tensor ~ curvature perturbatiog (see[19]),

2 .
gt %(¢?“¢.a+2V) 5 @ £= 5 (H M+ W)/ (1+w) + W, (10)

wherew=p/p; the above expression will be useful in the
following. Now, focus on the equations describing the evo-
1 1 lution of perturbations involving the various components.
- 42 T a2 As is well known, the scalar field can mimic a cosmologi-
¢ (), Py ¢ -V(4), @ cal constant if its kinetic energy is negligible with respect to
the potential one. However, a substantial difference is that it
where the overdot denotes a derivative with respect to corddmits perturbations around the homogeneous solution of
formal time 7. The above quantities evolve according to theEd. (5); in linear theory, they are described by small fluctua-
Friedmann equation, in which we separate the contributes dfons 6¢ and ¢ around the background values, driven by
matter, radiation, and scalar field to the total energy densitythe equation of motion

and are given by
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o,|tano(6,—6,), (22

. a. d2v 1. . - 2(1
_y? 27 T = —_S5 —
d¢p+2_0¢—V2¢p+a d¢25¢+2¢h—0. (12) 0,=K"\ 79

) 8 4. 8. 9
The density, pressure, and velocity perturbations for the sca- 20,= 15 0,— kA st 5h+ 7 5aneaTa

lar field are described as usual by the following quantities:

1
Y ¢ +1_Oaneo-T(APO(y)+AP2(y))r (23
Spy=—9OTg= (12
ATI(y):—2|+1[IAT(I—1)(y)_(I+1)AT(I+1)(y)]
1 . ¢
5p¢=§5T:=—a2 —V' 8¢, (13) —anorlr, (1=3), (24)
o APl( y= o1 L1APa-1)()~ (I D Apg1y(y)]
(Pt Pg)0s=0T =ka 2¢ 8¢, (14) 720+l 7 7
1
Pymys=0, (15) +aneor E(AT2(7)+APO(7)+AP2(7))
y S0+ L ) A } (25
1) k S S 10 [
5= g,=— $5¢ 22 (16) P
Py a? Pyt Py 1)
where
therefore, we define the differential ratio 3 1
0,= Ao, ay:ZkATl: U'yZEATZ- (26)
) Sp—acV's
% Lz(ﬁ é 5p¢ Iy, (177  The perturbed stress-energy tensor for radiation contributes
Py popt+aV'oep Po to the following nonzero quantities:
0_
which differs from the scalar field sound velocity OTo="=py0,, (27
: ikioT'==p. 0., (28)
ctzbzl.a—"S (18) 3Ty
Py
1 _
L I 6Ti=zp,0, 3], (29)
by the termI” , describing the entropy contributidds]. 3
It is useful to describe radiation in terms of the coeffi-
cients characterizing the Legendre expansion of the tempera- (RR- 1 ~-)Ei- __ fp (30
ture and polarization brightness functions;(k,n,7) and N 3T

Ap(k,n,7):

The expansiori19) also applies for massless neutrinos; their

evolution equations in the synchronous gauge are given by

s}

- .. the following system:
AT(k'n’T):;o (—iN21+1)An(k,7)P,(k-n), (19

- 4 2.
) 511_ §0V §h, (31)
Ap(k,n, )= (—i")(21+1)Ap(k,7)Pi(k-N). (20) . 1
1=0 9V=k2<25]/_0-v>1 (32)

Their evolution is completely determined by the Boltzmann . ,
equations; denoting by, the Thomson scattering cross sec- Aoy =20,= 159 gKAm 57 (33
tion and byn, the electron density, we have, for photons,

. k
_ 4 2. Aqiy= 2|+1[IAT(I N~ U+D A ] (1=3).
5,==750,~3h 1)
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Pressureless cold dark matter interacts only gravitationallghe field perturbationg¢, and d¢y, (initial real time deriva-
with other particles and in the synchronous gauge its peculiaive) that realize initial adiabaticity and isocurvature, to-
velocity is zero; setting.= 0, the evolution of CDM density gether with appropriate initial conditions on the other per-

perturbations is given by turbed quantities. For this purpose, we will focus on the
initial fluctuation of the real time derivative of the scalar
5= Eh (35) field perturbation, since the conformal time derivative is al-

© 2 ways zero aa=0 by definition ($¢=ad¢,). The same hap-

ens of course to the initial conformal time derivative of the
ackground scalar field; if in general the latter has an
initial nonvanishing kinetic energy, so that,=(d¢/dt),
STO=— .5, (36)  #0, its conformal time velocityp, is zero sincep=ad; .
In the following, we will need to use the scale factor
Taking into account the coupling between photons and barybehavior at early times, whem<1. We will often use the

and the nonzero component of its perturbed stress-ener
tensor is

ons by Thomson scattering, expansion of the scale factor in powers of the dimensionless
1 parametefe:
Op=—0p— Eh’ (37 857G,
. €= \/—3 T:HO\/ETZCT, (45)
o a 21,2 4py
Op= 3 ot CSk 5b+3_pbaneUT( 0y~ 0b), (38) wherep, andH, are the present critical density and Hubble

_ parameter, respectively, aiti =€)+, is the total radia-
the perturbed stress-energy tensor for baryons contributes hon density contribution at the present; indeed, as can be
easily verified, the scale factor beiagg1 at early times, we

0_ _
6To=~ppdh, 39 can neglect the scalar field contribution in Hd), which
4 admits the simple solution
iK' TP= 29,0 (40)
ale)=e+ 1 %e% O(€3); (46)
4 Q, '

All these ingredients are to be implemented in the perturbed

Einstein equations . :
g besides, the expansion rate behaves as

1 .
k?n— EHh=47TGa25TO, (41) e 1 105 1(Qp\? O( € 4
H= E+Zﬂ_r_1_69_r e+ 0O(€e%)]. (47)
k2p=4mGalik sTP, (42) , L i
1
Before going on, it is worth recalling some general results
bt 2P — 2K —877Ga26T§, 43) concerning the synchronous gauge behavior of metric and

density perturbations on superhorizon scé#les refer to the
! _ work of Ma and Bertschingefl5], although they did not
kik;— §5ij 2} . include the scalar field compongéntWe impose initial con-
ditions at an early time, deep in the radiation era, when pho-
(44) tons and baryons are tightly coupled and can be considered

This system of differential equations can be integrated onc8S @ Single coupled fluid; as a result of the large Thomson
the appropriate initial conditions are fixed, which will be the Scattering opacity, the=2 moments of the photon tempera-
content of the following sections. ture brightness functiot4) (in particular, the shear,) and

the polarization brightness functid5) are driven to zero;
similarly, to the lowest order irtkr, one can ignore thé

=3 moments of the neutrino temperature brightness func-
tion. Thus, Egs(21), (22), (31), and(32) become

h+67+2H(h+67%)—2k?y=24wGa?

III. INITIAL CONDITIONS
AND SUPERHORIZON EVOLUTION

In order to start the numerical integration of the evolution
equations given in the previous section, one has to impose
appropriate initial conditions to the fluid and metric pertur-
bations. Although a general perturbation need not be either
isothermal(entropig or adiabatiqisoentropig, it can always 4 2. _ 1
be expressed as a linear superposition of adiabatic and iso- §,+ = 6,+ =h=0, 6,——k*(6,—40,)=0, (49
thermal component$20]. Also, it is useful to recall that 3 3 4
isocurvature perturbations may be present in this kind of
model[21]. We explore both these conditions in scalar field o
cosmology. In particular we search for the initial values of Y 15

: 4 2. . 1,
574' 5074‘ §h:0, 67— Zk 57:0, (48)

20,+h+67)=0,
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-2 e k%o 1 1 8
o,— —=(26,+h+67%)=0. (50 - L P =
15 5¢t 1 6a2HV’ 6H 2 d)tht 1+Wx t¢t
When we impose initial conditions, &<1, to get starting s K22
values for numerical integration, all the modes are still +——| 6H¢p+2V' — t) :
outside the horizon, i.ek<aH=1/7 (the last equality holds 1+wy a2V’

in a radiation-dominated univenseOur aim is to extract the
analytical time dependence of superhorizon-sized perturba-
tions at early times, once the initial conditions are realizedCombining them together we find
thus we find the early time form of Eq§41)—(44), (48)—

(50), and(11) and we find their solutions in successive pow- 1( ., &

ers of k7. To set up the growth of perturbations, we must op= v( P T rw _¢t5¢t)1 (57
assume that at least a single perturbation is nonzero at initial X
time, in order to generate all the others.

(56)

2
5= -y o
IV. ADIABATIC INITIAL CONDITIONS b 6H—k2¢,/(a2V')| 2 S| 1w, td)t
The first necessary step to impose adiabatic conditions is S k2¢t2
setting to zero the initial entropy perturbation; ultimately, the + 1+x BHp+2V ———1 |. (58
origin of this result is that there is initially a single curvature Wx a’Vv

perturbationgenerated we suppose by inflatiand all later
perturbations are inherited from it. The entropy exchang
between any two fluid speciesandb is ruled by the gauge-
invariant quantity

The above expressions specify the general adiabatic condi-
?ions for the scalar field. Now, let us make a link to previous
works; in[15] the adiabatic initial values and early time be-
havior of the matter and the radiation components were
S5, S found in the synchronous gauge; these results apply here,
, (51)  too. Indeed, as can be easily seen from the Einstein equa-
tions, the contribution of the scalar field fluctuations is neg-

which must be set to zero initiallyL8]. The second request ligible at early timesa<1 with respect to the matter and

Sa

T rw, 1+w,

comes from setting to zero the first time derivativeSyf,; ~ radiation ones, by a factor @f® anda®, respectively. Thus

actually, S,;, obeys the following differential equation: the approximations and treatment developeflLhi are valid
also here for what concerns the ordinary fluid components,

Sab=—kVap— 3HI 4, (52) i.e., photons, massless neutrinos, baryons, and dark matter;

the time dependence of the resulting superhorizon-sized per-

wherel’,, is defined as turbations k7<1) is found by expanding the Einstein equa-
tions into powers ok7 and resolving the system of coupled

T,p= Wa r,— Wp Ty, (53) differential equations to obtain the leading-order terms
1+wy, 1+wy 4 )

I', being the gauge-invariant amplitude of the entropy per- 8y= 5v:§5b:§5c: - §N(k7)2' (59)

turbation of the fluid species The quantityV,,=v,—vy, is

the gauge-invariant difference between the gauge-dependent 15+ 4R 1

velocity perturbations of the speciasndb. In order to have 67=23+—4RV 0,=6p=— 18 473, 6.=0, (60)

adiabatic initial conditions, both these terms on the right v

hand side of Eq(52) are initially set to zero. Thus, for each AN

pair of fluid components, we impose o,=0, 0”:45+—12R,,(k7)2’ (61)

Sab Sab 0. (54) , +4R,, ,
In particular, applying Eq54) to the scalar field and another ~ N=Mkn)%,  7=2N= 90+ 24RVN(kT) ' (62)

component(which we leave unspecified and label with

will relate the initial values 0B¢ and 8¢ to the other energy WhereR,=p,/(p,+p,) and\is a normalization constant.
component and metric perturbations. The first condition inUsing these results, it is immediate to see from E§S3),

Eq. (54) gives (58 that, imposing adiabatic initial conditions, the initial
values of6¢ and d¢, must be set to zero. Adiabatic condi-
tions can be strictly verifiednly at this initial time, due to
the effect of the mutual coupling between total density per-
turbations and entropy perturbations which appear in a ge-
Posing S¢X:as¢xt:0 and using the Klein-Gordon equa- Nneric multicomponent fluid. .Starting from initial zero values
tions (5),(11), we obtain and using Eq(62), ¢ and §¢ will evolve according to Eq.

Ox
1+w,’

b8+ V' = p? (55)
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(11) which can be easily integrated once terms of the highesBince by hypothesik and » are derivable 4 times ir=0,
order in 7 are dropped; this gives the following behavior at h+ 6% admits the following early time expansion:
early times &<<1):

2

h+6 _d h+6 1d h+6 2
(h+ 77)(7')—d—7( + 7])07+5ﬁ( +67)oT

1
b= = 55$rNCK?7*, (63)
41 : (h+67)o7
5¢=—é@@@%ﬁ, (64) 6dr2 O
d4
having considered the lowest termsrirthereby approximat- +ﬁﬁ(h+6ﬂ)074+ o(7), (69)

ing the time derivative ofp with its value at the initial time
¢ro. We have inserted these inputs into the standard CMB o \yith the initial conditior(67) its initial value is zero.
code and in Sec. VII we shall give some numerical results. , : Y
Now, let us turn to the second class of initial conditions. At 7=0 the only term that survives in Ed68) is a“(h
+67) sinceag=8mGp.(Q,+Q,)/3. Then, by using Egs.
V. ISOCURVATURE INITIAL CONDITIONS (48),(49),(50) one obtains
The isocurvature initial conditions are obtained by setting .. 487G B S
to zero the gauge-invariant curvature perturbation. Its expres- (h+67)o 5 -pe(2,+Q,)=0=(h+67),=0.
sion is given in terms of the gauge-invariant perturbation (70
potential¥ [19]:
In the same way, by deriving again E&8) one obtains

2

H I+
S

el R & (65) (h+6%),=0. (71

_ o Instead, it may be easily seen thdit(h+6%)/dr> can be
we point out that here, as 115,18, V¥ indicates the gauge- gitferent from zero; in fact, deriving Eq68) 3 times would

invariant® , of the original work of Bardeenl7], while in bring d3(h+677)/d7-30<k2é12;7, which may be different from

[19] the same quantity is indicated ds. Its expression in . .
. . ) zero by hypothesi$67). This means that, for—0, h+67
terms of the metric perturbatiofsand » in the synchronous = 0(#); sinceH= 1/ to the lowest order, this is evidently

gauge is i
enough to makel ,=(H ~1W¥),=¢,=0, showing that the

initial condition (67) implies isocurvature.
. (66) It is evident that the initial conditiof67) can be realized

in several ways, depending on which matter component is
o o N initially perturbed or, in other words, on whig is initially
Therefore, the approprlatg |socurv§1ture initial conditions argyitferent from zero. In the present case a further degree of
realized by the time growing solutions of the systef)—  freedom arises from the presence of the scalar field, and we
(44) in which ¥ andH ~ W are zero initially. First, let us will analyze separately two main situations: in the first case
see that, if the variables describing all the perturbations arenly one matter componefCDM or baryon$ is initially
regular enough to be derivable at least 4 times#0, then  perturbed; in the second case the initially perturbed compo-
the isocurvature initial conditions are simply imposed by setnent is only the scalar field.
ting the metric and radiation perturbations to zero initially:

W 1
2k?2

LA .
h+67]+5(h+67])

A. Isocurvature conditions from matter perturbations

isocurvature initial conditions: . . . . I .
Let us consider first the case in which an initial density

ho=no=46,=0,=0,=8,=6,=0,=0. (67) perturbation, with amplitudé,,, resides only on the CDM
component. By integrating E¢35), one finds
This can be easily seen by using essentially the Einstein
equation (44); multiplying both members bya*, deriving
once, and factoring out the present critical dengity it
takes the following form:

1
8¢=8c0~ 5. (72)

By hypothesis, this is the only initially perturbed quantity.
d3 o ) o ) All the others must be set to zero & 0. Let us search the
a2—3(h+677)+4aa(h+677)+(2a2+ 2aa)(h+67) early time behavior of the perturbations. Since all the modes

dr are outside the horizon at early times, we first neglect all the
o o 0" . : terms proportional tk in the Einstein equations; then we
—4k"aan -2k a’n=—321Cp.(Q,0,+Q,0,). expand all the quantities in powers efdefined in Eq.(45)
(68 and we calculate the leading orders. In doing this, we are
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assuming that all the perturbation quantities admit a Taylor Q. € : 1 Q¢ ,
expansion inr=0 of course. By making use of the above 8¢=— 519000 7 9P=~ g bl €
criteria and of Eqs(46),(47), the Einstein equatiofé1) be- ' ' (80)
comes

This completes the early time behavior of all the perturbation

1+ E %eJro(ez) 1+ 1 %G‘FO(EZ) eh quantities in this case of isocurvature initial conditions. All
4 O, 2 Q, these relations can be easily generalized to the case in which
the initial perturbed matter component is the baryonic one. In
_% 05t 5+ St O etOfe? (73 the next subsection we study the other interesting case:
2 [€,8,+0,5,+Qcdee+ QpdpetO(7)], where the initial perturbed fluid component is the scalar field
itself.

and it is immediate to gain the early time behaviorhof

B. Isocurvature conditions from scalar field perturbations

Qe 3 004, 3 L
0 €~ 550076 +0O(€”). (74) Let us suppose that at the initial tinae—~0 the only non-
;

r zero perturbed quantity is the scalar field, in a manner such
that the total gauge-invariant energy density contrast is zero,
"I the other perturbations being zero; this means that at least

h= &,

From the arguments exposed at the beginning of this sectio

up to the ordere” we have also one of the two quantitie$o, 64, must be different from
1 zero initially; from Eq.(16), the corresponding expressions
n=- Eh' (75 for 6¢¢ and 6¢p,y are
Let us come now to the fluid perturbation quantities. As is 54,0:;[%@20( 54)0_2% +V( o) 5@}’
evident from the fluid equations, theand o quantities are V' (o) L2 k
of higher order ink7 with respect to the purely metric per-
turbationsh and 5. Therefore, their early time behavior can b10040
be written as follows: Sbo="" (81)
5.=5 :fé __ Eh (76) In order to have isocurvature, for the other quantities we
vy Ormgth 3 impose again the initial conditiof67). The relevant differ-

ence with respect to the previous situation lies in the slower
rise of the metric and fluid perturbations starting from their
initial zero values: they will grow according to Eqgll)—
(44) and (48)—(50), the whole perturbation-growth machin-
6.=0, o,=0(€%). (77) ery being initially driven only by the@(e*) contribution of
the scalar field through the perturbed Einstein equations,
The behavior oh+ 67 is interesting even if of high order in  while the perturbed Klein-Gordon equation starts its dynam-
7 since it is directly related to the gauge-invariant curvaturécs from the conditionsd¢y#0, 5¢=0 and generates the
by Egs.(65),(66) and it can be obtained by solving E@4): inhomogeneous term driving the evolution laf From Eq.
(41), together with Eqs(48)—(50), it is easy to find the early

1 QC 2.2 3
__Egcoﬂ_rck e“+0(€),

h+67= %73, (78)  time behavior of the metric perturbatidm
. 3 5¢0P¢>
where we have defined =—| —==|C**+0(7). (82)
4\ p),

46,00:(Q,—50,)CK?

(79 Using the method applied in the previous sections, one finds

1=
360, +240, the leading-order behaviors:
Note thath+ 67> 73, according to the isocurvature nature of 4 4 2
the present case, as we showed in the beginning of this sec- 8,= 5V:§5C:§5b: - §h0<7'4, (83
tion. Also, Eq.(78) can be used to find the behavior @f ,
by using again Eq(44). 5 6
It remains to find the early time behavior of the scalar 0,,0y,00%7,  0,%T, (84)

field perturbationS¢. This can be done by expandi®g in
powers ofe and looking at the perturbed Klein-Gordon equa-
tion once the terms proportional & have been neglected. 5
The inhomogeneous term is: ¢h; h is of the order of zero h+67= FTG, (85)
from Eq. (74), and ¢=ad, is at least of the order o;

thereby, to the lowest order in Eq. (11) is satisfied by where

and from Eq.(44) it can be seen that
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k2c4 <5¢0p¢)( 2 125 general by performing a coordinate transformation relating
1

:1709r+89u (2, —1—OQV— 1_OQr . (86)  the two frarr_1es. The Iink. between the pert.urbatiorys i.n the
two gauges is expressed in the same coordinate point instead

From the above formulas we see that the perturbations ré2f the same spacetime point; this is why in most cases it is
garding the metric and the ordinary fluid components risdntéresting to know the difference of the fluctuations in the
very slowly; indeed we found a substantial failure of this WO gaugeg18]. _ _
model in providing a significant amount of perturbations. For First we write down the relations between the genuine
this reason we will not consider this case in the numericaMetric perturbed quantities. In the Newtonian gauge the per-
integrations of Sec. VII. turbation toggg exists and it is represented by the potential
It is interesting to find the behavior of scalar field pertur- ¥; the trace ofy; is instead perturbed by. Their relations
bation at early times, which moves it away from its initial With h and » are
value 8¢y, this contains corrections irk¢?) together with a

term proportional tor®, as can be verified by integration of _ i P A é : :
Eq. (11): v i h+67+ - (h+67)], (89)
Sp=35¢o+ 6D 7%+ 5P 3+ 5D 7 13
+5¢(5)T5+5¢(6)T6+O(T7), (87) @Z%a(h'FGn)—?]. (90)

where the expansion coefficients are given by They can be easily expressed k1, kr<1 by substitut-

1 10 ing directly the expressions férand » contained in Secs. IV
m
S =— 5 Schok?, 5¢(3):7_2 Q_Ck25¢0a and V. . .
r Now we concentrate on the transformations regarding flu-
ids and scalar field. They are the contained in the stress en-

1 Kk 1/(Qn\2 :
4)_— Do M 526 ,(2) ergy tensor, which transforms as
S5 20&;50(6 CV)+80 Qr)65¢ o
~ XH ax”
3 Qs @ T ()=~ —T"(x). (91)
40 Q, ¢ axP dx

1/0.\2 Using this and taking care to compare the perturbations in
— _m) Cz—kz}&j)“), the same coordinate point, the relations between the quanti-
80\ O, ties in the two gaugegsynchronous and Newtonian labeled
ass andN, respectively for each fluid are

10
B=_ — Tosp@®
¢ 15 Q, o4

2
1 %) CZ_k2}5¢(4)

5 0
() —. (5)
067 ="84 70,0

84\ O, p

Ss= 5,\,—7;, (92
3(6
oV g2 %”‘")c%to. 88)

e 0s=On— KT, (93
We considered the expansion up to the sixth order lve- — b DT (94)

cause, as we will see in the next section, going to the New- Ps=PnTP%
tonian gauge changes the last coefficient. . 95

In the next section we extend the results of Secs. IV and Ts= N,
V to the conformal Newtonian gauge. where

VI. RESULTS IN THE CONFORMAL h+67

n
NEWTONIAN GAUGE 7= " (96)

As is well known, the synchronous gauge is a coordinate
system corresponding to observers at rest with respect to the the lapse between the synchronous and Newtonian time
collisionless matter component. These “Lagrangian coordicoordinates. Regarding the scalar field, we compute the
nates” are defined by the rest frame of a set of preferredewtonian gauge expression of the amplitude fluctuafign
observers. More physical intuition can be achieved in théy using the transformation
conformal Newtonian gauge, where the metric tensor is di-
agonal. Inside the horizon, the perturbation equations reduce Sps=Sdn— ¢T. (97
to the standard nonrelativistic Newtonian equations. In this
section we write the results of Secs. IV and V in the New-In the following subsections we write the behavior of the
tonian gauge. fluid quantities in thee<1, k7<<1 regime and in the New-
The connection between the two gauges is realized ionian gauge, dropping th¥ subscript.
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A. Adiabaticity
The leading orders for matter and radiation perturbation

0,=0,=0,x7°, o,0x7° (109

SI'he scalar field amplitude is given by

are
40N 4 4 Sp=3Spo+ 572+ 53+ 5V 74
%= 1sraRr, T3%73% 8 7
2
+ 8O +| 5OV +—= by | P+O(7),
1V 2k?
— — — — 2

0= 0= 0= =15 R < ™ 9 (110
aN therefore, in this isocurvature case, the behavios¢f is
UV:MKZTZ' (100 affected by the gauge change only at high orders, iteav-

The scalar field perturbation amplitude is

10

5¢:NT2¢t0m. (101)

Note that in this case the scalar field perturbations grow in
time faster (< 72) than in the synchronous gauge £*); as
we point out below, this is not a feature of the isocurvatur

initial conditions.

B. Isocurvature from matter

Matter and radiation behave as

e

ing the leading terms unperturbed.

In the next section we will numerically solve the linear
cosmological perturbation equations with the initial condi-
tions sets developed in Secs. IV and V.

VII. NUMERICAL INTEGRATIONS AND DISCUSSION

We performed the numerical integration applying our
considerations to a scalar field model based on ultralight
pseudo Nambu-Goldstone bosons; the potential associated
with this field has the forni16]
V(¢p)=M*cog ¢/f)+1]. (112
Our working point corresponds to the parameter chdice
=1.885<10'® GeV andM =102 eV; assuming an initial

d,= 5V=g5b= - ééco%Nr—z—Izlr, (102 kinetic energy equal to the potential one, the starting values
r k of the scalar field and its initial time derivative are obtained
by requiring that the present contribution 8¢,= 0.6, fixing
S—s }5 &C Iy (103 Ho=70 km{sec Mpg and Q,=0.05. Furthermore, we have
™ %0 %0 ) &7 2 taken the primordial power spectrum to be exactly scale in-
variant.
Q. 1 I,7 Even though the main cosmological consequences of this
0,=6,=0,=— 1—25coQ—k2072+ 5 GCZT, kind of scalar field have been analyzed by many auttsee
r (104) [6,3]), here we use the formulas developed in the previous
sections to accurately compare the pure adiabatic and pure
o,=0(€d). (105  isocurvature regimes. Also we give particular emphasis on

The scalar field amplitude is given by

I]_CTS
b (108

5¢:—i¢ PIRLICEN
2410 cer T

the behavior of entropy and curvature perturbations, again
comparing their evolution starting from isocurvatufeom
CDM) and adiabatic initial conditions; each case is com-
pared with a pure CDM model with the same background
parameters.

First, let us consider the power spectra of the microwave

and shows that the gauge change does not touch the order Rckground anisotropies, both temperature and polarization.
the leading power inr, although it modifies its numerical They are expressed by the expansion coefficients of the two-

coefficient.

C. Isocurvature from scalar field

Matter and radiation behave as

point correlation function into Legendre polynomidksee,
e.g.,[20]) and admit the following expression in terms of the
quantities defined in the previous sections:

dk dk
C|T=4WJY|ATI(k'To)|2: CIP:4WJT|AP'(|(’T°)|2'

4 1/6 T
The adiabatic case is shown in Fig. 1. The presence of the
3/s 377 7.5 scalar field(solid line) produces an increase of the power of
8= _< ¢°p¢>c4 4 2 g="2 the acoustic oscillations with respect to the CDM model
8\ pcl), 2k? 2 (dashed ling this is due to the fact that the universe is not
(108 completely matter dominated at decoupling: thus at this time

123508-9



FRANCESCA PERROTTA AND CARLO BACCIGALUPI PHYSICAL REVIEW [»9 123508

10—9 [ T T Iltllll T T IIIIII[ T T IYII-I‘ ] T T IYIIH‘( T T II|IIII T T IITIHI
: : 10-10 -
" ADIABATIC SPECTRA 1 : ]
[ r & o g
aY4
p o
23 L 2 101 |- E
/: ) ~ ]
s s i ]
10-10 | L ]
I - ISOCURVATURE SPECTRA “ .
i ] 10-12 3
10711 10713 ] A }"”’«“'A
i ] I .
/ /
10-12 |- = 10714 - '
& - : & C ]
s 0 : gt -
[« T [+ N
2 101 - 2 1o | -
N : R :
10-14 — 10-16 E
I ] L ; i
10—15 | 1 llllLll | lllIlII 1 1 lllllll 10—17 1 i llillIA i Illllll | 1 IIIIIl[

-

1 10 100 1000 10 100 1000
I [

FIG. 1. Power spectra of the CMB anisotropies from adiabatic ~FIG. 2. Power spectra of the CMB anisotropies from isocurva-
initial conditions. The background parameters &g=0.05, h  ture initial conditions. The background parameters @gg=0.05,
=0.7, three massless neutrino fami”esy mg:o& QC:0'35 h:0.7, three massless neutrino families, @9206, QC:0.35
(solid line), Q,=0, Q,=0.95(dash-dotted ling Note the increase (solid ling), Q,=0, ;= 0.95(dash-dotted line Note the decrease
of the acoustic peaks power in the scalar field model. of the acoustic peaks power in the scalar field model, an opposite

behavior with respect to the adiabatic case.

the perturbations are growing faster than in the CDM models
(we recall that density perturbations in adiabatic modelsve include¢ by keepingQq5=1; in fact, the scalar field
grow asa’ and a, respectively, in the radiation and matter hasno intrinsic dynamical effect at last scattering since mat-
erag and this produces an early integrated Sachs-Wolfdéer and radiation components were largely dominant: it is
(ISW) effect found first in[6]. Also, the position of the first well known the opposite behavior of the anisotropies in adia-
peak is slightly shifted toward smaller angular scales due tdatic and isocurvature models as one vafigsh? (see, e.g.,
the increase of the distance of the last scattering suffaoe ~ [20]). To better see this point, we plot in Figs. 3 and 4 the
jection effect. Note how these features regard both the popower spectra for models having fixét,h? and Qh? but
larization and temperature peaks. Finally, the temperaturearying Q,=,+{. and h by means of different},.
spectra show that the ISW effect is active on the smallesThus we expect the same amount of perturbations in the
multipoles due to the dynamics of the scalar field in theCMB except for effects that are genuinely linked to the sca-
present case; this is a distinctive feature with respect to thiar field, such as the projection effect and the ISW effect on
cosmological constait]. the smallest multipoles. This is precisely what happens for
Figure 2 shows the spectrum from isocurvature perturbathe spectra in Figs. 3 and 4. The dashed lines represent again
tions. While the projection effect is the same as in the adiathe curves foK) ,=0.6 as in Figs. 1 and 2; the solid and thin
batic case, now the situation regarding the amplitude of théines represent$) ,=0.5 and 0.7, respectively. Again, the
acoustic oscillations is inverted: the peaks are lower than thepectra show remarkably the same features for polarization
ordinary models, both for polarization and temperature. Thisand temperature, even if it should be noted how the former,
is simply due to the reduction of the matter/radiation ratio asarising from acoustic oscillations occurring just decou-
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FIG. 3. Power spectra of the CMB anisotropies from adiabatic |

initial conditions with different() , and fixed),h?=0.0245 and f th . ios f .
Q:h?=0.1715 ©,,h?>=0.196) as in Figs. 1 and 2. The background FIG. _4i Povg_ar_ spect_ra;} Od.ftf € CgB am;?rozlge)s hr;’T Isocurva-
parameters ar€),,=0.4, h=0.7 (dashed ling Q,,=0.3, h=0.81 ture initial conditions with different}, and fixed{},,h“=0.196.

(thin line), andQ,= 0.5, h=0.63 (thick line). The amplitude of the 1€ SPectra show the same behavior for varyihg as in Fig. 3.

peaks is the same, while they are slightly shifted because of thgmined. The amplitude of the oscillations in the scalar field
projection effect. models is higher for the adiabatic case and lower for the
isocurvature one when compared with the corresponding
pling, is not influenced by the ISW effect, since it comesCDM models. These oscillations are the source of the CMB
from the line-of-sight integration. All this shows how the anisotropies on subhorizon angular scales Z00) through
perturbation power at decoupling is not touched by the subthe acoustic driving effect and the early ISW effg2#], and
dominant scalar field; the opposite behavior in the adiabatitherefore follow different behavior in the two cases.
and isocurvature cases is explained by the decrease of matter We concentrate now on two particularly significant quan-
in favor of scalar field. tities regarding both adiabatic and isocurvature regimes, the
More insight into the perturbation behavior may be ob-total entropy perturbation, defined below, and the curvajure
tained by looking at the time evolution of some significantdefined in Eq(65); we recall that these quantities are gauge
quantities; we look at one Sing'e Sca|e, or wave numberinvariant. The amplitude Of the tOtal entl’opy perturbation iS
roughly entering in the horizon between matter and radiatio¥iven by

equality and decoupling: pI'=pLine+ Pl el
n re

k=8x10"2 Mpc . 113
P 9 =S (pa-ciopa)+ S (ci-c2)on,
Let us begin with the gravitational potentil, in Fig. 5; the
oscillatory dynamics is associated, both in the isocurvature _ SD.—c28 114
and adiabatic cases, to the horizon crossing of the scale ex- Ea: (9Pa=C50pa), (114
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FIG. 5. Gravitational potentigin arbitrary unit$ at the comov-
ing wave numbek=8x10"2 Mpc™ ! as a function of the time for
adiabatic (top) and isocurvaturgbottom initial conditions. The

background parameters are the same as in Figs. 1 and 2. The oscil- 04 |~
latory dynamics is associated with the horizon crossing of the scale
considered. In the adiabatiesocurvature scalar field models, the
oscillation amplitudes are largéiower) than in the corresponding

CDM cases, according to the power spectra behaviors.

wherep is the total pressure and the sound speed must take—~ ¢ |-

into account the scalar field contributiad,=1-2V'¢/p,,
in the summation,

2 hacy

Cg T, (115

where

h,=patpa, h=2 h,. (116)

a
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FIG. 6. Gauge-invariant entropy behavian arbitrary unit$ as
a function of the time in adiabatic models for scalar figldlid line)
and pure CDM(dashed ling models. Note the shift of the horizon
crossing(corresponding to the oscillationsoward late times due to
the effective cosmological constant.

the scalar field component due to the spatial and temporal
variations of the scalar field equation of state, thg, term
arises from the different dynamical behavior of the compo-
nents, and it is related to th®,,, quantities defined in Eq.
(51) by the relation 18]

02 -

02 -
: k=8x10"2 Mpc~! :
0.4 ; ISOCURVATURE CASE ;
I Lol Lol Lol 1 |\|\|||_

1078 107 0.0001 0.001 0.01

a

FIG. 7. Gauge-invariant entropy behavian arbitrary unit$ as
a function of the time in isocurvature models for scalar figlalid
line) and pure CDM(dashed lingmodels. Note the decrease of the

While thel';,; term comes from the intrinsic entropy pertur- oscillation amplitudes in scalar field models, due to the lack of
bation of each component, and is ultimately sourced only bynatter with respect to the pure CDM case.
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FIG. 9. Gauge-invariant curvature behaviar arbitrary unit$
as a function of the time in isocurvature models for scalar field
(solid line and pure CDM(dashed ling models. Note that the
curvature is vanishing as—0.

FIG. 8. Gauge-invariant curvature behaviar arbitrary unit3
as a function of the time in adiabatic models for scalar fishlid
line) and pure CDMdashed linemodels. Note that the curvature is
nonvanishing aa—0.

prrm:% > %(cg_cg)sab_ batic one, being an explicit indicator of the nature of the
ab perturbations. Again the significant dynamics occurs in cor-

respondence with the horizon crossing, and the latter occurs

slightly later than in the CDM model due to the presence of

the scalar field.

(117

In Figs. 6 and 7 we ploE' vsa (solid line and arbitrary unijs
using isocurvature CDM and adiabatic initial conditions, re- Finally, note how in all the isocurvature cag€ays. 6 and
spectively. We note that in both cases-0 asa—0:inthe  g) the amplitude of the oscillations is lower than in the cor-
last case, this is an obvious consequence of the definition Qésponding CDM mode's; as we mentioned above, this is due
what adiabatic conditions are; on the other hand, takingg the reduction of the matter component in favor of the
isocurvature CDM initial conditions, we started with nonzerogegiar field energy density. Most important, these graphs

values of theS,, relative to the CDM component and the gpoy that this is the only possible cause of this effect, since
other noncompensating components, but adair0 asa 4t the times of oscillations for the scale examined, roughly

—0. This is because at earlX times the cosmic fluid is radiapeqyeen equivalence and decoupling, the scalar field is very
tion domlna'ted, SO thalgl./a in Eq. (11.4)' this destroyd’ .. subdominant with respect to the other components.

fpr a—0, since no rgd|at|on perturbgﬂon; are presgnt N The hypothesis of a cosmic vacuum energy stored in the
tla_IIy. _Instead, the initial valu_e of the .f'rSt. time denvatlye_ .Of potential of a scalar field enlarges naturally the possibility to

I' is different from zero only in selecting isocurvature initial © .=, "~ = : . .

" i . o . gain insight into high energy physics from the traces left in
conditions, since it tak_es contributions directly _from_aﬁ, the cosmic radiation and in the matter distribution. Because
terms[18]. The behavior of entropy perturbations in both ﬂ{ the upcoming CMB experimenf€3)], it will be interest-
cases have been compared with those in the standa o

P ing to further study the cosmological imprints of these mod-

Einstein—de Sitter modél ,,= 1 (dotted ling, with the same ) - ; . .
choice of Q, and H,. The entropy perturbations remain els, in the context of different theories attempting to describe

nearly constant before horizon crossing; at this time the perthe hidden sector of high energy physics.
turbation starts its oscillations that are damped in amplitude
when the scale is well below the effective horizon. As an
expected feature, note that in the scalar field model the peaks
of the oscillations are shifted closer to the present when com-
pared to the Einstein—de Sitter case, as the epoch of matter- We are grateful to Luigi Danese and Sabino Matarrese for
radiation equality. their hints and encouragement. We warmly thank Marco

In Figs. 8 and 9 we plot the evolution of the gauge-Bruni, Scott Dodelson, Andrew Liddle, Ed Copeland, and
invariant curvature perturbatianfor isocurvature CDM and Elena Pierpaoli for quick and accurate comments on our
adiabatic initial conditions, respectively. A1, this quan- questions. C.B. wishes to thank the SISSA/ISAS Institute for
tity is zero in the isocurvature case and nonzero in the adiahe kind hospitality.
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