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Reconstructing projected matter density power spectrum from cosmic microwave background
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Gravitational lensing distorts the cosmic microwave background~CMB! anisotropies and imprints a char-
acteristic pattern onto it. The distortions depend on the projected matter density between today and the redshift
z;1100. In this paper we develop a method for a direct reconstruction of the projected matter density from the
CMB anisotropies. This reconstruction is obtained by averaging over quadratic combinations of the derivatives
of the CMB field. We test the method using simulations and show that it can successfully recover a projected
density profile of a cluster of galaxies if there are measurable anisotropies on scales smaller than the charac-
teristic cluster size. In the absence of a sufficient small scale power the reconstructed maps have a low signal
to noise ratio on individual structures, but can give a positive detection of the power spectrum or when cross
correlated with other maps of large scale structure. We develop an analytic method to reconstruct the power
spectrum including the effects of noise and beam smoothing. Tests with Monte Carlo simulations show that we
can recover the input power spectrum both on large and small scales, provided that we use maps with
sufficiently low noise and high angular resolution.@S0556-2821~99!01212-6#

PACS number~s!: 98.80.Es, 98.35.Ce, 98.70.Vc
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I. INTRODUCTION

Cosmic microwave background~CMB! anisotropies have
the promise to revolutionize the field of cosmology in t
coming decade. Using ground-based, balloon, and space
periments we will be able to map the microwave sky ove
large range of angular scales and frequencies. The expe
characteristic pattern of acoustic oscillations generated
the primary CMB anisotropies aroundz;1100 will provide
a wealth of information that should constrain many of t
cosmological parameters to a high accuracy@1#. Other
sources closer to us also contribute to the microwave s
Some of these are the foreground emission from our o
galaxy and from the galaxies along the line of sig
Sunyaev-Zeldovich emission from clusters, signatures
patchy reionization, etc.

Another effect that modifies the CMB sky is gravitation
lensing. Dark matter distributed along the line of sight b
tween z;1100 and present deflects the light and indu
distortions in the pattern of the CMB anisotropies. Its effe
on the CMB power spectrum has been thoroughly inve
gated@2,3#. The conclusion from these works is that the len
ing effect is small but not negligible. On large and interm
diate scales lensing smoothes the acoustic oscillations@2#,
while on very small scales it creates additional power. B
these effects could help break some of the parameter de
eracies in the CMB@4#. Although in models normalized to
cluster abundances the effect of gravitational lensing is sm
it could be important for the Planck satellite mission@5#. The
lensing effect on the CMB power spectrum is now includ
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in the standard CMB primary anisotropies routine@6#.
Gravitational lensing is directly sensitive to the matt

distribution up toz;1100, so a detection of this effect woul
provide important information about matter distribution o
large scales and high redshifts, which is not directly atta
able by any other means. Such information would not requ
any additional assumptions such as how light traces mas
how nonlinear structures form. Because of this it is wo
investigating if there are other signatures imprinted on
CMB which would be more easily accessible to the futu
observations than the effect on the CMB power spectru
Some of these, such as the four-point function and elliptic
distribution of peaks have already been explored by B
nardeau@7#. These particular signatures of the lensing effe
were found to be rather weak, but nevertheless margin
detectable with the Planck satellite. They could provide
ditional constraints on the amplitude of matter power sp
trum. A similar conclusion has also been reached by Ka
@8#.

The purpose of this paper is to present a new approac
identify gravitational lensing in CMB. The power of th
method developed here is that, unlike previous attempt
allows a full 2D reconstruction of projected matter dens
between us and the last scattering surface atz;1100. Such a
map can be used to search for clusters at high redshift
study density fluctuations on the largest scales that are
directly accessible otherwise. It can also be correlated w
other maps of interest, such as those of the Sunya
Zeldovich effect, x-ray background, weak lensing, gala
clustering, and the CMB itself. In this paper we develop t
method and test it on simulated maps, showing that it
give an unbiased estimate of the underlying projected den
—field and its power spectrum. Whether or not the reco
struction from the CMB can be successfully applied to t
©1999 The American Physical Society07-1
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real data depends on the level of CMB anisotropies, ang
resolution, and noise characteristics of particular experime
as well as the amplitude of matter fluctuations. In this pa
we discuss these issues in detail and show the conditions
need to be satisfied for the method to work in practice.

II. RECONSTRUCTING THE PROJECTED
MASS DENSITY: FORMALISM

The large scale density fluctuations in the Universe ind
random deflections in the direction of the CMB photons
they propagate from the last scattering surface to us. T
effect not only alters the power spectrum of both the te
perature and polarization anisotropies@6#, but also introduces
non-Gaussian distortions in the maps. The quantity resp
sible for the deflections is the projected mass density or c
vergencek, defined more precisely below. In this section w
develop the formalism to measure convergencek based on
its lensing effect on the CMB maps. Throughout this pa
we use the small scale formalism, so that instead of sphe
expansion we work with plane wave expansion. This sim
fies the expressions and reduces the computational tim
simulations. The generalization to all sky coverage is p
sented in@9,10#.

The observed CMB temperature in the directionu is T(u)
and equals the~unobservable! temperature at the last scatte
ing surface in a different directionT̃(u1du), wheredu is
the angular excursion of the photon as it propagates from
last scattering surface to us. In terms of Fourier compone
we have

T~u!5T̃~u1du!5~2p!22E d2l ei l•(u1du)T̃~ l!. ~1!

To extract the information on the deflection fielddu we
consider derivatives of the CMB temperature. If the CMB
isotropic and a homogeneous Gaussian random field
different partial derivatives are statistically equivalent a
their spatial properties are independent of position. Lens
will distort these two properties of the derivatives. The d
rivatives of the temperature field are to lowest order

Ta~u![
]T̃

]ua
~u1du!5~dab1Fab!T̃b~u1du!, ~2!

where Fab5]dua /]ub is the shear tensor anda,b5x,y.
The components of the shear tensor can be written in te
of the projected mass densityk and the shear fieldsg1 and
g2,

Fxx1Fyy522k,

Fxx2Fyy522g1 ,

2Fxy522g2 . ~3!
12350
ar
ts
r
at

e
s
is
-

n-
n-

r
al

i-
of
-

e
ts

en

g
-

s

Convergence and shear are related to each other throug
Fourier space relations,

g1~ l!5k~ l!cos~2f l !, g2~ l!5k~ l!sin~2f l !, ~4!

wheref l is the azimuthal angle of the Fourier model. The
convergencek can be related simply to a radial projection
density perturbation@11#

k5
3H0

2

2
VmE

0

x

g~x8,x!
d

a
dx8. ~5!

Here x is the comoving radial coordinate of last-scatteri
surface andr (x) is the corresponding comoving angul
diameter distance, defined asK21/2sinK1/2x, x,
(2K)21/2sinh(2K)1/2x for K.0, K50, K,0, respec-
tively, where K is the curvature, which can be express
using the present density parameterV0 and the presen
Hubble parameterH0 as K5(V021)H0

2. The density pa-
rameterV0 can have contributions from matter densityVm ,
as well as from other components such as the vacuum
sity VL . The radial window over the density perturbationsd
is g/a, where g(x8,x)5r (x8)r (x2x8)/r (x) is a bell
shaped curve symmetric aroundx/2 and vanishing at 0 and
x, while a is the expansion factor. Note that for a flatVm
51 universed}a in linear theory and the weighting is sym
metric aroundx/2, so that the peak contribution is comin
from z53.

The angular power spectrum of convergence is define
^k( l)* k( l8)&5Cl

kkd ll8 and has an ensemble average@11#

Cl
kk518p3Vm

2 H0
4 E

0

x0 g2~x,x0!

a2~x!r 2~x!
PdS k5

l

r ~x!
,x Ddx.

~6!

Here Pd(k,t) is the 3D dark matter power spectrum that
integrated over the past light cone and is in general a fu
tion of time t and wavevectork. This equation has bee
derived using Limber’s equation, which is only valid in th
small scale limit. The general solution in terms of the line
sight integral over the spherical Bessel functions is given
@9,10#.

We consider next the quadratic combinations of the
rivatives in Eq.~2! and express them in terms of the unlens
field to lowest order in the shear tensor:

S[@Tx
21Ty

2#~u!

5~11Fxx1Fyy!S̃1~Fxx2Fyy!Q̃12FxyŨ,

Q[@Tx
22Ty

2#~u!5~11Fxx1Fyy!Q̃1~Fxx2Fyy!S̃,

U[2@TxTy#~u!5~11Fxx1Fyy!Ũ1FxyS̃, ~7!

where S̃,Q̃,Ũ are the corresponding quantities in the u
lensed CMB field atu1du. The notation used here make
7-2
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RECONSTRUCTING PROJECTED MATTER DENSITY . . . PHYSICAL REVIEW D 59 123507
the analogy with CMB polarization:Q6 iU in Eq. ~7! have
spin 62 just like the Stokes parameters used to describe
CMB polarization, whileS is a spin 0 quantity~a scalar! and
is rotationally invariant.

Equation~7! shows that the measuredS, Q, andU are
products of the projected mass density and shear with de
tives of the unlensed CMB field. Thus the power spectrum
S, Q, andU will be a convolution of the power in the CMB
and that of the projected mass density. The general exp
sion of this convolution is quite involved, so we will discu
it in the two limits where the expressions simplify conside
ably, the limits of large and small scales relative to the CM
correlation lengthj. The large scale limit is sufficient to
analyze the potential of the Microwave Anisotropy Pro
~MAP! and Planck future missions. For experiments w
higher angular resolution the full convolution will be nece
sary.

Throughout the paper we compare the result of our a
lytical estimates with those of numerical simulations.
simulate the lensing effect on the CMB we first generate
a fixed square grid a projected density map. We then Fou
transform the convergence and compute the displacem
vectordu by using the Fourier relation

du52i
k

k2
k ~8!

and then transforming it back to real space. We next gene
on a fixed grid of the same size as above a random rea
tion of temperature fieldT, using an input CMB power spec
trum. For each point in the lensed temperature map we
the corresponding displacement vector to determine fr
what position on the original grid the photons came fro
This position does not generally coincide with a grid point
the unlensed map so we use cloud-in-cell interpolation
compute the value ofT in the original map at this position
Cloud-in-cell interpolation smoothes the field so relative
small grid sizes are needed to avoid this unwanted effect.
achieve this by increasing the size of the array when p
forming the interpolation step.

A. Large scale limit

We start with the reconstruction in the limit of larg
scales. In this limit we average over many CMB patches
detect the weak lensing signal. We begin by noting tha
the absence of lensing the isotropy of the unlensed ba
ground implies that

^S̃&CMB5sS ,

^Q̃&CMB50,

^Ũ&CMB50, ~9!
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where sS[^T̃x
2&CMB1^T̃y

2&CMB52^T̃x
2&CMB52^T̃y

2&CMB .
This average can be computed in terms of the CMB pow
spectrumCl

TT ,

sS5E ldl

2p
l 2Cl

TT . ~10!

If the mean of the components of the shear tensor vanish
have ^S&5^S̃&. There are residual quadratic terms in t
shear tensor that contribute to Eq.~10!, but they are negli-
gible in most cases of interest because the shear is expe
to be small.

The average of Eq.~7! over an ensemble of CMB fluc
tuations gives

^S&CMB5~122k!sS
2 ,

^Q&CMB522g1sS
2 ,

^U&CMB522g2sS
2 . ~11!

The physical interpretation of these equations is simplek
will stretch the image, which makes the derivatives smal
Its effect is isotropic and only changes the value ofS. The
shear produces an anisotropy in the derivatives, in the s
way as it creates an ellipticity in the shape of a circu
background galaxy. This can be extracted from the particu
combination of the derivatives used here.

We can reconstructk by studying the statistics ofS and
by combining the shear obtained fromQ andU. It is conve-
nient to change the variables to

S 852
S
sS

11,

Q 852
Q
sS

,

U 852
U
sS

, ~12!

so that

^S 8&CMB52k,

^Q 8&CMB52g1 ,

^U 8&CMB52g2 . ~13!

We will drop the primes in what follows, as we will only us
these quantities for the rest of the paper. Note that it is n
essary to have a quadratic combination of temperature fi
for an unambiguous reconstruction of the convergence. T
means that any reconstruction will have noise arising fr
7-3
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MATIAS ZALDARRIAGA AND UROŠ SELJAK PHYSICAL REVIEW D59 123507
intrinsic fluctuations in the CMB even in the absence of d
tector noise. Below we will quantify this intrinsic noise du
to the random nature of the CMB.

In the following we use the formalism developed to ch
acterize the CMB polarization field@12#. We can combineQ
andU to form E andB, two spin zero quantities, which in
Fourier space are defined as

E~ l!5Q~ l!cos~2f l!1U~ l!sin~2f l!,

B~ l!5Q~ l!sin~2f l!2U~ l!cos~2f l!. ~14!

from which the real spaceE(u) andB(u) can be obtained by
Fourier transformation. Equivalently these can be c
structed directly from quantities in real space

E~u!5E d2u8 v~ uu82uu!Qr~u8!,

B~u!5E d2u8 v~ uu82uu!Ur~u8!. ~15!

We have definedQr andUr , the derivative shear in the pola
coordinate system centered atu. If u50 then Qr
5cos 2f8 Q(u8)2sin 2f8 U(u8) and Ur5cos 2f8 U(u8)
1sin 2f8 Q(u8). The window is v(u)521/pu2 (u
Þ0), v(u)50 (u50). From Eqs.~13! and~14! it follows
that

^S&CMB52k,

^E&CMB52k,

^B&CMB50. ~16!

Equation~16! shows that the average ofS andE can be
used to reconstruct the projected mass density. Howeve
any particular direction on the sky the CMB derivatives c
take any value so there is an intrinsic noise in the reconst
tion coming from the random nature of the CMB.

To describe the intrinsic CMB noise we need to calcul
correlation functions betweenS̃, Q̃ and Ũ. These can be
expressed in terms of the correlation functions of the der
tives of the unlensed CMB field. For simplicity we consid
two directions separated by an angleu in the x direction,

Cxx~u![^T̃x~0!T̃x~u!&CMB

5~2p!22E d2l eil •u cosf l l 2Cl
T̃T̃ cos2 f l

5E ldl

4p
l 2Cl

T̃T̃@J0~ lu!2J2~ lu!#

[
1

2
@C0~u!2C2~u!#,
12350
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Cyy~u![^T̃y~0!T̃y~u!&CMB

5~2p!22E d2l eil •u cosf l l 2Cl
T̃T̃ sin2 f l

5E ldl

4p
l 2Cl

T̃T̃@J0~ lu!1J2~ lu!#

[
1

2
@C0~u!1C2~u!#,

Cxy~u![^T̃x~0!T̃y~u!&CMB

5~2p!22E d2l eil •u cosf l l 2Cl
T̃T̃ cosf l sinf l

50, ~17!

where C0(u) and C2(u) are defined as the integrals ov
l 3Cldl/2p weighted withJ0( lu) and J2( lu), respectively.
The real space correlations ofS̃, Q̃, Ũ are

NSS~u![^S̃~0!S̃~u!&52~Cxx
2 1Cyy

2 !/sS
25~C0

21C2
2!/sS

2 ,

NQQ~u![^Q̃~0!Q̃~u!&52~Cxx
2 1Cyy

2 !/sS
25~C0

21C2
2!/sS

2 ,

NUU~u![^Ũ~0!Ũ~u!&54CxxCyy /sS
25~C0

22C2
2!/sS

2 ,

NSQ~u![^S̃~0!Q̃~u!&52~Cxx
2 2Cyy

2 !/sS
252C0C2 /sS

2 ,

NSU~u![^S̃~0!Ũ~u!&50,

NQU~u![^Q̃~0!Ũ~u!&50. ~18!

With the normalization we have chosen the correlations
S, Q, andU at zero lag to be equal to one. The correlatio
when the separation is not along thex axis can be obtained
by rotations of those in Eq.~18!, in a similar way as done for
the correlations of the Stokes parameters that describe
CMB polarization@13,14#.

To reconstruct the power spectrum ofk it will be neces-
sary to have expressions for the intrinsic CMB noise pow
spectraNl

SS , Nl
EE , andNl

SE , defined as

^W~ l!W8~ l!&[^Cl
WW8&54Cl

kk1Nl
WW8 , ~19!

whereW stands forS or E. For B only the noise termNl
BB

contributes. These power spectra can be obtained from
real space correlation functions using@6#
7-4
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Nl
SS52pE uduNSS~u!J0~ lu!,

Nl
EE5pE udu$@NQQ~u!1NUU~u!#J0~ lu!

1@NQQ~u!2NUU~u!#J4~ lu!%,

Nl
BB5pE udu$@NQQ~u!1NUU~u!#J0~ lu!

2@NQQ~u!2NUU~u!#J4~ lu!%,

Nl
SE52pE uduNSE~u!J2~ lu!. ~20!

From Eqs.~18! and~20! it follows that the intrinsic noise
power spectra are

Nl
SS5

2p

sS
2 E udu~C0

21C2
2!J0~ lu!,

Nl
EE5

2p

sS
2 E udu@C0

2J0~ lu!1C2
2J4~ lu!#,

Nl
BB5

2p

sS
2 E udu@C0

2J0~ lu!2C2
2J4~ lu!#,

Nl
SE5

4p

sS
2 E uduC0C2J2~ lu!. ~21!

The top panel of Fig. 1 shows the correlation functio
from Eq. ~18!, while the bottom panel of the same figu

FIG. 1. The upper panel shows the correlation function

S̃, Q̃, Ũ for SCDM. The lower panel shows the power spectra
SS, EE, BB, andSE.
12350
s

shows the different noise power spectra using a stand
CDM temperature power spectrum. The correlations in
CMB derivatives drop significantly for angles larger thanj
50.15°. The power spectra shown in Fig. 1 demonstrate
the large scale behavior of the correlations is similar to wh
noise. In the limit of lowl we can obtain the power spectru
from Eq. ~21! by integrating over the angle first and usin
the orthonormality relation of the Bessel functions,

lim
l→0

Nl
SS52pE udu~C0

21C2
2!/sS

2

5~2psS
2!21E uduE l 3dl

3E l 83dl8Cl
TTCl 8

TT
@J0~ lu!J0~ l 8u!

1J2~ lu!J2~ l 8u!#

52p
E l 5dl~Cl

TT!2

S E l 3dlCl
TTD 2

,

lim
l→0

Nl
EE52pE uduC0

2/sS
25 lim

l→0
Nl
BB5

1

2
lim
l→0

Nl
SS ,

lim
l→0

Nl
SE50. ~22!

We can use these to define the correlation length more
cisely asj25Nl

SS which givesj;0.15° used above. It is
interesting to note that althoughS, Q, U all have the same
variance the lowl limit of the power spectrum ofS is twice
that of E or B. E andB have a different correlation lengt
from S, which reflects the spin nature of the shear variab
This leads toE giving a factor of 2 higher signal to nois
ratio thanS in the reconstruction.

In order to get an accurate measurement of the proje
mass density or the shear we need to average over se
‘‘independent’’ patches of sizej2, each of which has a vari
ance of order unity. This sets the basic requirement that
to be satisfied if the reconstruction is to give a positive s
nature. The signal to noise ratio in each patch of sizej2 is
S/N;2k. This means that we need to average overNpatch

21/2

;2uku to get a signal to noise ratio of order one. The issue
whether on scales larger thanj the weak lensing signal is
sufficiently strong to be detectable. Even though CMB
sensitive to matter density fluctuations up toz;1100 and the
RMS convergence is significantly higher than for galaxies
say, z;1, it is still well below the intrinsic CMB noise if
j50.15°. Only with sufficient small scale power can ind
vidual structures be reconstructed with a high enough sig
to noise ratio. This is discussed further in the following se
tions.

Equation~21! is needed to asses the noise for the rec
struction ofk and to subtract the noise contribution from i
reconstructed power spectrum in Eq.~19!. To compute the

f

f

7-5
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variance of the power spectrum reconstruction we also n
to know the RMS of the intrinsic noise power spectrum. T
intrinsic CMB noise is a fourth order statistic of the CM
field. Fortunately in the large scale limit it can be conside
Gaussian. This is a consequence of the central limit theor
the long wavelength modes ofS, E, andB are obtained by
adding a lot of independent patches making them effectiv
Gaussian.

If the intrinsic noise can be considered Gaussian then
covariance matrix Cov@(CW)(CW8)# for the noise power
spectra can be expressed in terms of these@12#,

Cov@~Cl
SS!2#5

2

2l 11
~Nl
SS!2,

Cov@~Cl
EE!2#5

2

2l 11
~Nl
EE!2,

Cov@~Cl
SE!2#5

1

2l 11
@~Nl

SE!21Nl
SSNl

EE#,

Cov~Cl
SSCl

EE!5
2

2l 11
~Nl
SE!2,

Cov~Cl
SSCl

SE!5
2

2l 11
Nl
SENl

SS ,

Cov~Cl
EECl

SE!5
2

2l 11
Nl
SENl

EE . ~23!

In the large scale limit Nl
SE!Nl

EE and Nl
SS52Nl

EE

52Nl
BB . The covariance matrix becomes diagonal w

Cov@(Cl
EE)2#5Cov@(Cl

BB)2#5Cov@(Cl
SE)2#5 Cov@(Cl

SS)2#/
4. In Fig. 2 the covariances obtained in the simulations
compared to those derived under the Gaussian approx
tion. The agreement is excellent forl ,1000 and only seri-
ously breaks down beyond that forCSE. We have also veri-
fied with Monte Carlo simulations that the off-diagon
terms are negligible compared to the diagonal ones.

In Eq. ~19! we have three estimators for the convergen
power spectrum,SS, EE, and the cross correlationSE. Us-
ing the covariance matrix in Eq.~23! we can construct a
minimum variance combination of the three estimators.
the large scale limit the covariance matrix is diagonal and
can weight each of the estimators by the inverse of the n
variance,

4Ĉl
kk5

1

9
~Cl
SS2Nl

SS!1
4

9
~Cl
EE2Nl

EE!1
4

9
~Cl
SE2Nl

SE!.

~24!

We will use this formula in Sec. IV to estimate the pow
spectrum ofk from our lensing simulations. Note that w
have assumed in Eq.~23! that only the intrinsic CMB noise
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contributes to the variance ofCl
kk estimates. There is also th

cosmic variance contribution (2/2l 11)(Cl
kk)2 but we will

show in Sec. IV that this term is significantly smaller tha
the intrinsic noise term and can be ignored, unless the C
has more small scale power than expected within the c
rently popular cosmological models.

B. Small scale limit

So far we have described the gravitational lensing eff
on large scales compared to the correlation length of
CMB. In this limit we average over~almost! independent
patches of CMB fluctuations, which is similar to the proc
dure used in weak lensing, where we average over indep
dent ellipticities of background galaxies. We now turn
scales much smaller than the correlation lengthj. In this
limit we can take the derivativesT̃x and T̃y to be constant
across the field. The physical picture is very different fro
the one discussed in previous subsection. Weak lensin
this limit acts as a generator of small scale power. To see
we can imagine the effect of a small clump of mass on a p
gradient of temperature field. A mass clump will magni
and stretch a small patch, which will change the slope of
gradient at the position of the clump. The resulting tempe
ture field is no longer a pure gradient, but has a small wig
superimposed on it. Small scale power has been gener
only where the gradient of primary anisotropies is nonz
because where the surface brightness is constant its co
vation requires that it remains so even in the presence
lensing.

We now attempt to use this physical picture to reconstr
the weak lensing signal. Introducinga5Tx /sS and b
5Ty /sS we have

FIG. 2. Simulation results for the covariances
Cl
SS , Cl

EE Cl
BB , andCl

SE normalized to their values for Gaussia
noise given in Eq.~23!. The Gaussian approximation is an excelle
one for l ,1000.
7-6
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S5~2k21!~a21b2!12g1~a22b2!12g22ab,

Q5~2k21!~a22b2!12g1~a21b2!,

U5~2k21!2ab12g2~a21b2!. ~25!

We did not subtract unity out of the definition ofSas in Eq.
~12!, because even though on average^(a21b2)&CMB51,
we are considering a very small field over whicha andb are
approximately constant with (a21b2)Þ1 in general.

We want to determinea, b, k, g1, and g2. If we as-
sume that the mean value ofk, g1, andg2 over the field is
zero then

^S&5a21b2,

^Q&5a22b2,

^U&52ab, ~26!

where the mean value is taken over a region large eno
that the mean shear and projected mass density vanish
over which the CMB gradient remains nearly constant.
practice this can be achieved by filtering out the small sc
power, so that the remaining power is largely dominated
primary anisotropies. We can then computea andb and use
them in Eq.~26!.

Oncea andb are determined it would appear that we c
determine the convergence and the two shear componen
solving

S SQ
U
D 5S ^S& ^Q& ^U&

^Q& ^S& 0

^0& ^U& ^S&D S 122k

22g1

22g2

D . ~27!

However, the determinant of the matrix above vanishes
we cannot determine convergence and shear independe
Instead we have to use the relations between shear and
vergence to reconstruct the signal. In Fourier space, fl
large enough that we can considera and b in Eq. ~25! as
constants. We get

S~ l!52k~ l!@~a21b2!1~a22b2!cos~2f l!12ab sin~2f l!#,

Q~ l!52k~ l!@~a22b2!1~a21b2!cos~2f l!#,

U~ l!52k~ l!@2ab1~a21b2!sin~2f l!#. ~28!

We can computeE andB,

E~ l![Q~ l!cos~2f l!1U~ l!sin~2f l!

52k~ l!@~a21b2!

1~a22b2!cos~2f l!12ab sin~2f l!#

5S~ l!,
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B~ l![U~ l!cos~2f l!2Q~ l!sin~2f l!

52k~ l!@2ab cos~2f l!1~a22b2!sin~2f l!#. ~29!

We see that the estimators of the convergence are not i
pendent,E( l)5S( l), as argued above.

To obtain an estimator of convergence we can use an
the expressions in Eq.~28!. This requires dividing with the
combination of derivatives ofT and will be very noisy if
botha andb are close to 0. This is a consequence of the f
that lensing cannot generate power where there is no gr
ent. Such a reconstruction will therefore have variable no
One solution to this problem is to filter the map with a va
able filtering length. Note that we have assumed thata andb
are constant across the map, while in reality they will chan
as well. This means that in practice we have to divide
map into chunks over which the long wavelength modes
approximately constant, or use more sophisticated meth
such as the wavelet analysis.

The procedure outlined above is quite involved and
did not attempt to implement it in this paper. It simplifie
considerably if we are only interested in the power spectru
In this case we may still useS( l) andB( l) to get

Cl
SS54Cl

kk@~a21b2!21~a22b2!2 cos2~2f l!

1~2ab!2 sin2~2f l!12~a21b2!~a22b2!cos~2f l!

14~a21b2!ab sin~2f l!

14~a22b2!ab cos~2f l!sin~2f l!#,

Cl
BB54Cl

kk@~2ab!2 cos2~2f l!1~a22b2!2 sin2~2f l!

24~a22b2!ab cos~2f l!sin~2f l!#. ~30!

If we average overf l and use^(a21b2)2&CMB5^T̃x
41T̃y

4

12T̃x
2T̃y

2&CMB /sS
252 and ^(a22b2)2&CMB5^(2ab)2&CMB

51 we find,

^Cl
SS&512Cl

kk ,

^Cl
BB&54Cl

kk . ~31!

Note that there is no need to use local estimates ofa andb to
get an estimator of the power spectrum, as long we hav
CMB map with enough uncorrelated patches so that the q
dratic combinations ofa andb can be replaced by their av
erages. In this limit the power spectra ofS and B again
directly give estimates of convergence power spectru
without any convolution and also without noise contributi
from intrinsic CMB anisotropies~although there will be con-
tribution from instrumental noise!. This is because in this
limit all the power is generated by gravitational lensing. It
important to note that in this limitB does not vanish, bu
actually gives an estimate of thek power spectrum, while
power inS is a factor of 3 bigger than power inB. We will
show below that these predictions are well recovered in
Monte Carlo simulations.
7-7
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III. AN EXAMPLE: RECONSTRUCTING THE MASS
PROFILE OF A CLUSTER

To illustrate our method we first apply it to reconstruct t
mass profile of a massive cluster of galaxies. In order for
large scale limit method to work we need the CMB to va
on scales smaller than the cluster, so that the effect of len
can be measured after averaging over independent pat
Most likely there is not enough small scale power in t
primary anisotropies to make this method viable in practi
The reader should take this section as a toy example inten
to help him/her understand how the method works and
familiar with the relevant physics.

Since we do not expect the primary CMB anisotropies
have sufficient power on arcminute scales we use
Ostriker-Vishniac~OV! effect instead in our example usin
the power spectrum from@15# as an estimate. This is no
necessarily the only possible source of anisotropies on s
scales and there may be other sources as well, including
primeval galaxies and QSO emitting in IR and radio. As lo
as there are many sources in the beam and their redsh
higher than the cluster redshift the analysis is identical to
one presented here. The only difference is that these sou
are not atz;1100 but at a lower redshift so the windo
function g in Eq. ~5! changes relative to the one forz
;1100 sources. If the redshift distribution of the sources
not known then we may in principle use lensing on a clus
with known mass profile to determine it. For individu
sources that are resolved it may be better to use their sh
as an estimate of the local shear, which is the usual pro
dure in the case of galaxy lensing.

For the method to be useful in practice the small sc
anisotropies have to be above the detector noise. This c
be achievable with future interferometric or bolometer e
periments with long integration times on a small area of
sky, reachingmK sensitivities on subarcminute pixels. An
other complication in this case relative to our analysis in S
II is that the distribution of anisotropies is likely not to b
Gaussian. This complicates the issue of noise analysis
statistical significance of the results, but does not affect
average of the reconstruction. We will ignore these issue
the following, since we are mainly interested in having
simple example with which we can test our method.

Figure 3~a! shows the simulated input cluster, with th
profile chosen as a projection of a truncated isother
sphere. In Fig. 3~b! we show an unlensed simulated CM
field, assuming an OV type of power spectrum. In Fig. 3~c!
we show the lensed CMB map. We see that the cluster
magnified the CMB in the center, so in the absence of sm
scale power the central region is smoother. In Fig. 3~d! we
show the shear as measured by the CMB derivatives (Q and
U) and in the background the convergence fieldS.

Both S andE are estimators of the convergence, but F
3~c! illustrates a possible advantage of the reconstruc
based on shear over that based onS in the case of clusters
The shear based reconstruction is nonlocal as shown f
Eq. ~15!. The shear from the whole map is used to reco
struct the density at the center. Thus we are averaging
many different independent CMB regions. On the other ha
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the reconstruction based onS is local. It will not work very
well in the center because the magnification induced by
lensing will expand a small region so unless there are a
tional small scale perturbations which are magnified th
will be fewer independent regions to average over. This
fect can be seen in Fig. 3~c!. This is of course an issue onl
for clusters that are close to being critical and the magn
cation is no longer small compared to unity. For others, m
linear structures of the two reconstructions give similar
sults, althoughS is still noisier thanE by a factor of 2 as
derived in Eq.~22!.

To be more quantitative we show in Fig. 4 the reco
structed projected radial mass profile from the shear and
convergence. We also show the result of the reconstruc
procedure on the unlensed CMB field to illustrate the no
level, which for this case with a lot of small scale structure
negligible. The reconstructed profile tracks well the inp
profile outside the center, but falls below it in the cen
because of an insufficient number of independent patc
there. In our reconstruction algorithm we are forcing t
meank to be zero and because the reconstruction of
center of the cluster is systematically lower due to the av
aging, the reconstruction is also systematically lower on
outside of the cluster. As expected this is more pronoun
for S than forE reconstruction because the former is nois
and relies more on poor quality information from the cen
of the cluster. These effects can be calibrated from the si
lations and overall the method can reconstruct the true p
jected mass density outside the core, assuming that the

FIG. 3. Top left panel: input cluster on a 6 ft36 ft field. Top
right panel: unlensed CMB map. We assumed that the Ostri
Vishniac effect could be detected with a sufficient signal to no
ratio to be used in the reconstruction ofk. Bottom left: CMB field
after being lensed by the cluster. Bottom right: the backgrou
shows theS field while the rods represent the shear variablesQ and
U, both of which can be used to reconstruct the density profile.
7-8
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RECONSTRUCTING PROJECTED MATTER DENSITY . . . PHYSICAL REVIEW D 59 123507
essary conditions discussed above~measurable primary
anisotropies on scales smaller than the typical cluster sc!
are satisfied.

IV. RECONSTRUCTING THE POWER SPECTRUM
OF PROJECTED DENSITY

A. Intrinsic CMB noise

In this section we investigate the power spectrum rec
struction of convergence using the method developed in S
II. The power spectrum can be reconstructed fromE, S, or
their cross correlation. We will first discuss the power sp
trum reconstruction in the absence of detector noise and
suming infinite angular resolution. In this simplified case t
only source of noise is the CMB itself. We do not add sm
scale secondary anisotropies in this section, so the re
should be representative for primary fluctuations and
additional small scale fluctuations at high redshift would f
ther improve the performance. In Fig. 5~a! we show the
power spectra for the unlensed CMB field~the CMB
‘‘noise’’ ! calculated using Eq.~21! and the result of our
Monte Carlo simulations. The agreement between anal
predictions and simulations is very good. We recover
white noise behavior ofNl

SS , Nl
EE , andNl

BB on large scales
and also the relatively small amplitude of the cross corre
tion Nl

SE .
On large scales these power spectra are to be compar

4Cl
kk @Fig. 5~a!#. For the purpose of illustrating our metho

in this paper we adopted the convergence power spectr
the ‘‘concordance’’ model @16# Vm50.3, VL50.7, G
5Vmh50.2, n51, ands851. Other spatially flat models

FIG. 4. Reconstructed radial profile using the data in Fig. 2. T
points marked withE (S) correspond to the reconstruction ofk
based onE (S). The points marked unlensed correspond to
result of applying theE reconstruction to the unlensed field. Th
input k was taken to have zero mean.
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would give very similar results. For spatially open mode
the correlation length decreases, which would increase
signal to noise ratio of reconstruction. It can be seen fr
Fig. 5~a! that on large scales the power of the convergenc
small compared to that of the CMB noise. As a result we c
only hope for a statistical detection of the lensing effect a
the method will not allows us to make a map ofk directly
unless there is more small scale power in the CMB, as
cussed in Sec. III in the context of cluster reconstructi
Even if k reconstruction has a low signal to noise ratio
power spectrum may nevertheless be recovered with h
statistical significance, because we can average over m
independent patches on the sky. This is seen from the dif
ence between the power spectra in the lensed and unle
field. The weighted average of the three estimators@Eq. ~24!#
for a single simulated sky~with sky coverage fraction 0.7! is
also shown in Fig. 5~a! together with the input convergenc
spectrum. The intrinsic CMB noise is about 10–20 tim
higher, yet the difference agrees well with the inputk power
spectrum, showing that there is a significant statistical de
tion of the signal.

The reconstruction of the power spectrum is further st
ied in Fig. 5~b!, where we show the intrinsic noise subtract
power spectra ofSS, EE, andBB and the cross correlation
spectrumSE divided with the input matter power spectrum
On large scales the reconstructed spectra ofSS, EE, andSE
all give unbiased estimators of 4Cl

kk so the average of the
output to input ratio is 1, while that ofBB if consistent with
the pure noise and the ratio averages to 0. The latter,
though not giving an estimate of the signal, can provide

e

e

FIG. 5. ~a! Nl
SS , Nl

EE , Nl
BB , and Nl

SE power spectra for the
unlensed CMB field. The lines correspond to the results of Eq.~21!.
Also shown is the weighted average of the recovered power spe
from S, E and their cross correlation together with the input 4Cl

kk

from one simulation of the sky as described in the text.~b! Ratio of
the recovered power spectra to the inputCl

kk . The signal inB is
also shown.
7-9
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important consistency check on whether the signal seen f
E andS is indeed of cosmological origin or not. It may als
help identify the cosmological part of the signal if addition
contributions are present, such as in the case of non-Gau
CMB fluctuations or contamination from foregrounds.

The large scale limit is valid up tol;1000. On very small
scales, roughlyl;5000 and beyond, the reconstructed pow
spectra fromE andS give 12Cl

kk , while that obtained from
B gives 4Cl

kk so that the ratios are 3 and 1, again in agr
ment with analytic prediction in Eq.~31!. At very high l
intrinsic CMB noise is negligible, because there is no pow
present in the CMB itself on those scales.

In the intermediate regime betweenl 5100025000 nei-
ther small scale nor large scale limits apply and the rec
struction becomes a complicated convolution of CM
anisotropies and lensing signal. Information on the pow
spectrum can still be obtained even from this regime, but
better to approach the reconstruction in a parametric fo
by parametrizing the power spectrum with a few free para
eters that can be estimated by fitting the simulated spect
the data, rather than by direct inversion.

Because the intrinsic noise is larger than the signal
large scales we may worry that a small error in the no
estimate would lead to a large error in the estimated po
spectrum. This is most worrisome for theSS reconstruction
and least important for the cross correlationSE because
Nl
SS52Nl

EE@Nl
SE . The latter is even smaller than 4Cl

kk on
large scales so we can obtain an accurate estimate even
out any noise subtraction. Fortunately the large scale be
ior of Nl

SS , Nl
EE Nl

BB , and Nl
SE is quite insensitive to the

details of the power temperature spectra. For example
may worry that the CMB power spectra we measure will
affected by lensing or that we can only know the lens
CMB temperature spectra with some minimum scatter, l
ited by cosmic variance. On large scales, these eff
change the mean ofNl

EE by approximately 0.5% and add
1% scatter to it. It will depend on the noise amplitu
whether this is a significant source of error. For MAP the
errors causes a shift in the amplitude comparable to the in
power spectrum, while for Planck it is significantly below
and can be ignored. For MAP this problem can be solved
usingB reconstruction. Because the effect on large scale
mostly an amplitude shift we may use the amplitude ofCl

BB

to make it consistent with 0, which would also properly d
termine the amplitude of the other spectra.

B. Finite angular resolution and detector noise

Next we consider the influence of finite angular resolut
and detector noise, which were not included in the simu
tions presented in the previous section. In order to mea
the convergence power spectra using the small scale limi
experiment must have enough angular resolution to pr
these small scales. This effect of finite angular resolution
straightforward to include and we will not discuss it furthe
because future CMB satellites such as MAP and Planck
not be able to probe this limit. Here we discuss the m
important effect of finite angular resolution and detec
noise on the large scale limit reconstruction. It is easy to
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that finite angular resolution has an effect on the intrin
CMB noise amplitude. Because of finite resolution and d
tector noise small scale CMB power cannot be resolved
this leads to a larger correlation lengthj. This means that we
have fewer independent patches to average over the intr
CMB noise and the overall level of noise power spectrum
higher. Finite angular resolution also has a more subtle ef
by reducing the transferred power. To understand it qua
tatively we first compute the derivatives of the temperat
field in the presence of some filtering functionF(u), which
involves the experimental beam and any additional filter
may want to use in the analysis:

Ta~u!5E F~u2u8!Ta~u8!d2u8

5E F~u2u8!~dab1Fab!T̃b~u81du8!d2u8

5~2p!22E d2l F~ l !Ta~ l!ei l•u1~2p!24

3E d2lE d2qF~ u l1qu!Tb~ l!Fab~q!ei ( l1q)•u.

~32!

To obtain the last expression we expandedF, Fab , andTa
into a Fourier series and integrated over angleu8. The large
scale effect of the filter function can be read from the av
age over the CMB of the square of Eq.~32!,

^TaTb&CMB5
dab

2 E ldl

2p
F2~ l !l 2Cl

TT

1~2p!22E d2qFab~q!eiq•u

3F ~2p!22E d2l F~ l !F~ u l1qu!Cl
TTG .

(33)

In the absence of filtering the integrals involvingCl
TT in both

terms of Eq.~33! are identical. This allows us to reconstru
k from the second term, while the first term givessS as in
Eq. ~11!. To describe the effect of the beam smearing
introduce a window function as the ratio of the two integra

W~q!5

E d2l F~ l !F~ u l1qu!l 2Cl
TT

E d2l F2~ l !l 2Cl
TT

, ~34!

which is in general less than unity and in terms of which
have

^S~ l!&5^E~ l!&52k~ l!W~ l !. ~35!
7-10
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The effect of filtering is important even for the reco
struction of large scalek modes. This can be understood b
looking at Eq.~32!. The shear tensor modulates the amp
tude of the temperature derivatives, so the information ab
a particularq mode of k is encoded as sidebands of th
different l modes of the temperature. We are recovering
information back at the correspondingq by squaring the
field, which appropriately recombines all the sidebands fr
everyl to the correctq. Finite angular resolution is importan
even for large scale modes because the information a
these modes in encoded mainly in the sidebands of the s
scale temperature modes, which are strongly affected by
filtering function.

To minimize the effect of beam smoothing we may filt
the temperature before squaring it. The smallest effec
achieved if the filtering functionF( l ) is a constant, in which
case~in the absence of a cutoff inl ) there would be no
effect. For this reason we choose to filter the tempera

with the inverse of the beamel ( l 11)sb
2
, wheresb

2 is the width
of the Gaussian beam, thereby reversing the smoothing e
of the beam. We can only do this up to a maximuml cut ~the
value of which is determined below! not to amplify the de-
tector noise on small scales. Thus our effective filterF( l ) is
equal to one forl , l cut and zero after that. Figure 6~a! shows
two examples ofW(q) for different values ofl cut, which
correspond to minimum of noise for MAP and Planck e
periments. Note that regardless of the form of the filter E

FIG. 6. The upper panel shows the window functionW2( l ) as a
function of l for MAP noise and beam properties where the app
priate value isl cut5600 and for Planck withl cut52000 ~bottom
panel!. For the latter the window has no effect atl ,1000. The
bottom panel shows the amplitude ofNl

EE in the limit l→0 as a
function of l cut for the specifications of the MAP and Planck sat
lites, justifying l cut5600,2000 for the two experiments. Also show
is the no noise infinite angular resolution curve~ideal!, which levels
off at l;2000, showing that Planck is close to optimal in the lar
scale limit, because it measures most of the power in the CMB
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~34! implies thatW(q)→1 asq→0. Other forms of filtering
are possible as well, but we show next that this filter com
close to being optimal and is easy to implement in the ana
sis.

The contribution of detector noise on large scales to
different power spectra can be obtained using Eq.~21! with
Cl

TT→Cl
TT1NTT. We take the detector noise to be whi

noise with constant power spectrumNTT for a range 0, l
, l max. The power spectrumNTT is related to the noise leve
per pixel, s25NTTl max

2 /4p with l max
2 5Npix4p/V and s is

expressed in the same units asT ~e.g.,mK). If we want the
correct normalization for the recoveredCl

kk we need to di-
vide by the correctsS , which has to be computed only wit
the CMB power spectrum, without the detector noise te
With our filtering prescription the large scale amplitude
the Nl

EE power spectrum in Eq.~22! becomes

Nl
EE52p

E
0

lcut

l dl l 4F~ l !4~Cl
TT1el ( l 11)sb

2
NTT!2

S E l dl l 2F2~ l !Cl
TTD 2 . ~36!

To derive the optimal filterF( l ) we minimizeNl
EE/W2( l )Cl

kk

with respect toF2( l ). In the limit l→0 W( l )51 and this
becomes equivalent to minimizingNl

EE in Eq. ~36!. Taking
derivatives with respect toF( l )2 and setting to 0 we find

F~ l !25
Cl

TT

l 2~Cl
TT1el ( l 11)sb

2
NTT!2

. ~37!

In the large scale limit this givesF( l )25( l 2Cl
TT)21, which is

roughly a constant for spectra that are close to scale inv
ant. For largel the noise term dominates over the CM
signal term and the filtering functionF( l ) goes to 0. The
transition occurs where

Cl
TT;el ( l 11)sb

2
NTT. ~38!

To compare this filter to the simple constant filter in Fig. 6~b!
we showNl

EE as a function ofl cut for the constant filter and
the specifications of noise and angular resolution of M
and Planck, as well as in the absence of noise and b
smoothing. In the absence of detector noise largerl cut is al-
ways better because the correlation length is reduced, b
saturates beyondl;2000 for this model because there
very little CMB power on small scales. Once the detec
noise is included it eventually dominates at highl cut and we
are better off not including these modes as they are mo
noise and do not contribute to the signal. In between ther
a minimum which determinesl cut depending on the noise an
beam of the experiment. The amplitude of noise for this fil
can be compared to the one in Eq.~37! which minimizes the
noise in the large scale limit. The two give very similar r
sults in the large scale limit. Because constantF( l ) mini-
mizes the effect of the window at higherl it is likely to
perform even better than the filter in Eq.~37!, which was

-
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FIG. 7. Left: logarithmic con-
tribution to Cl

kk as a function ofk
for l 510, 100, 1000~the normal-
ization is arbitrary!. The models
are flat CDM models~dotted!,
open CDM models withVm50.3
~dashed!, and cosmological con-
stant models with Vm50.3
~solid!. All the models haveG
5Vmh50.21. Right: logarithmic
contribution toCl

kk as a function
of 11z for the same models a
above.
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derived under assumptionW( l )51. For this reason we
choose to adopt the simple constant filter instead of the
in Eq. ~37!.

C. Relation to the density field

We have shown that the quantity we are able to extr
from the distortions of the CMB is the power spectrum of t
projected density field weighted with a windowg/a @Eq.
~5!#. Since the more fundamental quantity is the 3D dens
field described by the power spectrum we would like
know the relation between the two power spectra. This re
tion is shown in Fig. 7~a!, where a logarithmic contribution
to a givenl mode as a function of the 3D wave vectork is
plotted for a representative sample of models. These w
dows are relatively broad functions ofk and peak atl
52p/k51000h21 Mpc for l 510 andl530h21 Mpc for l
51000. The exact value depends on the model. We
therefore probing the power spectrum over a range of sc
which extends to scales larger than any other method
directly traces dark matter.

The next question we want to address is the redshift
tribution of the contribution to a givenCl

kk . Even though the
g/a window peaks atz53 for a flat universe this does no
mean that the dominant contribution comes from this r
shift. The relation betweenl andk depends on the shape o
the power spectrum@Eq. ~6!#. For any givenl there is a range
in k that contributes@Fig. 7~a!#. The contribution from a high
k mode comes from structures which are relatively close
the observer~and so at lowerz) than the structures tha
dominate the contribution for a lowerk mode@Eq. ~6!#. On
large scales the matter power spectrum has a turnover so
k modes have very little power which implies that their co
tribution is smaller than that of higherk modes from more
nearby structures despite the geometrical factor that s
presses these higherk modes. Thus for lowl the contribution
will be dominated by lowz structures. The logarithmic con
tribution to a givenl mode as a function of 11z is shown in
Fig. 7~b! and confirms these expectations. At smaller sca
the power is more evenly distributed as a function ofk and
the peak contribution moves to higher redshifts. Forl
12350
e

ct

y

-

n-

re
es
at

s-

-

o

ow
-

p-

s

;1000 it peaks betweenz;2 –3 with a long tail extending to
higher z. At these scales we are therefore directly probi
dark matter clustering at high redshifts.

The two characteristic features of lensing on the CMB
the large scales and early epochs we can probe. In comb
tion these facts guarantee that the power spectrum will
dominated by linear contributions. Figure 8 shows the diff
ence between theCl

kk calculated using the linear and nonlin
ear matter power spectrum. The spectra are shown as a f
tion of l for the same set of models used in Fig. 7. T
nonlinear matter power spectra were computed using the
ear to nonlinear mapping@17#. Up to l;1000 the power
spectrum is dominated by linear modes. This has the adv
tage of making the results simple to interpret in terms
cosmological models, since no nonlinear corrections are n
essary. Since MAP and Planck reconstruction in the la
scale limit will not extend beyondl;1000 they will be
dominated by linear scales. At higherl nonlinear corrections

FIG. 8. Power spectrumCl
kk as a function ofl for the same

models as in Fig. 7. Thin lower curves show the linear power sp
tra, thick upper curves the nonlinear spectra.
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become important. While this has the disadvantage that
interpretation becomes more complicated it has the adv
tage in that the power is boosted by almost an order of m
nitude compared to the linear scales and so the lensing e
becomes more easily observable.

V. CROSS CORRELATION WITH OTHER MAPS

We have shown that individual structures cannot be
constructed with a sufficient signal to noise ratio, unless
CMB has more small scale power than expected from
mary anisotropies. One way to obtain a positive detect
discussed in the previous section is by combining inform
tion from independent patches of the sky into a measurem
of the power spectrum. In this section we discuss ano
way to enhance the signal by using the cross correlation w
another map with a higher signal to noise ratio. A cro
correlation between a signal induced by lensing and so
other tracer has been explored before@18#. The difference to
our method is that they do not reconstructk directly, but
compute the photon deflection angle instead for which
3D matter distribution is needed. It can only be obtain
from a redshift survey~such as SDSS or 2dF!, under the
assumption that light traces mass. Our method can als
used when such a 3D distribution is not available. For
ample, we may try to cross correlate the reconstructed c
vergence map with a Sunyaev-Zeldovich~SZ! map, which
traces the integrated pressure along the line of sight. T
would give positive cross correlation because of cluste
which should contribute to both convergence and SZ eff
Thus even if clusters cannot be individually detected us
the method described in Sec. III, they may still be detec
statistically through this cross correlation, which would gi
us information about pressure to dark matter ratio in clust
Other possibilities for cross correlation are with x-ray bac
ground which is believed to trace large scale structure tz
;5 and with galaxy catalogs from SDSS and 2dF, both
which would give us information on how light traces ma
on large scales. Yet another possibility is the cross corr
tion with the CMB itself, which would give positive detec
tion whenever there is a significant contribution from t
time-dependent potential in the CMB@10,19,20#. To test the
most optimistic possibility we may estimate the signal
noise ratio of the cross correlation when we have ano
perfect map of convergence. For any of the probes m
tioned above the actual signal to noise ratio will be low
since they will only partially correlate with the projecte
mass density. It is nevertheless of interest to see whe
such cross correlations would be useful at all given suc
low signal to noise ratio on individual structures in the ma
of S andE.

The cross correlations with the inputk give

Cl
Sk52Cl

kk ,

Cl
Ek52Cl

kk ,

Cl
Bk50. ~39!
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Figure 9 shows the cross correlations in Eq.~39! for a
100°3100° field where the CMB is measured with neg
gible detector noise and infinite angular resolution~the re-
sults are almost the same for Planck specifications!. The
agreement is remarkable, proving that there is enough si
in thek maps recovered using our technique to obtain use
information about the convergence power spectra by cr
correlating them with other maps. This is not surprisin
since there are about 53105 independent patches of sizej2

5(0.15°)2 and we need about (Nl
EE/4Cl

kk)2;100–400 of
them to obtain signal to noise of unity.

In reality most tracers of the underlying mass will not
perfect because they correlate only partially withk. In par-
ticular we assume that we have a mapY that correlates with
k and has a cross correlationCl

kY . Then the cross correla
tions between theW5S,E maps and theY map give

Cl
WY52Cl

kYW~ l !, ~40!

whereW( l ) is the window defined in Eq.~34!. The correla-
tion of theY map withB vanishes,Cl

BY50. The covariance
matrix for the two correlations is

Cov~Cl
W 8YCl

WY!5~Cl
YY1Nl

YY!„4Cl
kkW2~ l !1Nl

W 8W
…

14Cl
kYCl

kYW2~ l !, ~41!

where the first term is usually dominant. Both the decorre
tion and the noise reduce the overall signal to noise ratio
the cross correlation. For example, in the case of cross
relation with the CMB only the largest modes are strong
correlated because the time dependent gravitational pote
does not contribute to the CMB anisotropies on small sca

FIG. 9. Cross correlation of the inputk and theE andS statis-
tics. The results correspond to a 100°3100° simulation observed
with an ideal CMB experiment with negligible detector noise a
infinite angular resolution.
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The overall signal to noise is significantly reduced compa
to the idealized example discussed here, but is neverthe
detectable with future satellite missions for reasonable
density models@10#.

VI. CONCLUSIONS

We have developed a method to reconstruct projec
mass density from observed cosmic microwave backgro
maps. The method consists of taking derivatives of temp
ture field and averaging their products. Particular combi
tions on average correspond to the shear and convergen
gravitational lensing, which can be expressed as a line
sight integral over the density field.

We have presented three possible applications of
method. First we applied the method to simulated clus
showing that it can be successfully used to reconstruct t
projected mass distribution if there is sufficient small sc
power. For this to be successful we require small scale po
beyond the one given by primary anisotropies, which co
be provided by secondary processes such as the Ostr
Vishniac effect or primeval galaxies. The expected sig
from larger structures, such as filaments and supercluste
smaller and therefore more difficult to directly observe.

A second and more promising application is to avera
the reconstructed map to extract the power spectrum of fl
tuations. In simulations the method successfully reconstr
the input power spectrum both in the large scale limit~where
we are averaging over many independent patches of CM
reduce the noise! and in the small scale limit~where lensing
generates additional small scale power!. Future satellite mis-
sions should be able to measure this signal at least on l
scales@21# and provide additional constraints on the cosm
logical parameters. Interferometers may be able to determ
the power spectrum on smaller scales as well. This metho
complementary and in many cases more robust than the m
traditional methods of determining the power spectrum.
comparison to the power spectrum from galaxy surveys
main advantage is that there is no assumption on how l
traces mass, which is still poorly understood at present
.

n.
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comparison with the weak lensing surveys planned for
future the advantage is that the redshift distribution of
source is well known (z;1100) and much higher than fo
any galaxy survey. It also does not suffer from intrinsic co
relations between the galaxies, which may mimic the we
lensing signal. In comparison with other direct tracers
dark matter such as velocity flows and Ly-a forest the
method presented here recovers the power spectrum ov
larger range in scale and is less sensitive to basic assu
tions underlying the method such as the error distribution
galaxy distances or assumptions of the intergalactic med
~IGM! at high redshift. In addition, the method present
here also gives power spectrum information on much lar
scales than reachable by other methods. These are like
be linear and may allow us to deconvolve the power sp
trum to obtain the 3D power spectrum using the metho
developed in@22#.

A third promising application of the reconstruction is i
cross correlation with other maps that trace large scale st
ture. Some of these are x-ray background, galaxy surv
and CMB itself ~both the primary anisotropies and the S
contribution!. This again allows us to average over ma
independent patches to reach a positive detection and
give even higher statistical significance than the power sp
trum if the two maps are well correlated. In this case we c
learn not only about the dark matter clustering, but a
about its relation to x-ray and optical light or about a tim
dependent gravitational potential. Overall, CMB fluctuatio
may hide a whole new information treasure in its pattern a
its extraction would provide important information on th
Universe we live in.
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