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Gravitational lensing distorts the cosmic microwave backgrol@MB) anisotropies and imprints a char-
acteristic pattern onto it. The distortions depend on the projected matter density between today and the redshift
z~1100. In this paper we develop a method for a direct reconstruction of the projected matter density from the
CMB anisotropies. This reconstruction is obtained by averaging over quadratic combinations of the derivatives
of the CMB field. We test the method using simulations and show that it can successfully recover a projected
density profile of a cluster of galaxies if there are measurable anisotropies on scales smaller than the charac-
teristic cluster size. In the absence of a sufficient small scale power the reconstructed maps have a low signal
to noise ratio on individual structures, but can give a positive detection of the power spectrum or when cross
correlated with other maps of large scale structure. We develop an analytic method to reconstruct the power
spectrum including the effects of noise and beam smoothing. Tests with Monte Carlo simulations show that we
can recover the input power spectrum both on large and small scales, provided that we use maps with
sufficiently low noise and high angular resoluti$80556-282(99)01212-§

PACS numbdps): 98.80.Es, 98.35.Ce, 98.70.Vc

I. INTRODUCTION in the standard CMB primary anisotropies rout[1gé.
Gravitational lensing is directly sensitive to the matter
Cosmic microwave backgrourl€MB) anisotropies have distribution up toz~ 1100, so a detection of this effect would
the promise to revolutionize the field of cosmology in the provide important information about matter distribution on
coming decade. Using ground-based, balloon, and space ebarge scales and high redshifts, which is not directly attain-
periments we will be able to map the microwave sky over aable by any other means. Such information would not require
large range of angular scales and frequencies. The expectedy additional assumptions such as how light traces mass or
characteristic pattern of acoustic oscillations generated biow nonlinear structures form. Because of this it is worth
the primary CMB anisotropies arourz1100 will provide investigating if there are other signatures imprinted on the
a wealth of information that should constrain many of theCMB which would be more easily accessible to the future
cosmological parameters to a high accurddy. Other observations than the effect on the CMB power spectrum.
sources closer to us also contribute to the microwave skySome of these, such as the four-point function and ellipticity
Some of these are the foreground emission from our ownlistribution of peaks have already been explored by Ber-
galaxy and from the galaxies along the line of sight,nardeay7]. These particular signatures of the lensing effect
Sunyaev-Zeldovich emission from clusters, signatures ofvere found to be rather weak, but nevertheless marginally
patchy reionization, etc. detectable with the Planck satellite. They could provide ad-
Another effect that modifies the CMB sky is gravitational ditional constraints on the amplitude of matter power spec-
lensing. Dark matter distributed along the line of sight be-trum. A similar conclusion has also been reached by Kaiser
tween z~1100 and present deflects the light and induceg8].
distortions in the pattern of the CMB anisotropies. Its effect The purpose of this paper is to present a new approach to
on the CMB power spectrum has been thoroughly investiidentify gravitational lensing in CMB. The power of the
gated[2,3]. The conclusion from these works is that the lens-method developed here is that, unlike previous attempts, it
ing effect is small but not negligible. On large and interme-allows a full 2D reconstruction of projected matter density
diate scales lensing smoothes the acoustic oscillafighs between us and the last scattering surface~at100. Such a
while on very small scales it creates additional power. Bothmap can be used to search for clusters at high redshifts or
these effects could help break some of the parameter degestudy density fluctuations on the largest scales that are not
eracies in the CMH4]. Although in models normalized to directly accessible otherwise. It can also be correlated with
cluster abundances the effect of gravitational lensing is smathther maps of interest, such as those of the Sunyaev-
it could be important for the Planck satellite miss{&}. The  Zeldovich effect, x-ray background, weak lensing, galaxy
lensing effect on the CMB power spectrum is now includedclustering, and the CMB itself. In this paper we develop the
method and test it on simulated maps, showing that it can
give an unbiased estimate of the underlying projected density
*Electronic address: matiasz@ias.edu —field and its power spectrum. Whether or not the recon-
TElectronic address: uros@mpa-garching,mpg.de struction from the CMB can be successfully applied to the
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real data depends on the level of CMB anisotropies, angula€onvergence and shear are related to each other through the
resolution, and noise characteristics of particular experimentSourier space relations,
as well as the amplitude of matter fluctuations. In this paper
we discuss the's;e. issues in detail and show the cond!tlons that yi(=w()cog2d),  vo(l)=r(1)sin24,), (4)
need to be satisfied for the method to work in practice.
where ¢, is the azimuthal angle of the Fourier modeThe
Il. RECONSTRUCTING THE PROJECTED convergence can be related simply to a radial projection of

MASS DENSITY: FORMALISM density perturbatiofil1]

The large scale density fluctuations in the Universe induce 3H2 s
random deflections in the direction of the CMB photons as k=—20 f)‘g(x, ¥)—dy’. (5)
they propagate from the last scattering surface to us. This 2 "o a
effect not only alters the power spectrum of both the tem-
perature and polarization anisotropfé$, but also introduces Here x is the comoving radial coordinate of last-scattering
non-Gaussian distortions in the maps. The quantity resporsurface andr(y) is the corresponding comoving angular
sible for the deflections is the projected mass density or cordiameter ~ distance, ~ defined — asK~Y2sinK™?y, y,
vergencex, defined more precisely below. In this section we (—K) ~2sinh(=K)*2y for K>0, K=0, K<0, respec-
develop the formalism to measure convergerceased on tively, whereK is the curvature, which can be expressed
its lensing effect on the CMB maps. Throughout this papetsing the present density parame®p and the present
we use the small scale formalism, so that instead of sphericédubble parameteH, as K=(Q,—1)H3. The density pa-
expansion we work with plane wave expansion. This simpli-rameter(), can have contributions from matter densidy,,
fies the expressions and reduces the computational time af well as from other components such as the vacuum den-
simulations. The generalization to all sky coverage is presity (), . The radial window over the density perturbatiahs
sented in9,10]. is g/a, where g(x',.x)=r(x)r(x—x")Ir(x) is a bell
The observed CMB temperature in the directis T(6) shaped curve symmetric aroud? and vanishing at 0 and
and equals théunobservabletemperature at the last scatter- y, while a is the expansion factor. Note that for a fiat,
ing surface in a different directiol(@+ 86), wheres@is =1 universes=a in linear theory and the weighting is sym-
the angular excursion of the photon as it propagates from th&etric aroundy/2, so that the peak contribution is coming

last scattering surface to us. In terms of Fourier component§om z=3. _ _
we have The angular power spectrum of convergence is defined as

(k()* k(1"))=C{™*&;, and has an ensemble averdgé]

T(O=T(6+ 50)=(2w)—2f d2 e (0T (). (1)

2
Xo g (X!XO) l
C"“=18«77392H4J P, k= x| dy.
! m0 Jo o aar?(o O\t X)X
To extract the information on the deflection fief® we (6)
consider derivatives of the CMB temperature. If the CMB is

isotropic and a homogeneous Gaussian random field the ereP,(k,7) is the 3D dqu matter power spectrum that is
integrated over the past light cone and is in general a func-

ifferen rtial derivativ r isticall ivalent and.,. i ; .
different partial derivatives are statistically equivalent and on of time 7 and wavevectok. This equation has been

their spatial properties are independent of position. Lensin%er. ed using Limber's eauation. which is onlv valid in the
will distort these two properties of the derivatives. The de- lved using LI S équation, which 1S only vaid Ir
small scale limit. The general solution in terms of the line of

rivatives of the temperature field are to lowest order . . . ) o .
sight integral over the spherical Bessel functions is given in
[9,10!.
JT _ We consider next the quadratic combinations of the de-
T.(0)= W( 0+60)=(6,p+ Pap)T(0+660), (2) rivatives in Eq.(2) and express them in terms of the unlensed
a field to lowest order in the shear tensor:

where ®,,=9660,/96, is the shear tensor and,b=x,y. 5 s

The components of the shear tensor can be written in terms ~ S=[Tx+T{1(6)
of the projected mass densikyand the shear fieldg; and ~ ~ ~
Vs =(1+ Dy + Py) SH(Py— Pyy) Q+ 2D, U,

Byt Byy= — 2k, Q=[Ti=TIN(0) = (1+ Dyt By OF (D= D),

By~ Dyy=—27;, U=2[T,T,1(0)= (14 Dyt Dy ) U+ D, S, @)

where S,0,U are the corresponding quantities in the un-
20, =—2y,. 3 lensed CMB field at#+ 56. The notation used here makes
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the analogy with CMB polarizationQ+i{ in Eq. (7) have  where  os=(T2)cva+ (T2 cms=2(T2)cms=2(T2) s -
spin =2 just like the Stokes parameters used to describe thghis average can be computed in terms of the CMB power
CMB polarization, whileS is a spin 0 quantitya scalar and spectrurT1C|TT,
is rotationally invariant.

Equation(7) shows that the measure¥y] Q, andif are Idl
products of the projected mass density and shear with deriva- 5= f — |2C|TT_ (10)
tives of the unlensed CMB field. Thus the power spectrum of 2

S, Q, andt will be a convolution of the power in the CMB f the mean of the components of the shear tensor vanish we
and that of the projected mass density. The general expreg- P

sion of this convolution is quite involved, so we will discuss Nave (S)=(S). There are residual quadratic terms in the
it in the two limits where the expressions simplify consider-Shear tensor that contribute to E4.0), but they are negli-
ably, the limits of large and small scales relative to the cmBgible in most cases of interest because the shear is expected
correlation lengthé. The large scale limit is sufficient to 0 be small.
analyze the potential of the Microwave Anisotropy Probe The average of Eq7) over an ensemble of CMB fluc-
(MAP) and Planck future missions. For experiments withtuations gives
higher angular resolution the full convolution will be neces-
sary. (S)ems=(1—2k) 0%,

Throughout the paper we compare the result of our ana-
lytical estimates with those of numerical simulations. To

— _ 2
simulate the lensing effect on the CMB we first generate on (Qems=—27105,
a fixed square grid a projected density map. We then Fourier
transform the convergence and compute the displacement (Uycms=—27,02. (12)

vector 66 by using the Fourier relation
The physical interpretation of these equations is simple:
will stretch the image, which makes the derivatives smaller.
] Its effect is isotropic and only changes the valueSofThe
660=2i 2~ (8)  shear produces an anisotropy in the derivatives, in the same
way as it creates an ellipticity in the shape of a circular
background galaxy. This can be extracted from the particular
and then transforming it back to real space. We next generat®mbination of the derivatives used here.
on a fixed grid of the same size as above a random realiza- We can reconstruct by studying the statistics af and
tion of temperature field, using an input CMB power spec- by combining the shear obtained fro@andi/. It is conve-
trum. For each point in the lensed temperature map we usgient to change the variables to
the corresponding displacement vector to determine from
what position on the original grid the photons came from.

This position does not generally coincide with a grid point in S'=— i +1,
the unlensed map so we use cloud-in-cell interpolation to Is
compute the value of in the original map at this position.
Cloud-in-cell interpolation smoothes the field so relatively o)
small grid sizes are needed to avoid this unwanted effect. We Q'=- Py
achieve this by increasing the size of the array when per- S
forming the interpolation step.
U'=- ﬂ (12
gs

A. Large scale limit

We start with the reconstruction in the limit of large so that
scales. In this limit we average over many CMB patches to
detect the weak lensing signal. We begin by noting that in (S"Yemp=2k
the absence of lensing the isotropy of the unlensed back- ’

ground implies that
(Q")ems=271,

<3>CMB: Js,
(U"Yeme=272. (13

~ We will drop the primes in what follows, as we will only use
(Qcms=0, these quantities for the rest of the paper. Note that it is nec-
essary to have a quadratic combination of temperature field
_ for an unambiguous reconstruction of the convergence. This
(Uyeme=0, (99  means that any reconstruction will have noise arising from
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intrinsic fluctuations in the CMB even in the absence of de- —/T e

Cy(0)=(T,(0)T,(6
tector noise. Below we will quantify this intrinsic noise due W O=(Ty(OTy(0))ove
to the random nature of the CMB.

In the following we use the formalism developed to char-
acterize the CMB polarization fie[d 2]. We can combine& dl
and{ to form £ and B, two spin zero quantities, which in _ f at o 37
Fourier space are defined as a7 Ot [o10)+3:(10)]

=(277)’2f d2l eil<(9cos¢||2C;~I:I'Sin2 b,

. 1
&) =Q(hcog2¢)) +U(1)sin(2¢y), =5[Co(0)+Ca(0)],
B(l)=Q()sin(2¢) —U(l)cog2¢)). (14)
from which the real spac&(6) andB(6) can be obtained by Co D=(TLAOTy(0))cme
Fourier transformation. Equivalently these can be con- o [ 2y il 8 cosey 2-TT _
structed directly from quantities in real space =(2m) f dele '1°Cy " cos¢, sing,
=0, (17)

5(0):f d’0 w(|0'—6)Q,(0"),
where Cy(6) and C,(0) are defined as the integrals over
13C,dI/27 weighted withJo(16) and J,(16), respectively.

B( 0):f 420’ (|0 — 0)U(6"). (15  The real space correlations 8f Q, U are

We have define@®@, andl{, , the derivative shear in the polar
coordinate system centered af. If 6=0 then Q,
=cos2p’ Q(@)—sin2p’ U(O) and U,=cos2’ U(O')
+sin2¢’ Q(#). The window is w(#)=—1/m6> (0 - -
£0), o(0)=0 (6=0). From Eqs(13) and(14) it follows ~ N9(6)=(Q(0)Q(6))=2(CE,+Cl,)/o5=(C5+C3)/ 0%,
that

NSS(6)=(S(0)S(8))=2(CZ,+ C2,)/ o5=(Cj+C3)/ 0%,

(S)ems=2x, N“(0)=(U(0)U( 6))=4C,,Cyyl 05=(C5—C3)l 05,
(E)oue=2x, NS2(0)=(3(0)(0))=2(C%— C2,)/02=2CoCy 02,
(B)cmg=0. (16)

_ NS(6)=(S(0)l1(6))=0,
Equation(16) shows that the average 6fand & can be
used to reconstruct the projected mass density. However, in
any particular direction on the sky the CMB derivatives can N 9)=(D(0): _ 1
take any value so there is an intrinsic noise in the reconstruc- (O)=(Q0)(6))=0. (18

tion coming from the random nature of the CMB. i o .
To describe the intrinsic CMB noise we need to calculateVith the normalization we have chosen the correlations for

S, Q, andl/ at zero lag to be equal to one. The correlations
when the separation is not along tkeaxis can be obtained

by rotations of those in Eq18), in a similar way as done for

the correlations of the Stokes parameters that describe the
CMB polarization[13,14].

L To reconstruct the power spectrum ofit will be neces-
Co()=(T,(0)T(0))cme sary to have expressions for the intrinsic CMB noise power
spectraN®™®, N, andN¢, defined as

correlation functions betwee&, O and{. These can be
expressed in terms of the correlation functions of the deriva
tives of the unlensed CMB field. For simplicity we consider
two directions separated by an anglén the x direction,

=(277)72J d2l eil.ecos¢,|2clﬁcosz b,

ldl , == WIHW () =(C{?)=4C{*“+ N/, (19)
:fﬂl Ci [Jo(16)—=3x(10)]

where W stands forS or £. For B only the noise ternN??
_ E[C (6)—Cy(0)] contributes. These power spectra can be obtained from the
T ato 254 real space correlation functions usif@j
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FIG. 1. The upper panel shows the correlation function of

S, ©, U for SCDM. The lower panel shows the power spectra of
SS, &€, BB, andSE.

NS=27 J 6dONSS(6)J,(16),

Nfe= 7 f 6d 6{[N22(9) + N™(6)134(1 6)

+[N9(9)— NH(9)]3,4(16)},

NPB= wf 6d 6{[N22( 6) + N 6)13,(1 6)

—[N92(6)— N™(9)]3,4(16)},

N=27r f OdONSE(9)J,(16). (20)

From Egs.(18) and(20) it follows that the intrinsic noise
power spectra are

2
N5S= — 0dO(C3+C32)Jo(16),
S

2
N f 6d6[ C3o(16) + C334(16)],
S

2
NBE= —Zf 0d o[ C5do(16)— C34(16)],

Js

4

— 0d6C,CrJ5(10). (21
Os

NSE=
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shows the different noise power spectra using a standard
CDM temperature power spectrum. The correlations in the
CMB derivatives drop significantly for angles larger thén
=0.15°. The power spectra shown in Fig. 1 demonstrate that
the large scale behavior of the correlations is similar to white
noise. In the limit of lowm we can obtain the power spectrum
from Eq. (21) by integrating over the angle first and using
the orthonormality relation of the Bessel functions,

lim NPS= 27Tf 6do(C3+C3)/ o
1—-0

:(2wa§)—1f edef|3d|
xf 1'3d1'CITC [I0(10)3o(17 6)

+J,5(10)3,5(1" 9)]

f|50||(<:,TT)2
=27 Y,
(f 13dICT)?
1

lim Nfé=27 f 6d6C3/ o2=lim NPP= Zlim N°,
1—0 -0 2"'0
lim N¥=0. (22)
|—0

We can use these to define the correlation length more pre-
cisely as&?=NPS which gives£~0.15° used above. It is
interesting to note that although Q, U all have the same
variance the low limit of the power spectrum of is twice

that of £ or B. £ and B have a different correlation length
from S, which reflects the spin nature of the shear variables.
This leads to€ giving a factor of 2 higher signal to noise
ratio thanS in the reconstruction.

In order to get an accurate measurement of the projected
mass density or the shear we need to average over several
“independent” patches of siz&?, each of which has a vari-
ance of order unity. This sets the basic requirement that has
to be satisfied if the reconstruction is to give a positive sig-
nature. The signal to noise ratio in each patch of gés
S/N~2k. This means that we need to average oNg) 12
~ 2| k| to get a signal to noise ratio of order one. The issue is
whether on scales larger thanthe weak lensing signal is
sufficiently strong to be detectable. Even though CMB is
sensitive to matter density fluctuations upzte 1100 and the
RMS convergence is significantly higher than for galaxies at,
say, z~1, it is still well below the intrinsic CMB noise if
£=0.15°. Only with sufficient small scale power can indi-
vidual structures be reconstructed with a high enough signal
to noise ratio. This is discussed further in the following sec-
tions.

Equation(21) is needed to asses the noise for the recon-

The top panel of Fig. 1 shows the correlation functionsstruction ofk and to subtract the noise contribution from its

from Eq. (18), while the bottom panel of the same figure

reconstructed power spectrum in E49). To compute the
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variance of the power spectrum reconstruction we also neec T T
to know the RMS of the intrinsic noise power spectrum. The 2 .
intrinsic CMB noise is a fourth order statistic of the CMB | ss
field. Fortunately in the large scale limit it can be considered v
Gaussian. This is a consequence of the central limit theorem - 3
the long wavelength modes & &, andB are obtained by
adding a lot of independent patches making them effectively
Gaussian.

If the intrinsic noise can be considered Gaussian then the

covariance matrix Cq¢C")(C"')] for the noise power
spectra can be expressed in terms of tHagg

es
&

0 .o
.

arian

Normalized Cov

2

Cov[(C)?]= 5777

(NF9)?,

-
x
BX D

2 L ¥ .
EEN2
2|+1(N' )%

Cov (C{9)?]=

MR R | . R R S a e

1 SE\2 SSN\|EE 100 1 1000
ST LN S+ NPON],
FIG. 2. Simulation results for the covariances of

C™, Cc¥ CP?, andCfF normalized to their values for Gaussian

2 noise given in Eq(23). The Gaussian approximation is an excellent
SSHEEY _ SE\2
ComCCi) =57 (NP one forl < 1000.

CoM (C¥)°1= 571

contributes to the variance 6f“ estimates. There is also the
Cov(CSSC®) = NSENSS cosmig variance contripution (2'1/%1')@.{“)2 but we will
R A e show in Sec. IV that this term is significantly smaller than
the intrinsic noise term and can be ignored, unless the CMB
) has more small scale power than expected within the cur-
rently popular cosmological models.
Cou(C{*C) =575 NFNEE. 23) y pop g
B. Small scale limit

N SE_ NEE SS_ oNEE

InBlt;he large scale lmItN™<N;™ and NP"=2N/" g4 20 e have described the gravitational lensing effect
=2N, égThe covanance matrix tgzcomes dmggglal Withon Jarge scales compared to the correlation length of the
Co[(C%)?1=CoM (C;™)?]=CoM(C{)*]= CoM(Ci*)?)/  CMB. In this limit we average ovefalmosi independent
4. In Fig. 2 the covariances obtained in the simulations ar¢yatches of CMB fluctuations, which is similar to the proce-
compared to those derived under the Gaussian approximgure used in weak lensing, where we average over indepen-
tion. The agreement is excellent fbr~1000 and only seri- dent ellipticities of background galaxies. We now turn to
ously breaks down beyond that f@*. We have also veri- scales much smaller than the correlation lengthin this
fied with Monte Carlo simulations that the off-diagonal limit we can take the derivativerﬁx and'NI'y to be constant

terms are negligible compared to the diagonal ones. across the field. The physical picture is very different from

&he one discussed in previous subsection. Weak lensing in
this limit acts as a generator of small scale power. To see this
we can imagine the effect of a small clump of mass on a pure

he | le limit th : i is d | and radient of temperature field. A mass clump will magnify
the large scale limit the covariance matrix is diagonal and Weyng sretch a small patch, which will change the slope of the

can weight each of the estimators by the inverse of the noisg,, gient at the position of the clump. The resulting tempera-
variance, ture field is no longer a pure gradient, but has a small wiggle
superimposed on it. Small scale power has been generated
e L 4 4 only where the gradient of primary anisotropies is nonzero
4C, 25(0798_ NFSS)+§(CF€_ N)+ §(Cisg_ N*). because where the surface brightness is constant its conser-
(24)  vation requires that it remains so even in the presence of
lensing.
We will use this formula in Sec. IV to estimate the power We now attempt to use this physical picture to reconstruct
spectrum ofx from our lensing simulations. Note that we the weak lensing signal. Introducing=T,/ocs and b
have assumed in E@23) that only the intrinsic CMB noise =T, /o we have

power spectrumss, E£E, and the cross correlatiafE. Us-
ing the covariance matrix in Eq23) we can construct a
minimum variance combination of the three estimators. |
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S=(2k—1)(a2+b?) +2y,(a?—b?)+2y,2ab,
Q=(2k—1)(a*—b%) +2y1(a*+b?),

U=(2k—1)2ab+2y,(a’+b?). (25)

We did not subtract unity out of the definition 8fas in Eq.
(12), because even though on avergga®+b?))cys=1,
we are considering a very small field over whiglandb are
approximately constant withaf+b?)#1 in general.

We want to determina, b, «, v;, andy,. If we as-
sume that the mean value ef 4, andy, over the field is
zero then

(S)=a%+b?,
(Qy=a%-b?

(Uy=2ab, (26)

PHYSICAL REVIEW D 59 123507

B(h)=U(l)cog2¢) - Q(I)sin(2¢)
=2k(l)[2abcog2¢)) + (a?—b?)sin(2¢)]. (29)

We see that the estimators of the convergence are not inde-
pendent£(l)=S(1), as argued above.

To obtain an estimator of convergence we can use any of
the expressions in Eq28). This requires dividing with the
combination of derivatives oT and will be very noisy if
botha andb are close to 0. This is a consequence of the fact
that lensing cannot generate power where there is no gradi-
ent. Such a reconstruction will therefore have variable noise.
One solution to this problem is to filter the map with a vari-
able filtering length. Note that we have assumed &ahdb
are constant across the map, while in reality they will change
as well. This means that in practice we have to divide the
map into chunks over which the long wavelength modes are
approximately constant, or use more sophisticated methods
such as the wavelet analysis.

The procedure outlined above is quite involved and we
did not attempt to implement it in this paper. It simplifies
considerably if we are only interested in the power spectrum.

where the mean value is taken over a region large enough this case we may still us&(l) and 5(1) to get
that the mean shear and projected mass density vanish but
over which the CMB gradient remains nearly constant. In C%9=4Cr*[(a+b?)%2+ (a?—b?)2cog(2¢,)
practice this can be achieved by filtering out the small scale
power, so that the remaining power is largely dominated by
primary anisotropies. We can then compatandb and use
them in Eq.(26).

Oncea andb are determined it would appear that we can
determine the convergence and the two shear components by

+(2ab)?sirf(2¢)) +2(a%+b?)(a®?—b?)cog 2¢))
+4(a?+b?absin(2¢,)
+4(a’*~b?abcog2¢))sin(2¢y)],

solving CPP=4CK [ (2ab)2cod(2¢y) + (a2—b?)2sinA(2¢)
s (8) (9 U\ /1-2« —4(a’—b?abcog2¢))sin(2¢))]. (30
o|=| (D (5 O -2y (27)  If we average overd, and use((a’+ b2)2)CMB=<T§+T§
U 0y (U ()] \ —24, +2T2T2) cuslo2=2 and ((a®—b?)?)cys=((2ab)®)cys

=1 we find,
However, the determinant of the matrix above vanishes so

we cannot determine convergence and shear independently. (C‘SS}— 120K«
. A |
Instead we have to use the relations between shear and con-
vergence to reconstruct the signal. In Fourier space|l for
large enough that we can considerand b in Eq. (25 as (CPBy=ac[~. (31

constants. We get . )
Note that there is no need to use local estimatesarfdb to

get an estimator of the power spectrum, as long we have a
CMB map with enough uncorrelated patches so that the qua-
dratic combinations o& andb can be replaced by their av-
erages. In this limit the power spectra §fand B again
directly give estimates of convergence power spectrum,
without any convolution and also without noise contribution
from intrinsic CMB anisotropiegalthough there will be con-
tribution from instrumental noige This is because in this
limit all the power is generated by gravitational lensing. It is
important to note that in this limi3 does not vanish, but
actually gives an estimate of the power spectrum, while
power inS is a factor of 3 bigger than power . We will
show below that these predictions are well recovered in the
Monte Carlo simulations.

S(h=2«k()[(a%+b?)+(a?—b?)cog2¢)+2absin(2¢))],
Q(h=2«(l)[(a*—b?) +(a*+b?*)cog2¢y)],
Ul)=2«()[2ab+(a%+b?)sin(2¢))]. (29
We can comput& and 5,

E(=Q(l)cod2¢y) +U(I)siN(2¢y)
=2k(1)[(a?+Db?)
+(a?—b?)cog2¢) +2absin(2¢))]
=8(1),
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Ill. AN EXAMPLE: RECONSTRUCTING THE MASS
PROFILE OF A CLUSTER

To illustrate our method we first apply it to reconstruct the
mass profile of a massive cluster of galaxies. In order for the
large scale limit method to work we need the CMB to vary
on scales smaller than the cluster, so that the effect of lensin
can be measured after averaging over independent patche
Most likely there is not enough small scale power in the
primary anisotropies to make this method viable in practice.
The reader should take this section as a toy example intende
to help him/her understand how the method works and ge’
familiar with the relevant physics.

Since we do not expect the primary CMB anisotropies to
have sufficient power on arcminute scales we use the
Ostriker-Vishniac(OV) effect instead in our example using
the power spectrum froril5] as an estimate. This is not
necessarily the only possible source of anisotropies on sma
scales and there may be other sources as well, including th
primeval galaxies and QSO emitting in IR and radio. As long
as there are many sources in the beam and their redshift i
higher than the cluster redshift the analysis is identical to the
one presented here. The only difference .is that these_ SOUICeS k1. 3. Top left panel: input cluster on a 66 ft field. Top
are not atz~1100 but at a lower redshift so the window yjgnt panel: unlensed CMB map. We assumed that the Ostriker-
function g in Eqg. (5) changes relative to the one far vjshniac effect could be detected with a sufficient signal to noise
~1100 sources. If the redshift distribution of the sources isatio to be used in the reconstruction ef Bottom left: CMB field
not known then we may in principle use lensing on a clustegfter being lensed by the cluster. Bottom right: the background
with known mass profile to determine it. For individual shows theS field while the rods represent the shear varial@esnd
sources that are resolved it may be better to use their shapasboth of which can be used to reconstruct the density profile.
as an estimate of the local shear, which is the usual proce-
dure in the case of galaxy lensing. the reconstruction based ¢his local. It will not work very

For the method to be useful in practice the small scalavell in the center because the magpnification induced by the
anisotropies have to be above the detector noise. This couldnsing will expand a small region so unless there are addi-
be achievable with future interferometric or bolometer ex-tional small scale perturbations which are magnified there
periments with long integration times on a small area of thewill be fewer independent regions to average over. This ef-
sky, reachinguK sensitivities on subarcminute pixels. An- fect can be seen in Fig(&. This is of course an issue only
other complication in this case relative to our analysis in Secfor clusters that are close to being critical and the magnifi-

Il is that the distribution of anisotropies is likely not to be cation is no longer small compared to unity. For others, more
Gaussian. This complicates the issue of noise analysis arihear structures of the two reconstructions give similar re-
statistical significance of the results, but does not affect thaults, althoughS is still noisier than& by a factor of 2 as
average of the reconstruction. We will ignore these issues iderived in Eq.(22).

the following, since we are mainly interested in having a To be more guantitative we show in Fig. 4 the recon-
simple example with which we can test our method. structed projected radial mass profile from the shear and the

Figure 3a) shows the simulated input cluster, with the convergence. We also show the result of the reconstruction
profile chosen as a projection of a truncated isothermaprocedure on the unlensed CMB field to illustrate the noise
sphere. In Fig. @) we show an unlensed simulated CMB level, which for this case with a lot of small scale structure is
field, assuming an OV type of power spectrum. In Fi£)3 negligible. The reconstructed profile tracks well the input
we show the lensed CMB map. We see that the cluster hgsrofile outside the center, but falls below it in the center
magnified the CMB in the center, so in the absence of smalbecause of an insufficient number of independent patches
scale power the central region is smoother. In Figl) 3ve  there. In our reconstruction algorithm we are forcing the
show the shear as measured by the CMB derivatié@saifid meanx to be zero and because the reconstruction of the
U) and in the background the convergence figld center of the cluster is systematically lower due to the aver-

Both § and £ are estimators of the convergence, but Fig.aging, the reconstruction is also systematically lower on the
3(c) illustrates a possible advantage of the reconstructiomutside of the cluster. As expected this is more pronounced
based on shear over that based®im the case of clusters. for S than for& reconstruction because the former is noisier
The shear based reconstruction is nonlocal as shown fromnd relies more on poor quality information from the center
Eqg. (15). The shear from the whole map is used to recon-of the cluster. These effects can be calibrated from the simu-
struct the density at the center. Thus we are averaging ovéations and overall the method can reconstruct the true pro-
many different independent CMB regions. On the other handected mass density outside the core, assuming that the nec-
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FIG. 4. Reconstructed radial profile using the data in Fig. 2. The  FIG. 5. (a N, N¥, NP?, and N power spectra for the
points marked withS (S) correspond to the reconstruction 8f  unlensed CMB field. The lines correspond to the results of 1.
based on€ (S). The points marked unlensed correspond to theAlso shown is the weighted average of the recovered power spectra
result of applying thef reconstruction to the unlensed field. The from S, £ and their cross correlation together with the inp@4
input x was taken to have zero mean. from one simulation of the sky as described in the téxtRatio of

the recovered power spectra to the in@jt*. The signal in5 is
essary conditions discussed abovmeasurable primary also shown.

anisotropies on scales smaller than the typical cluster yscale ) o )
are satisfied. would give very similar results. For spatially open models

the correlation length decreases, which would increase the
signal to noise ratio of reconstruction. It can be seen from
IV. RECONSTRUCTING THE POWER SPECTRUM Fig. 5(a) that on large scales the power of the convergence is
OF PROJECTED DENSITY small compared to that of the CMB noise. As a result we can
only hope for a statistical detection of the lensing effect and
the method will not allows us to make a map mfdirectly
In this section we investigate the power spectrum reconunless there is more small scale power in the CMB, as dis-
struction of convergence using the method developed in Segussed in Sec. Il in the context of cluster reconstruction.
Il. The power spectrum can be reconstructed fi&mS, or  Even if « reconstruction has a low signal to noise ratio its
their cross correlation. We will first discuss the power SpeC-power spectrum may nevertheless be recovered with h|gh
trum reconstruction in the absence of detector noise and astatistical significance, because we can average over many
suming infinite angular resolution. In this simplified case theindependent patches on the sky. This is seen from the differ-
only source of noise is the CMB itself. We do not add smallence between the power spectra in the lensed and unlensed
scale secondary anisotropies in this section, so the resulfild. The weighted average of the three estimaftirs (24)]
should be representative for primary fluctuations and anyor a single simulated sk§with sky coverage fraction 0)7s
additional small scale fluctuations at high redshift would fur-gjso shown in Fig. &) together with the input convergence
ther improve the performance. In Fig(ab we show the spectrum. The intrinsic CMB noise is about 10—20 times
power spectra for the unlensed CMB fielthe CMB higher, yet the difference agrees well with the ingupower
“noise”) calculated using Eq(21) and the result of our spectrum, showing that there is a significant statistical detec-
Monte Carlo simulations. The agreement between analytigion of the signal.
predictions and simulations is very good. We recover the The reconstruction of the power spectrum is further stud-
white noise behavior ok, N, andNP® on large scales ied in Fig. §b), where we show the intrinsic noise subtracted
and also the relatively small amplitude of the cross correlapower spectra oS, £, and BB and the cross correlation
tion leg_ spectrumSE divided with the input matter power spectrum.
On large scales these power spectra are to be compared@n large scales the reconstructed spectrd®f £, andSE
4AC™" [Fig. Y@)]. For the purpose of illustrating our method all give unbiased estimators ofC4“ so the average of the
in this paper we adopted the convergence power spectra @utput to input ratio is 1, while that d83 if consistent with
the *“concordance” model[16] ,=0.3, Q,=0.7, I'  the pure noise and the ratio averages to 0. The latter, al-
=0,h=0.2, n=1, andog=1. Other spatially flat models though not giving an estimate of the signal, can provide an

A. Intrinsic CMB noise
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important consistency check on whether the signal seen frorthat finite angular resolution has an effect on the intrinsic
£ andS is indeed of cosmological origin or not. It may also CMB noise amplitude. Because of finite resolution and de-
help identify the cosmological part of the signal if additional tector noise small scale CMB power cannot be resolved and
contributions are present, such as in the case of non-Gaussiilis leads to a larger correlation lengthThis means that we
CMB fluctuations or contamination from foregrounds. have fewer independent patches to average over the intrinsic

The large scale limit is valid up to~1000. On very small CMB noise and the overall level of noise power spectrum is
scales, rough|y~ 5000 and beyond, the reconstructed powerhigher. Finite angular resolution also has a more subtle effect
spectra fromg and S give 12C;, while that obtained from by reducing the transferred power. To understand it quanti-
B gives 4C[“ so that the ratios are 3 and 1, again in agree_t.atlve_ly we first compute the d_erlvgtlves of .the tempgrature
ment with analytic prediction in Eq(31). At very high | f|eld in the presence of some filtering funcuEr_QQ), wh_|ch
intrinsic CMB noise is negligible, because there is no powefnvolves the experimental beam and any additional filter we
present in the CMB itself on those scales. may want to use in the analysis:

In the intermediate regime betweérs 1000-5000 nei-
ther small scale nor large scale limits apply and the recon-
struction becomes a complicated convolution of CMB Ta(0)=
anisotropies and lensing signal. Information on the power
spectrum can still be obtained even from this regime, but it is _ f F(0—0)(S,+ Dop) To( 0 + 5020
better to approach the reconstruction in a parametric form,
by parametrizing the power spectrum with a few free param-
eters that can be estimated by fitting the simulated spectra to :(27)*21 dAF(Ty(he! 4 (27)~*
the data, rather than by direct inversion.

Because the intrinsic noise is larger than the signal on

J F(0—-0)T,(0)d*0

large scales we may worry that a small error in the noise XJ dzlj d2qF(|l+q) To() P 4p(q)e'+o- .
estimate would lead to a large error in the estimated power
spectrum. This is most worrisome for tisS reconstruction (32

and least important for the cross correlati®® because
NS=2NFf> NS . The latter is even smaller tharC4< on  To obtain the last expression we expandied®,;,, andT,
large scales so we can obtain an accurate estimate even witiiHo a Fourier series and integrated over an@leThe large
out any noise subtraction. Fortunately the large scale behawcale effect of the filter function can be read from the aver-
ior of N™®, N NPP, and N is quite insensitive to the age over the CMB of the square of E§2),

details of the power temperature spectra. For example we

may worry that the CMB power spectra we measure will be s Il

affected by lensing or that we can only know the lensed <TaTb>CMB=_abj — F2(1zcT

CMB temperature spectra with some minimum scatter, lim- 2 ) 2w

ited by cosmic variance. On large scales, these effects

change the mean df‘F by approximately 0.5% and add a +(27r)*2f d2qd,,(g)e'd?

1% scatter to it. It will depend on the noise amplitude

whether this is a significant source of error. For MAP these

errors causes a shift in the amplitude comparable to the input X {(ZW)_ZJ d2F(HF([I+a)C/T|.

power spectrum, while for Planck it is significantly below it (33)
and can be ignored. For MAP this problem can be solved by

using B reconstruction. Because the effect on large scales i
mostly an amplitude shift we may use the amplitudeC5f

to make it consistent with 0, which would also properly de-
termine the amplitude of the other spectra.

Th the absence of filtering the integrals involviﬁ&jrT in both
terms of Eq.(33) are identical. This allows us to reconstruct
x from the second term, while the first term giveg as in
Eqg. (11). To describe the effect of the beam smearing we
o ) ) introduce a window function as the ratio of the two integrals
B. Finite angular resolution and detector noise

Next we consider the influence of finite angular resolution
and detector noise, which were not included in the simula- f d2 F(HF([I+g)12c]T
tions presented in the previous section. In order to measure W(q) =
the convergence power spectra using the small scale limit the
experiment must have enough angular resolution to probe
these small scales. This effect of finite angular resolution is
straightforward to include and we will not discuss it further, \yhich is in general less than unity and in terms of which we
because future CMB satellites such as MAP and Planck will,5ye
not be able to probe this limit. Here we discuss the more
important effect of finite angular resolution and detector
noise on the large scale limit reconstruction. It is easy to see (S()y={(&))y=2k(HW(). (35

: (34)
f d?2l F2(h)l2c T
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(34) implies thatW(q) — 1 asg— 0. Other forms of filtering
are possible as well, but we show next that this filter comes
close to being optimal and is easy to implement in the analy-
sis.

The contribution of detector noise on large scales to the
different power spectra can be obtained using @4) with
C/"=C/™+NT". We take the detector noise to be white
noise with constant power spectruli ' for a range &I
<Imax- The power spectrumli™ " is related to the noise level
per pixel, 0?=N""2_ /4 with 17,,=Ny4m/Q and o is
expressed in the same units Bge.g., uK). If we want the

3 'r 3 correct normalization for the recover&™™ we need to di-
g 01f 1 vide by the correctrg, which has to be computed only with
£ oof : the CMB power spectrum, without the detector noise term.
§ 0.001 | } With é)gur filtering prescription the large scale amplitude of
Z 0.0001 r _! the Ni“ power spectrum in Eq22) becomes
g 105 '!

£l L sl L el L lcut 2

10 100 1000 f LdITAF()*(C T+l (T DopNTT)2
o NE=27 2 , . (36)
FIG. 6. The upper panel shows the window functisi(l) as a ( f | dl |2|:2(|)C|TT)

function of| for MAP noise and beam properties where the appro-

priate value isl.,=600 and for Planck witH,=2000 (bottom . . . A EENNR P
pane). For the latter the window has no effect lat 1000. The To derive the optimal filteF (1) we minimizeN;™/W=(1)C;

bottom panel shows the amplitude Nf¢ in the limit | -0 as a  With respect t9F2(|). In the limit I;EO W(l)=1 and this

function of | for the specifications of the MAP and Planck satel- P€comes equivalent to minimizing; in Eq. (36). Taking

lites, justifyingl .= 600,2000 for the two experiments. Also shown derivatives with respect tB(1)? and setting to 0 we find

is the no noise infinite angular resolution cufi@eal), which levels

off at | ~2000, showing that Planck is close to optimal in the large cIT

scale limit, because it measures most of the power in the CMB. F(I)2= I , . (37)
IZ(CITT+ e|(| +l)o'bNTT)2

The effect of filtering is important even for the recon- S 5 o TTh o1 o
struction of large scale modes. This can be understood by N the large scale limit this gives(1)*=(1C, ') ~*, whichis
looking at Eq.(32). The shear tensor modulates the amp"_roughly a constant for §pectra that are close to scale invari-
tude of the temperature derivatives, so the information abol@nt. For largel the noise term dominates over the CMB
a particularq mode of x is encoded as sidebands of the Signal term and the filtering functioR(l) goes to 0. The
different| modes of the temperature. We are recovering thdransition occurs where
information back at the corresponding by squaring the
field, which appropriately recombines all the sidebands from ClTTN e|(|+1)a§NTT_ (38)
everyl to the correcty. Finite angular resolution is important
even for large scale modes because the information abotfy compare this filter to the simple constant filter in Figh)6
these modes in encoded ma|nlly in the sidebands of the smaje showN?E as a function of o for the constant filter and
scale temperature modes, which are strongly affected by thgie specifications of noise and angular resolution of MAP
filtering function. _ _and Planck, as well as in the absence of noise and beam

To minimize the effect of beam smoothing we may filter gmqgthing. In the absence of detector noise latggis al-
the temperature before squaring it. The smallest effect i ays better because the correlation length is reduced, but it
achleyed if the filtering functlorh'-(l)_|s a constant, in which ¢4 rates beyondi~ 2000 for this model because there is
case(in the absence of a cutoff ih) there would be no ey jittle CMB power on small scales. Once the detector
effect. For this reason we choosze to filter the temperaturgise is included it eventually dominates at high and we
with the inverse of the bearl(! " 17, whereo? is the width  are better off not including these modes as they are mostly
of the Gaussian beam, thereby reversing the smoothing effeabise and do not contribute to the signal. In between there is
of the beam. We can only do this up to a maximlyp (the  a minimum which determinds,; depending on the noise and
value of which is determined belgwnot to amplify the de- beam of the experiment. The amplitude of noise for this filter
tector noise on small scales. Thus our effective fiiér) is  can be compared to the one in E§7) which minimizes the
equal to one fof <l and zero after that. Figurg® shows noise in the large scale limit. The two give very similar re-
two examples ofW(q) for different values ofl.;, which  sults in the large scale limit. Because constat) mini-
correspond to minimum of noise for MAP and Planck ex-mizes the effect of the window at highérit is likely to
periments. Note that regardless of the form of the filter Eqperform even better than the filter in E€B7), which was
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FIG. 7. Left: logarithmic con-
tribution to C{* as a function ok
for =10, 100, 100Qthe normal-
ization is arbitrary. The models
are flat CDM models(dotted,
open CDM models witl),=0.3
(dashed, and cosmological con-
stant models with Q,=0.3
(solid). All the models havel’
=0 ,h=0.21. Right: logarithmic
contribution toC{“ as a function
of 1+z for the same models as
above.
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derived under assumptiolV(l)=1. For this reason we ~1000 it peaks betweerr2 -3 with a long tail extending to
choose to adopt the simple constant filter instead of the onkigher z. At these scales we are therefore directly probing
in Eq. (37). dark matter clustering at high redshifts.

The two characteristic features of lensing on the CMB are
the large scales and early epochs we can probe. In combina-
tion these facts guarantee that the power spectrum will be

We have shown that the quantity we are able to extracttominated by linear contributions. Figure 8 shows the differ-
from the distortions of the CMB is the power spectrum of theence between th€“ calculated using the linear and nonlin-
projected density field weighted with a window/a [Eq.  ear matter power spectrum. The spectra are shown as a func-
(5)]. Since the more fundamental quantity is the 3D densitytion of | for the same set of models used in Fig. 7. The
field described by the power spectrum we would like tononlinear matter power spectra were computed using the lin-
know the relation between the two power spectra. This relaear to nonlinear mappin§l7]. Up to | ~1000 the power
tion is shown in Fig. %), where a logarithmic contribution spectrum is dominated by linear modes. This has the advan-
to a givenl mode as a function of the 3D wave vectois  tage of making the results simple to interpret in terms of
plotted for a representative sample of models. These wineosmological models, since no nonlinear corrections are nec-
dows are relatively broad functions &f and peak atn  essary. Since MAP and Planck reconstruction in the large
=27/k=100th"! Mpc for | =10 and\ =30h~! Mpc for | scale limit will not extend beyond~ 1000 they will be
=1000. The exact value depends on the model. We ardominated by linear scales. At highenonlinear corrections
therefore probing the power spectrum over a range of scales
which extends to scales larger than any other method that
directly traces dark matter. f

The next question we want to address is the redshift dis- r
tribution of the contribution to a give@;* . Even though the ‘
g/a window peaks az=3 for a flat universe this does not Lt
mean that the dominant contribution comes from this red- 0.001
shift. The relation betweehandk depends on the shape of
the power spectrurfEq. (6)]. For any giver there is a range
in k that contributegFig. 7(a)]. The contribution from a high
k mode comes from structures which are relatively closer to
the observeriand so at lowerz) than the structures that
dominate the contribution for a lowdrmode[Eg. (6)]. On
large scales the matter power spectrum has a turnover so low
k modes have very little power which implies that their con-
tribution is smaller than that of highdr modes from more
nearby structures despite the geometrical factor that sup-
presses these highkmodes. Thus for low the contribution 1078 L
will be dominated by lowz structures. The logarithmic con- 10 100 1000 10t
tribution to a giverl mode as a function of t z is shown in !

Fig. 7(b) and confirms these expectations. At smaller scales FiG. 8. Power spectrunC/“ as a function ofl for the same
the power is more evenly distributed as a functiork@nd  models as in Fig. 7. Thin lower curves show the linear power spec-
the peak contribution moves to higher redshifts. Hor tra, thick upper curves the nonlinear spectra.

C. Relation to the density field
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become important. While this has the disadvantage that the 0.1 g T
interpretation becomes more complicated it has the advan- E

tage in that the power is boosted by almost an order of mag- ., %% ¢  * 2: W
L o "ED :

nitude compared to the linear scales and so the lensing effect: " &
becomes more easily observable. o> 0F 3
S r (] ]
0.0001 3
V. CROSS CORRELATION WITH OTHER MAPS E
o) S .

We have shown that individual structures cannot be re-
constructed with a sufficient signal to noise ratio, unless the 1
CMB has more small scale power than expected from pri-
mary anisotropies. One way to obtain a positive detection
discussed in the previous section is by combining informa-
tion from independent patches of the sky into a measurement %
of the power spectrum. In this section we discuss another {

H
o,

way to enhance the signal by using the cross correlation with
another map with a higher signal to noise ratio. A cross

correlation between a signal induced by lensing and some i
other tracer has been explored beffit8]. The difference to -1 i '1'(')0
our method is that they do not reconstructdirectly, but 1
compute the photon deflection angle instead for which the ) _ .
3D matter distribution is needed. It can only be obtained FIG: 9. Cross correlation of the inputand thef and s statis-

from a redshift surveysuch as SDSS or 2gFunder the tics. The_ results correspc_md toa lOOIOQ _S|mulat|on obsz_arved
assumption that light traces mass. Our method can also bvleth an ideal CMB experiment with negligible detector noise and

s . . Infinite angular resolution.
used when such a 3D distribution is not available. For ex- 9

ample, we may try to cross correlate the reconstructed con- Figure 9 shows the cross correlations in E89) for a

vergence map with a Sunyaev-Zeldovithz) map, which _ 45059600 field where the CMB is measured with negli-
traces the integrated pressure along the line of sight. This.

would give positive cross correlation because of clustersglb ledetector noise and infinite angular reso_lyt(dpe re-
Sults are almost the same for Planck specificajioife

which should contribute to both convergence and SZ effect; . . ; .
Thus even if clusters cannot be individually detected usin greement is remarkable, proving that there IS enough signal
n the « maps recovered using our technique to obtain useful

the method described in Sec. Ill, they may still be detecte ! formation about the converaence bower spectra by cross
statistically through this cross correlation, which would give ; . 9 POWer sp y e
correlating them with other maps. This is not surprising,

us information about pressure to dark matter ratio in clusters:. . X
Other possibilities for cross correlation are with x-ray back->"-c there are aboub6L0" independent patches of sizé

— o £ KK\2 _
ground which is believed to trace large scale structure to =(0.15°F and we need abouth /4C™)*~100-400 of

~5 and with galaxy catalogs from SDSS and 2dF, both Oghem to ?btain signal to nofisr(? of Ugit);-_ i b
which would give us information on how light traces mass " réality most tracers of the underlying mass will not be

on large scales. Yet another possibility is the cross correlad?€ECt because they correlate only partially within par-

tion with the CMB itself, which would give positive detec- tcular we assume that we haw\a( a mafhat correlates with
tion whenever there is a significant contribution from the @nd has a cross correlatig®{"" . Then the cross correla-
time-dependent potential in the CMB0,19,20. To test the  tions between theV=S,£ maps and th& map give
most optimistic possibility we may estimate the signal to
noise ratio of the cross correlation when we have another cVY=2Ccr"w(l), (40)
perfect map of convergence. For any of the probes men-
tioned above the actual signal to noise ratio will be lower,whereW(l) is the window defined in Eq:34). The correla-
since they will only partially correlate with the projected tion of the Y map with 3 vanishesCFY=0. The covariance
mass density. It is nevertheless of interest to see whethghatrix for the two correlations is
such cross correlations would be useful at all given such a
low signal to noise ratio on individual structures in the maps , ,
of S andé. Cov(Cl” YCy™) = (C) "+ N ) (ACH W2(1) + Ny )

The cross correlations with the inputgive

L N E
* st St u?ﬂﬁﬂ“l‘-—;
— - ada )7 aady
[ N s, aatta e S Ly

4

|
1000

+4CYCYWA(1), (41)
Sk_ . . .
Cy =2Cf", where the first term is usually dominant. Both the decorrela-
tion and the noise reduce the overall signal to noise ratio of
Cie=2Cr*, the cross correlation. For example, in the case of cross cor-

relation with the CMB only the largest modes are strongly
e correlated because the time dependent gravitational potential
Cr=0. (39 does not contribute to the CMB anisotropies on small scales.
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The overall signal to noise is significantly reduced comparedomparison with the weak lensing surveys planned for the
to the idealized example discussed here, but is neverthelefigture the advantage is that the redshift distribution of the
detectable with future satellite missions for reasonable lowsource is well known Z~1100) and much higher than for
density modelg10]. any galaxy survey. It also does not suffer from intrinsic cor-
relations between the galaxies, which may mimic the weak
VI. CONCLUSIONS lensing signal. In comparison with other direct tracers of
. dark matter such as velocity flows and ky-forest the
We have developed a method to reconstruct projectefhethod presented here recovers the power spectrum over a
mass density from observed cosmic microwave backgrounfhger range in scale and is less sensitive to basic assump-
maps. The method consists of taking derivatives of temperajons underlying the method such as the error distribution of
ture field and averaging their products. Particular comblna-gadaxy distances or assumptions of the intergalactic medium
tions on average porresppnd to the shear and converg_enc:g)g;M) at high redshift. In addition, the method presented
gravitational lensing, which can be expressed as a line Ofere also gives power spectrum information on much larger
sight integral over the density field. o scales than reachable by other methods. These are likely to
We have presented three possible applications of thge |inear and may allow us to deconvolve the power spec-
method. First we applied the method to simulated clusterg,m to obtain the 3D power spectrum using the methods
showing that it can be successfully used to reconstruct theﬁeveloped if22].
projected mass distribution if there is sufficient small scale A thirg promising application of the reconstruction is its
power. For this to be successful we require small scale powesioss correlation with other maps that trace large scale struc-
beyond the one given by primary anisotropies, which couldy e Some of these are x-ray background, galaxy surveys,
be provided by secondary processes such as the Ostrikefng cMB itself (both the primary anisotropies and the SZ
Vishniac effect or primeval galaxies. The expected S'Q”abontributior). This again allows us to average over many
from larger structures, such as filaments_ and superclusters,iﬁdependem patches to reach a positive detection and may
smaller and therefore more difficult to directly observe.  giye even higher statistical significance than the power spec-
A second and more promising application is to averaggym if the two maps are well correlated. In this case we can
the reconstructed map to extract the power spectrum of flugaarn not only about the dark matter clustering, but also
tuations. In simulations the method successfully reconstructgy, ot its relation to x-ray and optical light or about a time
the input power spectrum both in the large scale liwitere  gependent gravitational potential. Overall, CMB fluctuations
we are averaging over many independent patches of CMB tgay hide a whole new information treasure in its pattern and

reduce the noiseand in the small scale limitwhere lensing  jis extraction would provide important information on the
generates additional small scale powéiuture satellite mis- | piverse we live in.

sions should be able to measure this signal at least on large

scqles[Zl] and provide additional constraints on the cosmo- ACKNOWLEDGMENTS
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