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A substantial fraction of the energy density of the universe may consist of quintessence in the form of a
slowly rolling scalar field. Since the energy density of the scalar field generally decreases more slowly than the
matter energy density, it appears that the ratio of the two densities must be set to a special, infinitesimal value
in the early universe in order to have the two densities nearly coincide today. Recently, we introduced the
notion of tracker fields to avoid this initial conditions problem. In the paper, we address the following ques-
tions: What is the general condition to have tracker fields? What is the relation between the matter energy
density and the equation-of-state of the universe imposed by tracker solutions? And can tracker solutions help
to explain why quintessence is becoming important today rather than during the early universe?
[S0556-282(99)05610-6

PACS numbd(s): 98.80.Cq, 98.65.Dx, 98.70.Vc

I. INTRODUCTION aspect, which we call the “fine-tuning problem,” is that the
value of the quintessence energy dengitlyvacuum energy
Quintessencgl] has been proposed as the missing energyr curvaturg is very tiny compared to typical particle phys-
component that must be added to the baryonic and mattécs scales. The fine-tuning condition is forced by direct mea-
density in order to reach the critical densj®,3]. Quintes- surements; however, the initial conditions or coincidence
sence is a dynamical, slowly evolving, spatially inhomoge-problem depends on the theoretical candidate for the missing
neous component with negative pressure. An example is a@nergy. _ _
scalar fieldQ slowly rolling down its potentiaV(Q) [1,4— " Rice'"f'ﬂ);a we Ihr)trr?duceg f’tihform_ OquU|”tGSS%T;;]4§33”ed
. L 1A2 racker fields” which avoids the coincidence pro .
11]. For a general sc.ala.r f'fl?’. t2h © pressurgds=2Q V Tracker fields have an equation-of-motion with attractor-like
and the energy density j=3Q"+V. For a slowly rolling  spjutions in the sense that a very wide range of initial con-
scalar field, the pressure can be negative if the kinetic energyitions rapidly converge to a common, cosmic evolutionary
is less than the potential energy. For quintessence, thgack of po(t) andwe(t). Technically, the tracker solution
equation-of-state, defined agy=pq/pq, lies between 0 differs from a classical dynamics attractor solution because
and —1. Depending oV(Q), wg may be constant, slowly neitherQ)q nor any other parameters are fixed in time.
varying, rapidly varying or oscillatorj/1]. It is also possible The initial value ofpg can vary by nearly 100 orders of
for Q to smoothly transform from quintessence to a form ofmagnitude without altering the cosmic history. The accept-
energy with positive pressure or vice versa. For exampleable initial conditions include the natural possibility of equi-
V(Q) may have the property th& rolls quickly at first and, partition after inflation—nearly equal energy densityQras
hence, has positive pressure, but ti@slows down so that in the other 100-1000 degrees of freeddeg., Qg
the pressure becomes negative, satisfying the definition of 10~ %). Furthermore, the resulting cosmology has desirable
guintessence. properties. The equation-of-statg, varies according to the
A key problem with the quintessence proposal is explainbackground equation-of-stateg. When the universe is
ing why pg and the matter energy density should be comparadiation-dominatedwg= 1/3), thenwq, is less than or equal
rable today. There are two aspects to this problem. First ofo 1/3 andpq decreases less rapidly than the radiation den-
all, throughout the history of the universe, the two densitiessity. When the universe is matter-dominateds & 0), then
decrease at different rates; so it appears that the conditions g, is less than zero ang, decreases less rapidly than the
the early universe have to be set very carefully in order formatter density. Eventuallypq surpasses the matter density
the energy densities to be comparable today. We refer to thend becomes the dominant component. At this pot,
issue of initial conditions as the “coincidence problem™ slows to a crawl anvg— —1 as{)o—1 and the universe is
[12]. This is a generalization of the flatness problem de-driven into an accelerating phase. These properties seem to
scribed by Dicke and Peebles in 19[B8]; the very same match current observations wéll5].
issue arises with a cosmological constant as well. A second There has been considerable work on exponential poten-
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tials, a “borderline” case of tracking in whiclvg is very A. Basic terminology

near_ly equal towg during the radiation- a_nd matter- For clarity, we define some basic terms:
dominated epochB10,16. However, our focus is on cases  Quintessencea time-evolving, spatially inhomogeneous
where wq is significantly less thawg. This situation is  energy component with negative pressyig+ —po and
more desirable, because it enables@energy to eventually equation-of-statev,<0.
overtake the background density and induce a period of ac- Q-field: a scalar field whose energy acts as quintessence
celerated expansion, which produces a cosmology more comieday. (Note that theQ-field may go through earlier periods
sistent with measurements of the matter density, large scatef rapid evolution such that its pressure exceeds zero; so,
structure, and supernova observatidi$,18. Hence, our strictly speaking, theQ-field does not act as quintessence
use of the term “tracker” is meant to refer to solutions join- during that early periodl.
ing a common evolutionary track, as opposed to following Wgq, (g, etc: parameters describing ti@-fields.
closely the background energy density and equation-of-state. Tracker field a field whose evolution according to its
It is also an interesting point that some tracker solutiongquation-of-motion converges to the same solution—the
do not require small mass parameters to obtain a small eftacker solutior—for a wide range of initial conditions for
ergy density today14,17); whether this is a satisfactory so- the field and its time derivative. . .
lution to the fine-tuning problem is debatable, though. We do €onverging behavior in which solutions to th-field
not explore this issue in this paper. gquatlon-of-motlon are drawn towards a common solution,
An important consequence of the tracker solutions is th€(t), for a wide range of initial conditions. We make the
prediction of a relation between, andQq today[14]. Be- (fine) distinction betvyeen “trr_;lckmg” and “converging” be.—
cause tracker solutions are insensitive to initial conditionsCaUse tracker solutions typically go through some periods
bothwq and() only depend oiV(Q). Hence, for any given when solutions are not approaching one another. In particu-

V(Q), onceQ, is measuredwy, is determined. In general lar, during transitions in the background equation-of-state,
the cl,oserQ i?sto unity, the cl%sew is 1o —l. However " such as the transition from radiation- to matter-domination,
Q = Q : ,

since€,,=0.2 today, there is a sufficient gap betwe@g there are brief mFervaIs during whiclvg changes rapidly
. . and general solutions are not drawn towards the tracker so-
and unity thatwg cannot be so close te-1. We find that

) . ) _ lution; fortunately, these transitory periods are too short to
wo= —0.8 for practlcgl models. Tth-QQ rglatlon, which spoil the advantages of tracking solutions.
makes the tracker field proposal distinguishable from the Hybrid models models in which theQ-field first passes

cosmological constant, will be explored further in this Paperihrough a regime of/(Q) where solutions converge and
The purpose of the present paper is to expand on Ouhen begins an extended regime where they do (Kitis
introductory article on tracker fields and the coincidencegiffers from the case just mentioned in that the non-
problem. In particular, we want to go beyond the specificconverging behavior endures for a long period, not just dur-
examples of tracker potentials studied before and address jRg the transition in the background equation-of-state. For
a general way the following questiofthie relevant section is example, one can imagine a potential which has converging

shown in parenthesgs behavior as long as the tracker field is less than a certain
What is a tracker solutiofSec. 1l A)? value, but does not have converging behavior once the field
Which potentialsV(Q) have tracker solutiongSecs. rolls past that point.These cases can be interesting if, by the
HIA, 1B, IE ) and which do notSec. I G? time the second regime is reached, sufficient convergence of
How does convergence of diverse initial conditions to aso|utions has already occurred such tBatontinues along a
common track occufSec. 1l1G? common track in the second regime.

What additional conditions on tracking potentials are re- Family of tracker solutions For a potential V(Q)
quired to make them useful and practi¢gkec. 11l H)?

How does tracking result in the prediction of &%-wq
relation(Sec. IV)?

What range ofvg today is possible for tracking solutions
according to thavo-{)q relation(Sec. 1V)?

Why is theQ-field first beginning to dominate at this late
stage of the universe rather than at some early stSge.
V)? The equation-of-motion for th@-field is

=M% (Q/M) (where v is a dimensionless function of
Q/M), there is a family of tracker solutions parametrized by
M. The value ofM is determined by the measured value of
O, today (assuming a flat universe

B. Tracker equation

Il. DEFINITIONS AND BASIC EQUATIONS Q+3HQ+V'=0 (1)

We shall consider a scalar field with present equation-of-
state— 1<wq<0 in a flat cosmological backgrouridonsis- where
tent with inflation. The ratio of the energy density to the
critical density today id)q for the Q-field and(},, for the
baryonic and dark matter density whetg,+o=1. We

: . ; . H2=
use dimensionless units where the Planck madd js- 1.

a\|’ 1.,
g =K Pm+Pr+§Q +V (2
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wherea is the Robertson-Walker scale factpy, is the mat-  [|d(I'—1)/Hdt|<|T"—1|] over the range of plausible initial
ter density p, is the radiation energy density, ard=8=/3. Q.

The definition of the equation-of-state is (B) Tracking behavior withwg<wq<(1/2)(1+wg) oc-
192y curs provided I (1—wg)/(6+2wg)<I'<1l and nearly
WQ:E: i _ (3)  constant.
P 1Q%+vVv (C) Tracking does not occur forl'<<l—(1—wg)/

6+2wpg).

Rather than present the proof in a formal mathematical
format, which holds no special interest, we present the steps
of the argument over the course of the following subsections,
Secs. llIB-IIIG, explaining along the way their physical

It is extremely useful to combine these relations into an(
unfamiliar form, which is the form we would like the reader

to have in mind when we refer to the “equation-of-motion”:
\A K
ivz \/Q—Q\/1+WQ 4 interpretation, which is important for understanding the ap-
plication to cosmology. We note that each part of the theo-

wherex=(1+wgq)/(1—wq) = 1Q%V is the ratio of the ki- rem takes the form “given a condition, tracking witr will
netic to potential energy density f@ and a prime means a not) occur.” That is, we establish conditions that are suffi-
derivative with respect t®. The = sign depends on whether cient, but we do not show that they are necessary. We con-
V'>0 or V'<0, respectively. The tracking solutiofto  jecture that they may be necessary based on the stability
which general solutions convergeas the property thaty  analysis in Sec. lll F, which is the heart of the proof.

1dInx
6dlna

is nearly constant and lies betweeg and — 1. For 1+wg Case(A) is the one relevant to tracker models of quintes-
=0(1), 'Q2~QQH2 and the equation-of-motion, Eq4),  sence since we wamio<O0 today. For the most part, unless
dictates that otherwise stated, this is the case assumed in our discussion.
The range of initial conditions referred to in the theorem
V_/% i% ﬂ 5) extends fromV(Q) equal to the initial background energy
Y, \/Q_Q Q densitypg down toV(Q) equal to the background density at

] ] . matter-radiation equality, a span of over 100 orders of mag-
for a tracking solution; we shall refer to this as the “tracker ity de.

condition.”

An important function isl'=V"V/(V')?, whose proper-
ties determine whether tracking solutions exist. Taking th
derivative of the equation-of-motion with respect@and
combining with the equation-of-motion itself, we obtain the

The importance of this theorem is that testing for the ex-
istence of tracking solutions reduces to a simple condition on
e\/(Q) without having to solve the equation-of-motion di-
rectly. In particular, the condition thaf ~const can be
evaluated by testing

equation
V'V d(r-1)| I’
I'=s-— r1 ~ <1 7
(V1?2 Hdt | |1 (v'/v) @)
. We—wo 1+wg—2wq X
2(1+wq) 2(1+wg) 6+x over range ofQ corresponding to the allowed initial condi-

g tions; the middle expression is easily computed knowing
— 2 X 6) V(Q) only without having to solve an equation-of-motion.

(1+wq) (6+x)2 (Here we have used the tracker conditi@/H=~ Qg
- . ) . ~V'/V which applies for the tracker solutignAn equiva-
wherex=d Inxdina andx=d"Inx/dIna”. We will refer to et congition is that\T'/T' <1, whereAT is the difference
this equation as the “tracker equation. between the maximum and minimum valueslbfover the
Ill. PROPERTIES OF TRACKING SOLUTIONS same range of). The conditionl“.>1 is equivalent to the
AND TRACKING POTENTIALS constraint thajV’/V| be decreasing a¥ decreases. These
conditions encompass an extremely broad range of poten-
In the following section, we prove the key properties of tials, including inverse power-law potential§V(Q)
tracker solutions. Each subsection leads with a summary:M4*¢/Q¢ for «>0] and combinations of inverse power-
statement of the result for those who wish to skip the detailegaw terms[e.g., V(Q)=M%*exp(M/Q)]. Some potentials of
mathematical arguments. this form are suggested by particle physics models with dy-

) ) _ . namical symmetry breaking or nonperturbative effects
A. Which potentials have converging behavior and tracker [17,19-22.

solutions and which do not?

If wo<wg, converging behavior does not occur for po-
Our central theorem is the following: tentials in which|V'/V| strictly increases a¥ decreases
(A) Tracking behavior withwg<wg occurs for any po- (I'<1). This category includes quadratic potentials and most

tential in whichI'=V"V/(V')2>1 and is nearly constant examples of quintessence models in the literature. Instead of
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converging behavior, these models require specially tunedequire thatl’>1—(1—wg)/(6+2wg) in order to satisfy
initial conditions to obtain an acceptable value(b today, the criterionwo<(1/2)(1+wg), necessary to have converg-
as discussed in Sec. Il G. ing solutions(see Sec. Il E
For (1/2)(1+wg)>wq>wg, converging behavior does If " varies significantly withQ, then one can find a wide
occur if V'/V is strictly increasing a¥ decreasesI{<1);  and continuous distribution d@, (0o, andwg which satis-
however, as we explain in Sec. IIlE, potentials with, fies the tracker equation. Hence, there is no single solution to
>wg do not produce viable cosmological models of quintes-which solutions converge.
sence: ifwg>wg and)o=1/2 today(as suggested by cur- In sum, we have succeeded in expressing our conditions
rent observation then{) o must exceedl, in the past and for tracking solutions in terms df, which depends entirely
there is no period of matter-domination or structure forma-on the functional form ofV. A simple computation of
tion. V"V/(V")? determines itV admits tracking solutions or not.
Hybrid potentials are possible in which converging be-The case of interest for quintessenceMg<wg, in which
havior only occurs for a finite period during the early uni- case the condition for a tracker solutionlis>1 and nearly
verse, provided that the time is sufficiently long to bring constant.
together solutions whose initial conditions span the range of
practical interest. For example, one can construct potentials
in which |V'/V| decreases at first & rolls downhill, and C. How is the tracker solution approached beginning
then |V'/V| begins to increase. Another possibility is that from different initial conditions?
. . ! X . ~
e e o on -, We shall call e wacker soluioR() and th energy
lows Convergence" but cannot be maintained up to th density of the tracker solution as a function of tipg(t).

s . his subsection explains in rough detail how solutions con-
present for practical reasons of structure formation. How—ver e to the tracker solution for anv initiak that lies be-
ever, the condition could be maintained for a long, finite 9 y Ab

period in the early universe as long as it is terminated befor&/€®" the initial background energy densipg;, and the
matter-domination. current critical densityp.q. This range stretches nearly 100

orders of magnitude. In particular, we explain how the con-
vergence to the tracker solution is different if initialhg
B. T and the tracker solution >po>pg Versuspr<po<pgy. For simplicity, we confine
ourselves to the caseg<wg. We complete the proof of
%onvergence in the next subsection.
The equation-of-motion, Ed4), can be rearranged as

The central theorem is expressed in terms of condition
on the parameterl’. As a useful guide to the proof, we
summarize qualitatively how the conditions dhrelate to

the existence and nature of the tracker solution. 1dInx 1 V'
The theorem states a condition on the valud adind its = =-— VQo 7 —1=A(t)—-1 (9
Q
time variation. The condition on its value is important be- 6dina 3Vk(1+wg) v

cause, if the inequality is violated, the tracking condition,
V'IV~1/{JQq, cannot be maintained. The condition ensures _ o
that, asQ rolls downhill, both sides of the relation are de- Where we have restricted ourselves for simplicity to poten-
creasing. IfT" lies outside the stated bounds, one side of thdials with V'<0. Then, sinceV’<0, the right-hand side
tracker condition is increasing and the other decreasing as (RHS) of this equation is a balance between a positive semi-
rolls downhill; hence, the tracking condition cannot be main-definite term {) and a negative term. The tracker condition
tained. corresponds to the two conditions:—lzvé significantly dif-
The condition thal” be constant is important for having ferent from zero anavg nearly constant. The latter requires
converging behavior. IF is nearly constant, then the tracker near balance on the RHS abovk~ 1) so thatd Inx/dIna is
equation, Eq(6), implies that there is a solution in whioh  nearly zero.
and its time-derivatives are negligible. In this case, we have First, consider the “overshoot” case in whigh, is ini-
that the equation-of-state for ti@field is nearly constant: tially much greater than the tracker valpg. For simplicity,
let us assume th& is released from rest. The evolution goes
wg—2(I'=1) g  through four stages, illustrated in Figs. 1-4. The potential for
1+2(I'-1) ° ®  this example i8/(Q)=M*/Q°®. (For this and all subsequent
figures, the choice of=10' has been chosen as the initial
time for convenience of computation and illustration; a real-
If I'>1, the value ofwvg must be less thawg to satisfy the istic figure would have initiak corresponding to the infla-
tracker equation, which means that tQeenergy redshifts tionary scale.
more slowly than the background energy. For inverse power- (1) V'/V and{)q are so big initially thatA>1. So
law potentialsV(Q)=M**¢/Q% I'=1+ a1, and the rela-
tion we have derived matches the relation in our first paper
[14]. For .\((Q)=M4exp(1Q), '=1+2Q, which satisfies 1 dInx 2 dinwg
our condition forQ<1. ForI'<1, the same relation says 5dina_ > Hdr
that the value ofvg must be greater thawg, but we also 1-wg

WQ%

>1 (10)
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FIG. 1. Energy density versus redshift for the evolution of a FIG. 3. A plot of wg vs redshift for the overshoot solution
tracker field. For computational convenienaes 10'? (rather than ~ shown in Fig. 1.wg rushes immediately towards 1 andQ be-
inflation) has been arbitrarily chosen as the initial time. The whitecomes kinetic energy dominated. The field freezes wgdrushes
bar on left represents the range of initia} which leads to an towards—1. Finally, whenQ rejoins the tracker solutionyg in-
undershoot and the grey bar represents an overshoot, combining foreases, briefly oscillates and settles into the tracker value.

a span of more than 100 orders of magnitude if we extrapolate back

to inflation. The solid black circle represents the unique initial con-—W?2 is too small, or, more specifically, the kinetic energy is

dition required if the missing energy is the vacuum energy densitytoo large forQ to join the tracker solution. Hence€) rolls

The solid thick curve represents an “overshoot” in whigh be-  farther down the potential, overshooting the tracker solution.

ging from a value greater than the tr_at_:ker solution value, glecreases (3) Once the tracker solution is overshat,obecomes less

rapidly and freezes, and eventually joins the tracker solution. than unity and the RHS of Eq9) changes signwg now
L . . . decreases from+1 towards—1. One might wonder what

andwg is d_rlven towards its maximal valugjo— + 1. This happens whem, crosses through the tracker value; why

means thaQ becomes large and decreases very rapidly as doesQ not track at this point? The answer is that there is

Q runs downhill. . ~ now the problem thah is too small. So the RHS of E¢9)

(2) As Q runs downhill, V'/V and (), are decreasing. remains too negative andi, continues to decreases and
ConsequentlyA begins to decrease and ultimately reaches gyeads towards- 1.
value of order unity, one of the requirements for a tracker (4) Oncew,, reaches close te 1, Q is essentially frozen
solution. Howeverwq, has been driven towards 1; up to
this point, the RHS of Eq9) has been positive, and so there
has been no opportunity fawg to decrease. As a result, 1

08 Q
0 frozen
10 1 T T T 1
04 {
107 | :
s
£
10“‘ L ] = 0.0 |
Py x Q joins
10° . ﬁ 04l tracker sol.
C}O 10° - =
08 ¢ KE dominates
10" ]
12 L n - .
-2 | J 10  w0®  w*  10° 10* ' 10°
10 z+1
10“4 ] i | ] ! e )
107 10° 10° 10° 10° 10° 10° _ FI(E]. 4. A plqt of x/6 él/G)d Ilnx/d I_na for trr]le overlsho_ot sotl1u
Z+1 tion shown in Figs. 1 and 3. At late times whensettles into the

tracker solutionx is small andwg is nearly constant. During the

FIG. 2. A plot of Qg vs redshift for the overshoot solution in overshoot phaség undergoes large positive and negative changes,
Fig. 1. as described in the text.
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at some valu®; and, consequently/ andV'/V are frozen. {lq is constrained to be smalfXy=<0.15). At the beginning

However,A is now increasing sinc8, is increasing—even of matter domination{)o must be small in order that large-

though po is nearly constantpg is decreasing. A\ in- scale structure be formed, but then it cannot change thereaf-

W increases from-1, the field runs downhill, and the sign argument presumes, however, tiats already on track at

of Eq. (9) changes yet again. After a few oscillations, thethe beginning of matter domination. It is possible to tune

terms in Eq.(9) settle into near balance a@is on track. initial conditions so thaQ overshoots the tracker solution
Next, consider the “undershoot” case in whipl is ini- initially and does not join the tracker solution until just very

tially much less than the tracker valpg andQ is released recently(redshiftz=1). Then, the constraint dfl, is lifted.

from rest. This corresponds @ Q initially. By assump-
tion, V and|V'/V| are much smaller than the tracker value. D.What are the constraints on the initial value ofQ and p?
Consequently, 1/Qq, is larger than the tracker value. The
only way to satisfy the equation-of-motion, H¢), is for wg
to approach—1 so that the coefficient of J/&)_Q is nearly

zero. This condition corresponds to a very small kinetic eN¥ozen at someQ=Q; equal to its initial value orpq is
ergy density orQ nearly constant. Hence, the field remainsinitially larger than the tracker value and falls 1Q

nearly “frozen,” andV-andV'/V are nearly constant as the _ 3¢y 4z it is necessary thad; be less tha, in order

universe evolves. The situation is identical to beginning vv_ltht at the field be tracking today. This is not a very strong
step (4) above, and the scenario proceeds just as describe

constraint. Sinc&y= O(1) for most tracking potentials, this
theIrne.sum the field either drops precipitously past the trackerOnly requires thapeo=<pei < pe; initially. Hence, initial con-

l PS precip yp ditions in whichQ dominates the radiation and matter den-
value and is frozerfovershool or it begins with a value less

than the tracker solutiofundershogtand is frozen. In either sity are disallowed becausgfalls so fast and drops to such

case, it proceeds from the frozen state to joining the trackes low point on the potential that it has not yet begun tracking

solution, In the case of undershoot, the frozen vaQyels today. However, initial conditions in which there is rough

) L ~ equipartition betweepg and the background energy density
simply the initial value ofQ. For the overshoot cas@ be are allowed, as well as initial values p§ ranging as low as

gins bY going through a kinetic energy dominated period in100 orders of magnitude smaller, comparable to the current
which Qa 2. If the initial poi< pg;, Wherepg is the back-  matter density. The allowed range is impressive and spans

Suppose that the tracker solution correspond®teQ,
today and theQ has converged to a tracker solution. Then,
whether pq is initially smaller than the tracker value and

ground radiation density, theawt'/? and the frozen value of {he most physically likely possibilities.
Qis
3 E. Is the tracker solution stable?
Qr~Qi+ \/EQQi (11 What has been shown so far is that, whether the initial
conditions correspond to undershoot or oversh@btoon
where the subscript refers to the initial valuespand(Q,. reaches some frozen val@ which depends on the initial
(If initially pgi> pg; thenaxt'® and Qi. Then, after some evolutiol}), increases to the point
where |V'/V|~1/JQq and, according to the equation-of-
O+ /|3 14 1 pail. 12 motion, wo moves away from—1 and the field begins to
Qr=Qi 4 2 an : roll. What remains to be shown is that solutions with not

equal to the tracker solution value converge to the tracker
in this caseQ; is so large thaQ remains frozen up to the solution. Or, equivalently, we need to show that the tracker
present time. For the overshoot cas€); is typically very  solution is stable.
small compared to unity an o;=O(1). Consequently, the Now, consider a solution in whicvg differs from the
frozen valueQ; depends orf)y; only. tracker solution valusvy by an amounts. Then, the master
Initial conditions in whichQ; is non-zero do not change equation can be expanded to lowest ordes end its deriva-

the scenario significantly. K9; is very large, then the initial V€S t0 obtain, after some algebra,

behavior is kinetic energy dominated, and the evolution pro-

ceeds similar to the overshoot case. Initial fluctuation®in 5+3

also do not change the discussed behavior since they are

exponentially suppressed once the potential becomes non-

negligible and the field is driven towards the tracker solution

(see the Appendix where the overdot meard Ina as in the tracker equation.
The possibility of overshoot and undershoot allows a newrhe solution of this equation is

possibility for the case of exponential potentials recently dis-

cussed by Ferreira and Joyld€]. The exponential potential

is a special example of a tracker solution in whig, is

constant during the matter dominated epoch. The practical

problem with this model, as noted by Ferreira and Joyce, isvhere

1

.9

(13

sxa” (14)
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FIG. 5. The convergence of different initial conditions to the
tracker solution. As derived in the textio decays exponentially
fast to the tracker solution combined with small oscillations. All the
curves are fo(Q)=M*/Q®. The solid curve is the overshoot case
from Fig. 1. The thin dashed curve with=0 is the tracker solution
which is overlaid for most by the dash-dotted curve, which rep-
resents a slightly undershooting solution.
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The real part of the exponent is negative forw, between
—1 andwy=3(1+wg), which includes our entire range of
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FIG. 6. A plot of ) vs redshift for the models shown in Fig. 5.

criterion, wo<<3(1+wg), includeswq>wg or, equivalently,
1-(1—-wg)/(6+2wg)<I'<1, as also found by Liddle and
Scherrer [16]. An example is V~Q% with a=(6
+2wg)/(1—wg), =6 forwg=0 anda=10 forwg=1/3.

Let us suppose we reached the pres@pt after tracking
down this potential. Becausey™>wyg in these potentials, it
must be that(), exceeds()g extrapolating backwards in
time. Consequently, there is no period of matter-domination
or structure formation, and these models have no practical
interest. However, see the discussion of hybrid models below
for a variation on these models that may be viable.

F. Borderline models and hybrid models

For completeness, we consider two special classes of po-
tentials, borderline trackers in whidh=1 and hybrid mod-

interest. So without imposing any further conditions, thisels in whichI’>1 at first and thed’<1.

means thaté decays exponentially and the solution ap-
proaches the tracker solution. Asdecays, it also oscillates
with a frequency described by the second term. See Figs.
and 6.

In deriving Eq.(15), we have assumed thét is strictly
constant, independent o, which is exactly true for
pure inverse power-law[V~1/Q“] or exponential
(V~exp(BQ)) potentials. The same result holds if
|d(I'—1)/Hdt|/|[T—1|<1 (i.e.,, =1 varies with Q but
only by a modest amounover the plausible range of initial
conditions ranging fromV(Q)~pg; to V(Q)~pq (Where
pgi is the initial background energy density after inflation,

The borderline case corresponds\Maexp(8Q), which
has been studied by several auth6s7,10,11. For this

ase, the tracker equation far=x=0 demands thatvg
=wg and, thereforef is constant. Hence, for this case, the
tracker solution corresponds to maintaining a constant ratio
of quintessence to background energy density. The only de-
viation occurs during the transition from radiation- to matter-

domination whenx becomes non-negligible, but this is a
small effect.

Because), is constant throughout the matter-dominated
epoch, these models have limited practical utilfy, must
be small £15%) at the onset of matter-domination in order

say, andpeq is the energy density at matter-radiation equal-not to disrupt structure formatioiQuintessence suppresses

ity). The condition is equivalent td'/[T (V'/V)]|<1. In
this limit, I" and the tracker value a5 change adiabatically
as Q rolls downhill, satisfying the tracker equation with

the growth ratg.But then, sincd)g is constant(), remains
small forever. Consequently, the models requxg>85%,
inconsistent with a number of determinations of mgks,

being negligibly small, as discussed in the Appendix. Theand the universe never enters a period of accelerated expan-

constraints onwg are the same as above. However, somesion,

important differences from the constalitcase are pointed
out in the last section.

inconsistent with recent measurements of the
luminosity-redshift relation for type IA supernovd48].
(The overshoot scenario may lift tHe,,>85% constraint

Throughout most of our discussion in this paper, we havéut, as discussed in Sec. IlI D, introduces fine-tuning which

considered the cas&o<wg. However, our convergence

defeats the whole purpose of the scenario.
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Hybrid models have the property that solutions converge We note that many quintessence modelg,€0) dis-
to a tracker solution at the early phase of evolution but ceaseussed in the literature fall into this non-tracking class and
to converge after a certain point due to a change in the shapequire extraordinary tuning of initial conditions. Simple ex-
of the potential ag) rolls downhill. One can imagine a suf- amples include the harmonic potenti®(Q)=M?2Q?, and
ficiently long convergence regime that all or most plausiblethe sinusoidal potentialy/(Q)=M*cos@Q/f)+1]. In these
initial conditions have collapsed to a common tracker soluimodels, the initial value o must be set to a specific value
tion before the second regime begins. Effectively, this hagnitially in order to obtain the measured value @, today.
the desired feature that a wide range of initial conditions lead
to the same final condition. The models may be somewhat H. Some additional practical considerations
artificial in that the current cosmology is very sensitive to

where the transition occurs. For example, consider the case we have dis_covere_d a wide class of poteqtials that exh_ib_it
where wo<wg but I’ undergoes a trans,ition fromi > 1 %lrackmg .b.ehawor. This guarantees that a V\_/lde range of ini-
(converg?ng to T<1. Recall thatT<1 corresponds to tial conditions converge to a common tracking solutlon,_ but
|[V'/V| increasing ay/ decreases. We have shown that ex-t[he convergence may take longer than the age of the universe

X i - '~ in some cases. In particular, if one assume equipartition after
trapolating backwards only a small interval in time, the field.

Q must have been frozen at a value not so different from thénflation, say, and the initial is too far above the tracker

; i . . Solution, thenQ falls precipitously, overshoots the tracker
current value(assuming the field is rolling today analg solution, and freezes at son@=Q;. For some potentials
<0). In this kind of hybrid model, the transition t6<<1 ’ f P

must be set so that the transition occurs so @& near the satisfying the conditionl’~const>1, Q; may be so large

: . ) . .that the field does not begin to roll and track by the present
frozen value, which requires delicate tuning of parameters in ; .
the potential epoch. IfQ just started to roll by the present epoch, then it

) . _ would behave exactly as a cosmological constant until now,
<lﬁ<2'f;ir§$t f;(vanﬁﬁnlsthvgh:;ﬁ &sg e\g%)f/ gr?;uzr\lliv\?grse and so the model is trivially equivalent to/a model. As a
We have ar %ed tBhat thgse condﬁionsg roduce conver i.n ractical consideration, we demand that a field starting from

. g " : X 9 quipartition initial conditions should start rolling by matter-
behavior but, if the conditions continue to the present, there - & -0 say, so that the model is non-trivial. This im-
is no period of matter-domlnatlor_l or structure format{eee _ poses a mild added constraint on potenti®6Q). For this
Sec. llIB. However, one can imagine hybrid models in purpose, rough estimates suffice
which these conditiongl — (1—wg)/(6+2wg) ]<I'<1 and Equipartition at the end of inflation, when there are hun-
Wo=>Wg are sat|sf|_ec_i for some pen_od early in the_ history 0fdreds or perhaps thousands of degrees of freedom in the
e uerse, proving o e Dero, of ConVErOng DS cosmotogical fu, means tha 1@ 1eld s —10 .

i ’ . P ' ge Beginning from equipartitionQ falls to some valueQ;
thatwo<wg. Viable cosmological models of this type can

be constructed in whic) does not dominate the universe Wgﬁ:: ':rgze:rfejhtﬁcgrirj/%m t?ﬁig::éf?:;?giﬁ?
during the matter-dominated epoch until near the prese . Q
~1/yQq or, equivalently,

time.
12 2
G. Why do models with increasing|V'/V| and wo<wg fail VV(Qf)>H2(Zeq) = H_30~ Qi V_SO_ (16)
to solve the coincidence problem? Qeq 0 3gq

For potentials in whicHV’/V| increases a¥ decreases o )
(I'<1), the LHS of the the equation-of-motion, E@), is For V(Q)=1/Q®, this imposes the constraint
increasing. Ifwo<wg, 1//Qq on the RHS is decreasing as
Q rolls downhill. Hence, the tracker conditiorV'/V| a? 1
~1/Qq, cannot be maintained and, cannot be main- a+229 ol ’ (17)
tained at a nearly constant val(dgifferent from— 1) for any f 0%0%%q
extended period. . .

In particular, extrapolating backwards in tima]'/v| is ~ WhereéQo is the present value d@. Since today
strictly decreasing and ;]ZQ_Q is strictly increasing. The only
way to satisfy the equation-of-motion, E@), is to havew, V_()ZNHZN 8_77 ﬁ (18
approach— 1. But this corresponds to th@-field freezing at Vo 0 3 Qp

some valueQ=Q; after only a few Hubble times. The en-
ergy density of the frozen field is only slightly higher than
the current energy density. Consequently, to obtain this co
mological solution, one has to have special initial conditions

in the early universéafter inflation, saythat setQ precisely

to Q; and theQ-energy density tgq, a value nearly 100 4—WQ2~Q-~10’3. (19)
orders of magnitude smaller than the background energy 3 '

density. It is precisely this tuning of initial conditiorithe

coincidence problejnwhich we seek to avoid. Combining the above relations one gets the restrictiorxron

we obtainQj~3/8mQ3a?. From Eg.(11), we also know
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FIG. 7. A comparison of the overshoot for three different mod- ) ) ] )
els beginning fronf2;=10"3 (equipartition. The thick solid line is FIG. 8. The(l4-wq, relation for various potentials assuming a
for V(Q)=M#%Q5 the thick dash-dotted line is forV flat universeQ),=1—Qq, wherewq represents the present value
=M*exp(1Q)—1], and the thick long dashed line is fa(Q) of wg. The potentials and notation are the same as in Fig. 7.
=M%Q. In all three examplesQ falls rapidly downhill and
freezes. In the first and second exampl@&egins to roll again and dependent. We are most interested in the smallest values of
joins the tracker solution before matter-radiation equality; the thirdwg possible since the difference from1 determines how
example, which violates the condition derived in the text, does nodifficult it is to distinguish the tracking field candidate for

begin to roll again by the present epoch. missing energy from cosmological constant.
In Fig. 8, we show thel)o-wq relation for a series of
3 (1+al2) pure, inverse power-law potentialg(Q)«1/Q“. The gen-
102 (EQI) eral trend is thawvg increases a& decreases. The constraint
> (200  given at the end of the previous section is that5 (in order
Qo (azﬂoi) thatQ be rolling by matter-radiation equality beginning from
8 equipartition initial conditions For 15=0.8, the smallest

. _ _ _ value ofwg is —0.52, which occurs for=5. This is a large
where we have takeag,~10"". This approximate relation difference from— 1 obtained for a cosmological constant.
leads toa=5. Figure 7 confirms this result showing that the  However, a lower value olvg can be easily achieved for
a=1 model starts rolling much later than equality. So if onea more generic potential with a mixture of inverse power-
restricts to pure inverse power-law (Y) potentials, our |aws, e.g.,V(Q)=M*exp(1Q). For these modelsQ is
constraint thatQ begin from equipartition and roll before small initially. If the potential is expanded in inverse powers

matter-radiation equality constrains usde=5. of Q, 1/Q%, then it is dominated in the early stages by the
high-o terms. Hence, the effective value aef is much
IV. ©o-Wq RELATION greater than 5 before matter-radiation equality, and we easily

satisfy the constraint that the field be rolling before matter-
An extremely important aspect of tracker solutions is theradiation equality beginning from equipartition initial condi-
Qq-Wq relation or, equivalently, th€)-wq relation which  tions. On the other hand, the value@fat the present epoch
it forces. For any givelV=M% (Q/M) (wherev is a di- is large, and the potential is dominated by the 1 terms in

mensionless function o®/M), Q and Q are totally deter- its expansion. Consequentlyi, can be even lower today
mined independent of initial conditions by the tracker solu-than in the pure power-law case. Fi,=0.8, we obtain
tion. The 0n|y degree of freedom is tMparameter in the Wqo= —0.72 for the exponential potential, which is in better
potential.M can be fixed by imposing the constraint that theaccord with recent constraints ev, from supernova18].
universe is flat andlm:]_—QQ is determined by measure- It is difficult to go below this limit without artificially
ment. There is, then, no freedom left to independently varfuning potentials unless we relax our constraints. For ex-
Wq. This is the explanation of th@o-wy relation, a new ~ample, consider the highly contrived potential(Q)
prediction that arises from tracker fields. They-wg rela-  =A/Q* “+B/Q™, in which we have intentionally chosen
tion is not unique because there remains the freedom texponents differing by six orders of magnitude in order to
change the functional form of(Q). Even sowg, is suffi-  obtain a smallwg today. The second term in the potential
ciently constrained as to be cosmologically interesting. dominates before equality and ensures that the field is rolling
The general trend is thatg— —1 as{)qo—1. The fact by that point in time. The first term dominates at late times
that 1,,=0.2 observationally means th&;,<0.8 andw,  and makes the equation of statg very low (because this
cannot be very close te 1. How smallwg can be is model- term is very flal. For this example, we findig=—0.98 for
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=—0.72 today, but Fig. 9 shows that the measureg
0.0 ‘ would bew,gs=—0.63.

The result is exciting because thig,-wg relation and the
constraint on() ,=0.2 today creates a sufficiently large gap
0.2 ¢ Allowed for 1 betweenwgff and —1 that the tracker candidate for missing
Tracker Solutions energy should be distinguishable from the cosmological con-

04 | stant in near-future cosmic microwave background and su-
= pernova measurements.

V. WHY IS THE UNIVERSE ACCELERATING TODAY?

We have proved in this paper that tracker potentials re-
solve the coincidence problem for quintessence. For a very
wide range of initial conditions, cosmic evolution converges
to a common track. The tracker models are similar to infla-
tion in that they funnel a diverse range of initial conditions
into a common final state. The models have only one impor-

tant free parameteiM) which is fixed by the measured
FIG. 9. A plot of w§" versusQ,=1-0Qq, showing the mini-  —1_¢) .
ff . . . . H . . . .
mumwg ' possible for tracker solutions. The solid line is the lower  some of the mathematical properties of tracking solutions
b_oun??ry a_s§t1_1n|1|ng tZ?t_ CO”Stra('jmbtha_t m'e:f_' be%lnfs with e?t' have been noted before for exg), for exponential poten-
uipartition 1nitial CONAItions and begins Toling beloTe Mater oo ity time-dependenp-coefficient and pure, inverse
radiation equality. The dashed line is the lower boundary if this . T
power-law potential§6,7,10,11. The present work is impor-

condition is relaxed to allow genersli~3.c, /QX. As explained in

the text,w%ff is the value that would be measured in supernova anc§ant because it shows that the properties are shared by a

microwave background experiments which effectively integratemUC.h Widgr class of more generic potenFiaIs. “Generic po-
over a varyingwg . tentials” include, for example, alV’s which can be ex-
panded as a finite or infinite sum of terms with inverse pow-

4=0.8. However, we had to choose a pair of terms with€'s on, Wh_lch is much more general than the_speual cases
e : . of a single inverse-power or a pure exponential. We se
exponents differing by six orders of magnitude. The Iesson_M4e (10) as an example of this more generic class
of this exercise(and related testsis that the exponential Xp _examp IS 9 ! ’
L , . - . although our conclusions would remain the same for more
potential is a reliable estimate for the minima, possible

¢ . wuned potential generalV=3.c,/QX.
or generic, untuned potentials. . Extending the tracker behavior to generic potentials may
In Fig. 8, we illustrate the)o-wq relation for several

) 6 . be important because, as we shall argue below, they have
potentials. Only thev~1/Q” and V~exp(1Q) potentials  ronerties not shared by the special cagés 1/Q¢ and V
satisfy the condition thaf) is rolling by matter-radiation ~exp(8Q)] that relate to the puzzle of wh§ only begins

equality beginning from equipartition initial conditions. In o dominate and initiate a period of accelerated expansion
F|g. 9, we illustrate the effeCtlva that would be mea- late in the history of the universe.

sured using supernova or cosmic microwave background This is a subtle point which requires a change of approach
measurements, using the-exp(1Q) potential as defining to appreciate. Up to this point in the paper, we have imag-
the boundary of minimal values ofi, possible for the ined fixing M to guarantee tha€lo=1-Q, has the mea-
tracker field case. This boundary assumes that we satisfy th@ired value today. This amounts to considering one tracker
strict condition that the field be rolling by matter-radiation splution for eachv(Q). Now we want to consider the entire
equality beginning from equipartition initial conditions. If family of tracker solutions for each giver(Q) and consider

we relax this condition and allow a somewhat narrowenyhether(), is more likely to dominate late in the universe
range of initial conditions, then general potentials of thefor that family of solutions or not. In particular, we want to
form V~X¢, /Q (such asv~1/Q) are allowed anavg can  show that, for generit/(Q), the family of solutions has the

be somewhat smallefsee Fig. & Hence, in Fig. 9, the property that the quintessence energy density decreases at
boundary can relax somewhat downwaddshed lingbutit  nearly the same rate as the background radiation density in
is difficult to obtainwo< —0.8 orwg < —0.75. Becaus@,  the early stages of the universe and only tends to catch up
is evolving at recent times, the value obtained from measureand overtake the background density late in the history of the
ments at moderate to deep redshift will differ from the cur-universe whenQ has rolled a considerable way down the
rent value shown in Fig. 8. For tracker potentials, the effecpotential. Precisely when quintessence overtakes depends on
of integrating back in time over varyingg turns out to be the precisely value of, of course, but our point here is to
well-mimicked by a model with constaszwgff that has  focus on the trend of the entire family of solutions.

the same conformal distance to last scattering surface. For In  general, Qo is proportional to aWe~ o)

the case(,,=0.2, for example, Fig. 8 shows thatg  o«t>"s~WQ)/(1*We) where we have shown in E¢B) that
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Z+1 FIG. 11. A plot comparing two tracker solutions for the case of

aV~1/Q8 potential(solid line) and aV~exp(1Q) potential(dot-
dashed ling The dashed line is the background density. The two
tracker solutions were chosen to have the same energy density ini-
tially. The tracker solution for the generic examplgv
~exp(1Q)] reaches the background density much later than for
the pure inverse-power law potential. Hen€k, is more likely to
dominate late in the history of the universe in the generic case.

FIG. 10. A plot of P/Pq versust, WhereQrotP and Py is the
initial value of P. The plot compares pure inverse power-law (
~1/Q%) potentials for whichP is constant with a generic potential
[e.g.,V~exp(1RQ)] for which P increases with time.

2(M-1)(wg+1)

WemWoT T T (21)
Hence, we find2qxt® where of magnitud¢ difference between the time when the first
solution(solid line) meets the background density versus the
4TI'-1) second solution(dot-dashed ling That is, beginning from
T1+2(T-1) 22 the samélq, the first tracker solution dominates well before
matter-radiation equality and the secofggneri¢ example
For the two special casg¢¥/~1/Q* and V~exp(B8Q)], dominates well after matter-domination. The difference is

I'—1 and, henceR are constant. Consequentfy, grows as  less dramatic ag increases for the pure inverse power-law
the same function of time throughout the radiation- andmodel and becomes negligible far>15. Of course, the
matter-dominated epochs for their respective family ofmodel appears more contrived. But more importantlyqas
tracker solutions. So there is no tendency f§ to grow  jncreases, the value ofig today (given Q,,=0.2) ap-
slowly at first and then speed up later, as illustrated in Figproaches zero and the universe does not enter a period of
10. However, these potentials are the exception, rather thall.-ajeration by the present epoch. Hence, a significant con-
the rule. o , clusion is that the pure exponential and inverse power-law
For more general potentialf, increases as the universe ,qe|s are atypical: the generic potential has properties that
ages. Consider first a potential which is the sum of tWo inyystrated in Fig. 11 thaf, dominates late in the history of

verse power-law terms with exponenis <a,. The trm o niverse and induces a recent period of accelerated ex-
with the larger power is dominant at early times whgns pansion.

small, but the term with the smaller power dominates at laté |, sum. the general tracker behavior shown in this paper

:Ir:ze:ﬁ?e?:? rgllsaldzwgf? Ig:cnrg:g?giﬂa_lirfi Var:léféaiirs‘fje, goes a Iong way towa_rds resolving two key issu_es: the_ coin-
Ive value . | ' cidence(or initial conditiong problem and whypg is domi-

the result is thaP increases at late times. _For more ge”eralnating today rather than at some early epoch. And it leads to

potentials, such a¥~exp(1Q), the effective value ofx a new prediction—a relation betwe@,=1-Q andwq

decreases continuously aRdncreases with time. Figure 10 ,qay that makes tracker fields distinguishable from a cos-
illustrates the comparison in the growth ef mological constant.

How does this relate to why), dominates late in the
universe? Because an increasiRgmeans that)g grows
more rapidly as the universe ages. Figure 11 compares a
tracker solution for a pure inverse power-law potenti! (
~1/Q% model with a tracker solution foV~exp(1Q), We wish to thank Robert Caldwell and Marc Kamion-
where the two solutions have been chosen to begin at thkowski for many insightful comments and suggestions. This
same value of). (The start time has been chosen arbi-research was supported by U.S. Department of Energy grants
trarily at z=10 for the purposes of this illustrationFol-  DE-FG02-92-ER40699Columbia, DE-FG02-95ER40893
lowing each curve to the right, there is a dram#1i® orders  (Penn and DE-FG02-91ER4067(Princeton.
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APPENDIX where m=(Ht) 1=3(wg+1)/2. Equation(A5) then be-

In this appendix, we discuss the convergence to th&OMes

tracker solution wherl'=V"V/(V')? varies with Q. We
wish to show that convergence occurs if the variatiod of d?sQ déQ Vg
over the plausible range of initial conditiofgarying of 100 4.2 +@-m - 5;9Q=0 (A7)
- . . T H
orders of magnitude in energy density nearly constant. An
example isV~exp(1Q) for whichI'=1+2Q andQ<1 for
the plausible range of initial conditions. where
The condition that " be nearly constant means
precisely that d(I'—1)/Hdt<(I'—1) or, equivalently,
[T//[T (V'/V)]|<1. In this casel is nearly constant over a C
Hubble time. Hence, we can consider an adiabatic approxi-
mation for the tracker solution in whic®, andw, satisfy
the tracker equatiofB) with x andx negligibly small. Sup- in the adiabatic approximation. The solution to E47) is
posewg andQ are both perturbed from this tracker solution 6Q=Aexp(8r), where
by amountséw and 5Q(t). From the definition ofvg, we

H—‘;~Z(1—WQ)(2+WB+WQ) (A8)

have that B?+(3—m)B+C=0 (A9)
- ) \VA . .
é\/v=(1—w0)% 5Q—(1+Wo)—0 5Q. (A1) with solutions
Po Po
ion-of-moti B 4C
From the equation-of-motion, E¢4), we know that 8. —— 5 1+ /1_ = (AL0)
Vo Vy o1 .
= —3(wg—wg)
o «a Q B/, (AZ)
po Vo Qq where
Consequenty, EA1) implies 3
Sw~exd — 3/2(wg—Wp)Ina]8Q. (A3) B=3-m=3(1-wg). (A11)
In particular, this equation shows thaiv decays if6Q de-
cays. Note thatB>0 andC>0. Hence, we have thalQ expo-
To show thesQ decays, we start from the more standardnentially decays, and, by the argument that preceded,
form of the equation-of-motion: « 5Q also decays exponentially. Combining our relations for
_ 8Q and éw, we can reproduce the result in Ed5) obtained
Q+3HQ+V'=0, (A4)  for the constant” case.
_ _ If Q has spatial fluctuations, EA7) must be modified
and obtain the perturbed equation by a positive term proportional t&25Q. The effect is to
. . , increaseC and modify the oscillation frequency. However,
6Q+3H6Q+Vy6Q=0. (A5)  the exponential suppression of the fluctuations is retained

once the field starts approaching the attractor solution.
Hence, even if the initial conditions result in significant fluc-
tuations after the field is froze(in either the undershoot or

2

d"oQ = l(dﬂ) _1e +md5Q (A6)  overshoot cagethe initial fluctuations are erased @scon-

dr2  HdtiHdt] Q42 dr verges to the tracker solution.

Changing the variable td7=Hdt, we obtain
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