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Dynamics of assisted inflation
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We investigate the dynamics of the recently proposed model of assisted inflation. In this model an arbitrary
number of scalar fields with exponential potentials evolve towards an inflationary scaling solution, even if each
of the individual potentials is too steep to support inflation on its own. By choosing an appropriate rotation in
field space we can write down explicitly the potential for the weighted mean field along the scaling solution
and for fields orthogonal to it. This demonstrates that the potential has a global minimum along the scaling
solution. We show that the potential close to this attractor in the rotated field space is analogous to a hybrid
inflation model, but with the vacuum energy having an exponential dependence upon a dilaton field. We
present analytic solutions describing homogeneous and inhomogeneous perturbations about the attractor solu-
tion without resorting to slow-roll approximations. We discuss the curvature and isocurvature perturbation
spectra produced from vacuum fluctuations during assisted infli&@%56-282(199)05710-0

PACS numbes): 98.80.Cq

I. INTRODUCTION The recent paper of Liddle, Mazumdar and Schufigk
was the first to consider the effect of additional scalar fields
with independent exponential potentials. They considered
scalar fields in a spatially flat Friedmann-Robertson-Walker

A single scalar field with an exponential potential is
known to drive power-law inflation, where the cosmological
scale factor grows aacxtP with p>1, for sufficiently flat . : .
potentials[1-4]. Liddle, Mazumdar and Schundis] re- ;Jireili:j/:risse with scale fact@(t). The Lagrange density for the
cently proposed a novel model of inflation driven by several

scalar fields with exponential potentials. Although each sepa- n 1
rate potential, L= — E(V¢i)2_vi, (1.4
i=1
Vi=Voexg — \/——, (1.1  With each exponential potentidh of the form given in Eq.
Pi Mp (1.1). The cosmological expansion rate is then given by
may be too steep to drive inflation by itselp;& 1), the , 8m " 1.,
combined effect of several such fields, with total potential H=>— 2, | Vit 547, (1.5
3mp i=1
energy
. and the individual fields obey the field equations
vzgl Vi, (1.2 ) _ av,
bit3HG =~ Go- (16
leads to a power-law expansiant® with [5] One can then obtain a scaling solution of the fd&h
n 2
_ Y
= i 13 = =0 .
2 p (1.3 7V, o @7

provided 5> 1/3. Supergravity theories typically predict Differentiating this expres_sion_with.respect to tim_e, and us-
steep exponential potentials, but if many fields can cooperat@d the form of the potential given in E¢1.1) then implies

to drive inflation, this may open up the possibility of obtain- that

ing inflationary solutions in such models.

Scalar fields with exponential potentials are known to iqﬁ— 1 $=0 (1.8
possess self-similar solutions in Friedmann-Robertson- N \/D—J e ’
Walker models either in vacuuf@,3] or in the presence of a
barotropic fluid[4,6—§. In the presence of other matter, the and hence
scalar field is subject to additional friction, due to the larger

expansion rate relative to the vacuum case. This means that a Pi

scalar field, even if it has a steépon-inflationary potential Cij :IO_J-' 1.9
may still have an observable dynamical effect in a radiation

or matter dominated ef®-11]. The scaling solution is thus given §§]
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g P11+ \/—¢>2 Mp
,=
Vpitps  N16m(pyt py)
P1 P2
- X| piIn——"—4py In———|, 2.2
hd P1 P1tPp2 P2 P1t P2 @2
;:\/E¢1_\/E¢2+ Mp [ P1P2 'n&
2 Vp1+ P2 Vi6r Y Pitpz p2’
0.1 1 10 100 1000
time, t to describe the evolution along and orthogonal to the scaling

solution, respectively, by applying a Gram-Schmidt orthogo-
FIG. 1. Evolution of four fields¢,, ¢,, ¢3 and ¢, (from uho! pectively, by applying ! 9
. : g . nalization procedure.
bottom to top during assisted inflation witp;=0.3, p,=1, p; . o — — .
=2 andp,=7 The re-defined fieldsp, and o, are orthonormal linear
4 . . . L .
combinations of the original fieldg, and ¢,. They repre-
sent a rotation, and arbitrary shift of the origin, in field-

Mp pj — — . L
bi— b= ) (1.10 space. Thug, ando, have canonical kinetic terms, and the
\/— I \/_ : \/1677 pi Lagrange density given in Eq2.1) can be written as

A numerical solution with four fields is shown in Fig. 1 as an 1 1 L 167
example. In Ref[5] the authors demonstrated the existence £=— _(vgg)__(v;g)_v(gz)exp( \/ )
of a scaling solution fon scalar fields written in terms of a 2 2 P1t P2 mPI
single re-scaled field>= \'p/p; ;. The choice ofp, rather
than any of the other fields is arbitrary as along the Scal'ng/vhere
solution all theg; fields are proportional to one another.

In this paper we will prove that this scaling solution is the
late-time attractor by choosing a redefinition of fieldsro- V(0'2) Vo — 2

P p(_ L6m \ﬁ?_)
tation in field spacewhich allows us to write down the ef- p1t P, p1+p2 Y pimp
fective potential for field variations orthogonal to the scaling

solution and show that this potential has a global minimum n P2 ﬂx% | 16w \/71 )
along the attractor solution. In general the full expression for P1t Py p1tp2 ¥V pamp
an arbitrary number of fields is rather messy so we first give,

in Sec. Il, the simplest case where there are just two field
and then extend this ta fields in Sec. Ill. The resulting

inflationary potential is similar to that used in models of
hybrid inflation and we show in Sec. IV that assisted infla-
tion can be interpreted as a form of “hybrid power-law in-

flation.” As in the case of power-law or hybrid inflation, one
can obtain analytic expressions for inhomogeneous lineafinimum, to second-order ir,, and we obtain

perturbations close to the attractor trajectory without resort- -
ing to slow-roll type approximations. Thus we are able to p( 167 ¢2)
exp — \/ — .
P1+ P2 Mpy
(2.6

Stis easy to confirm tha¥/ (o) has a global minimum value
Vq at o,=0, which implies thato,=0 is the late time at-
tractor, which coincides with the scaling solution given in
Eq. (1.10 for two fields.

Close to the scaling solution we can expand about the

8 E%

" (it po) m2,

give exact results for the large-scale perturbation spectra du¥ (b, 2)~Vo| 1
to vacuum fluctuations in the fields in Sec. V. We discuss our
results in Sec. VI.

Note that the potential for the fielaz has the same form

as in models of hybrid inflatiof12,13 where the inflaton
We will restrict our analysis initially to just two scalar field rolls towards the minimum of a potential with non-
fields, ¢4 and ¢,, with the Lagrange density vanishing potential energy densi. Here there is in addi-
tion a “dilaton” field, ¢,, which leads to a time-dependent

exp( _ 16_77&) potential energy density as,— 0. Assisted inflation is re-
p1 Mp lated to hybrid inflation[12,13 in the same way that ex-

Il. TWO FIELD MODEL

— 1 2 1 2
L==5(VD) = 5(VdD)~ Vo

tended inflation[14] was related to Guth's old inflation

tex /16;77 2.1) model[15]. As in hybrid or extended inflation, we require a
2 Mpy ' phase transition to bring inflation to an end. Otherwise the

potential given by Eq(2.6) leads to inflation into the indefi-
We define the fields nite future.
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Ill. MANY FIELD MODEL

We will now prove that the attractor solution presented in
Ref. [5] is the global attractor for an arbitrary number of
fields with exponential potentials of the form given in Eq.
(1.1, using proof by induction. To do this, we recursively

construct the orthonormal fields and their potential.
Let us assume that we already havéields ¢; with ex-
ponential potential¥; of the form given in Eq(1.1) and that

it is possible to pick orthonormal fieldsr,, . . . o, and ¢,
such that the sum of the individual potenti&scan be writ-
ten as

(3.

where we will further assume that,=V,(o;) has a global

minimum V,(0)=V, wheng;=0 for all i from 2 ton.

It is possible to extend this form of the potential no
+1 fields if we consider an additional field, ,, with an
exponential potentiaV/,,, of the form given in Eq.(1.1).
Analogously to the two field case, we define

\/Ean"— \/pn+1¢n+1

n+1=
NPn+1
Mp (— En Pn+1)
+ — PpIN=——+ppys1IN=——
V167 (pPni1) Pn+1 Pn+1
(3.2
— \/pn+1$n_\/ﬁ¢n+l
On+1—
VPn+1
Mp) PnPn+1 E
+ — In , (3.3
V167 Pni1  Pn+1
where
pn+1 pn+pn+1 (3.9

Using these definitions we can show that the sum ofrthe
+1 individual potentialsv; can be written as

n+1

> Vi=Vn+1exp<—
i=1

1677 ¢n+ 1
Mp

3.9

pn+1

WhereVnH:VnH(;i) is given by
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VnH—V exp( \/
pn+l n+1
p( [16m
ex =
p

n+1

Because we have assumed th_at has a global minimum
valueV,(0)=V, wheno;=0 for all i from 2 ton, one can
verify that Vnﬂ also has a minimum valugnH(O):Vo
wheno;=0, for alli from 2 ton+1.

However, we have already shown in Sec. Il that for two
fields ¢, and ¢,, we can define two fieldg, and o, given
in Egs. (2.2 and (2.3) whose combined potential given in
Eqg. (2.4) is of the form required in Eq(3.1), with szpl
+p,. Hence we can write the potential in the form given in
Eq. (3.1) for n fields, for alln=2, with

pn+1 0'n+1)
pn Mpi

+V, Pn+1

Pn+1

/ pn Un+l
Pn+1 Mpy

(3.6

2 P 3.7

Equations(2.2) and (3.2) then lead us to the non-recursive
expression for the “weighted mean field”

e 2

which describes the evolution along the scaling solution.
This is simply a rotation in field space plus an arbitrary shift,
chosen to preserve the form of the potential given in Eq.
(3.1). Then—1 fieldso; describe the evolution orthogonal to
the attractor trajectory.

The potentialV, has a global minimum ad;=0, which
demonstrates that this is the stable late-time attractor. From

Egs.(2.5) and(3.6) we get a closed expression fuf,,

p,lnp ) (3.9
p

'7

[Pi-1—
PiPi

3.9

Close to the attractor trajectoyo second order in?i) we
can write a Taylor expansion for the potential
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KARIM A. MALIK AND DAVID WANDS

p( [167 ¢,
ex —_.

p Mp
(3.10

Note that this expression is dependent only upoand not
on the individualp; .

n

8 n
ZV =V, 1+_7T2 o

pm |J=2

IV. STRINGY HYBRID INFLATION
The form of the potentials in Eqg2.6) and (3.10 is
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dimensionless constand must be much larger than that
found in the low-energy limit of string theory where
w=-—1.

V. PERTURBATIONS ABOUT THE ATTRACTOR

The redefined orthonormal fields and the potential allow
us to give the equations of motion for the independent de-
grees of freedom. If we consider only linear perturbations
about the attractor then the energy density is independent of

reminiscent of the effective potential obtained in the Einsteirll the fields exceptp, and we can solve the equation for the
conformal frame from Brans-Dicke type gravity theories. ¢ field analytically.

The appearance of the weighted mean fie_id,as a “dila-

The field equation for the weighted mean field is

ton” field in the potential suggests that the matter Lagrang-

ian might have a simpler form in a conformally related
frame. If we work in terms of a conformally re-scaled metric

4.1

- [16m ¢
g,uv_ex - TmPI g,u.l/!

then the Lagrange density given in E§.4) becomes
Z:exp( \ /ﬁi) [— ~(Vg)2— 2 —(Va') v}
p Mp
4.2

In this conformal related frame the fielg is non-

minimally coupled to the gravitational part of the Lagrang-
ian. The original field equations were derived from the full
action, including the Einstein-Hilbert Lagrangian of general

relativity,

—R+£ 4.3

J d*xy—g|

whereR is the Ricci scalar curvature of the metdg,,. In
terms of the conformally related metric given in Ed.1)
this action become@up to boundary termfgL6])

S= f d“X\/—_E;e*‘I’

m3 - -
E[R— w(Vd)?]

(4.9

n—-1
-5 E (Vo)2-v }
where we have introduced the dimensionless dilaton field

167 ¢

b=- — , 4.,
~ (4.5
and the dimensionless Brans-Dicke parameter
p-3
w= pT (46)

Thus the assisted inflation model is identicahte 1 sca-
lar fields;i with a hybrid inflation type potentiaV(;i) in a
string-type gravity theory with diIatonI)ocE. However, we
note that in order to obtain power-law inflation wits>1 the

167 V

o Mer (5.9

b+3Hp=
Along the lineo;=
[167 &
V=V, GX% - Ti) ,
p Mp

and the well-known power-law solutidd] with actP is the
late-time attractof2,3] for this potential, where

0 for alli in field space, we have

(5.2

— — t
¢(t):¢o|n(g), (5.3
and ¢o=mpp/ p/4m andty=mp\p/8mVe(3p—1).
A. Homogeneous linear perturbations
The field equations for ther; fields are
. — Vv
O'i+3HO'i+T:0, (54)
(70'i

where the potentiaV/ is given by Egs(3.1) and(3.9), and
the attractor solution corresponds dg=0. Equation(3.10

shows that we can neglect the back-reactiomrpfipon the
energy density, and hence the cosmological expansion, to
first-order and the field equations have the solutions

o) =3 15+ 3t (5.5
where
3p-1 [3(p—3)
i _1i — ) 56
T2 3p-1 1 50

forﬁ>3, confirming thar; =0 is indeed a local attractor. In

the limit p— o we obtains,= — 2. For 1<p<3 the pertur-
bations are under-damped and execute decaying oscillations

abouts;=0.

The form of the solutions given in Ed5.5 for ;i(t)
close to the attractor is the same for all the orthonormal fields

;i , as demonstrated in Fig. 2. Their evolution is independent

123501-4
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a’ p(2p-1)
—_——— . 5.1
2 (po1y i (5.1

We also haveH«= — p/((p—1)#) which gives

Iail

, _
,d?v 2(3p-1)

= g 2 5.1
a dO‘iz (p_1)2 /A ( 2)

S1077107%107%107*107%0.01 0.1

where we have used the fact thév/do?=167V/(pm3)

1 1 10 100 1000 X .
along the attractor. The equations of motion therefore be-

time, t come
FIG. 2. Evolution of the fields;, o», anda, orthogonal to the V2— (1/4)
scaling solution, in the assisted inflation model shown in Fig. 1. Up+ ( k2 — —2) u,=0, (5.13
7
of the individualp; and determined only by the surE as \2— (1/4)
expected from the form of the potential given in £§.10. vl + ( K2— . )Uik: ’ (5.14
B. Inhomogeneous linear perturbations
] o ) _ _ where
Conventional hybrid inflation and power-law inflation are
two of the very few model$17] in which one can obtain 3 1
exact analytic expressions for the spectra of vacuum fluctua- V=5 t =", (5.19
tions on all scales without resorting to a slow-roll type ap- p-1
proximation. In the case of hybrid inflation, this is only pos- _ _
sible in the limit that the inflaton fieldr approaches the 3V(p—3)(p—1/3
. ; i i . A=< = , (5.16
minimum of its potential and we can neglect its back 2 p—1

reaction on the metri¢18]. As the present model is so

closely related to both power-law and hybrid inflation mod- o, the general solutions in terms of Hankel functions are
els close to the attractor, it is maybe not surprising then that

we can ob_ta|n exact expressions for the evolut|_on of mh_omo— Ue=U,(—kz)"2H (Vl)( —K7)+Uy(—kp)Y2H 5}2)( —k7),
geneous linear perturbations close to the scaling solution. (5.17)

We will work in terms of the redefined fields and;i,
and their perturbations on spatially flat hypersurfaces y; =V ;(—k#5)YH®(—kz)+Vy(—kn)PHP(— k7).
[19,20. In the limit that c;—0 we can neglect the back- (5.18
reaction of the;i field upon the metric and the fiela

Perturbations in the fielathen obey the usual equation for
a single field driving inflatiorf21], and perturbations in the

field o; evolve in a fixed background. Defining

Taking only positive frequency modes in the initial vacuum
state for |ky[>1 and normalizing requiresi, and vy
— e~ k7/,/2k, which gives the vacuum solutions

— 1 .
u=adg, (5.7) U= (= my) T IHD(—ky), (519

Vi= a5;| ) (58) 1 )
. . . V=7 (= mp) MO TDHB(—ky).  (5.20
we obtain the decoupled equations of motion for perturba- 2 »

tions with comoving wave numbédg S o
In the opposite limit, i.e..-k»— 0, we use the limiting form

s, 7 of the Hankel functions,H{Y(z)~—(i/m)I'(v)z"*, and
U+ | k"= — Ju=0, (5.9 therefore on large scales, and at late times, we obtain
d2V a” 2]/71 i(7/2) ( k )1/2— 1'*( ) (5 21)
" 2,27 ~ T\~ Ug— et (—=kn)T T (w), :
v,k+<k +a d;iz a)v'k 0, (5.10 Jk
where[21] z=a%¢’/a’ and a prime denotes differentiation 22t (2N, L 12—\
with respect to conformal timey= [dt/a. For power-law ik 7.,ke (—k7) TV (5.22

expansion we havexaox(— z) "P(°~1) and thus

123501-5
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The power spectrum of a Gaussian random figlid con-
ventionally given byP,=(k3/27?)(||?). The power spec-
tra on large scales for the field perturbatiahs and 5o; are
thus

C H
P oy = (Vi S-(—kp¥r (523
-3
5U.1/2= (C()‘i Zi(_kn)s/zfx (5.24)
V— E)
where we have useg= —(v—1/2)/(aH) and we define
2°T (@)
2371 5)

Eoth the weighted mean fiela and the orthonormal fields
o; are “light” fields (m?<3H?/2) during assisted inflation

PHYSICAL REVIEW D 59 123501

also be obtained via a conformal transformation of a hybrid
inflation type inflationary potentia[12,13 with a non-
minimally coupled, but otherwise massless, dilaton fidhd,

x ¢. Thus we see that assisted inflation can be understood as
a form of power-law hybrid inflation, where the false-
vacuum energy density is diluted by the evolution of the
dilaton field.

We have also been able to give exact solutions for inho-
mogeneous linear perturbations about the attractor trajectory
in terms of our rotated fields. Perturbations in the weighted

mean fieIdE correspond to the perturbations in the density
on the uniform curvature hypersurfaces, or equivalently, per-
turbations in the curvature of constant density hypersurfaces
[22,20:

§=

@. 6.1
¢

These perturbations are along the attractor trajectory, and
hence describe adiabatic curvature perturbations. The spec-

(for p>3) and thus we obtain a spectrum of fluctuations intral index of the curvature perturbations on large scales is
all the fields on large scales. Note that in the de Sitter limitthus given from Eq(5.26) as

p—c and thusy—3/2 and\—3/2, we haveP j>—H/2,
and Py —H/2m.
At late times, that iskp—0, the perturbations in the

weighted mean fieldag, approach a constant, while the per-

turbations in the orthonormal field$o;, decay in agree-

_1+dln79§_1 2
R T TS

(6.2

ment with our solutions for the homogeneous perturbations

given by Eqgs(5.5).

and is always negatively tilted with respect to the Harrison-

Denoting the scale dependence of the perturbation spectfe! dovich spectrum wheras=1. Note that in the slow-roll

by An,=dInP,/d Ink, we obtain

2
Ang,=3—2 ==, 5.2
3¢ v b1 (5.26
An(;,,i=3—2)\
r-ap-13
_al 1o (p _)(p ) _ (5.27

p—1

VI. DISCUSSION

limit (p—<°) we recover the result of Ref5].

First-order perturbations in the fields orthogonal to the
weighted mean field are isocurvature perturbations during
inflation. Vacuum fluctuations lead to a positively tilted
spectrum. The presence of non-adiabatic perturbations can
lead to more complicated evolution of the large-scale curva-
ture perturbation than may be assumed in single-field infla-
tion models[23—-25. However, we have shown that these
perturbations decay relative to the adiabatic perturbations
and hence we recover the single field limit at late times. In
particular we find that the curvature perturbatiphecomes
constant on super-horizon scales during inflation. Note, how-
ever, that assisted inflation must be ended by a phase transi-

We have shown that the recenﬂy proposed model of astjon whose properties are not Specified in the model. If this
sisted inflation, driven by many scalar fields with steep exfhase transition is sensitive to the isocurvatureon-
ponential potentials, can be better understood by performingdiabatig fluctuations orthogonal to the attractor trajectory,
a rotation in field space, which allows us to re-write thethen the curvature perturbatiof), during the subsequent ra-
potential as a product of a single exponential potential for &liation dominated era may not be simply related to the cur-

weighted mean fieldp, and a potentiaV/,, for the orthogonal

d_egrees of freedorra, which has a global minimum when

o;=0. This proves that the scaling solution found in R&f.
is indeed the late-time attractor.

The particular form of the potential which we present for

vature perturbation during inflation.
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