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Dynamics of assisted inflation
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~Received 11 December 1998; published 28 April 1999!

We investigate the dynamics of the recently proposed model of assisted inflation. In this model an arbitrary
number of scalar fields with exponential potentials evolve towards an inflationary scaling solution, even if each
of the individual potentials is too steep to support inflation on its own. By choosing an appropriate rotation in
field space we can write down explicitly the potential for the weighted mean field along the scaling solution
and for fields orthogonal to it. This demonstrates that the potential has a global minimum along the scaling
solution. We show that the potential close to this attractor in the rotated field space is analogous to a hybrid
inflation model, but with the vacuum energy having an exponential dependence upon a dilaton field. We
present analytic solutions describing homogeneous and inhomogeneous perturbations about the attractor solu-
tion without resorting to slow-roll approximations. We discuss the curvature and isocurvature perturbation
spectra produced from vacuum fluctuations during assisted inflation.@S0556-2821~99!05710-0#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

A single scalar field with an exponential potential
known to drive power-law inflation, where the cosmologic
scale factor grows asa}tp with p.1, for sufficiently flat
potentials @1–4#. Liddle, Mazumdar and Schunck@5# re-
cently proposed a novel model of inflation driven by seve
scalar fields with exponential potentials. Although each se
rate potential,

Vi5V0 expS 2A16p

pi

f i

mPl
D , ~1.1!

may be too steep to drive inflation by itself (pi,1), the
combined effect of several such fields, with total poten
energy

V5(
i 51

n

Vi , ~1.2!

leads to a power-law expansiona}t p̄ with @5#

p̄5(
i 51

n

pi , ~1.3!

provided p̄.1/3. Supergravity theories typically predic
steep exponential potentials, but if many fields can coope
to drive inflation, this may open up the possibility of obtai
ing inflationary solutions in such models.

Scalar fields with exponential potentials are known
possess self-similar solutions in Friedmann-Roberts
Walker models either in vacuum@2,3# or in the presence of a
barotropic fluid@4,6–8#. In the presence of other matter, th
scalar field is subject to additional friction, due to the larg
expansion rate relative to the vacuum case. This means t
scalar field, even if it has a steep~non-inflationary! potential
may still have an observable dynamical effect in a radiat
or matter dominated era@9–11#.
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The recent paper of Liddle, Mazumdar and Schunck@5#
was the first to consider the effect of additional scalar fie
with independent exponential potentials. They consideren
scalar fields in a spatially flat Friedmann-Robertson-Wal
universe with scale factora(t). The Lagrange density for the
fields is

L5(
i 51

n

2
1

2
~¹f i !

22Vi , ~1.4!

with each exponential potentialVi of the form given in Eq.
~1.1!. The cosmological expansion rate is then given by

H25
8p

3mPl
2 (

i 51

n S Vi1
1

2
ḟ i

2D , ~1.5!

and the individual fields obey the field equations

f̈ i13Hḟ i52
dVi

df i
. ~1.6!

One can then obtain a scaling solution of the form@5#

ḟ i
2

ḟ j
2

5
Vi

Vj
5Ci j . ~1.7!

Differentiating this expression with respect to time, and u
ing the form of the potential given in Eq.~1.1! then implies
that

1

Api

ḟ i2
1

Apj

ḟ j50, ~1.8!

and hence

Ci j 5
pi

pj
. ~1.9!

The scaling solution is thus given by@5#
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1

Api

f i2
1

Apj

f j5
mPl

A16p
ln

pj

pi
. ~1.10!

A numerical solution with four fields is shown in Fig. 1 as a
example. In Ref.@5# the authors demonstrated the existen
of a scaling solution forn scalar fields written in terms of a

single re-scaled fieldf̃5Ap̄/p1f1. The choice off1 rather
than any of the other fields is arbitrary as along the sca
solution all thef i fields are proportional to one another.

In this paper we will prove that this scaling solution is t
late-time attractor by choosing a redefinition of fields~a ro-
tation in field space! which allows us to write down the ef
fective potential for field variations orthogonal to the scali
solution and show that this potential has a global minim
along the attractor solution. In general the full expression
an arbitrary number of fields is rather messy so we first g
in Sec. II, the simplest case where there are just two fie
and then extend this ton fields in Sec. III. The resulting
inflationary potential is similar to that used in models
hybrid inflation and we show in Sec. IV that assisted infl
tion can be interpreted as a form of ‘‘hybrid power-law i
flation.’’ As in the case of power-law or hybrid inflation, on
can obtain analytic expressions for inhomogeneous lin
perturbations close to the attractor trajectory without res
ing to slow-roll type approximations. Thus we are able
give exact results for the large-scale perturbation spectra
to vacuum fluctuations in the fields in Sec. V. We discuss
results in Sec. VI.

II. TWO FIELD MODEL

We will restrict our analysis initially to just two scala
fields,f1 andf2, with the Lagrange density

L52
1

2
~¹f1

2!2
1

2
~¹f2

2!2V0FexpS 2A16p

p1

f1

mPl
D

1expS 2A16p

p2

f2

mPl
D G . ~2.1!

We define the fields

FIG. 1. Evolution of four fieldsf1 , f2 , f3 and f4 ~from
bottom to top! during assisted inflation withp150.3, p251, p3

52 andp457.
12350
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f̄25
Ap1f11Ap2f2

Ap11p2

1
mPl

A16p~p11p2!

3S p1ln
p1

p11p2
1p2 ln

p2

p11p2
D , ~2.2!

s̄25
Ap2f12Ap1f2

Ap11p2

1
mPl

A16p
A p1p2

p11p2
ln

p1

p2
,

~2.3!

to describe the evolution along and orthogonal to the sca
solution, respectively, by applying a Gram-Schmidt orthog
nalization procedure.

The re-defined fieldsf̄2 and s̄2 are orthonormal linear
combinations of the original fieldsf1 and f2. They repre-
sent a rotation, and arbitrary shift of the origin, in fiel
space. Thusf̄2 ands̄2 have canonical kinetic terms, and th
Lagrange density given in Eq.~2.1! can be written as

L52
1

2
~¹f̄2

2!2
1

2
~¹s̄2

2!2V̄~ s̄2!expS 2A 16p

p11p2

f̄2

mPl
D ,

~2.4!

where

V̄~ s̄2!5V0F p1

p11p2
expS 2A 16p

p11p2
Ap2

p1

s̄2

mPl
D

1
p2

p11p2
expSA 16p

p11p2
Ap1

p2

s̄2

mPl
D G . ~2.5!

It is easy to confirm thatV̄(s̄2) has a global minimum value
V0 at s̄250, which implies thats̄250 is the late time at-
tractor, which coincides with the scaling solution given
Eq. ~1.10! for two fields.

Close to the scaling solution we can expand about
minimum, to second-order ins̄2, and we obtain

V~f̄2 ,s̄2!'V0F11
8p

~p11p2!

s̄2
2

mPl
2 GexpS 2A 16p

p11p2

f̄2

mPl
D .

~2.6!

Note that the potential for the fields̄2 has the same form
as in models of hybrid inflation@12,13# where the inflaton
field rolls towards the minimum of a potential with non
vanishing potential energy densityV0. Here there is in addi-
tion a ‘‘dilaton’’ field, f̄2, which leads to a time-dependen
potential energy density ass̄2→0. Assisted inflation is re-
lated to hybrid inflation@12,13# in the same way that ex
tended inflation@14# was related to Guth’s old inflation
model@15#. As in hybrid or extended inflation, we require
phase transition to bring inflation to an end. Otherwise
potential given by Eq.~2.6! leads to inflation into the indefi-
nite future.
1-2
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III. MANY FIELD MODEL

We will now prove that the attractor solution presented
Ref. @5# is the global attractor for an arbitrary number
fields with exponential potentials of the form given in E
~1.1!, using proof by induction. To do this, we recursive
construct the orthonormal fields and their potential.

Let us assume that we already haven fields f i with ex-
ponential potentialsVi of the form given in Eq.~1.1! and that
it is possible to pickn orthonormal fieldss̄2 , . . . ,s̄n andf̄n
such that the sum of the individual potentialsVi can be writ-
ten as

(
i 51

n

Vi5V̄n expS 2A16p

p̄n

f̄n

mPl
D , ~3.1!

where we will further assume thatV̄n5V̄n(s̄ i) has a global
minimum V̄n(0)5V0 when s̄ i50 for all i from 2 to n.

It is possible to extend this form of the potential ton
11 fields if we consider an additional fieldfn11 with an
exponential potentialVn11 of the form given in Eq.~1.1!.
Analogously to the two field case, we define

f̄n115
Ap̄nf̄n1Apn11fn11

Ap̄n11

1
mPl

A16p~ p̄n11!
S p̄n ln

p̄n

p̄n11

1pn11 ln
pn11

p̄n11
D ,

~3.2!

s̄n115
Apn11f̄n2Ap̄nfn11

Ap̄n11

1
mPl

A16p
Ap̄npn11

p̄n11

ln
p̄n

pn11
, ~3.3!

where

p̄n115 p̄n1pn11 . ~3.4!

Using these definitions we can show that the sum of thn
11 individual potentialsVi can be written as

(
i 51

n11

Vi5V̄n11 expS 2A16p

p̄n11

f̄n11

mPl
D , ~3.5!

whereV̄n115V̄n11(s̄ i) is given by
12350
V̄n115V̄n

p̄n

p̄n11

expS 2A16p

p̄n11
Apn11

p̄n

s̄n11

mPl
D

1V0

pn11

p̄n11

expSA16p

p̄n11

A p̄n

pn11

s̄n11

mPl
D .

~3.6!

Because we have assumed thatV̄n has a global minimum
value V̄n(0)5V0 when s̄ i50 for all i from 2 to n, one can
verify that V̄n11 also has a minimum valueV̄n11(0)5V0

when s̄ i50, for all i from 2 to n11.
However, we have already shown in Sec. II that for tw

fieldsf1 andf2, we can define two fieldsf̄2 ands̄2, given
in Eqs. ~2.2! and ~2.3! whose combined potential given i
Eq. ~2.4! is of the form required in Eq.~3.1!, with p̄25p1
1p2. Hence we can write the potential in the form given
Eq. ~3.1! for n fields, for alln>2, with

p̄[ p̄n5(
i 51

n

pi . ~3.7!

Equations~2.2! and ~3.2! then lead us to the non-recursiv
expression for the ‘‘weighted mean field’’

f̄[f̄n5(
i 51

n SApi

p̄
f i1

mPl

A16p p̄
pi ln

pi

p̄
D , ~3.8!

which describes the evolution along the scaling soluti
This is simply a rotation in field space plus an arbitrary sh
chosen to preserve the form of the potential given in E
~3.1!. Then21 fieldss̄ i describe the evolution orthogonal t
the attractor trajectory.

The potentialV̄n has a global minimum ats̄ i50, which
demonstrates that this is the stable late-time attractor. F
Eqs.~2.5! and ~3.6! we get a closed expression forV̄n ,

V̄n5V0H p1

p̄
expF2

A16p

mPl
(
i 52

n A pi

p̄i p̄i 21

s̄ iG
1 (

i 52

n21
pi

p̄
expFA16p

mPl
SAp̄i 21

p̄ipi

s̄ i

2 (
j 5 i 11

n A pj

p̄j p̄ j 21

s̄ j D G
1

pn

p̄
expFA16p

mPl
Ap̄n21

p̄pn

s̄nG J . ~3.9!

Close to the attractor trajectory~to second order ins̄ i! we
can write a Taylor expansion for the potential
1-3
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(
i 51

n

Vi5V0S 11
8p

p̄mPl
2 (

j 52

n

s̄ j
2D expS 2A16p

p̄

f̄n

mPl
D .

~3.10!

Note that this expression is dependent only uponp̄ and not
on the individualpi .

IV. STRINGY HYBRID INFLATION

The form of the potentials in Eqs.~2.6! and ~3.10! is
reminiscent of the effective potential obtained in the Einst
conformal frame from Brans-Dicke type gravity theorie
The appearance of the weighted mean field,f̄, as a ‘‘dila-
ton’’ field in the potential suggests that the matter Lagra
ian might have a simpler form in a conformally relate
frame. If we work in terms of a conformally re-scaled met

g̃mn5expS 2A16p

p̄

f̄

mPl
D gmn , ~4.1!

then the Lagrange density given in Eq.~2.4! becomes

L̃5expSA16p

p̄

f̄

mPl
D 3H 2

1

2
~¹̃f̄ !22(

i 52

n
1

2
~¹̃s̄ i !2V̄J .

~4.2!

In this conformal related frame the fieldf̄ is non-
minimally coupled to the gravitational part of the Lagran
ian. The original field equations were derived from the f
action, including the Einstein-Hilbert Lagrangian of gene
relativity,

S5E d4xA2gF mPl
2

16p
R1LG , ~4.3!

whereR is the Ricci scalar curvature of the metricgmn . In
terms of the conformally related metric given in Eq.~4.1!
this action becomes~up to boundary terms@16#!

S5E d4xA2g̃e2FF mPl
2

16p
@R̃2v~¹̃F!2#

2
1

2 (
i 51

n21

~¹̃s̄ i !
22V̄G , ~4.4!

where we have introduced the dimensionless dilaton fiel

F52A16p

p̄

f̄

mPl
, ~4.5!

and the dimensionless Brans-Dicke parameter

v5
p̄23

2
. ~4.6!

Thus the assisted inflation model is identical ton21 sca-
lar fieldss̄ i with a hybrid inflation type potentialV̄(s̄ i) in a
string-type gravity theory with dilaton,F}f̄. However, we
note that in order to obtain power-law inflation withp̄@1 the
12350
n
.

-

l
l

dimensionless constantv must be much larger than tha
found in the low-energy limit of string theory wher
v521.

V. PERTURBATIONS ABOUT THE ATTRACTOR

The redefined orthonormal fields and the potential all
us to give the equations of motion for the independent
grees of freedom. If we consider only linear perturbatio
about the attractor then the energy density is independen
all the fields exceptf̄, and we can solve the equation for th
f̄ field analytically.

The field equation for the weighted mean field is

f̈̄13HfG 5A16p

p̄

V

mPl
. ~5.1!

Along the lines̄ i50 for all i in field space, we have

V5V0 expS 2A16p

p̄

f̄

mPl
D , ~5.2!

and the well-known power-law solution@1# with a}t p̄ is the
late-time attractor@2,3# for this potential, where

f̄~ t !5f̄0 lnS t

t0
D , ~5.3!

and f̄05mPlAp̄/4p and t05mPlAp̄/8pV0(3p̄21).

A. Homogeneous linear perturbations

The field equations for thes̄ i fields are

s̈̄ i13H ṡ̄ i1
]V

]s̄ i

50, ~5.4!

where the potentialV is given by Eqs.~3.1! and ~3.9!, and
the attractor solution corresponds tos̄ i50. Equation~3.10!
shows that we can neglect the back-reaction ofs̄ i upon the
energy density, and hence the cosmological expansion
first-order and the field equations have the solutions

s̄ i~ t !5S i 1ts11S i 2ts2, ~5.5!

where

s65
3p̄21

2 F216A3~ p̄23!

3p̄21
G , ~5.6!

for p̄.3, confirming thats i50 is indeed a local attractor. In
the limit p̄→` we obtainsi522. For 1, p̄,3 the pertur-
bations are under-damped and execute decaying oscilla
abouts̄ i50.

The form of the solutions given in Eq.~5.5! for s̄ i(t)
close to the attractor is the same for all the orthonormal fie
s̄ i , as demonstrated in Fig. 2. Their evolution is independ
1-4
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of the individualpi and determined only by the sum,p̄, as
expected from the form of the potential given in Eq.~3.10!.

B. Inhomogeneous linear perturbations

Conventional hybrid inflation and power-law inflation a
two of the very few models@17# in which one can obtain
exact analytic expressions for the spectra of vacuum fluc
tions on all scales without resorting to a slow-roll type a
proximation. In the case of hybrid inflation, this is only po
sible in the limit that the inflaton fields approaches the
minimum of its potential and we can neglect its bac
reaction on the metric@18#. As the present model is s
closely related to both power-law and hybrid inflation mo
els close to the attractor, it is maybe not surprising then
we can obtain exact expressions for the evolution of inhom
geneous linear perturbations close to the scaling solution

We will work in terms of the redefined fieldsf̄ and s̄ i ,
and their perturbations on spatially flat hypersurfac
@19,20#. In the limit that s̄ i→0 we can neglect the back
reaction of thes̄ i field upon the metric and the fieldf̄.
Perturbations in the fieldf̄ then obey the usual equation fo
a single field driving inflation@21#, and perturbations in the
field s̄ i evolve in a fixed background. Defining

u5adf̄, ~5.7!

v i5ads̄ i , ~5.8!

we obtain the decoupled equations of motion for pertur
tions with comoving wave numberk,

uk91S k22
z9

z Duk50, ~5.9!

v ik9 1S k21a2
d2V

ds̄ i
2

2
a9

a D v ik50, ~5.10!

where@21# z[a2f̄8/a8 and a prime denotes differentiatio
with respect to conformal timeh[*dt/a. For power-law
expansion we havez}a}(2h)2 p̄/( p̄21) and thus

FIG. 2. Evolution of the fieldss̄1 , s̄2, ands̄3, orthogonal to the
scaling solution, in the assisted inflation model shown in Fig. 1
12350
a-
-

-

-
at
-

s

-

a9

a
5

p̄~2p̄21!

~ p̄21!2
h22. ~5.11!

We also haveaH}2 p̄/„( p̄21)h… which gives

a2
d2V

ds i
25

2~3p̄21!

~ p̄21!2
h22, ~5.12!

where we have used the fact thatd2V/ds̄ i
2516pV/( p̄mPl

2 )
along the attractor. The equations of motion therefore
come

uk91S k22
n22~1/4!

h2 Duk50, ~5.13!

v ik9 1S k22
l22~1/4!

h2 D v ik50, ~5.14!

where

n5
3

2
1

1

p̄21
, ~5.15!

l5
3

2

A~ p̄23!~ p̄21/3!

p̄21
, ~5.16!

and the general solutions in terms of Hankel functions ar

uk5U1~2kh!1/2Hn
(1)~2kh!1U2~2kh!1/2Hn

(2)~2kh!,
~5.17!

v ik5V1i~2kh!1/2Hl
(1)~2kh!1V2i~2kh!1/2Hl

(2)~2kh!.
~5.18!

Taking only positive frequency modes in the initial vacuu
state for ukhu@1 and normalizing requiresuk and v ik

→e2 ikh/A2k, which gives the vacuum solutions

uk5
1

2
~2ph!1/2e(p/2)(n11)iHn

(1)~2kh!, ~5.19!

v ik5
1

2
~2ph!1/2e(p/2)(l11)iHl

(1)~2kh!. ~5.20!

In the opposite limit, i.e.,2kh→0, we use the limiting form
of the Hankel functions,Hn

(1)(z);2( i /p)G(n)z2n, and
therefore on large scales, and at late times, we obtain

uk→
2n21

Apk
ei (p/2)n~2kh!1/22nG~n!, ~5.21!

v ik→
2l21

Apk
ei (p/2)l~2kh!1/22lG~l!. ~5.22!
1-5
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The power spectrum of a Gaussian random fieldc is con-
ventionally given byPc[(k3/2p2)^ucu2&. The power spec-
tra on large scales for the field perturbationsdf̄ andds̄ i are
thus

P df
1/25

C~n!

S n2
1

2D
H

2p
~2kh!3/22n, ~5.23!

Pds i

1/25
C~l!

S n2
1

2D
H

2p
~2kh!3/22l, ~5.24!

where we have usedh52(n21/2)/(aH) and we define

C~a![
2aG~a!

23/2GS 3

2D . ~5.25!

Both the weighted mean fieldf̄ and the orthonormal fields
s̄ i are ‘‘light’’ fields (m2,3H2/2) during assisted inflation
~for p̄.3) and thus we obtain a spectrum of fluctuations
all the fields on large scales. Note that in the de Sitter lim
p̄→` and thusn→3/2 andl→3/2, we haveP df

1/2→H/2p,
andPds i

1/2→H/2p.

At late times, that iskh→0, the perturbations in the
weighted mean field,df̄, approach a constant, while the pe
turbations in the orthonormal fields,ds̄ i , decay in agree-
ment with our solutions for the homogeneous perturbati
given by Eqs.~5.5!.

Denoting the scale dependence of the perturbation spe
by Dnx[d lnPx /d lnk, we obtain

Dndf5322n52
2

p̄21
, ~5.26!

Dnds i
5322l

53S 12
A~ p̄23!~ p̄21/3!

p̄21
D . ~5.27!

VI. DISCUSSION

We have shown that the recently proposed model of
sisted inflation, driven by many scalar fields with steep
ponential potentials, can be better understood by perform
a rotation in field space, which allows us to re-write t
potential as a product of a single exponential potential fo
weighted mean field,f̄, and a potentialV̄n for the orthogonal
degrees of freedom,s̄ i , which has a global minimum whe
s̄ i50. This proves that the scaling solution found in Ref.@5#
is indeed the late-time attractor.

The particular form of the potential which we present f
scalar fields minimally-coupled to the spacetime metric, c
12350
t,

s

tra

s-
-
g

a

n

also be obtained via a conformal transformation of a hyb
inflation type inflationary potential@12,13# with a non-
minimally coupled, but otherwise massless, dilaton field,F

}f̄. Thus we see that assisted inflation can be understoo
a form of power-law hybrid inflation, where the false
vacuum energy density is diluted by the evolution of t
dilaton field.

We have also been able to give exact solutions for in
mogeneous linear perturbations about the attractor trajec
in terms of our rotated fields. Perturbations in the weigh
mean fieldf̄ correspond to the perturbations in the dens
on the uniform curvature hypersurfaces, or equivalently, p
turbations in the curvature of constant density hypersurfa
@22,20#:

z5
Hdf̄

ḟ̄
. ~6.1!

These perturbations are along the attractor trajectory,
hence describe adiabatic curvature perturbations. The s
tral index of the curvature perturbations on large scales
thus given from Eq.~5.26! as

ns[11
d lnPz

d ln k
512

2

p̄21
, ~6.2!

and is always negatively tilted with respect to the Harriso
Zel’dovich spectrum wherens51. Note that in the slow-roll
limit ( p̄→`) we recover the result of Ref.@5#.

First-order perturbations in the fields orthogonal to t
weighted mean field are isocurvature perturbations dur
inflation. Vacuum fluctuations lead to a positively tilte
spectrum. The presence of non-adiabatic perturbations
lead to more complicated evolution of the large-scale cur
ture perturbation than may be assumed in single-field in
tion models@23–25#. However, we have shown that thes
perturbations decay relative to the adiabatic perturbati
and hence we recover the single field limit at late times.
particular we find that the curvature perturbationz becomes
constant on super-horizon scales during inflation. Note, h
ever, that assisted inflation must be ended by a phase tra
tion whose properties are not specified in the model. If t
phase transition is sensitive to the isocurvature~non-
adiabatic! fluctuations orthogonal to the attractor trajector
then the curvature perturbation,z, during the subsequent ra
diation dominated era may not be simply related to the c
vature perturbation during inflation.
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