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Cosmic microwave background anisotropies from scaling seeds: Global defect models
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We investigate the global texture model of structure formation in cosmogonies with a nonzero cosmological
constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks
and little power on large scales are robust predictions of these models. However, from a careful comparison
with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data.
Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very
stringent constraints come from peculiar velocities. Investigating the IMdrisit, we argue that our main
conclusions apply to all glob@(N) models of structure formatiofS0556-282199)07312-9

PACS numbd(s): 98.70.Vc, 98.80.Cq

I. INTRODUCTION spectrum and the bulk velocities for these models. We also

Recently, a lot of effort has gone into the determination ofcompare our result; with thg Iarge-hmn of global O(N)
: .~ models, and we discuss briefly which type of parameter
cosmological parameters from measurements of cosmic mi-

crowave backgroun€CMB) anisotropies, especially in view changes in the two-point functions of the seeds may lead to
g pies, esp y better agreement with data.

of the two planned satellite experiments the microwave an- ; . : .
. : We find that the absence of significant acoustic peaks in
isotropy probeMAP) and PlancK1]. However, we believe . ;
S . . . the CMB anisotropy spectrum is a robust result for global
it is important to be aware of the heavy modeling which o .
. ... fexture as well as for the largé-limit for all choices of

enters these results. In general, simple power-law initia . : .

cosmological parameters investigated. Furthermore, the dark

spectra for scalar and tensor perturbations and vanishing ve¢- - .
P P 9 Veatter power spectrum on large scalksz;20h~1 Mpg, is

tor perturbations are assumed, as predicted from inflation. Toubstantiall lower than the measured aalaxy DOWer Spec
reproduce observational data, the composition of the dar y 9 yp P

. - tru
matter and the cosmological parameters as well as the input . . .
9 P P However, comparing our CMB anisotropy spectra with

spectrum and the scalar to tensor ratio are varidd .
We want to take a different approach: We modify thepresent data, we cannot safely reject the model. On large
' angular scales, the CMB spectrum is in quite good agree-

lire was mduce by scaling seede, Using & simpifai  Ment wih the cosmic background explof@0BE data set,

not very accuratetreatment for the photon propagation, we whne on smaller scales we find a S|gn|flcant disagreement

have already shown that some key observations can be ré‘”th the $askatoon and QMAP experlmehﬂéor r?onsatel-'

produced within a very restricted family of scaling seed!ite e>_<per|ments foreground co_ntgmmatlon certainly remains

modelg3]. Here we want to outline in detail a more accurate® S€rious problem due to the limited sky and frequency cov-

computation with a fully gauge-invariant Boltzmann code €rage.

especially adapted to treat models with sources. In this paper The dark matter power spectra are clearly too low on

we follow the philosophy of a general analysis of SCa"nglarge scales, but in view of the unresolved biasing problem,

seed models motivated in R¢#]. we feel reluctant to _rule out the models on these grou_nds. A
Seeds are an inhomogeneously distributed form of mattéluch clearer rejection may come from the bulk velocity on

(such as, e.g., topological defectshich interacts with the large scale_s. Our prediction is by a factor 3 to 5 lower than

cosmic fluid only gravitationally and which represents al-the Potential MethodPOTENT) result on large scales.

ways a small fraction of the total energy of the universe. Since global texture and the largedimit lead to very

They induce geometrical perturbations, but their influence oimilar results, we conclude that all glob@(N) models of

the evolution of the background universe can be neglectedtructure formation for the cosmogonies investigated in this

Furthermore, in first-order perturbation theory, seeds evolvdork are ruled out if the bulk velocity on scales of

according to the unperturbed spacetime geometry. 50h~* Mpc is around 300 km/s or if the CMB primordial
Here, we mainly investigate the models of structure for-anisotropy power spectrum really shows a structure of peaks

mation with global texture. These modeer Qne~1)  ©ON Subdegree angular scales.

show discrepancies with the observed intermediate scale This paper is the first of a series of analyses of models

CMB anisotropies and with the galaxy power spectrum onWith scaling seeds. We, therefore, fully present the formal-

large scale$5]. Recently it has been argued that the addition

of a cosmological constant leads to better agreement with

data for the cosmic string model of structure formatjéh ISince results from different experiments partially disageaeen

We analyze this question for the texture model, by usibg the most recent ones, such as QMAP and Pythprweé can only

initio simulation of cosmic texture as described in R&fl.  test our models by a combined analysis of all available CMB an-

We determine the CMB anisotropies, the dark matter powelsotropy measurements.
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ism used for our calculations in the next section. There, ware obtained by numerical simulations. In Sec. Il E we give
also explain in detail the eigenvector expansion which allowghe initial conditions and a brief description of our Boltz-
one to calculate the CMB anisotropies and matter powemann code.
spectra in models with seeds from the two-point functions of
the seeds alone. This section can be skipped if the reader is A. The seed energy momentum tensor
mainly interested in the results. Section Ill is devoted to a
brief description of the numerical simulations. In Sec. IV we
analyze our results and in Sec. V we draw some conclusion
Two appendixes contain detailed definitions of the perturba®
tion variables and to some technical derivations.

We always work in a spatially flat Friedmann universe.
The metric is given by

Since the energy momentum tensor of the séggs has
go homogeneous background contribution, it is gauge invari-
ant by itself according to the Stewart-Walker Lemfia.

0 ,, can be calculated by solving the matter equations for
the seeds in the Friedmartrackgroundgeometry.(Since
0,, has no background component it satisfies the unper-
turbed “conservation” equationsWe decompos® ,, into

ds?=a(t)4(dt?>— §; dx'dx)), scalar, vector, and tensor contributions. They decouple
_ within linear perturbation theory and it is thus possible to
wheret denotes conformal time. write the equations for each of these contributions separately.

Greek indices denote spacetime coordinatés-3  As always (unless noted otherwigewe work in Fourier
whereas the Latin ones run from 1-3. Three-dimensionaépace. We parametrize the scald),(vector (V), and tensor

vectors are denoted by boldface characters. (T) contributions t0® ,, in the form
IIl. THE FORMALISM 0 =M2?f,, 1)
Anisotropies in the CMB are small and can thus be de- @),(g):iMzkjf,,, %)

scribed by first-order cosmological perturbation theory

which we apply throughout. We neglect the nonlinear evolu- 1
tion of density fluctuations on smaller scales. Since models 0f)=Mm?2 (fp+ §k2fw) 6j|—kjk|fw}, 3
with seeds are genuinely non-Gaussian, the usual numerical
N-body simulations which start from Gaussian initial condi- V) a1 200 (0)
tions cannot be used to describe the evolution on smaller O’ =MW", S
scales. 1

Gauge-invariant perturbation equations for cosmological G)(V)—IM2—(kjW|(7T)+k|WJ(7T)), )

models with seeds have been derived in RgF9|. Here we

follow the notation and use the results presented in F2gf.

Definitions of all the gauge-invariant perturbation variables @J(IT>= MZTi(j”)_ (6)

used here in terms of perturbations of the metric, the energy

momentum tensor, and the brightness are given in AppendikiereM denotes a typical mass scale of the seeds. In the case
A for completeness. of topological defects we seM=7, where » is the

We consider a background universe with density paramsymmetry- breaking scal@]. The vectorsM®) andw™ are
eterQo=0p+0,=1, consisting of photons, cold dark mat- transverse and{™ is a transverse traceless tensor,
ter (CDM), baryons, and neutrinos. At very early times
> Z4ec~ 1100, photons and baryons form a perfectly coupled k-w)=k-wm=kir{D = 7{"1=0.
ideal fluid. As time evolves, and as the electron density drops
due to recombination of primordial helium and hydrogen, From the full energy momentum tenser,, which may
Compton scattering becomes less frequent and higher ma@ontain scalar, vector, and tensor contributions, the scalar
ments in the photon distribution develop. This epoch has tgartsf, andf . of a given Fourier mode are determined by
be described by a Boltzmann equation. Long after recombi- .
nation, free electrons are so sparse that the collision term can ikl®g;=—k*M?f,,
be neglected, and photons evolve according to the collision-
less Boltzmann or Liouville equation. During the epoch of
interest here, neutrinos are always collisionless and thus
obey the Liouville equation.

In the next subsection, we parametrize in a completehOn the other hand,, andf . are also determined in terms of
general way the degrees of freedom of the seed energy m@- andf, by energy and momentum conservation,
mentum tensor. Section Il B is devoted to the perturbation of
Einstein’s equations and the fluid equations of motion. Next . a
we treat the Boltzmann perturbation equation. In Sec. Il D f,+kf,+ 7 (f,+37p)=0, )
we explain how we determine the power spectra of CMB
anisotropies, density fluctuation, and peculiar velocities by .
means of the derived perturbation equations and the unequal f +2§f fy Esz -0 )
time correlators of the seed energy momentum tensor, which v :"av P 3n T

— KKk
k'k 3

1 2
0ij— 39 5k|@k|) :§k4M2fw
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Once f, is known it is easy to extracM 2w](”):(aoj while the latter is a measure of their 3 curvat(®é In the

- iijva . Forw{™ we use presence of seeds, the Bardeen potentials are given by
ij(®|]_®l(JS)):_k2M2W|(7T) \P:\PS‘F\I}m, (15)
Again, w{™ can also be obtained in terms wf*) by means P=Dst+ O, (16)

of momentum conservation, - S
where the indices; ,, refer to contributions from a source

1 (the seed and the cosmic fluid, respectively. The seed
w®+Zk2w(M=0. (9)  Bardeen potentials are given in Eq$1) and(12).

2 To describe the scalar perturbations of the energy momen-
tum tensor of a given matter component, we use the variables

The geometry perturbations induced by the seeds arg 5 gayge-invariant variable for density fluctuatidghe

characterized by the Bardeen potentidlsand Vs for scalar  qtential of peculiar velocity fluctuations, ait, a potential
perturbations, the potential for the shear of the extrinsic curz,, anisotropic stressesvhich vanishes for CDM and bary-

(s) i itati o . :
vature X for ve(g)tor perturbations, and the gravitational ong A definition of these variables in terms of the compo-
wave amplitudeHj” for tensor perturbations. Detailed defi- nants of the energy momentum tensor of the fluids and the

nitions of these variables and their geometrical interpretatiometric perturbations can be found in Refs2] or [9] and in
are given in Ref[9] (see also Appendix A Einstein’s equa- Appendix A.

tions link the seed perturbations of the geometry to the en- Subscripts and superscripts., p, or , denote the radia-
ergy momentum tensor of the seeds. Defining the dimensiorﬁon, CDM, baryon or neutrino fluids, respectively.

less small parameter Einstein’s equations yield the following relation for the
matter part of the Bardeen potenti@ls3]:

a

W +2| 2

eE417GM2, (10
. 47Ga?
we obtain m="2 pyDg’)ercDEf)Jrpréb)+pyD§,”)
a _
k2D =€ fp+35fv>, (11 {4py+3pct3po+4p,}®
a _[4 4
Byt W = - 2¢f , (12 3K T 3PVt eVet eVt 3paVaf |y
— k22O =4ew®) (13 v
: ¥ =@ 877Gaz( . +p,II,) (18)
) a. = - ——z (P p,ll,).
Hi(jS)+2£Hi(jS)+kZHi(jS)ZZETi(jW)- (14) " ) K n

Note the appearance df=® +®, on the right-hand side
Equations(11)—(14) would determine the geometric pertur- of Eq.(17). Using the decompositior(45),(16) we can solve
bations if the cosmic fluid were perfectly unperturbed. In afor & and ¥ in terms of the fluid variables and the seeds.
realistic situation, however, we have to add the fluid perturwith the help of Friedmann’s equation, Eq4.7) and (18)
bations in the geometry which are defined in the next subean then be written in the form
section. Only the total geometrical perturbations are deter-

mined via Einstein’s equations. In this sense, Ef$)—(14) 1
should be regarded as definitions fér,, ¥, =, and b=
HE. §(a/a)*2k2+ 4%+ 33X+ 3Xp+ 4X,,

A description of the numerical calculation of the energy
momentum tensor of the seeds for global texture is given in
Sec. Ill. X

X, 00+ xCDgC) + ngb) +X,vq

B. Einstein’s equations and the fluid equations a
+ =k 1(4x, V., +3x Ve + 3%,V + 44X,V
1. Scalar perturbations a (4x,Vy cVe bVb Vo)

Scalar perturbations of the geometry have two degrees of 2 -2
freedom which can be cast in terms of the gauge-invariant +—k2
Bardeen potential¥ and® [11,12. For Newtonian forms
of matter¥ = — @ is nothing else than the Newtonian gravi- o
tational potential. For matter with significant anisotropic _a 3} -2

stressesW and — & differ. In geometrical terms, the former V=—®—2et, a KZ0GIT, 4,0,

represents the lapse function of the zero-shear hypersurfaces (20

: (19
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Here we have normalized the scale factor such that
=1 today. The density parameteily always represent the
values of the corresponding density parameter tqtieye o
stands fof, ,, p, Or ,.) To avoid any confusion, we have
introduced the variablegg for the time-dependent density
parameters:

Q,,
Xy = ’ , (21
T Q,+0a+0pa+0Q,+ 0,8
Q. pa
Xe p= ob . (22)
T0,+0a+0,a+0,+0,a

The fluid variables of photons and neutrinos are obtained
by integrating the scalar brightness perturbations, which wi

denote byMg(t,k,n) and Ng(t,k,n), respectively, over di-
rections,n:

1
DQEEJ MgdQ=0y, (23)
V,= l%kf (k-n)MgdQ (24)
3
=Zo<f>, (25)
I =_—f (k-n)2— k2| Mod0
7" 8wk? 3 S
(26)
=3a'(23), (27
:_J NS dQ—Vo, (28)
Vi=Tek f (k-n)NsdQ (29)
3
=77, (30)

—_gf Km)2— 2k2| NG d
“gme) [Tk N
(31

=31, (32
A systematic definition of the modes; and v; is given in
the next subsection.

The equation of motion for CDM is given by energy and
momentum conservation,

D +kV,=0, (33

. a
Vet | 2| Ve=kv. (34)

PHYSICAL REVIEW D59 123005

During the very tight coupling regime>z4.., we may ne-
glect the baryon contribution in the energy momentum con-
servation of the baryon-photon plasma. We then have

LA
Dgy +§kv,y=0, (35
oo
V,—kzDg’=k(¥ - ), (36)
3
Dg”:ZD(g” : (37
Vb:Vy' (38)

%he conservation equations for neutrinos are not very useful,
since they involve anisotropic stresses and thus do not close.
At the temperatures of interest to Us<1 MeV, neutrinos
have to be evolved by means of the Liouville equation which
we discuss in the next subsection.

Once the baryon contribution to the baryon-photon fluid
becomes non-negligible, and the imperfect coupling of pho-
tons and baryons has to be taken into accdfmt a 1%
accuracy of the results, the redshift corresponding to this
epoch is around~ 10"), we evolve also the photons with a
Boltzmann equation. The equation of motion for the baryons
is then

D +kV,=0 (39

Vy+ Ky — ——7 [v -Vl (40)

a
al Vo= BQ
The last term in Eq(40) represents the photon drag force
induced by nonrelativistic Compton scatteringy is the
Thomson cross section, amg denotes the number density

of free electrons. At very early times, whern.> 1/t, the
“Thomson drag” just forcesv,=V,,, which together with
Egs. (35 and(39) implies Eq.(37).

An interesting phenomenon often called “compensation”
can be important on super horizon scales<l1. If we ne-
glect anisotropic stresses of photons and neutrinos and take
into account thatD(D4) = O(ktV) and O(V)=O(kt¥) for
kt<1, Egs.(19) and(20) lead to

O(D)=O((kt)?D —2¢f ). (41)
Hence, if anisotropic stresses are relatively smafl,,
<®g, the resulting gravitational potential on super horizon
scales is much smaller than the one induced by the seeds
alone. One must be very careful not to over interpret this
“compensation” which is by no means related to causality,
but is due to the initial conditio®y,V—_40. A thorough
discussion of this issue is found in Refd3-15. As we
shall see in the next section, for texturds and ef , are
actually of the same order. Therefore, E4l) does not lead
to compensation, but it indicates that CMB anisotropies on
very large scalegSachs-Wolfe effe¢tare dominated by the
amplitude of seed anisotropic stresses.
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The quantities which we want to calculate and compare _
with observations are the CDM density power spectrum and wp+
the peculiar velocity power spectrum today

a _4onefd,

a wb—B—Qb[wy—wb]. (48)

The photon vorticity is given by an integral over the vector

— (c) 2
P(k) <|D9 (k,to)|) (42) type photon brightness perturbatio®,,

and 1
a)y=4—f nM, dQ, (49
P, (K)=(|V¢(k,to)[?). (43 ™

where the integral is over photon directioms,In terms of

Here(- - -) denotes an ensemble average over models. Notﬁ‘1 devel din th orkfopinti
that even thougtD, and V are gauge-invariant quantities . e development presented in the next sectio fpointing
9 .in the z direction, we obtain

which do not agree with, e.g., the corresponding quantities in

synchronous gauge, this difference is very small on subhori- o=Vt sMisM o) 50

zon scalegof order 1kt) and can thus be ignored. y=(T12% 010, 022+ 050, 0) 50
On subhorizon scales the seeds decay, and CDM pertugqyivalently, we have for neutrinos

bations evolve freely. We then have, like in inflationary

models, 1
wyz—f nA\, dQ, (51
2012 -2 Am
P,(k)=HgQP(k)k™=. (44
w,=( V(1Y2)+ V(lYg , V(2Y2)+ V(2\3 , 0). (52

2. Vector perturbations

Vector perturbations of the geometry have two degrees 0'{_he vector.equations of mqtion for photons and neutrinos are
freedom which can be cast in a divergence free vector fielddiScussed in the next section.
A gauge-invariant quantity describing vector perturbations of
the geometry i, a vector potential for the shear tensor of
the{t=cons} hypersurfaces. As for scalar perturbations, we Metric perturbations also have two tensorial degrees of
split the contribution ta¥ into a source term coming from freedom, gravity waves, which are represented by the two
the seeds given in the previous subsection, and a part due kelicity states of a transverse traceless terisee Appendix
the vector perturbations in the fluid A). As before, we split the geometry perturbation into a part

induced by the seeds and a part due to the matter fluids:

3. Tensor perturbations

3=3+3,. (45)
Hij=HP+HY. (53)
The perturbation of Einstein’'s equation fBf, is [9]

, a|’4
k2m=6 a §X7

The only matter perturbations which generate gravity waves
4 are tensor-type anisotropic stresses which are present in the
@, Xt + Xpop+ X0y |- photon and neutrino fluids. The perturbation of Einstein’s
equation yields

(46)
: N2
Here we is the fluid vorticity which generates the vector — j(m) o[ 2 H-(-m)+k2H-(-m)=<E) (I x T,
type shear of the equal time hyper-surfa¢ese Appendix 4 a/ ! g a vl vl
A). By definition, vector perturbations are transverse, (54)
3. k=3, k=3 k=we k=0. (47) The relation between the tensor brightness perturbations

M+, N7 and the tensor anisotropic stresdﬂ%’,) andHi(jV) is

It is interesting to note that vector perturbations in thegiven by
geometry do not induce any vector perturbations in the CDM

(up to unphysical gauge modesince no geometric terms (y):i o 1 g

enter the momentum conservation for CDM vorticity, T 47) |MNiT3 3ij | Mr dQ, (55
. a o 3 1
wC+ awczo, HI] :E ninj_gﬁij NTdQ (56)

hence we may simply ses.= 0. This is also the case for the In terms of the development presented in the next section for
tightly coupled baryon radiation plasma. But as soon a Pointing in thez direction, we have

higher moments in the photon distribution build up, they feel

the vector pe_zrturbations in the ge_ome(aee next section i = —H(V):Ea +fa + EU (57)

and transfer it onto the baryons via the photon drag force, 1 2235 AT 7E 2T 5T
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6 4 2 1. Scalar perturbations

V=11V =
Mz =T =350 xat70x2t 500 (58) We expand the brightnes$tg(k,n,t) in the form:

oo

o= nw=S, 4, 2 Ms(nk= 2 (=) (2/+1) oD (tkP(p),
35V+4 Vio 5V+,Ol (63)
(59
whereP, denotes the Legendre polynomial of ordérand
0'(/5) is the associated multipole moment. An analogous de-
(60) composition also applies to the amplitude of polarization an-
isotropy M 2(n,k,t), and we denote the associated multipole

moment byq’® .

We find that the effect of anisotropic stresses of photons anththe Eoltﬁlt’nann eq(;atul)n fort sc%a{ 6]perturbat|ons in the
neutrinos is less than 1% in the final result, and hence w&"0tON Brightne€ss and po arization
have neglected them.

Y =1 = 61/ +4V +2
12 21 35 x,4 7 xX,2 5 X,O'

Mg+ipkMg=4i uk(®—¥)+aon,

C. The Boltzmann equation

X Dg”—Ms—mvb—%Pzw)Q},
When particle interactions are less frequent, the fluid ap-

proximation is not sufficient, and we have to describe the (64)
given particle species by a Boltzmann equation, in order to

take into account phenomena such as collisional and direc- M(Q)+|MkM (Q_ M@ 1[1_ p (,U«)]Q}
tional dispersion. In the case of massless particles such as S 2 2 '
massless neutrinos or photons, the Boltzmann equation can (65
be integrated over energy, and we obtain an equation for the

a0'-|-ne

brightness perturbation which depends only on momentur?{vhere

directions[9]. As before, we split the brightness perturbation Q=0®+q®+q® (66)
into a scalar, vector and tensor component, and we discuss 2 0 2

the perturbation equation of each of them separately, The first term on the right-hand side of E§4) represents

the gravitational interaction(photons without collisions
move along lightlike geodesics of the perturbed geometry
while the term in square brackets is the collision integral for
and nonrelativistic Compton scattering.
Inserting expansio63) into Egs.(64) and(65) using the
standard recursion relations for Legendre polynomials, we
N=Ns+Ny+Nr. (62)  obtain the following series of coupled equations:

M=M3+ Mv+ MT (61)

() (S) —
The functionsM and A depend on the wave vectér the 7o’ Tka”=0, (67)

photon (neutring directionn and conformal timet. Linear
polarization of photons induced by Compton scattering is ¢{%— — [g(s)—zg(s)]——k(\lf ®)+aone Vb o9,
described by the variablg4 (? (the Stokes paramete)) 3 68
depending on the same variables. We choose for dach (68)
mode a reference system with theaxis parallel tok. For K

scalar perturbations we achieve in this way azimuthal sym- oS- _[20(3)_30(5)]— —aon,
metry — the left-hand side of the Boltzmann equation and

therefore also the brightnesst depend only onu= (k- n) K

and can be developed in Legendre polynomials. The left- (',(/S) [/U(S) —(/+ 1)(,(/511]

hand side of the Boltzmann equation for vector and tensor 2/+1

perturbations also determines the f'izimuthal dependence-of _ —aaTneo(/S), for /=3, (70)
M for vector and tensor perturbations, as we shall see in
detail. and

a'(S)—— } (69)

Q(S)

; 2/+1[/q D= (7+19,

2We could in principle add higher spin components to the distri-
bution functions. But they are not seeded by gravity and since pho-
tons and neutrinos interact at high enough temperatures, they are

; L " (71
also absent in the initial conditions.

=+ aO'Tne

1
—q7+3 Q(5/o+ 56/2)
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For the neutrinos we obtain the same equations just with- We use coordinates for whidk is parallel to thez axis.
out collision integral Then

S 3= (3,350, @=(0y,0,0)
Ns(n,k,t)=/z_:o(—i)/(Z/’_F]_)V(S)(t k)P/(/_L (72) (21,2 ) w=(w,0;

and
and n=(v1—u?cose,\1— u?sine,u).
: 4 :
V(/S) Y 1[/1/(8) _ (/+ 1) V(/Sl1]:§k(lp_q))5/1- With the ansatz
(73 My(k,nt)=v1—u2 [ MV (K, u,t)cose
We are interested in the power spectrum of CMB + MMV (K,pm,t)sine], (77)

anisotropies which is defined by
the equations for\, , decouple and the right-hand side of

ﬂ(n) ﬂ(n’) | Eq. (76) depends only om. Like for scalar perturbations, we
T T (n-n’=cosd) expandM, , in Legendre polynomials
1
2w & (2/F1)C/P(cosd). (74 MW k,t)= 2 (1) 2/ + 1ML P (),
(78)

Here (- --) denotes the ensemble average over models.
We assume that an “ergodic hypothesis” is satisfied and weyheree=1,2.
can interchange spatial and ensemble averages. The problemEquation(76) then leads to
that actual observations can average at best over one horizon
volume is k_nown under the name “co_smic variance.” It se- M(EV)H,ukM (GV): —4iukS .+ aon,
verely restricts the accuracy with which, for example, low
multipoles of CMB anisotropies observed in our horizon vol-
ume can be predicted for a given model.

Using the addition theorem of spherical harmonics, one
obtains, with the Fourier transform conventions adopted

here, (for details see Appendix)B With Eq. (78), this can be expressed as the following set of
coupled equations for the variables”) :

O _ A i — (™M 4+ (V)
X| 4w — M I,ulo(a' )|

(79

¢ =—f k2 dk(|oP(tq,k)[?), (79 o )
( )+k(r( )—a(r n [4a)( ) — o 8] (80
where the superscript® indicates that Eq(75) gives the
contribution fromscalar perturbations. o) - [ O.(V) (V)]
2. Vector perturbations 4 1

Vector perturbations are very small on angular scales cor- =+ §k2 —aotng 7= 10 (Evl)_ —009/3) , (81
responding to/’=500, where Compton scattering and thus
polarization become relevant. We, therefore, neglect polaryng
ization in this case. The Boltzmann equation for vector per-
turbations then reads ;

(EV}_ 27+ 1[/09,//)71_(/*' 1)0(5\,//)+1

My+ik-nMy=—4i(n-k)(n-2)+aocrhe
=—aomeel) for /=2. (82)

1
X|4(n- + = n iMi; |, (76 . . . .
A(n-ap) = My if» (76 For neutrino perturbations we obtain the same equations

up to the collision term. We repeat them here for complete-

where ness.
= 1 Y Y ) v 4
M =iy~ 39y -5 /+1[/v£}71—</+1>v2,}+1]=+ 3Rk,
(83
and

As for scalar perturbations, the CMB anisotropy power
- :if n ModQ spectrum is obtained by integration ouespace. One finds
g AVERT (see Appendix B

123005-7



R. DURRER, M. KUNZ, AND A. MELCHIORRI PHYSICAL REVIEW D59 123005

/(/+1 ot 1(to, k) + ot (tg,k)|? oD, 2027416 o)
c= (87,. )szdk<| 1/+1(lo 1/-1(lo |> M _Tes-2 ( v /2 (g0

(2/+1)° T e her+s) T 2res
(84)

Here the fact that there are two equal contributions from both D. Eigenvector expansion of the source correlators
polarization statess= 1,2 (statistical isotropy; is taken care

of In the previous subsections we have derived a closed sys-

tem of linear differential equations with source terms. The
source terms are linear combinations of the seed energy mo-
) o mentum tensor which is determined by numerical simula-
~ For tensor perturbations, and a wave vedtopointing  tions. A given realization of our model has random initial
into the 3 dlrectlon_, the only nonvanishing components Ofconditions; the seed energy momentum tensor is a random
the perturbed metric tensor ake;,;=—Hyp=H, andHi,  yariable. In principle we could calculate the induced random
=H,;=H . Neglecting polarization, the Boltzmann equa- variablengc)(k,to), Ve(K,to), 0'(/.)(k,t0), etc. for 100—

3. Tensor perturbations

tion for tensor perturbations [$] 1000 realizations of our model and determine the expectation
. _ 1 valuesP(k), P,(k), andC, by averaging. This procedure
Mer+ikuMr=—4n'nH;; —aong Mr— EnijMij . has been adapted in R¢lL7] for a seed energy momentum
tensor modeled by a few random parameters.
(85 In the case of a seed energy momentum tensor coming

entirely from numerical simulations, this procedure is not

With the ansatz ) ! ! |
feasible. The first and most important bottleneck is the dy-

Me(k,n,t)=(1— u?)[M D (k,u,t)cos 2 namical range of the simulations which is about 40 in our
o _ largest (400§ simulation, taking arowh5 h CPU time on a
+ ML (K, p,t)sin 2¢], (86)  NEC SX-4 supercomputer. To determine tBe’s for 2

™ i </<1000 we need a dynamical range of about 10 00K in
the two modesM %', decouple completely and the right- space(this mean . /Ky~10 000, wherd ., andk , are
hand side of Eq(85) depends only on.. We can then ex-  the maximum and minimum wave numbers which contribute

pand the modes in terms of Legendre polynomials to the C s within our accuracy < 10%).
% With brute force, this problem is thus not tractable with
M &T)(M,k,t)z E (—i)/(2/+ 1)0(5T)(t,k)P/(,u), pre_sent or near f_uture comput_ing capgbilities. But there are a
/=0 "’ ' series of theoretical observations which reduce the problem

(87)  to a feasible one. For each wave vedtogiven, we have to

. solve a system of linear perturbation equations with random
wheree= +,X. Equation(85) now becomes y P a

sources,
MO +ipkm (D DX=3. 93)
. 1 1 3
— _ My = My = My = (T
AHtaog —M T+ 7000t 700t 7504, HereD is a time-dependent linear differential operatéris
88) the vector of our matter perturbation variables specified in

the previous subsectioriphotons, CDM, baryons, and neu-

leading to the series of coupled equations for the coefficientdini; total length up to 2000 and S is the random source
oM term, consisting of linear combinations of the seed energy

@ momentum tensor.

T M 9 ™M 1 M 3 M For the given initial conditions, this equation can be
Oeotkoei=4HAaome — 750e0t 702t 750¢4 ) solved by means of a Green’s functidkerne), G(t,t'), in
the form
(89
ol — X (/o) _ —(/+1)cl) fo
&/ /41t Tes/—1 A7 e/ +1 Xj(to,k)zf dt G (to,t,K)S(t,k). (94)
tin
=—aomeal), for /=1. (90)

As before, the CMB anisotropy power spectrum is ob- "€ Want to compute power spectra or, more generally, qua-
tained by integration ovek space(see Appendix B dratic expectation values of the form

1 (/+2)! L «
where which, according to Eq94) are given by
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0.01

0.01

a"/‘«’/r’;’ i i ,’,‘l' ‘

o N"" 4'1'

‘!
”uiW

0.01

FIG. 1. The two-point correlation functionCyy(z,r) 'ZlG'/ 2. The* same - as Fig- 1 but forCxy(zr)
=kt (Py(k,t)®* (k,t')) is shown. Panela) represents the re- =KW (k) W5 (K,)).
sult from numerical simulations of the texture model; pat®l
shows the largé¥ limit. For fixed r the correlator is constant for number of dimensionless functions, of z:k\/tt—’ andr
z<1 and then decays. Note also the symmetry umded/r. =t/t’, the correlation functions are then determined by the
requirement of statistical isotropy, symmetries, and by their
dimension. Causality requires the functidisto be analytic
(Xj(to,K)X{ (to,k))= f dtGjm(to,t, k)f dt" Gin(to.t".K) iy 22 A more detailed investigation of these arguments and
" their consequences is presented in R4f. There we show
X{(Sm(t,K)Sh (1" ,k)). (95 that statistical isotropy and energy momentum conservation
reduce the correlator®8) to five such function$; to Fs.
The only information about the source random variable |n cosmic string simulations, energy and momentum are
which we really need in order to compute power spectra areqot conserved. Strings lose their energy by radiation of

therefore, the unequal time two-point correlators gravitational waves and/or massive particles. In this case 14
. functions ofz? andr are needed to describe the unequal time
(Sm(t,K)SH (L' K)). (96)  correlatorg23].

. - . Since analytic functions generically are constant for small
This nearly trivial fact has been exploited by many Workersargumentsz <1, F,(0r) actually determines,, for all val-

in the field, in Refs[18,1, then in Ref.[20] where the s ofk with z=k/tt’<0.5. Furthermore, the correlation
decoherence of models with seeds has been discovered, ap ctions decay inside the horizon and we can safely set
later in Refs[5,21,22,13 and others. them to zero forz=40 where they have decayed by about
K £ i tatistical isot d it Gwo orders of magnitudésee Figs. 1-1)1 Making use of
maWe US(TI 0 :Zlca lngl,' S "’f‘;f] Ica iso ﬂ?y a][] ctg(uga : y. these generic properties of the correlators, we have reduced
defi edcab Seeds scaling IHtheir correfation Tuncliotz,p, the dynamical range needed for our computation to about 40,

efined by which can be attained with the (256jo (512)° simulations

—M2 feasible on present supercomputers.
0 (k=M. (k.1), 97) For thescalar part we need the correlators

Cuvpn (Kt 1) =(8,,(k,1) 67, (k,t")) (99
are scale free; i.e., the only dimensional paramete, i), (DK, D)DE (k")) = () (99)
are the variables, t’, andk themselves. Up to a certain ® K4t

123005-9
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FIG. 3.

The
=kt [(Dg(k,t)¥* (k,t'))]| is shown. Note that the— 1/r sym-
metry is lost in this case.

1 In Figs. 7 and 8 we grap®W(z,1) andwW(0,).

(‘Ds(k,t)‘l’:(k,t')>=k4—\/tt—,clz(2,r), (100 Symmetry, transversality, and tracelessness, together with

(¥ (kt)qf*(kt'»:Lc (z,r) (101) 100 & E

s\, s ’ k4\/tt—’ 22\ & ’ E E

E & i

as well asC,(z,r)=C3y(z1kr). The functionsC;; are ana- 10 £ E

lytic in z2. The prefactor 1K*\/tt’) comes from the fact that : ]

the correlation functionéf ,f*), k*(f .f%), and(f,f}) have C vl oD

to be analytic and from dimensional consideratitsee Ref. 0.1 11, 10

[4])

The functionsC;; are shown in Figs. 1 to 3. Panék are I
obtained from numerical simulations. Panélp represent - ]
the same correlators for the lardedimit of global O(N) 100 A0 -
models(see[24,27)).

In Fig. 4 we showC;;(z,r=1), and in Fig. 5 the constant o) - .
of the Taylor expansion fo€;; is given as a function of, P \
i.e., C;(Or). 10E 3

Vectorperturbations are induced B which is seeded N ]

L vl Ll

(a)

0.01

0.01

unequal time correlator, |C,x(z,r)|

PHYSICAL REVIEW D59 123005

100 &

1
0.01 0.1 1 10

FIG. 4. The correlator€;j(z,1) are shown. The solid, dashed,
and dotted lines represe@,, Cq;, and|C,,|, respectively. Panel
(a) is obtained from numerical simulations of the texture model and
panel(b) shows the larged limit. A striking difference is that the
largeN value for|C4,| is relatively well approximated by the per-
fectly coherent result/|C,,C,,|, while the texture curve folC,,|
lies nearly a factor 10 lower.

Again, as a consequence of causality, the funcis ana-
lytic in z? (se€[4]). The functionW(z,r) is plotted in Fig. 6.

by w{?). Transversality and dimensional arguments require
the correlation function to be of the form

o
—

1 10
r

(WKW (K, ) = Vit (k28 — kik) ) W(z.T).

(102

FIG. 5. The correlator<;;(0r) are shown in the same line
styles as in Fig. 4, but faa= 0 as function of =t’/t. The stronger
decoherence of the texture model is even more evident here.
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FIG. 6. The vector correlatow(z,r) is shown. The texture
simulations, pane(a), and the largeN limit, panel (b), give very

similar results.

10

0.1

0.01

0.001 sl sl L

0.01 0.1
z

FIG. 7. The vector correlatoi(z,1) is plotted. The solid line
represents the texture simulations and the dashed line is theNarge-
result. Up to a slight difference in amplitude, the two results are

very similar.

1 10

FIG. 9. As Fig

PHYSICAL REVIEW D 59 123005

FIG. 8. The vector correlato(0,r) is shown. The solid line
represents the texture simulations and the dashed line is theNarge-
result. Also here, the two results are very similar. The “wings”

visible in the texture curve are probably not due to a resolution
problem but the beginning of oscillations.
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statistical isotropy require theensorcorrelator to be of the
form (see[4])

1
<r§j”>(t>r.‘:;>*(t'>>=WT<z,r>[5n Sim+ Simdj1 = 8ij Sim

+K™2( 8 kikm+ Simkik; — Sitkikm

— SimKiKj — ) KiKm— djmK ki)
+k™ kKKK (103
The functionsT(z,r) as well asT(z,1) andT(0,r) are shown
in Figs. 9-11.

Clearly, all correlations between scalar and vector, scalar
and tensor, as well as vector and tensor perturbations have to
vanish.

FIG. 11. As Fig. 8, but for the tensor source functib{O,r).
The scalar source correlation mat@xand the functions
W andT can be considered as kernels of positive Hermitian J’ Co (. xo(xIwx Vdx' =\ (x 10
operators in the variables=kt=zr? andx’ =kt'=z/r?, 1 (Xug (XWXT) n Vi (X), (107
which can be diagonalized:
| woux oo o dx =180,
Cij(xx") = 2 AP P (uf* (x), (104 (108
f Tx,x)o P (xHw(x)dx' =r Do N(x). (109
W(x,x" )= > AWM x)pM* (x"), (105
n

The eigenvectors and eigenvalues depend on the weight
function w which can be chosen to optimize the speed of
(106) convergence of the sumd04)—(106). In our models we
found that scalar perturbations typically need 20 eigenvec-
tors whereas vector and tensor perturbations need 5-10
eigenvectors for an accuracy of a few percesge Fig. 12
Inserting Eqs(104—(106) in Eqg. (95), leads to

TO6x) =23 MPu D 00w P* (x'),

where the seriesu(Y), (v("), and ©") are orthonormal
series of eigenvectof®rdered according to the amplitude of
the corresponding eigenvaluef the operator<, W, andT,
respectively, for a given weight function. We then havé

(Xi(K,to)X¥ (K,to)) =2 ApXM (ki) X{™* (kto),

(110
3Here the assumption that the operai@rsV, andT are trace class whereX("(t,) is the solution of Eq(93) with deterministic

enters. This hypothesis is verified numerically by the fast conversgurce tel’m}i(n),
gence of the sumgL04)—(106).

10:_ T

t
; x}“’ao,k):J_Odtg(to,t,k)“u,(m(x,k). (112)

tIl'\

For the CMB anisotropy spectrum this gives

ng ny nr
C, =3 APCE+ S AICED+ S AP,
n : n n :
(112
0.1 E

C(®" is the CMB anisotropy induced by the deterministic

sourcev,,, andng is the number of eigenvalues which have
to be considered to achieve good accuracy.
al

Instead of averaging over random solutions of E3f),

L we can thus integrate E¢94) with the deterministic source
1 10

Z

termov (™ and sum up the resulting power spectra. The com-
putational requirement for the determination of the power
but for the tensor source functibfe,1).

spectra of one seed model with a given source term is thus
123005-12
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Z -I‘IIIHIIIHIIIHIIIHIIIHIIII‘IIII‘ |||q|||_ _ \/<|S|(t)|2><|S](t/)|2>$<8|(t)8r (tl)>
4l N < ISOPXSi(t)]?).
soF ] (114
2 — . .
r- - . Therefore, for scales and/or variables for which the Greens
Lt ///> \\\ 7] function is not oscillatinge.g., Sachs Wolfe scalethe full
0 Taﬁ...u...u...a....a....ma =G result always lies between the “anticohererithinus sign
10-8 0.001 1 100 and the coherent result. We have verified this behavior nu-
kt merically.

The first evidence that Doppler peaks are suppressed in
defect models has been obtained in the perfectly coherent
approximation in Ref[27]. In Fig. 13 we show the contri-
butions to theC,'s from more and more eigenvectors. A
perfectly coherent model has only one nonzero eigenvalue.

A comparison of the full result with the totally coherent
approximation is presented in Fig. 14. There one sees that
decoherence does smear out the oscillations present in the
‘ fully coherent approximation, and does somewhat damp the
wod ool vvvnd vl amplitude. Decoherence thus prevents the appearance of a
001 01 1 10 100 series of acoustic peaks. The absence of power on this angu-

kt lar scale, however, is not a consequence of decoherence but

FIG. 12. The sum of the first few eigenfunctions Bfx,x) is 1S mainly due to the anisotropic stresses of the source which
shown for two different weight functionsa) logarithmic,w=1/x  |ead to perturbations in the geometry inducing large scale
and (b) linear,w= 1. The first(long dashey first and seconéshort ~ C,/'S (Sachs Wolfg but not to density fluctuations. Large
dashedl first ten (dotted and first 30(solid) eigenfunctions are anisotropic stresses are also at the origin of vector and tensor
summed up. The open circles represent the full correlation functiorfluctuations. Our results are in agreement with Rg#g] and
Clearly, the eigenfunctions obtained by linear weighting convergd 5] but we disagree with Ref28], which has found acoustic
much faster. Here we only show the equal time diagonal of thgpeaks with an amplitude of about six in the coherent approxi-
correlation matrix, but the same behavior is also found inGhe  mation.
power spectrum which is sensitive to the full correlation matrix. In the real universe, perfect scaling of the seed correlation

functions is broken by the radiation—matter transition, which
on the order ofng inflationary models. This eigenvector takes place at the time of equal matter and radiatig,
method has been developed in REf5]. =20h~20,,® Mpc. The timety, is an additional scale

A source is called totally coherefi26,13 if the unequal  which enters the problem and influences the seed correlators.
time correlation functions can be factorized. This means thabnly in a purely radiation- or matter-dominated universe are
only one eigenvector is relevant. A simple totally coherentthe correlators strictly scale invariant. This means actually
approximation, which, however, misses some importanthat thek dependence of the correlatad®s W, and T cannot
characteristics of defect models, can be obtained by replageally be cast into a dependence andx’, but that these
ing the correlation matrix by the square root of the product offunctions depend oty t’, andk in a more complicated way.
equal time correlators, We have to calculate and diagonalize the seed correlators for

each wave numbésseparately and the huge gain of dynami-
<Si(t)8j*(t’)>—>i \/<|Si(t)|2><|S,-(t’)|2). (113 cal range is lost as soon as scaling is lost.

In the actual case at hand, however, the deviation from
scaling is weak, and most of the scales of interest to us enter
the horizon only in the matter-dominated regime. The behav-

(v)

O = N W e OO

This approximation is exact if the source evolution is linear.
Then the differenk modes do not mix and the value of the

source term at fixedt at a later time is given by its value at ior of the correlators in the radiation-dominated era is of
initial time multiplied by some transfer functions(k,t) minor importance. To solve the problem, we calculate the

= S(K,t,) T(K.t,t;1). In this situation, Eq(113 becomes an correlator eigenvalues and eigenfunctions twice, in a pure

equality and the model is perfectly coherent. Decoherence itsad'at'o? andfln a{)hure rg?‘t:.er utnl\;ﬁrse agd we mtre]rplmaolatet.the
due to the nonlinearity of the source evolution which induce ource term from the radiation fo the matter epoch. Lenoting

a “sweeping” of power from one scale into another. Differ- y )‘m".’m andA, v, a given pair of _elgenvalue and_ eigen-
ent wave numberk do not evolve independently. vector in a matter and radiation universe, respectively, we

It is interesting to note that the perfectly coherent approxi-Choose as our deterministic source function

mation, Eq.(113), leaves open a choice of sign which has to

be positive ifi=j, but which is undetermined otherwise. v(0)=y() VN0 (KO +[1=y(O TN m(kt) (115
According to the Schwarz inequality the correlator
(Si(t)SF (t')) is bounded by with, e.g.,

123005-13
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1 10 100 100101 respectively, using the purely radiation-dominated era and
from interpolated source terms.

Clearly the effect of the radiation-dominated early state of
the universe is relatively unimportant for the scales consid-
ered here. The difference between the pure matter era result
and the interpolation is barely visible and thus not shown on
the plot. This seems to be quite different for cosmic strings
where the fluctuations in the radiation era are about twice as
large as those in the matter ¢29]. The radiation-dominated
era has very little effect on the key results which we are
reporting here; namely the absence of acoustic peaks and the
missing power on very large scales.

In models with cosmological constant, there is actually a
second break of scale invariance at the matteransition.
There we proceed in the same way as outlined above. Since
defects cease to scale and disappear rapidly in an exponen-
tially expanding universe, the eigenvalues for the
A-dominated universe all vanish.

I(+1)CY

I(+1)C;

T

]

E. Initial conditions and numerical implementation

+1)C

We numerically integrate our system of equations from
redshiftz=10" up to the present with the goal to have one
percent accuracy up t6~ 1000, for a given source term. We
use the integration method described in RgI&] and[30].

I We sample the intervat 5<log;okh™* Mpc=<—0.75 with

h | ibufi for th minimum step siz&\ log,o= 0.04, for the scalar case and use
FIG. 13. The scalar, vector, and tensor contributions for the, ¢ ,qthing algorithm to suppress the high-frequency sam-
texture model of structure formation are shown. The dashed line

show the contributions from single eigenfunctions while the solid.Bllng noise. In order to save computing time, we start the

: . L integration of theo ,(k)'s with 10 harmonics, adding new
line represents the sum. Note that the single contributions to tuf]armon'cs in the course of the intearation. We find that tvoi-
scalar and tensor spectrum do show oscillations which are, how- Icst u integration. ! ypi

ever, washed out in the surector perturbations do not obey a cally ~40 harmonics are sufficient for smak values

_l . .
wave equation and thus do not show oscillatipns. (I‘)gloldl1 Mpc<=-3),  while  for  higher k
(logiokh™ Mpc=—1), up to ~1500 harmonics for the

¢ scalar case;-200 for the tensor case are needed to achieve
y(t)= —2  or y(t)=exp(—t/tey), (116)  the desired accuracy. Including more than 40 harmonics for
t+teq neutrinos corrects our results by less than 1%. We obbain
algebraically using Eq19). With this choice of variables we
or some other suitable interpolation function. In Fig. 15 weavoid the numerical difficulties present in conformal gauge
show the results for scalar, vector, and tensor perturbation§31], where®d is determined by numerical integration.

10 100 1000
1.0x10* — r — v —

Coherent

----- Tensor
Vector
Total

8.0x10’

~ 6.0x10°

1(1+1)C,

4.0x10° FIG. 14. TheC, power spectrum for the tex-

ture scenario is shown in the perfectly coherent
approximation(top panel and in the full eigen-
function expansion. Even in the coherent ap-
Including decoherence proximation, the acoustic peaks are not higher
than the Sachs-Wolfe plateau. Decoherence just
washes out the structure but does not significantly
damp the peaks.

20110735

0.0

8.0x10°
~ 6.0x10°

4.0x10°

1(1+1)C

2.0x10’

0.0
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1x10 ————— T ] As we cannot trace the field evolution from the unbroken
1x10°r Including radiation to matter transition ] phase through the phase transition due to the limited dynami-
1“02‘ “““ Radiation dominated ] cal range, we choose initially a random field at a comoving
g Zi:g* ] time t=2Ax. Different grid points are uncorrelated at all
= o earlier timeg36].
ISP The use of finite differences in the discretized action as
g sx10F well as in the calculation of the energy momentum tensor
— 4x10’ introduce immediately strong correlations between neighbor-
3><10': ing grid points. This problem manifests itself in an initial
210% phase of nonscaling behavior, the length of which varies be-
1“8 tween 1@Ax and 2@\ x, depending on the variable consid-

ered. It is very important to use results from the scaling
regime only(cf. Fig. 16.

In order to reduce the time necessary to reach scaling and

FIG. 15. The scalar, vector, tensor, and t@alpower spectrum  to improve the overall accuracy, we try to choose the finite
is shown from pure radiation sources and for an interpolated sourcgjifferences in an optimal way. Our current code calculates all
While the vector perturbations are somewhat higher in the radiatioRyg|ues in the center of each cubic cell defined by the lattice.
era, scalr_:lr and tensor perturbations are higher in the matter era aRghe  5qditional smoothing introduced by this improves
the sum is nearly unchanged. energy-momentum conservation by several pertent.

To calculate the unequal time correlatefTC), the value
of the observable under consideration is saved once scaling
is reached at time, (we checked this by using different
d:orrelation times and then correlated at all following time
teps. While there is some danger of contaminating the equal
me correlatoETC), which contributes most strongly to the
i C/'s, with nonscaling sources, this method ensures that the
constant folkt— 0 is determined with maximal precision for
the ETC’s. This is very important as the constants
Ci;(0,1), W(0,1), andT(0,1) fix the relative size of scalar,
vector, and tensor contributions of the Sachs-Wolfe part and
severely influence the resulting,’s. In contrast, the CMB
spectrum seems quite stable under small variations of the
shape of the UTC'’s.

The resulting UTC’s are obtained numerically as func-
tions of the variableg, t, andt. with t=t. andt, fixed. They
are then linearly interpolated to the required range. We con-
struct a Hermitian 108 100 matrix inkt andkt’, with the
values ofkt chosen on a linear scale to maximize the infor-

As in previous work[7], we consider a spontaneously mation content, &kt<xq,. The choice of a linear scale
broken scalar field with Q) symmetry. We use the ensures good convergence of the sum of the eigenvectors

The abundance of free electroms,, is calculated follow-
ing a standard recombination schefB&] for H and “He, for
a helium abundance by mass of 23%. At high redshift
=10°, the Thomson opacity is very large, and photons an
baryons are tightly coupled. Because of large Thomson draj
term, Egs.(40) and (48) become stiff and difficult to solve
numerically. Therefore, in this limit we follow the method o
Ref.[33], which is accurate to second order inf1,) " (see
also[31]). Assuming a standard inflationary model, we ob-
tain a single scalar power spectrum in few minutes3Q s
for the tensor cageon a PC class workstation, which differs
by less than 1% from th€ 's computed with other codes
[34],[31].

Summing the scalat 's from the largest 15 eigenvectors
(five in the tensor case, ten for vector perturbatjappically
reproduces the total sum to better than &8ée Fig. 13

Ill. THE NUMERICAL SIMULATIONS

o-model approximation, i.e., the equation of motion after diagonalizatior(see Fig. 12 but still retains enough
_ _ data points in the critical regior®(x)=1, where the corr-
DB=(B-0B)A=0, (117 elators start to decay. In practice we choose as the endpoint
where g is the rescaled fiel@= ¢/ 7. Xmax Of the range sampled by the simulation, the value at
We do not solve the equation of motion directly, but use awhich the correlator decays by about two orders of magni-
discretized version of the actid35]: tude, typicallyx,.~40. The eigenvectors that are fed into

1 N the Boltzmann code are then interpolated using cubic splines
S:f d*x a?(t) 5,9#5.(9#/3+ E(,32_1) , (118  with the conditionv,(kt) —0 for kt> Xy .

We use several methods to test the accuracy of the simu-
where\ is a Lagrange multiplier which fixes the field to the lation: energy momentum conservation of the defects code is
vacuum manifold (this corresponds to an infinite Higgs
mass. Tests have shown that this formalism agrees well with
the complementary approach of using the equation of motion 43jian Borrill suggested to introduce “spherical derivatives” that
of a scalar field with the Mexican hat potential and settingtake into account the fact that the vacuum manifold i sphere
the inverse mass of the particle to the smallest scale that caihd therefore curved, and that this curvature should be important at
be resolved in the simulatiofitypically of the order of |eastin the initial stages of the simulation and for unwinding events
1073 GeV), but tends to give better energy momentum[37]. So far we have not investigated this idea sufficiently to include
conservation. it into our production code.
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01 L il A FIG. 17. Energy momentum conservation of our numerical

0.1 1 10 simulations is shown. The lines represent the sum of the terms
kt which has to vanish if energysolid), respectively, momentum
FIG. 16. The ETC's Cll(z,1)=<|q)|2)(kt) (panel a and (dashedlis conserved, inidfed .by the sum of the absolute value of
Co(z,1)=(|¥|2)(kt) (panel B are shown for different times. In these terms. The abscissa indicates the wavelength of the perturba-
grid units the times aré=4 (dashe} t=8 (dotted, t=12 (long tion as fraction of the size of the entire grid.
dasheg, t=16, 20 (dash dotted, long dash dotjedand t=24
(solid). Clearly C,, scales much sooner th&y ;. To safely arrive  even assuming perfect coherergsee Fig. 14, top panelthe
in the scaling regime one has to wait uritit 16 andC;;(kt=0) is  total power spectrum does not increase from large to small
best determined at=20 butkt<1. scales. Decoherence leads to smoothing of oscillations in the
power spectrum at small scales and the final power spectrum
found to be better than 10% on all scales larger than about Bas a smooth shape with a broad, low isocurvature “hump”
grid units, as is seen in Fig. 17. A comparison with the exactt /'~ 100 and a small residual of the first acoustic peak at
spherically symmetric solution in nonexpanding spf88]  /~350. There is no structure of peaks at small scales. The
shows very good agreement. power spectrum is well fitted by the following fourth-order
The resulting CMB spectrum on Sachs-Wolfe scales iyolynomial inx=log/":
consistent with the line of sight integration of RET]. Fur- ;
':_hermore, the overall shape and amplitude of the unequal ~ /(7+1)C, b 2 ext3.3C— 1445401
ime correlators are quite similar to those found in the ana- 110C,,
lytic large-N approximation38,22,4 (see Figs. 1-1)1 The (119
main difference of the larght approximation is that there
the field evolution, Eq(117), is approximated by a linear The effect of decoherence is less important for the large-
equation. The nonlinearities in the larbleseeds, which are N model, where oscillations and peaks are still visitdee
due solely to the energy momentum tensor being quadratic ifig. 18, bottom pangl This is due to the fact that the non-
the fields, are much weaker than in the texture model wherinearity of the largeN limit is only in the quadratic energy
the field evolution itself is nonlinear. Therefore, decoherencenomentum tensor. The scalar field evolution is linear in this
which is a purely nonlinear effect, is expected to be muchimit [38], in contrast to theN=4 texture model. Since de-
weaker in the largéd limit. This is actually the main differ- coherence is inherently due to nonlinearities, we expect it to
ence between the two models as can be seen in Fig. 18. be stronger for lower values d&f. COBE normalization leads
to €=(0.92+0.1)10 ° for the largeN limit.

IV. RESULTS AND COMPARISON WITH DATA In Fig. 19 we plot the global textur€, power spectrum
for different choices of cosmological parameters. The varia-
tion of parameters leads to similar effects as in the inflation-

The C/'s for the “standard” global texture model are ary case, but with smaller amplitude. At small scales (
shown in Fig. 14, bottom panel. =200), theC,'s tend to decrease with increasitty, and

Vector and tensor modes are found to be of the saméhey increase when a cosmological const@nt=1—Q,, is
order as the scalar component at COBE scales. For the staimtroduced. Nonetheless, the amplitude of the anisotropy
dard texture model we obtai@{d :C{¥):C{))~0.9:1.0:0.3, power spectrum at higks remains in all cases on the same
in good agreement with the predictions of Ref2l], level like the one at low’s, without showing the substantial
[5,21,17, and[4]. Due to tensor and vector contributions, peak found in inflationary model$d, and A are the most

A. CMB anisotropies
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=< 50x10F FIG. 19. TheC, power spectrum is shown for different values
of cosmological parameters. In the top panel we chdage=0,
Qcpu=0.95, Q,=0.05 and varyh. In the bottom panel we fix
0.0 =0.5,(,=0.05 and var\}, . We only consider spatially flat uni-

verses()y=1.

surely correct, but lacks information about the uncertainties
FIG. 18. Top panel: thé .=0 model. Bottom panel: ThE , in the theoretical model. Therefore, we also compare the de-
power spectrum is shown for the largetimit (bold line) and for tected mean-square anisotrom/,EXp) and the experimental
the texture model. The main difference is clearly that the I&ge- 1-g error, 3,(FP)2 directly with the corresponding theoreti-
curve shows some acoustic oscillations which are nearly entirely,g| mean-square anisotropy, given by
washed out in the texture case.

1
. . . . (Thy— _—_
promising cosmological parameters which might lead to A At 2 (27+1)C,W,, (120

higher acoustic peaks. Varying the baryon dendiy, or
adding spatial curvature to the models also induce changes

the final spectrum similar to those for inflationary m0d8|sdetails(chop modulation, beam, etof the experiment
I(e.gd,' the tsh|f;.|ntthe pt?fakh p05|t|pr; due to cha_nglng angu- The theoretical error, in principle, depends on the statis-
ar diameter distances if the spatial curvature is nonvanish o ¢ the perturbations. If the distribution is Gaussian, one

ing_), but none of them significantly increases the peakCan associate a sample and/or cosmic variance
height. We therefore can concludiéie absence of acoustic

{here the window functiodV, contains all experimental

peaks is a stable prediction of global(®) models 11
The models are normalized to the full CMB data set, s2==_— > (2/+ 1)W2C2, (121
which leads to slightly larger values of the normalization f 87" 7 -

parametere=47G#7? than pure COBE normalization. In
Table | we give the cosmological parameters and the value oftheref represents the fraction of the sky sampled by a given
e for the models shown in Fig. 19. experiment.

In order to compare our results with current experimental Deviation from Gaussianity leads to an enhancement of
data, we have selected a set of 41 different anisotropy detethis variance, which can be as large as a factor ds&e
tions obtained by different experiments, or by the same ext39]). Even if the perturbations are close to Gaussighich
periment with different window functions and/or at different has been found by simulations on large scdled0]), the
frequencies. Theoretical predictions and data of CMBC,’s, which are the squares of Gaussian variables, are non-
anisotropies are usually compared by plotting the theoreticaBaussian. This effect is, however, only relevant for relatively
C, curve along with the CMB measurements converted tdow /’s. Keeping this caveat in mind, and lacking a more
band power estimates. We do this in the top panel of Fig. 20precise alternative, we nevertheless indicate the minimal,
The data points show an increase in the anisotropies frorfsaussian, error calculated according to B1). We add a
large to smaller scales, in contrast to the theoretical predic30% error from the CMB normalization. The numerical
tions of the model. This fashion of presenting the data isseeds are assumed to be about 10% accurate.
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TABLE I. The value of the normalization constaatand the T o
fluctuation amplituderg are given for the different models consid- e  Observed data _
ered. The error ire comes from a best fit normalization to the full 6.0x10'[ Textures H
CMB data set. Cosmological parameters which are not indicated are
identical in all models or given b¥)o=Q 4+ Q) +Qp=1. We
consider only spatially flat models witR,=0.05 and a helium
fraction of 23%. The parameter choice indicated in the top line is
referred to astandardtexture model in the text.
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In Table II, the detected mean-square anisotrap§® l -

with the experimental X error are listed for each experi- |

ment of our data set. The corresponding sky coverage is als ool ® o0 o o T FLF
indicated. In Fig. 20 we plot these data points, together with ’ 1 2 3 4 5 6 7 8
the theoretical predictions for a texture model withk 0.5 Cobe data point (see Table)
and(,=0.

We find that, apart from the COBE quadrupole, the (e o e e o o e o B e I L e o e
Saskatoon experiment, QMAP, and two points of PythonV E o Observed data 3
disagree significantly, more thanrlwith our model: At/ i 10°F ©  Textures 3
~100 our model disagrees with QMAP but is compatible o % ?ﬁ—
with MSAM and PythonV. Around/ =200, globalO(N) < 0F mf' .

models induce substantially lower CMB anisotropies than

AT [uk]
Fo

2.0x10°

those measured in Saskatoon or PythonV. Tyl T P B T AP I I WP IV TP PO WP TP P O P P
In the last column of Table Il we indicate 1357 911131517192123 252729313335

Experiment (see Table)

X]_2=(A](Th)_AJ(Exp))Z/(EJ(Th)2+EJ(Exp)Z) . .
FIG. 20. TheC, spectrum obtained in the standard texture

for the jth experiment, where the theoretical model is themodel is compared with data. In the top panel experimental results

standard texture model witft , =0 andh=0.5. The major and the theoretical curve are shown as functiong’ofn the two
discrepancy between data anAd theory Comés. from the COBIWer panels we indicate the value of each of the 41 experimental
quadrupole. Leaving out the quadrupole, which can be conjata points with 1 error bars and the corresponding theoretical

taminated and leads to a simile? also for inflationary mod- value with its uncertainty. The experiments corresponding to a
R Y given number are given in Table II. In the middle panel the 8 COBE

els, 'the data agrees quitg well with the model, with the ex ata points are shown. In the bottom panel other experiments are
ception of some data points from Saskatoon, QMAP, and .ccnted.

PythonV. Making a roughy-square analysis, we obta{ax-

cluding the_quadrupo}m valueXZ.—Eij ~44 for a total of example, whenever the discrepancy between theory and data
40 data points and one constraint. An absolutely reasonabig larger than 0.5, which happens with nearly half of the
value, but one should take into account that the experimentg|sig points(13), in all cases except for the COBE quadru-
data points which we are considering are not fully indepenygle, the theoretical value is smaller than the data. If smaller
dent. The regions of sky sampled by the Saskatoon angnq |arger are equally likely, the probability of having 12 or
MSAM or COBE and Tenerife, for instance, overlap. None-yore equal signs is 2(131)/213=3.4x 10~3. This indicates
theless, even regl_lcinq the degrees of freedom of our analysiat either the model is too low or that the data points are
to N=36, our x“ is still in the range N—1)+y2(N—1)  systematically too high. The number 0.003 can, however, not
~40+9 and hence still compatible with the dataVe did  pe taken seriously, because we can easily change it by in-

the agreement with the data.

This shows that even assuming Gaussian statistics, the
models are not convincingly ruled out from present CMB
data. There is, however, one caveat in this analysis: A In Table | we show the expected variance of the total
x-square test is not sensitive to the sign of the discrepancinass fluctuatiorog in a ball of radiusR=8h"* Mpc, for
between theory and experiment. For our models the theoretlifferent choices of cosmological parameters. We fing
ical curve is systematically lower than the experiments. For=(0.44+0.07)h (the error coming from the CMB normal-

B. Matter distribution
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TABLE II. The CMB anisotropy detections used in our analysis. Columns 3, 4, and 5 denote the value of the anisotropy and the upper
and lower 1e errors, respectively. The references are: Tegmark and Hamilton,[299%le Bernardist al., 1994[42]; Chenget al., 1994
[43]; Chenget al, 1996[44]; Chenget al, 1997[45]; Tanakaet al., 1996[46]; Gutierrezet al., 1997[47]; Gunderseret al, 1993[48];
Dragovanet al, 1993[49]; Masi et al,, 1996[50]; Netterfieldet al, 1996[51]; Scottet al,, 1997[52]; de Oliveira-Costat al, 1998[53];
Cobleet al, 1999[54].

Experiment Data point  AT?(uK)? +(uK)? —(uK)? Sky coverage Reference X
COBE1 1 25.2 183 25.2 0.65 [41] 125.29
COBE2 2 212 126 128 0.65 [41] 0.02
COBE3 3 256 96.5 96.9 0.65 [41] 0.49
COBE4 4 105.5 48.3 48.2 0.65 [41] 0.74
COBE5 5 101.9 26.5 26.4 0.65 [41] 0.1
COBE6 6 63.4 19.11 18.9 0.65 [41] 1.11
COBE7 7 39.6 14.5 14.5 0.65 [41] 2.55
COBES8 8 42.5 12.7 12.8 0.65 [41] 0.04
ARGO Hercules 1 360 170 140 0.0024 [42] 0.001
MSAM93 2 4680 4200 2450 0.0007 [43] 0.74
MSAM94 3 4261 4091 2087 0.0007 [44] 0.51
MSAM94 4 1960 1352 858 0.0007 [44] 0.01
MSAM95 5 8698 6457 3406 0.0007 [45] 1.47
MSAM95 6 5177 3264 1864 0.0007 [45] 0.30
MAX HR 7 2430 1850 1020 0.0002 [46] 0.001
MAX PH 8 5960 5080 2190 0.0002 [46] 0.41
MAX GUM 9 6580 4450 2320 0.0002 [46] 0.73
MAX ID 10 4960 5690 2330 0.0002 [46] 0.17
MAX SH 11 5740 6280 2900 0.0002 [46] 0.25
Tenerife 12 3975 2855 1807 0.0124 [47] 0.64
South Pole Q 13 480 470 160 0.005 (48] 0.52
South Pole K 14 2040 2330 790 0.005 [48] 0.01
Python 15 1940 189 490 0.0006 [49] 0.37
ARGO Aries 16 580 150 130 0.0024 [50] 0.78
Saskatoon 17 1990 950 630 0.0037 [51] 0.79
Saskatoon 18 4490 1690 1360 0.0037 [51] 3.83
Saskatoon 19 6930 2770 2140 0.0037 [51] 4.60
Saskatoon 20 6980 3030 2310 0.0037 [51] 4.01
Saskatoon 21 4730 3380 3190 0.0037 [51] 1.32
CAT1 22 934 403 232 0.0001 [52] 1.36
CAT2 23 577 416 238 0.0001 [52] 0.62
PYTHONV 24 1094 304 267 0.01 [54] 0.34
PYTHONV 25 897 297 255 0.01 [54] 0.32
PYTHONV 26 473 130 114 0.01 [54] 0.85
PYTHONV 27 165 155 117 0.01 [54] 0.04
PYTHONV 28 265 107 89 0.01 [54] 1.2
PYTHONV 29 372 114 99 0.01 [54] 2.71
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TABLE Il. (Continued.

Experiment Data point AT?(uK)? +(uK)? —(uK)? Sky coverage Reference X

PYTHONV 30 128 196 128 0.01 [54] 0.13
QMAP-K1 31 2227 604 613 0.01 [53] 1.6
QMAP-K2 32 3500 748 781 0.01 [53] 34
QMAP-Q 33 2710 546 496 0.01 [53] 3.5

ization) for a flat model without cosmological constant, in inclusion of a cosmological constant enhances large scale
agreement with the results of Réb]. From the observed power.
cluster abundance, one inferg;=(0.50+0.04)) %5 [55] We consider a set of models {d,—h space, with linear
and og=0.59"3-%; [56]. These results, which are obtained bias[63] as additional parameter. In Table Ill we report for
with the Press-Schechter formula, assume Gaussian stat@ach survey and for each model the best value of the bias
tics. We thus have to take them with a grain of salt, since weparameter obtained by’ minimization. We also indicate the
do not know how non-Gaussian fluctuations on cluster scalegalue of 2 (not divided by the number of data pointhe
are in the texture model. According to RE57], the Hubble data points and the theoretical predictions are plotted in Fig.
constant lies in the intervdl=0.73+0.06=0.08. Hence, in 22. Our bias parameter strongly depends on the data consid-
a flat CDM cosmology, taking into account the uncertaintyered. This is not surprising, since also the catalogs are biased
of the Hubble constant, the texture scenario predicts a reaelative to each other.
sonably consistent value ofg. Models without cosmological constant and with-0.8

As already noticed in Ref$17] and[5], unbiased global only require a relatively modest bias-1.3-3. But for these
texture models are unable to reproduce the power of galaxgnodels the shape of the power spectrum is wrong as can be
clustering at very large scales,20h~* Mpc. In Fig. 21 we  seen from the value of* which is much too large. The bias
show the dark matter power spectrum for three differenfactor is in agreement with our prediction forg. For ex-
models. In order to quantify this discrepancy we compare
our prediction of the linear matter power spectrum with the 10
results from a number of infrared58],[59]) and optically Wi CFA+SSRS2 +- - — CFA+SSRS2 1 10°
selected([60],[61]) galaxy redshift surveys, and with the o
real-space power spectrum inferred from the automatic plate
measurementAPM) photometric sample[62]) (see Fig.
22). Here, cosmological parameters have important effects=
on the shape and amplitude of the matter power spectrum
Increasing the Hubble constant shifts the peak of the powel
spectrum to smaller scalégm units of h/Mpc), while the
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FIG. 21. The dark matter power spectrum for the texture model
(solid line) is compared with the coherent approximatihort FIG. 22. Matter power spectrum: comparison between data and
dashed and the largeN limit (long dashefl The spectra are COBE theory. References are in the text. Data set courtesy of Vogeley

normalized and the cosmological parameters{ake=0, h=0.5. [70].
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TABLE lIl. Analysis of the matter power spectrum. In the first column the catalog is indicated. Columns
2 and 3 specify the model parameters. In columns 4 and 5 we give the bias parameter infegéd by
minimization as well as the value gf. Column 6 shows the number of “independent” data points assumed
in the analysis.

Catalog h Qp Best fit biasb X° Data points
CfA2-SSRS2 101 Mpc 0.5 0.0 3.4 29 24
CfA2-SSRS2 101 Mpc 0.8 0.0 2.0 40 24
CfA2-SSRS2 101 Mpc 1.0 0.0 1.9 44 24
CfA2-SSRS2 101 Mpc 0.5 0.4 3.9 17 24
CfA2-SSRS2 101 Mpc 0.5 0.8 9.5 4 24
CfA2-SSRS2 130 Mpc 0.5 0.0 5.3 8 19
CfA2-SSRS2 130 Mpc 0.8 0.0 3.4 15 19
CfA2-SSRS2 130 Mpc 1.0 0.0 3.4 16 19
CfA2-SSRS2 130 Mpc 0.5 0.4 5.6 5 19
CfA2-SSRS2 130 Mpc 0.5 0.8 11.1 4 19
LCRS 0.5 0.0 3.0 71 19
LCRS 0.8 0.0 1.8 96 19
LCRS 1.0 0.0 1.6 108 19
LCRS 0.5 0.4 3.7 33 19
LCRS 0.5 0.8 8.7 40 19
IRAS 0.5 0.0 2.3 102 11
IRAS 0.8 0.0 13 131 11
IRAS 1.0 0.0 13 140 11
IRAS 0.5 0.4 2.8 70 11
IRAS 0.5 0.8 6.3 9 11
IRAS 1.2 Jy 0.5 0.0 4.2 56 29
IRAS 1.2 Jy 0.8 0.0 2.9 92 29
IRAS 1.2 Jy 1.0 0.0 2.9 99 29
IRAS 1.2 Jy 0.5 0.4 4.3 39 29
IRAS 1.2 Jy 0.5 0.8 6.7 28 29
APM 0.5 0.0 33 1350 29
APM 0.8 0.0 1.8 1500 29
APM 1.0 0.0 17 1466 29
APM 0.5 0.4 3.5 1461 29
APM 0.5 0.8 6.2 1500 29
QDOT 0.5 0.0 4.3 32 19
QDOT 0.8 0.0 2.9 44 19
QDOT 1.0 0.0 2.9 46 19
QDOT 0.5 0.4 4.3 25 19
QDOT 0.5 0.8 7.3 14 19

ample, our best fit for the IRAS data, for-0.8 isb~1.3.  is not only possible but even preferredflat global texture
With og"5=(0.69+0.05), this givesrg~0.48+0.04, com- models. o o
patible with the direct computation. But also with bias, our models are in significant contra-

Whether IRAS galaxies are biased is still under debate(_jiction with the shape of the power spectrum at large scales.

2 . . . -
Published values for thg parameter, defined &= Qb As the values of¢“ in Table Il and Fig. 22 clearly indicate,

) —not0.2 the models are inconsistent with the shape of the IRAS
for IRAS galaxies, range betwegs)=0.9"o15[641 and B ower spectrum, and they can be rejected with a high confi-

=0.5x0.1[65]. Biasing of IRAS galaxies is also suggested gence level. The APM data which has the smallest error bars
by measurements of bias in the optical band. For examplgs the most stringent evidence against texture models. None-
Ref.[66] finds 8,=0.40+0.12, in marginal agreement with theless, these data points are not measured in redshift space
[67], which obtains3,=0.35=0.1. A bias for IRAS galaxies but they come from a deprojection of a two-dimensional
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(2D) catalog into 3D space. This might introduce systematic TABLE IV. Bulk velocities: Observational data frof68] and
errors and thus the errors of APM may be underestimated.theoretical predictionsA, estimates the observational uncertainty.
Models with a cosmological constant agree much betteff Ne uncertainties on the theoretical predictions are arou88%.
with the shape of the observed power spectra, the valyé of T_hoesm"d?'SQA:,o Wgh h=05 andh=1 as well as2,=0.8, h

being low for all except the APM data. But the values of the ™ are investigated.

bias factors are extremely high for these models. For ex- — — —
ample, IRAS galaxies should have a bias3— 6, resulting R o ® A h=05 h=10 ©,-08
in 0g<0.25, and in g3,<0.2 which is too small, even al- 10 494 170 145 205 86
lowing for big variances due to non-Gaussian statistics. 20 475 160 100 134 78
The power spectra for the largédimit and for the coher- 30 413 150 80 98 70
ent approximation are typically a factor 2—3 higlieee Fig. 40 369 150 67 78 65
22), and the biasing problem is alleviated for these cases. For50 325 140 57 65 61
Q,=0 we find og=0.5" for the largeN limit and og 60 300 140 50 56 57

=0.94 for the coherent approximation. This is no surprise
since only one source functiolfy, the analog of the New-

tonian potential, seeds dark matter fluctuations and thus the 2(R) = 5057 PKWKRdK 199
coherence always enhances the unequal time correlator. The o, (R)= 272 (KYW(kR)dk, (122

second inequality in Eq(114) applies. The dark matter
Greens function is not oscillating, so this enhancement transn spheres of radiR=10 to 6(h"! Mpc. These data are
lates directly into the power spectrum. derived after reconstructing the three-dimensional velocity
Models which are anticoherent in the sense defined iffield with the POTENT methodsee[68], and references
Sec. Il D reduce power on Sachs-Wolfe scales and enhancgerein.
the power in the dark matter. Anticoherent scaling seeds are As we can see from Table IV, the COBE normalized tex-
thus the most promising candidates which may cure some dfire model predicts too low velocities on large scales when
the problems of globaD(N) models. compared with POTENT results. Recent measurements of
The simple analysis carried out here does not take intéhe bulk flow lead to somewhat lower estimates likg(R)
account the effects of nonlinearities and redshift distortions~(230+90) atR=60h"" Mpc ([69]), but still a discrep-
Redshift distortions in the texture case should be less impo@ncy of about a factor of 2 in the best case remains. Includ-
tant than in the inflationary case since the peculiar velocitie$1d @ cosmological constant helps at large scales, but de-
are rather low(see next paragraphNonlinearities typically ~creases the velocities on small scales. If the observational
setin atk=0.5h Mpc ! and should not have a big effect on bulk velqcity data is indeed reliablghere are some doubts
our main conclusions which come from much larger scalesdfout this[71]), all global O(N) models are ruled out.
Inclusion of these corrections will result in more small-scale
power and in a broadening of the spectra, which even en- V. CONCLUSIONS
hances the conflict between models and data. Furthermore, . :
variations of other cosmological parameters, like the addition _We have d_evelop_ed a self-contained formalism to deter-
of massive neutrinos, hot dark matter, which is not consid+ "¢ CMB an|sptrop|es and other power spectra for models
' : Y\nth causal scaling seeds. We have applied it to glax@)

ered here, will result in a change of the spectrum on smal , .
scales but will not resolve the discrepancy at large scales mo_dels which contain globa_l monopoles and texture. Our
'Erlmaaln results can be summarized as follows.

Nonetheless, scale-dependent biasing may exist and le Global O(N) models predict a flat spectruiarrison-

to a nontrivial relation between the calculated dark matter. X : : S
Zeldovich of CMB anisotropies on large scales which is in

power spectrum and the observed galaxy power spectruny. . . .
good agreement with the COBE results. Models with vanish-

We are thus very reluctant to rule out the model by compars

. Lo . : : -~ ing cosmological constant and a large value of the Hubble
ing two, in principle, different things, the relation of which is arameter aivere~0.4—0.5 which is reasonable

far from understood. Therefore, we would prefer to reject the’ Inde engent gf cdsmoio ical parameters the.se models do
models on the basis of peculiar velocity data, which is more P 9 P :

difficult to measure but most certainly not biased. 28;;?3&?” pronounced acoustic peaks in the CMB power

The dark matter power spectrum from glol@N) mod-
els withQ) , =0 has reasonable amplitude but does not agree
To get a better handle on the missing power on 20 to 10(n its shape with the galaxy power spectrum, especially on
h~! Mpc, we investigate the velocity power spectrum whichvery large scales>20h~1 Mpc.
is not plagued by biasing problems. The assumption that gal- Models with considerable cosmological constant agree
axies are fair tracers of the velocity field seems to us muchelatively well with the shape of the galaxy power spectrum,
better justified, than to assume that they are fair tracers of thieut need very high biab~4—-6 even with respect to IRAS
mass density. We, therefore, test our models against peculigalaxies.
velocity data. We use the data by RE8] which gives the The large scale bulk velocities are by a factor of about 3—
bulk flow 5 smaller than the value inferred frofG8].

C. Bulk velocities
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In view of the still considerable errors in the CMB data These definitions, their geometrical interpretation and a short
(see Fig. 2D and the biasing problem for the dark matter derivation of the perturbation equations can be found in
power spectrum, we consider the last argument as the mof3,13]. We restrict the analysis to the spatially flat cake,
convincing one to rule out globaD(N) models. Even if =0. We define the perturbed metric by
velocity data is still quite uncertain, observations generally

agree that bulk velocities on the scale oh56 Mpc are g=g+azh, (A1)
substantially larger than tH&0—70 km/s obtained in texture _
models. where g denotes the standard Friedmann background

However, all our constraints have been obtained assuminipe scale factor, antd denotes the metric perturbation.
Gaussian statistics. We know that global defect models are
non-Gaussian, but we have not investigated how severely 1. Scalar perturbations
this influences the above conclusions. Such a study, which
we plan for the future, requires detailed maps of fluctuations,
the resolution of which is always limited by computational K18 =—2a(dt)2+ 2iBk; dtdx
resources. Generically we can just say that non-Gaussianity
can only weaken the above constraints.

Our results naturally lead to the question whether all scal-
ing seed models are ruled out by the present data. The main
problem of theO(N) model is the missing power at interme- (A2)
diate scalesy~300—-500 or R~(20—100)h~* Mpc. We  Computing the perturbation of the Ricci curvature scalar and
have briefly investigated whether this problem can be mitithe shear of the equal time slices, we obtain
gated in a scaling seed model without vector and tensor per-

Scalar perturbations of the metric are of the form

+2

1 o S
HL+ §HT) 5” dx' dXJ_Zk_ZHTkikj dx dx!.

turbations. In this case, also scalar anisotropic stresses are SR=4a " 2%k?*R, with R=H + EHT, (A3)
reduced by causality requirementsee Ref.[4]), and the 3
compensation mechanism mentioned in Sec. Il is effective. Kki 1

For simplicity, we analyze a model with purely scalar per- K (aniso)— g ﬁ_ §5f)dx‘®aj , (A4)

turbations and no anisotropic stresses atfagh 0. The seed
function &, is taken from the texture moddhumerical
simulation$ and we setV' ;= —®.. The resulting CMB an-
isotropy spectrum is shown in Fig. 18, top panel. A smeared o=k 'H;-B. (A5)
out acoustic peak with an amplitude of about 2.2 does indeed

appear in this model. This is mainly due to the fact thatThe Bardeen potentials are the combinations
fluctuations on large scales are smaller in this model, as is

with

also evident from the higher value ef=(2.2+0.2)x 10 °. ®=R~-(a/a)k 'a, (A6)
But also here, the dark matter density fluctuations and bulk e :
velocities are substantially lower than the observed galaxy v=A-k {(ala)o—o]. (A7)

density fluctuations or the POTENT bulk flows. They are invariant under infinitesimal coordinate transforma-
Clearly, this simple example is not sufficient and a more_. y .
ions (gauge transformations

thorough analysis of generic scaling seed models is present To define perturbations of the most general eneray mo-

under investigation. So far it is clear that contributions fromm ntum ten pr we introd the ener 9 densitand ?ﬁ'

vector and tensor perturbations are severely restricted. entum tensor, we introduce the energy denpitgnd the
energy fluxu as the timelike eigenvalue and normalized ei-
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In this appendix we give precise definitions of all the where P=u®u+g is the projection onto the subspace of
gauge-invariant perturbation variables used in this papefT.M normal tou. It is
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78=T?=ri0=0. where B and H are transverse vector fields. The simplest

gauge-invariant variable describing the two vectorial degrees
The perturbations of pressure and anisotropic stresses can befreedom of metric perturbations I,
parametrized by .
o o _ 3=k 'H;-B;. (A18)
r=p[(1+m )8 +nl], with a=0. (Al ) ) i ) .
I ] I |
Vectorial anisotropic stresses are gauge invariant. They are

For scalar perturbations we set of the form
udi ) =ik~ (T + K IT)). (A19)
u=(1-A), —=—-i—v T
u® k The vector degrees of freedom of the velocity field are cast
in the vorticity
and
1 U|:J‘_Uj;|=ia(k]‘w|_k|(1}j) (AZO)
(M= ( —k 2Kk + §5})H. with
a)j=vj—Bj. (AZ].)

Studying the behavior of these variables under gauge trans-

formations, one finds that the anisotropic stress potehltial yector perturbations of the photon brightness are gauge in-
is gauge invariant. A gauge-invariant velocity variable is theyariant. To maintain a consistent notation, we denote them

shear of the velocity field, by M M.
1 )
Ui(jSm): ( k—2|(i kj— 3 8 adv|, with V=v-— k‘lHT . 3. Tensor perturbations
(A12) We define tensor perturbations of the metric by
There are several different useful choices of gauge- h(M=2H;;dx'dx, (A22)

invariant density perturbation variables: . ,
whereH;; is a traceless transverse tensor field.

Dy= 0+ 3(Lrw)(@a)k e, A13) ot are anisotropic stresses, o e

Dy=5+3(1+W)R=Dg+3(1+w)d, (A14) D=1, (A2

D=D.+3(1+w)(a/a)k V. (A15) Ter(1%or perturbations of the photon brightness are denoted
In this work we mainly uséD,. Herew=p/p denotes the Cléarly, all tensor perturbations are gauge invariémgre

enthalpy. Clearly, these matter variables can be defined fof.e 119 tensor-type gauge transformatjons
each matter component separately. For ideal fluids like CDM

or the baryon photon fluid long before decoupling, aniso- APPENDIX B: THE CMB ANISOTROPY
tropic stresses vanish and, =(c2/w)é, wherec is the POWER SPECTRUM
adiabatic sound speed. o )

Also scalar perturbations of the photon brightnes3,are Here we derive in some detail Eq&5), (84), and (91).
not gauge invariant. It has been sho@j that the combina- CMB anisotropies are conveniently expanded in spherical
tion harmonics:&T(n)/T():2|ma|mY'm(n). The coefficientsay,

. are random variables with zero mean and rotationally invari-
MO =+ 4R+ 4ik nlkjo (A16)  ant variancesC,=(|a;,|%). The meanover the ensemble

_ _ ) o ) ) correlation function of the anisotropy pattern has the stan-
is gauge invariant. This is the variable which we use here. IRjard expression:

other work[72] the gauge-invariant variabl®@= M+ ® has

been used. Sinc® is independent of the photon direction oT oT 1 ,

this difference in the definition shows up only in the mono- <T—O(n1)_|_—o(n2) T 4w Z (2/+1)C,P(cosb),
pole C,. But clearly, as can be seen from E416), also the (B1)
dipole C; is gauge dependent. The brightness perturbation of

the neutrinos is defined the same way and will not be rewhere cog¥=n;-n,. To find Eq. (75 we use the Fourier-
peated here. transform normalization

. 1
2. Vector perturbations f(k)= vj f(x)exp(ik-x)d®x (B2)

Vector perturbations of the metric are of the form ) o )
with some normalization volumé. Assuming that ensemble

h)=2B; dx dt+ik '(kH;+k;H))dx' dx), (Al7)  average can be replaced by volume average then implies
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5T ST where
< () n2>> j d3x—<xnl> ~(xnp) Y =ngnp— piph. (B9)

Using the recursion formula for Legendre polynomials and

oT
= z—gf d3k (k nl) (k ny). the addition theorem for spherical harmonics, we find after
(2m) some manipulations
(B3)

/(7 (V) o) 2
C(/V):/(/+1)f k2d |01/ 1(to.K) + 07 1(to.K)| >

Inserting our ansat£63) for 6T/Ty=3M, and using the (2/+1)?

addition theorem for spherical harmonics, we have

(B10)
oT oT i [ [ [
<—(n1)—(n2)> For the correlation function of the CMB anisotropies from

To T tensor modes our ansaig6) gives

1

— — =Ny Y*, 1
= /,/%m, (-1 /N1y (N2) < ()=~ (n2)> 12&74 E I1,2(k,n3,Nn))
xf k2dk dQ; Y% (K)Y 1 (K) (T, 0%, ) (K) XP ()P o(py)d%k (B11

with

1
=— 2/+1)P (n;-n k2 dk 2Y(K),
527 2 (2/+DP(ny z)J {o,07)(K) I,10=(—1)1"2(2/1+1)(2/2+ 1)(1— (u)?)

X (1= (up) (o', 10 %) cos 26 cod 2¢5)
from which we can read Eq75). M (T)* \oi . ,

For vector and tensor fluctuations, the ans@t?) and (0% 105 72)SIN2¢1)SIN23)]. (B12)
(86) must be taken into account. With the same manipula; T
tions as above the correlation function of CMB anlsotroplesHere’ statistical isotropy leads to

(B4)

induced by vector modes reads 5T(ny) 8T(ny) 1
L 3 o < T, > 12573 E (2/1+1)(2/5+1)
(nl) (nz) :Wfd k/lE/Z I, ,5(k,ng,Nn3) e
o X2 ¥(ngng)
X P 1(1)Pr2(p), (BS)
(M (D=*
where the primes indicate that the quantity is considered in X(0 0108 72 P ra(p)P o) %K,
the reference system whekeis parallel to thez axis and (B13)
([73],[16])
where

,1,,=(—)72(2/1+1)(2/,+1)

Y=[2(n;-ny— uips)2— A= () A—(us)?)].
= (2T = ()] [2(ng-Ny— pipy) (m1) (12) ](Bl4)

(V) (V)* ! ! . . .
+[{o1/101/7)cod $1)cod ¢;) With straightforward but somewhat cumbersome manipula-

+<U(2v/)10(2v/)§>Sin(¢i)sm(¢é)]. (B6) tions, applying the recursion formula for Legendre polyno-

Assuming statistical isotropy which implies then obtain
(oA =(o82? and (o{Do3")=0, 1 (/+2) (=32
D=g— 2|f ——k?dk  (B1Y)
we obtain 7 (/=2)']o (2/+1)
6T(ng) 8T(ny) 1 with
< T T, | 128 2 (/14 1)(2/+ 1)

12 E(T) (ET} 2 2(2/+1)0-(5T} + (ET}+2
X(=i)1=72 (B7) 7T2/-1 (2/-1)(2/+3) 2/+3"

(B16)

. , , The formulas(B4), (B10), and(B15) are used to determine
f Y (01, n)(08010405)Pa(uD)P2(13)d%, (B8) e cMB anisotropy spectrum.
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