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Cosmic microwave background anisotropies from scaling seeds: Global defect models

R. Durrer, M. Kunz, and A. Melchiorri
Département de Physique The´orique, Universite´ de Gene`ve, 24 quai Ernest Ansermet, CH-1211 Gene`ve 4, Switzerland

~Received 9 November 1998; published 18 May 1999!

We investigate the global texture model of structure formation in cosmogonies with a nonzero cosmological
constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks
and little power on large scales are robust predictions of these models. However, from a careful comparison
with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data.
Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very
stringent constraints come from peculiar velocities. Investigating the large-N limit, we argue that our main
conclusions apply to all globalO(N) models of structure formation.@S0556-2821~99!07312-9#

PACS number~s!: 98.70.Vc, 98.80.Cq
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I. INTRODUCTION

Recently, a lot of effort has gone into the determination
cosmological parameters from measurements of cosmic
crowave background~CMB! anisotropies, especially in view
of the two planned satellite experiments the microwave
isotropy probe~MAP! and Planck@1#. However, we believe
it is important to be aware of the heavy modeling whi
enters these results. In general, simple power-law in
spectra for scalar and tensor perturbations and vanishing
tor perturbations are assumed, as predicted from inflation
reproduce observational data, the composition of the d
matter and the cosmological parameters as well as the i
spectrum and the scalar to tensor ratio are varied@2#.

We want to take a different approach: We modify t
model for structure formation. We assume that cosmic str
ture was induced by scaling seeds. Using a simplified~and
not very accurate! treatment for the photon propagation, w
have already shown that some key observations can be
produced within a very restricted family of scaling se
models@3#. Here we want to outline in detail a more accura
computation with a fully gauge-invariant Boltzmann co
especially adapted to treat models with sources. In this pa
we follow the philosophy of a general analysis of scali
seed models motivated in Ref.@4#.

Seeds are an inhomogeneously distributed form of ma
~such as, e.g., topological defects! which interacts with the
cosmic fluid only gravitationally and which represents
ways a small fraction of the total energy of the univer
They induce geometrical perturbations, but their influence
the evolution of the background universe can be neglec
Furthermore, in first-order perturbation theory, seeds evo
according to the unperturbed spacetime geometry.

Here, we mainly investigate the models of structure f
mation with global texture. These models~for Vmatter51)
show discrepancies with the observed intermediate s
CMB anisotropies and with the galaxy power spectrum
large scales@5#. Recently it has been argued that the addit
of a cosmological constant leads to better agreement
data for the cosmic string model of structure formation@6#.
We analyze this question for the texture model, by usingab
initio simulation of cosmic texture as described in Ref.@7#.
We determine the CMB anisotropies, the dark matter po
0556-2821/99/59~12!/123005~26!/$15.00 59 1230
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spectrum and the bulk velocities for these models. We a
compare our results with the large-N limit of global O(N)
models, and we discuss briefly which type of parame
changes in the two-point functions of the seeds may lea
better agreement with data.

We find that the absence of significant acoustic peaks
the CMB anisotropy spectrum is a robust result for glob
texture as well as for the large-N limit for all choices of
cosmological parameters investigated. Furthermore, the
matter power spectrum on large scales,l*20h21 Mpc, is
substantially lower than the measured galaxy power sp
trum.

However, comparing our CMB anisotropy spectra w
present data, we cannot safely reject the model. On la
angular scales, the CMB spectrum is in quite good agr
ment with the cosmic background explorer~COBE! data set,
while on smaller scales we find a significant disagreem
with the Saskatoon and QMAP experiments.1 For nonsatel-
lite experiments foreground contamination certainly rema
a serious problem due to the limited sky and frequency c
erage.

The dark matter power spectra are clearly too low
large scales, but in view of the unresolved biasing proble
we feel reluctant to rule out the models on these grounds
much clearer rejection may come from the bulk velocity
large scales. Our prediction is by a factor 3 to 5 lower th
the Potential Method~POTENT! result on large scales.

Since global texture and the large-N limit lead to very
similar results, we conclude that all globalO(N) models of
structure formation for the cosmogonies investigated in t
work are ruled out if the bulk velocity on scales o
50h21 Mpc is around 300 km/s or if the CMB primordia
anisotropy power spectrum really shows a structure of pe
on subdegree angular scales.

This paper is the first of a series of analyses of mod
with scaling seeds. We, therefore, fully present the form

1Since results from different experiments partially disagree~even
the most recent ones, such as QMAP and Python V!, we can only
test our models by a combined analysis of all available CMB
isotropy measurements.
©1999 The American Physical Society05-1
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ism used for our calculations in the next section. There,
also explain in detail the eigenvector expansion which allo
one to calculate the CMB anisotropies and matter po
spectra in models with seeds from the two-point functions
the seeds alone. This section can be skipped if the read
mainly interested in the results. Section III is devoted to
brief description of the numerical simulations. In Sec. IV w
analyze our results and in Sec. V we draw some conclusi
Two appendixes contain detailed definitions of the pertur
tion variables and to some technical derivations.

We always work in a spatially flat Friedmann univers
The metric is given by

ds25a~ t !2~dt22d i j dxidxj !,

wheret denotes conformal time.
Greek indices denote spacetime coordinates~0–3!

whereas the Latin ones run from 1–3. Three-dimensio
vectors are denoted by boldface characters.

II. THE FORMALISM

Anisotropies in the CMB are small and can thus be
scribed by first-order cosmological perturbation theo
which we apply throughout. We neglect the nonlinear evo
tion of density fluctuations on smaller scales. Since mod
with seeds are genuinely non-Gaussian, the usual nume
N-body simulations which start from Gaussian initial con
tions cannot be used to describe the evolution on sma
scales.

Gauge-invariant perturbation equations for cosmolog
models with seeds have been derived in Refs.@8,9#. Here we
follow the notation and use the results presented in Ref.@9#.
Definitions of all the gauge-invariant perturbation variab
used here in terms of perturbations of the metric, the ene
momentum tensor, and the brightness are given in Appen
A for completeness.

We consider a background universe with density para
eterV05Vm1VL51, consisting of photons, cold dark ma
ter ~CDM!, baryons, and neutrinos. At very early timesz
@zdec;1100, photons and baryons form a perfectly coup
ideal fluid. As time evolves, and as the electron density dr
due to recombination of primordial helium and hydroge
Compton scattering becomes less frequent and higher
ments in the photon distribution develop. This epoch has
be described by a Boltzmann equation. Long after recom
nation, free electrons are so sparse that the collision term
be neglected, and photons evolve according to the collis
less Boltzmann or Liouville equation. During the epoch
interest here, neutrinos are always collisionless and t
obey the Liouville equation.

In the next subsection, we parametrize in a complet
general way the degrees of freedom of the seed energy
mentum tensor. Section II B is devoted to the perturbation
Einstein’s equations and the fluid equations of motion. N
we treat the Boltzmann perturbation equation. In Sec. I
we explain how we determine the power spectra of CM
anisotropies, density fluctuation, and peculiar velocities
means of the derived perturbation equations and the une
time correlators of the seed energy momentum tensor, w
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are obtained by numerical simulations. In Sec. II E we g
the initial conditions and a brief description of our Bolt
mann code.

A. The seed energy momentum tensor

Since the energy momentum tensor of the seedsQmn has
no homogeneous background contribution, it is gauge inv
ant by itself according to the Stewart-Walker Lemma@10#.

Qmn can be calculated by solving the matter equations
the seeds in the Friedmannbackgroundgeometry.~Since
Qmn has no background component it satisfies the unp
turbed ‘‘conservation’’ equations.! We decomposeQmn into
scalar, vector, and tensor contributions. They decou
within linear perturbation theory and it is thus possible
write the equations for each of these contributions separa
As always ~unless noted otherwise!, we work in Fourier
space. We parametrize the scalar (S), vector (V), and tensor
~T! contributions toQmn in the form

Q00
(S)5M2f r , ~1!

Q j 0
(S)5 iM 2kj f v , ~2!

Q j l
(S)5M2F S f p1

1

3
k2f pD d j l 2kjkl f pG , ~3!

Q j 0
(V)5M2wj

(v) , ~4!

Q j l
(V)5 iM 2

1

2
~kjwl

(p)1klwj
(p)!, ~5!

Q j l
(T)5M2t i j

(p) . ~6!

HereM denotes a typical mass scale of the seeds. In the
of topological defects we setM5h, where h is the
symmetry-breaking scale@9#. The vectorsw(v) andw(p) are
transverse andt i j

(p) is a transverse traceless tensor,

k•w(v)5k•w(p)5kit i j
(p)5t j

(p) j50.

From the full energy momentum tensorQmn which may
contain scalar, vector, and tensor contributions, the sc
parts f v and f p of a given Fourier mode are determined b

ik jQ0 j52k2M2f v ,

2kikj S Q i j 2
1

3
d i j d

klQklD5
2

3
k4M2f p .

On the other hand,f v and f p are also determined in terms o
f r and f p by energy and momentum conservation,

ḟ r1k2f v1
ȧ

a
~ f r13 f p!50, ~7!

ḟ v12
ȧ

a
f v2 f p1

2

3
k2f p50. ~8!
5-2
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 59 123005
Once f v is known it is easy to extractM2wj
(v)5Q0 j

2 ik jM
2f v . For wi

(p) we use

ik j~Q l j 2Q l j
(S)!52k2M2wl

(p) .

Again, wl
(p) can also be obtained in terms ofwl

(v) by means
of momentum conservation,

ẇl
(v)12S ȧ

a
Dwl

(v)1
1

2
k2wl

(p)50. ~9!

The geometry perturbations induced by the seeds
characterized by the Bardeen potentialsFs andCs for scalar
perturbations, the potential for the shear of the extrinsic c
vature S(s) for vector perturbations, and the gravitation
wave amplitudeHi j

(s) for tensor perturbations. Detailed defi
nitions of these variables and their geometrical interpreta
are given in Ref.@9# ~see also Appendix A!. Einstein’s equa-
tions link the seed perturbations of the geometry to the
ergy momentum tensor of the seeds. Defining the dimens
less small parameter

e[4pGM2, ~10!

we obtain

k2Fs5eS f r13
ȧ

a
f vD , ~11!

Fs1Cs522e f p ~12!

2k2S i
(s)54ewi

(v) ~13!

Ḧ i j
(s)12

ȧ

a
Ḣi j

(s)1k2Hi j
(s)52et i j

(p) . ~14!

Equations~11!–~14! would determine the geometric pertu
bations if the cosmic fluid were perfectly unperturbed. In
realistic situation, however, we have to add the fluid pert
bations in the geometry which are defined in the next s
section. Only the total geometrical perturbations are de
mined via Einstein’s equations. In this sense, Eqs.~11!–~14!
should be regarded as definitions forFs , Cs , S(s), and
Hi j

(s) .
A description of the numerical calculation of the ener

momentum tensor of the seeds for global texture is given
Sec. III.

B. Einstein’s equations and the fluid equations

1. Scalar perturbations

Scalar perturbations of the geometry have two degree
freedom which can be cast in terms of the gauge-invar
Bardeen potentialsC andF @11,12#. For Newtonian forms
of matterC52F is nothing else than the Newtonian grav
tational potential. For matter with significant anisotrop
stresses,C and2F differ. In geometrical terms, the forme
represents the lapse function of the zero-shear hypersurf
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while the latter is a measure of their 3 curvature@9#. In the
presence of seeds, the Bardeen potentials are given by

C5Cs1Cm , ~15!

F5Fs1Fm , ~16!

where the indicess,m refer to contributions from a sourc
~the seed! and the cosmic fluid, respectively. The se
Bardeen potentials are given in Eqs.~11! and ~12!.

To describe the scalar perturbations of the energy mom
tum tensor of a given matter component, we use the varia
Dg , a gauge-invariant variable for density fluctuationsV, the
potential of peculiar velocity fluctuations, andP, a potential
for anisotropic stresses~which vanishes for CDM and bary
ons!. A definition of these variables in terms of the comp
nents of the energy momentum tensor of the fluids and
metric perturbations can be found in Refs.@12# or @9# and in
Appendix A.

Subscripts and superscriptsg ,c, b, or n denote the radia-
tion, CDM, baryon or neutrino fluids, respectively.

Einstein’s equations yield the following relation for th
matter part of the Bardeen potentials@13#:

Fm5
4pGa2

k2 FrgDg
(g)1rcDg

(c)1rbDg
(b)1rnDg

(n)

2$4rg13rc13rb14rn%F

13
ȧ

a
k21H 4

3
rgVg1rcVc1rbVb1

4

3
rnVnJ G ,

~17!

Cm52Fm2
8pGa2

k2 ~pgPg1pnPn!. ~18!

Note the appearance ofF5Fs1Fm on the right-hand side
of Eq. ~17!. Using the decompositions~15!,~16! we can solve
for F and C in terms of the fluid variables and the seed
With the help of Friedmann’s equation, Eqs.~17! and ~18!
can then be written in the form

F5
1

2

3
~ ȧ/a!22k214xg13xc13xb14xn

3Fxgs01xcDg
(c)1xDg

(b)1xnn0

1
ȧ

a
k21~4xgVg13xcVc13xbVb14xnVn!

1
2

3
k2S ȧ

a
D 22

FsG , ~19!

C52F22e f p2S ȧ

a
D 2

k22~xgPg1xnPn!.

~20!
5-3
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Here we have normalized the scale factor such thaa
51 today. The density parametersVd always represent the
values of the corresponding density parameter today~Here d

stands forc , g , b, or n .) To avoid any confusion, we hav
introduced the variablesxd for the time-dependent densit
parameters:

xg,n5
Vg,n

Vg1Vca1Vba1Vn1VLa4
, ~21!

xc,b5
Vc,ba

Vg1Vca1Vba1Vn1VLa4
. ~22!

The fluid variables of photons and neutrinos are obtai
by integrating the scalar brightness perturbations, which
denote byMS(t,k,n) andNS(t,k,n), respectively, over di-
rections,n:

Dg
(g)5

1

4pEMS dV5s0 , ~23!

Vg5
3i

16pkE ~k•n!MS dV ~24!

5
3

4
s1

(S) , ~25!

Pg5
29

8pk2E S ~k•n!22
1

3
k2DMS dV

~26!

53s2
(S) , ~27!

Dg
(n)5

1

4pE NS dV5n0 , ~28!

Vn5
3i

16pkE ~k•n!NS dV ~29!

5
3

4
n1

(S) , ~30!

Pn5
29

8pk2E S ~k•n!22
1

3
k2DNS dV

~31!

53n2
(S) . ~32!

A systematic definition of the modess j and n j is given in
the next subsection.

The equation of motion for CDM is given by energy an
momentum conservation,

Ḋg
(c)1kVc50, ~33!

V̇c1S ȧ

a
DVc5kC. ~34!
12300
d
e

During the very tight coupling regime,z@zdec, we may ne-
glect the baryon contribution in the energy momentum c
servation of the baryon-photon plasma. We then have

Ḋg
(g)1

4

3
kVg50, ~35!

V̇g2k
1

4
Dg

(g)5k~C2F!, ~36!

Dg
(b)5

3

4
Dg

(g) , ~37!

Vb5Vg . ~38!

The conservation equations for neutrinos are not very use
since they involve anisotropic stresses and thus do not cl
At the temperatures of interest to us,T!1 MeV, neutrinos
have to be evolved by means of the Liouville equation wh
we discuss in the next subsection.

Once the baryon contribution to the baryon-photon flu
becomes non-negligible, and the imperfect coupling of p
tons and baryons has to be taken into account~for a 1%
accuracy of the results, the redshift corresponding to
epoch is aroundz;107), we evolve also the photons with
Boltzmann equation. The equation of motion for the baryo
is then

Ḋg
(b)1kVb50, ~39!

V̇b1S ȧ

a
DVb5kC2

4sTneVg

3Vb
@Vg2Vb#. ~40!

The last term in Eq.~40! represents the photon drag forc
induced by nonrelativistic Compton scattering,sT is the
Thomson cross section, andne denotes the number densit
of free electrons. At very early times, whensTne@1/t, the
‘‘Thomson drag’’ just forcesVb5Vg , which together with
Eqs.~35! and ~39! implies Eq.~37!.

An interesting phenomenon often called ‘‘compensatio
can be important on super horizon scales,kt!1. If we ne-
glect anisotropic stresses of photons and neutrinos and
into account thatO(Dg)5O(ktV) andO(V)5O(ktC) for
kt!1, Eqs.~19! and ~20! lead to

O~F!5O„~kt!2Fs22e f p…. ~41!

Hence, if anisotropic stresses are relatively small,e f p

!Fs , the resulting gravitational potential on super horiz
scales is much smaller than the one induced by the se
alone. One must be very careful not to over interpret t
‘‘compensation’’ which is by no means related to causali
but is due to the initial conditionDg ,V→ t→00. A thorough
discussion of this issue is found in Refs.@13–15#. As we
shall see in the next section, for texturesFs and e f p are
actually of the same order. Therefore, Eq.~41! does not lead
to compensation, but it indicates that CMB anisotropies
very large scales~Sachs-Wolfe effect! are dominated by the
amplitude of seed anisotropic stresses.
5-4
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The quantities which we want to calculate and comp
with observations are the CDM density power spectrum
the peculiar velocity power spectrum today

P~k!5^uDg
(c)~k,t0!u2& ~42!

and

Pv~k!5^uVc~k,t0!u2&. ~43!

Here^•••& denotes an ensemble average over models. N
that even thoughDg and V are gauge-invariant quantitie
which do not agree with, e.g., the corresponding quantitie
synchronous gauge, this difference is very small on subh
zon scales~of order 1/kt) and can thus be ignored.

On subhorizon scales the seeds decay, and CDM pe
bations evolve freely. We then have, like in inflationa
models,

Pv~k!5H0
2Vm

1.2P~k!k22. ~44!

2. Vector perturbations

Vector perturbations of the geometry have two degree
freedom which can be cast in a divergence free vector fi
A gauge-invariant quantity describing vector perturbations
the geometry isS, a vector potential for the shear tensor
the $t5const% hypersurfaces. As for scalar perturbations,
split the contribution toS into a source term coming from
the seeds given in the previous subsection, and a part du
the vector perturbations in the fluid

S5Ss1Sm. ~45!

The perturbation of Einstein’s equation forSm is @9#

k2Sm56S ȧ

a
D 2F4

3
xgvg1xcvc11xbvb1

4

3
xnvnG .

~46!

Here vd is the fluid vorticity which generates the vect
type shear of the equal time hyper-surfaces~see Appendix
A!. By definition, vector perturbations are transverse,

S•k5Sm•k5Ss•k5vd•k50. ~47!

It is interesting to note that vector perturbations in t
geometry do not induce any vector perturbations in the CD
~up to unphysical gauge modes!, since no geometric term
enter the momentum conservation for CDM vorticity,

v̇c1
ȧ

a
vc50,

hence we may simply setvc50. This is also the case for th
tightly coupled baryon radiation plasma. But as soon
higher moments in the photon distribution build up, they fe
the vector perturbations in the geometry~see next section!
and transfer it onto the baryons via the photon drag forc
12300
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v̇b1S ȧ

a
D vb5

4sTneVg

3Vb
@vg2vb#. ~48!

The photon vorticity is given by an integral over the vect
type photon brightness perturbation,MV ,

vg5
1

4pE nMV dV, ~49!

where the integral is over photon directions,n. In terms of
the development presented in the next section fork pointing
in the z direction, we obtain

vg5~s1,2
(V)1s1,0

(V) , s2,2
(V)1s2,0

(V) , 0!. ~50!

Equivalently, we have for neutrinos

vn5
1

4pE nNV dV, ~51!

vn5~n1,2
(V)1n1,0

(V) , n2,2
(V)1n2,0

(V) , 0!. ~52!

The vector equations of motion for photons and neutrinos
discussed in the next section.

3. Tensor perturbations

Metric perturbations also have two tensorial degrees
freedom, gravity waves, which are represented by the
helicity states of a transverse traceless tensor~see Appendix
A!. As before, we split the geometry perturbation into a p
induced by the seeds and a part due to the matter fluids

Hi j 5Hi j
(s)1Hi j

(m) . ~53!

The only matter perturbations which generate gravity wa
are tensor-type anisotropic stresses which are present in
photon and neutrino fluids. The perturbation of Einstein
equation yields

Ḧ i j
(m)12S ȧ

a
D Ḣ i j

(m)1k2Hi j
(m)5S ȧ

a
D 2

~xgP i j
(g)1xnP i j

(n)!.

~54!

The relation between the tensor brightness perturbat
MT , NT and the tensor anisotropic stresses,P i j

(g) andP i j
(n) is

given by

P i j
(g)5

3

4pE S ninj2
1

3
d i j DMT dV, ~55!

P i j
(n)5

3

4pE S ninj2
1

3
d i j DNT dV. ~56!

In terms of the development presented in the next section
k pointing in thez direction, we have

P11
(g)52P22

(g)5
6

35
s1,41

4

7
s1,21

2

5
s1,0 , ~57!
5-5
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P12
(g)5P21

(g)5
6

35
s3,41

4

7
s3,21

2

5
s3,0 , ~58!

P11
(n)52P22

(n)5
6

35
n1,41

4

7
n1,21

2

5
n1,0 ,

~59!

P12
(n)5P21

(n)5
6

35
n3,41

4

7
n3,21

2

5
n3,0 . ~60!

We find that the effect of anisotropic stresses of photons
neutrinos is less than 1% in the final result, and hence
have neglected them.

C. The Boltzmann equation

When particle interactions are less frequent, the fluid
proximation is not sufficient, and we have to describe
given particle species by a Boltzmann equation, in orde
take into account phenomena such as collisional and di
tional dispersion. In the case of massless particles suc
massless neutrinos or photons, the Boltzmann equation
be integrated over energy, and we obtain an equation for
brightness perturbation which depends only on momen
directions@9#. As before, we split the brightness perturbati
into a scalar, vector and tensor component, and we dis
the perturbation equation of each of them separately,2

M5MS1MV1MT ~61!

and

N5NS1NV1NT . ~62!

The functionsM andN depend on the wave vectork, the
photon ~neutrino! direction n and conformal timet. Linear
polarization of photons induced by Compton scattering
described by the variableM (Q) ~the Stokes parameterQ)
depending on the same variables. We choose for eack
mode a reference system with thez axis parallel tok. For
scalar perturbations we achieve in this way azimuthal sy
metry — the left-hand side of the Boltzmann equation a
therefore also the brightnessM depend only onm5( k̂•n)
and can be developed in Legendre polynomials. The l
hand side of the Boltzmann equation for vector and ten
perturbations also determines the azimuthal dependenc
M for vector and tensor perturbations, as we shall see
detail.

2We could in principle add higher spin components to the dis
bution functions. But they are not seeded by gravity and since p
tons and neutrinos interact at high enough temperatures, they
also absent in the initial conditions.
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We expand the brightnessMS(k,n,t) in the form:

MS~n,k,t !5 (
l 50

`

~2 i ! l ~2l 11!s l
(S)~ t,k!Pl ~m!,

~63!

wherePl denotes the Legendre polynomial of orderl and
s l

(S) is the associated multipole moment. An analogous
composition also applies to the amplitude of polarization
isotropyM S

Q(n,k,t), and we denote the associated multipo
moment byql

(S) .
The Boltzmann equation for scalar perturbations in

photon brightness and polarization is@9,16#

ṀS1 imkMS54imk~F2C!1asTne

3FDg
(g)2MS24imVb2

1

2
P2~m!QG ,

~64!

ṀS
(Q)1 imkM S

(Q)5asTneF2M S
(Q)1

1

2
@12P2~m!#QG ,

~65!

where

Q5s2
(S)1q0

(S)1q2
(S) . ~66!

The first term on the right-hand side of Eq.~64! represents
the gravitational interaction~photons without collisions
move along lightlike geodesics of the perturbed geomet!,
while the term in square brackets is the collision integral
nonrelativistic Compton scattering.

Inserting expansion~63! into Eqs.~64! and~65! using the
standard recursion relations for Legendre polynomials,
obtain the following series of coupled equations:

ṡ0
(S)1ks1

(S)50, ~67!

ṡ1
(S)2

k

3
@s0

(S)22s2
(S)#5

4

3
k~C2F!1asTneF4

3
Vb2s1

(S)G ,
~68!

ṡ2
(S)2

k

5
@2s1

(S)23s3
(S)#52asTneFs2

(S)2
1

10
QG , ~69!

ṡ l
(S)2

k

2l 11
@ l s l 21

(S) 2~ l 11!s l 11
(S) #

52asTnes l
(S) , for l >3. ~70!

and

q̇l
(S)2

k

2l 11
@ l ql 21

(S) 2~ l 11!ql 11
(S) #

51asTneF2ql
(S)1

1

2
QS d l 01

1

5
d l 2D G . ~71!

-
o-
are
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For the neutrinos we obtain the same equations just w
out collision integral

NS~n,k,t !5 (
l 50

`

~2 i ! l ~2l 11!n l
(S)~ t,k!Pl ~m!, ~72!

and

ṅ l
(S)2

k

2l 11
@ l n l 21

(S) 2~ l 11!n l 11
(S) #5

4

3
k~C2F!d l 1 .

~73!

We are interested in the power spectrum of CM
anisotropies which is defined by

K dT

T
~n!

dT

T
~n8!L u(n•n85cosq)

5
1

4p (
l

~2l 11!Cl Pl ~cosq!. ~74!

Here ^•••& denotes the ensemble average over mod
We assume that an ‘‘ergodic hypothesis’’ is satisfied and
can interchange spatial and ensemble averages. The pro
that actual observations can average at best over one ho
volume is known under the name ‘‘cosmic variance.’’ It s
verely restricts the accuracy with which, for example, lo
multipoles of CMB anisotropies observed in our horizon v
ume can be predicted for a given model.

Using the addition theorem of spherical harmonics, o
obtains, with the Fourier transform conventions adop
here,~for details see Appendix B!

Cl
(S)5

1

8pE k2 dk^us l
(S)~ t0 ,k!u2&, ~75!

where the superscript(S) indicates that Eq.~75! gives the
contribution fromscalar perturbations.

2. Vector perturbations

Vector perturbations are very small on angular scales
responding tol *500, where Compton scattering and th
polarization become relevant. We, therefore, neglect po
ization in this case. The Boltzmann equation for vector p
turbations then reads

ṀV1 ik•nMV524i ~n•k!~n•S!1asTne

3F4~n•vb!2MV1
1

2
ni j M i j G , ~76!

where

ni j [ninj2
1

3
d i j

and

Mi j 5
3

8pE ni jMVdV.
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We use coordinates for whichk is parallel to thez axis.
Then

S5~S1 ,S2,0!, v5~v1 ,v2 ,0!

and

n5~A12m2 cosw,A12m2 sinw,m!.

With the ansatz

MV~k,n,t !5A12m2@M 1
(V)~k,m,t !cosw

1M 2
(V)~k,m,t !sinw#, ~77!

the equations forM1,2 decouple and the right-hand side
Eq. ~76! depends only onm. Like for scalar perturbations, we
expandM1,2 in Legendre polynomials

M e
(V)~m,k,t !5 (

l 50

`

~2 i ! l ~2l 11!se,l
(V)~ t,k!Pl ~m!,

~78!

wheree51,2.
Equation~76! then leads to

Ṁe
(V)1 imkM e

(V)524imkSe1asTne

3F4ve
(b)2M e

(V)2 im
3

10
~se,1

(V)1se,3
(V)!G .

~79!

With Eq. ~78!, this can be expressed as the following set
coupled equations for the variablesse,l

(V) :

ṡe,0
(V)1kse,1

(V)5asTne@4ve
(b)2se,0

(V)#, ~80!

ṡe,1
(V)2

k

3
@se,0

(V)22se,2
(V)#

51
4

3
kSe2asTneF 9

10
se,1

(V)2
1

10
se,3

(V)G , ~81!

and

ṡe,l
(V)2

k

2l 11
@ l se,l 21

(V) 2~ l 11!se,l 11
(V) #

52asTnese,l
(V) for l >2. ~82!

For neutrino perturbations we obtain the same equati
up to the collision term. We repeat them here for comple
ness.

ṅe,l
(V)2

k

2l 11
@ l ne,l 21

(V) 2~ l 11!ne,l 11
(V) #51

4

3
Sekd l 1 .

~83!

As for scalar perturbations, the CMB anisotropy pow
spectrum is obtained by integration overk space. One finds
~see Appendix B!
5-7
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Cl
(V)5

l ~ l 11!

8p E k2 dk
^us1,l 11

(V) ~ t0 ,k!1s1,l 21
(V) ~ t0 ,k!u2&

~2l 11!2 .

~84!

Here the fact that there are two equal contributions from b
polarization states,e51,2 ~statistical isotropy!, is taken care
of.

3. Tensor perturbations

For tensor perturbations, and a wave vectork pointing
into the 3 direction, the only nonvanishing components
the perturbed metric tensor areH1152H225H1 and H12
5H215H3 . Neglecting polarization, the Boltzmann equ
tion for tensor perturbations is@9#

ṀT1 ikmMT524ninj Ḣ i j 2asTneFMT2
1

2
ni j M i j G .

~85!

With the ansatz

MT~k,n,t !5~12m2!@M1
(T)~k,m,t !cos 2w

1M3
(T)~k,m,t !sin 2w#, ~86!

the two modesM1,3
(T) decouple completely and the righ

hand side of Eq.~85! depends only onm. We can then ex-
pand the modes in terms of Legendre polynomials

M e
(T)~m,k,t !5 (

l 50

`

~2 i ! l ~2l 11!se,l
(T) ~ t,k!Pl ~m!,

~87!

wheree51,3. Equation~85! now becomes

Ṁe
(T)1 imkM e

(T)

54Ḣe1asTneF2M e
(T)1

1

10
se,0

(T)1
1

7
se,2

(T)1
3

70
se,4

(T)G ,
~88!

leading to the series of coupled equations for the coefficie
se,l

(T)

ṡe,0
(T)1kse,1

(T)54Ḣe1asTneF2
9

10
se,0

(T)1
1

7
se,2

(T)1
3

70
se,4

(T)G ,
~89!

ṡe,l
(T) 2

k

2l 11
@ l se,l 21

(T) 2~ l 11!se,l 11
(T) #

52asTnese,l
(T) , for l >1. ~90!

As before, the CMB anisotropy power spectrum is o
tained by integration overk space~see Appendix B!:

Cl
(T)5

1

8p

~ l 12!!

~ l 22!! E k2 dk
^uS l

(T)u2&
~2l 11!2 , ~91!

where
12300
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S l
(T)5

se,l 22
(T)

2l 21
2

2~2l 11!se,l
(T)

~2l 21!~2l 13!
1

se,l 12
(T)

2l 13
. ~92!

D. Eigenvector expansion of the source correlators

In the previous subsections we have derived a closed
tem of linear differential equations with source terms. T
source terms are linear combinations of the seed energy
mentum tensor which is determined by numerical simu
tions. A given realization of our model has random initi
conditions; the seed energy momentum tensor is a ran
variable. In principle we could calculate the induced rand
variables Dg

(c)(k,t0), Vc(k,t0), s l
(d)(k,t0), etc. for 100–

1000 realizations of our model and determine the expecta
valuesP(k), Pv(k), and Cl by averaging. This procedur
has been adapted in Ref.@17# for a seed energy momentum
tensor modeled by a few random parameters.

In the case of a seed energy momentum tensor com
entirely from numerical simulations, this procedure is n
feasible. The first and most important bottleneck is the
namical range of the simulations which is about 40 in o
largest (400)3 simulation, taking around 5 h CPU time on a
NEC SX-4 supercomputer. To determine theCl ’s for 2
<l <1000 we need a dynamical range of about 10 000 ink-
space~this meanskmax/kmin;10 000, wherekmax andkmin are
the maximum and minimum wave numbers which contrib
to theCl ’s within our accuracy (;10%).

With brute force, this problem is thus not tractable wi
present or near future computing capabilities. But there a
series of theoretical observations which reduce the prob
to a feasible one. For each wave vectork given, we have to
solve a system of linear perturbation equations with rand
sources,

DX5S. ~93!

HereD is a time-dependent linear differential operator,X is
the vector of our matter perturbation variables specified
the previous subsections~photons, CDM, baryons, and neu
trini; total length up to 2000!, andS is the random source
term, consisting of linear combinations of the seed ene
momentum tensor.

For the given initial conditions, this equation can b
solved by means of a Green’s function~kernel!, G(t,t8), in
the form

Xj~ t0 ,k!5E
t in

t0
dt Gj l ~ t0 ,t,k!Sl~ t,k!. ~94!

We want to compute power spectra or, more generally, q
dratic expectation values of the form

^Xj~ t0 ,k!Xl* ~ t0 ,k!&,

which, according to Eq.~94! are given by
5-8
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 59 123005
^Xj~ t0 ,k!Xl* ~ t0 ,k!&5E
t in

t0
dt Gjm~ t0 ,t,k!E

t in

t0
dt8 Gln* ~ t0 ,t8,k!

3^Sm~ t,k!Sn* ~ t8,k!&. ~95!

The only information about the source random varia
which we really need in order to compute power spectra
therefore, the unequal time two-point correlators

^Sm~ t,k!Sn* ~ t8,k!&. ~96!

This nearly trivial fact has been exploited by many worke
in the field, in Refs.@18,19#, then in Ref.@20# where the
decoherence of models with seeds has been discovered
later in Refs.@5,21,22,13# and others.

To solve the enormous problem of dynamical range,
make use of ‘‘scaling,’’ statistical isotropy and causality.

We call seeds scaling if their correlation functionsCmnrl

defined by

Qmn~k,t !5M2umn~k,t !, ~97!

Cmnrl~k,t,t8!5^umn~k,t !url* ~k,t8!& ~98!

are scale free; i.e., the only dimensional parameters inCmnrl

are the variablest, t8, and k themselves. Up to a certai

FIG. 1. The two-point correlation functionC11(z,r )
5k4Att8^Fs(k,t)Fs* (k,t8)& is shown. Panel~a! represents the re
sult from numerical simulations of the texture model; panel~b!
shows the large-N limit. For fixed r the correlator is constant fo
z,1 and then decays. Note also the symmetry underr→1/r .
12300
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number of dimensionless functionsFn of z5kAtt8 and r
5t/t8, the correlation functions are then determined by
requirement of statistical isotropy, symmetries, and by th
dimension. Causality requires the functionsFn to be analytic
in z2. A more detailed investigation of these arguments a
their consequences is presented in Ref.@4#. There we show
that statistical isotropy and energy momentum conserva
reduce the correlators~98! to five such functionsF1 to F5.

In cosmic string simulations, energy and momentum
not conserved. Strings lose their energy by radiation
gravitational waves and/or massive particles. In this case
functions ofz2 andr are needed to describe the unequal tim
correlators@23#.

Since analytic functions generically are constant for sm
argumentsz2!1, Fn(0,r ) actually determinesFn for all val-
ues of k with z5kAtt8&0.5. Furthermore, the correlatio
functions decay inside the horizon and we can safely
them to zero forz*40 where they have decayed by abo
two orders of magnitude~see Figs. 1–11!. Making use of
these generic properties of the correlators, we have redu
the dynamical range needed for our computation to about
which can be attained with the (256)3 to (512)3 simulations
feasible on present supercomputers.

For thescalar part we need the correlators

^Fs~k,t !Fs* ~k,t8!&5
1

k4Att8
C11~z,r !, ~99!

FIG. 2. The same as Fig. 1 but forC22(z,r )
5k4Att8^Cs(k,t)Cs* (k,t8)&.
5-9
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^Fs~k,t !Cs* ~k,t8!&5
1

k4Att8
C12~z,r !, ~100!

^Cs~k,t !Cs* ~k,t8!&5
1

k4Att8
C22~z,r !, ~101!

as well asC21(z,r )5C12* (z,1/r ). The functionsCi j are ana-
lytic in z2. The prefactor 1/(k4Att8) comes from the fact tha
the correlation functionŝf r f r* &, k4^ f p f p* &, and^ f v f v* & have
to be analytic and from dimensional considerations~see Ref.
@4#!.

The functionsCi j are shown in Figs. 1 to 3. Panels~a! are
obtained from numerical simulations. Panels~b! represent
the same correlators for the large-N limit of global O(N)
models~see@24,22#!.

In Fig. 4 we showCi j (z,r 51), and in Fig. 5 the constan
of the Taylor expansion forCi j is given as a function ofr,
i.e., Ci j (0,r ).

Vectorperturbations are induced byS(s) which is seeded
by w(v). Transversality and dimensional arguments requ
the correlation function to be of the form

^wi
(v)~k,t !wj

(v)* ~k,t8!&5Att8~k2d i j 2kikj !W~z,r !.
~102!

FIG. 3. The unequal time correlator, uC12(z,r )u
5k4Att8u^Fs(k,t)Cs* (k,t8)&u is shown. Note that ther→1/r sym-
metry is lost in this case.
12300
e

Again, as a consequence of causality, the functionW is ana-
lytic in z2 ~see@4#!. The functionW(z,r ) is plotted in Fig. 6.
In Figs. 7 and 8 we graphW(z,1) andW(0,r ).

Symmetry, transversality, and tracelessness, together

FIG. 4. The correlatorsCi j (z,1) are shown. The solid, dashe
and dotted lines representC22, C11, and uC12u, respectively. Pane
~a! is obtained from numerical simulations of the texture model a
panel~b! shows the large-N limit. A striking difference is that the
large-N value for uC12u is relatively well approximated by the per
fectly coherent resultAuC11C22u, while the texture curve foruC12u
lies nearly a factor 10 lower.

FIG. 5. The correlatorsCi j (0,r ) are shown in the same line
styles as in Fig. 4, but forz50 as function ofr 5t8/t. The stronger
decoherence of the texture model is even more evident here.
5-10
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FIG. 6. The vector correlatorW(z,r ) is shown. The texture
simulations, panel~a!, and the large-N limit, panel ~b!, give very
similar results.

FIG. 7. The vector correlatorW(z,1) is plotted. The solid line
represents the texture simulations and the dashed line is the larN
result. Up to a slight difference in amplitude, the two results
very similar.
12300
-
e

FIG. 8. The vector correlatorW(0,r ) is shown. The solid line
represents the texture simulations and the dashed line is the larN
result. Also here, the two results are very similar. The ‘‘wings
visible in the texture curve are probably not due to a resolut
problem but the beginning of oscillations.

FIG. 9. As Fig. 6, but for the tensor source functionT(z,r ).
5-11
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statistical isotropy require thetensorcorrelator to be of the
form ~see@4#!

^t i j
(p)~ t !t lm

(p)* ~ t8!&5
1

Att8
T~z,r !@d i l d jm1d imd j l 2d i j d lm

1k22~d i j klkm1d lmkikj2d i l kjkm

2d imklkj2d j l kikm2d jmklki !

1k24kikjklkm#. ~103!

The functionsT(z,r ) as well asT(z,1) andT(0,r ) are shown
in Figs. 9–11.

Clearly, all correlations between scalar and vector, sc
and tensor, as well as vector and tensor perturbations ha
vanish.

The scalar source correlation matrixC and the functions
W andT can be considered as kernels of positive Hermit
operators in the variablesx5kt5zr1/2 and x85kt85z/r 1/2,
which can be diagonalized:

Ci j ~x,x8!5(
n

ln
(S)v in

(S)~x!v jn
(S)* ~x8!, ~104!

W~x,x8!5(
n

ln
(V)vn

(V)~x!vn
(V)* ~x8!, ~105!

T~x,x8!5(
n

ln
(T)vn

(T)~x!vn
(T)* ~x8!, ~106!

where the series (v in
(S)), (vn

(V)), and (vn
(T)) are orthonormal

series of eigenvectors~ordered according to the amplitude
the corresponding eigenvalue! of the operatorsC, W, andT,
respectively, for a given weight functionw. We then have3

3Here the assumption that the operatorsC, W, andT are trace class
enters. This hypothesis is verified numerically by the fast conv
gence of the sums~104!–~106!.

FIG. 10. As Fig. 7, but for the tensor source functionT(z,1).
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to

n E Ci j ~x,x8!v jn
(S)~x8!w~x8!dx85ln

(S)v in
(S)~x!, ~107!

E W~x,x8!vn
(V)~x8!w~x8!dx85ln

(V)vn
(V)~x!,

~108!

E T~x,x8!vn
(T)~x8!w~x8!dx85ln

(T)vn
(T)~x!. ~109!

The eigenvectors and eigenvalues depend on the we
function w which can be chosen to optimize the speed
convergence of the sums~104!–~106!. In our models we
found that scalar perturbations typically need 20 eigenv
tors whereas vector and tensor perturbations need 5
eigenvectors for an accuracy of a few percent~see Fig. 12!.

Inserting Eqs.~104!–~106! in Eq. ~95!, leads to

^Xi~k,t0!Xj* ~k,t0!&5(
n

lnXi
(n)~kt0!Xj

(n)* ~kt0!,

~110!

whereXi
(n)(t0) is the solution of Eq.~93! with deterministic

source termv i
(n) ,

Xj
(n)~ t0 ,k!5E

t in

t0
dt G~ t0 ,t,k! j l v l

(n)~x,k!. ~111!

For the CMB anisotropy spectrum this gives

Cl 5(
n

nS

ln
(S)Cl

(Sn)1(
n

nV

ln
(V)Cl

(Vn)1(
n

nT

ln
(T)Cl

(Tn) .

~112!

Cl
(dn) is the CMB anisotropy induced by the determinis

sourcevn , andnd is the number of eigenvalues which hav
to be considered to achieve good accuracy.

Instead of averaging over random solutions of Eq.~94!,
we can thus integrate Eq.~94! with the deterministic source
term v (n) and sum up the resulting power spectra. The co
putational requirement for the determination of the pow
spectra of one seed model with a given source term is t

r-

FIG. 11. As Fig. 8, but for the tensor source functionT(0,r ).
5-12
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on the order ofnS inflationary models. This eigenvecto
method has been developed in Ref.@25#.

A source is called totally coherent@26,13# if the unequal
time correlation functions can be factorized. This means
only one eigenvector is relevant. A simple totally cohere
approximation, which, however, misses some import
characteristics of defect models, can be obtained by rep
ing the correlation matrix by the square root of the produc
equal time correlators,

^Si~ t !Sj* ~ t8!&→6A^uSi~ t !u2&^uSj~ t8!u2&. ~113!

This approximation is exact if the source evolution is line
Then the differentk modes do not mix and the value of th
source term at fixedk at a later time is given by its value a
initial time multiplied by some transfer function,S(k,t)
5S(k,t in)T(k,t,t in). In this situation, Eq.~113! becomes an
equality and the model is perfectly coherent. Decoherenc
due to the nonlinearity of the source evolution which induc
a ‘‘sweeping’’ of power from one scale into another. Diffe
ent wave numbersk do not evolve independently.

It is interesting to note that the perfectly coherent appro
mation, Eq.~113!, leaves open a choice of sign which has
be positive if i 5 j , but which is undetermined otherwis
According to the Schwarz inequality the correlat
^Si(t)Sj* (t8)& is bounded by

FIG. 12. The sum of the first few eigenfunctions ofT(x,x) is
shown for two different weight functions,~a! logarithmic,w51/x
and~b! linear,w51. The first~long dashed!, first and second~short
dashed!, first ten ~dotted! and first 30~solid! eigenfunctions are
summed up. The open circles represent the full correlation funct
Clearly, the eigenfunctions obtained by linear weighting conve
much faster. Here we only show the equal time diagonal of
correlation matrix, but the same behavior is also found in theCl

power spectrum which is sensitive to the full correlation matrix
12300
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2A^uSi~ t !u2&^uSj~ t8!u2&<^Si~ t !Sj* ~ t8!&

<A^uSi~ t !u2&^uSj~ t8!u2&.

~114!

Therefore, for scales and/or variables for which the Gre
function is not oscillating~e.g., Sachs Wolfe scales! the full
result always lies between the ‘‘anticoherent’’~minus sign!
and the coherent result. We have verified this behavior
merically.

The first evidence that Doppler peaks are suppresse
defect models has been obtained in the perfectly cohe
approximation in Ref.@27#. In Fig. 13 we show the contri-
butions to theCl ’s from more and more eigenvectors.
perfectly coherent model has only one nonzero eigenval

A comparison of the full result with the totally cohere
approximation is presented in Fig. 14. There one sees
decoherence does smear out the oscillations present in
fully coherent approximation, and does somewhat damp
amplitude. Decoherence thus prevents the appearance
series of acoustic peaks. The absence of power on this a
lar scale, however, is not a consequence of decoherence
is mainly due to the anisotropic stresses of the source wh
lead to perturbations in the geometry inducing large sc
Cl ’s ~Sachs Wolfe!, but not to density fluctuations. Larg
anisotropic stresses are also at the origin of vector and te
fluctuations. Our results are in agreement with Refs.@27# and
@5# but we disagree with Ref.@28#, which has found acoustic
peaks with an amplitude of about six in the coherent appro
mation.

In the real universe, perfect scaling of the seed correla
functions is broken by the radiation–matter transition, wh
takes place at the time of equal matter and radiation,teq

.20h22Vm
21/2 Mpc. The time teq is an additional scale

which enters the problem and influences the seed correla
Only in a purely radiation- or matter-dominated universe
the correlators strictly scale invariant. This means actua
that thek dependence of the correlatorsC, W, andT cannot
really be cast into a dependence onx andx8, but that these
functions depend ont, t8, andk in a more complicated way
We have to calculate and diagonalize the seed correlator
each wave numberk separately and the huge gain of dynam
cal range is lost as soon as scaling is lost.

In the actual case at hand, however, the deviation fr
scaling is weak, and most of the scales of interest to us e
the horizon only in the matter-dominated regime. The beh
ior of the correlators in the radiation-dominated era is
minor importance. To solve the problem, we calculate
correlator eigenvalues and eigenfunctions twice, in a p
radiation and in a pure matter universe and we interpolate
source term from the radiation to the matter epoch. Deno
by lm ,vm and l r ,v r a given pair of eigenvalue and eigen
vector in a matter and radiation universe, respectively,
choose as our deterministic source function

v~ t !5y~ t !Al rv r~kt!1@12y~ t !#Almvm~kt! ~115!

with, e.g.,

n.
e
e
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y~ t !5
teq

t1teq
or y~ t !5exp~2t/teq!, ~116!

or some other suitable interpolation function. In Fig. 15
show the results for scalar, vector, and tensor perturbati

FIG. 13. The scalar, vector, and tensor contributions for
texture model of structure formation are shown. The dashed l
show the contributions from single eigenfunctions while the so
line represents the sum. Note that the single contributions to
scalar and tensor spectrum do show oscillations which are, h
ever, washed out in the sum.~Vector perturbations do not obey
wave equation and thus do not show oscillations.!
12300
s,

respectively, using the purely radiation-dominated era a
from interpolated source terms.

Clearly the effect of the radiation-dominated early state
the universe is relatively unimportant for the scales cons
ered here. The difference between the pure matter era re
and the interpolation is barely visible and thus not shown
the plot. This seems to be quite different for cosmic strin
where the fluctuations in the radiation era are about twice
large as those in the matter era@29#. The radiation-dominated
era has very little effect on the key results which we a
reporting here; namely the absence of acoustic peaks an
missing power on very large scales.

In models with cosmological constant, there is actually
second break of scale invariance at the matter-L transition.
There we proceed in the same way as outlined above. S
defects cease to scale and disappear rapidly in an expo
tially expanding universe, the eigenvalues for t
L-dominated universe all vanish.

E. Initial conditions and numerical implementation

We numerically integrate our system of equations fro
redshift z5107 up to the present with the goal to have o
percent accuracy up tol ;1000, for a given source term. W
use the integration method described in Refs.@16# and @30#.
We sample the interval25< log10kh21 Mpc<20.75 with
minimum step sizeD log1050.04, for the scalar case and u
a smoothing algorithm to suppress the high-frequency s
pling noise. In order to save computing time, we start
integration of thes l (k)’s with 10 harmonics, adding new
harmonics in the course of the integration. We find that ty
cally ;40 harmonics are sufficient for smallk values
(log10kh21 Mpc&23), while for higher k
(log10kh21 Mpc*21), up to ;1500 harmonics for the
scalar case,;200 for the tensor case are needed to achi
the desired accuracy. Including more than 40 harmonics
neutrinos corrects our results by less than 1%. We obtainF
algebraically using Eq.~19!. With this choice of variables we
avoid the numerical difficulties present in conformal gau
@31#, whereF is determined by numerical integration.

e
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e
-

-
nt

p-
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ust
tly
FIG. 14. TheCl power spectrum for the tex
ture scenario is shown in the perfectly cohere
approximation~top panel! and in the full eigen-
function expansion. Even in the coherent a
proximation, the acoustic peaks are not high
than the Sachs-Wolfe plateau. Decoherence j
washes out the structure but does not significan
damp the peaks.
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The abundance of free electrons,ne , is calculated follow-
ing a standard recombination scheme@32# for H and 4He, for
a helium abundance by mass of 23%. At high redshifz
>105, the Thomson opacity is very large, and photons a
baryons are tightly coupled. Because of large Thomson d
term, Eqs.~40! and ~48! become stiff and difficult to solve
numerically. Therefore, in this limit we follow the method o
Ref. @33#, which is accurate to second order in (sTne)

21 ~see
also @31#!. Assuming a standard inflationary model, we o
tain a single scalar power spectrum in few minutes (;30 s
for the tensor case! on a PC class workstation, which differ
by less than 1% from theCl ’s computed with other code
@34#,@31#.

Summing the scalarCl ’s from the largest 15 eigenvector
~five in the tensor case, ten for vector perturbations! typically
reproduces the total sum to better than 5%~see Fig. 13!.

III. THE NUMERICAL SIMULATIONS

As in previous work@7#, we consider a spontaneous
broken scalar field with O(N) symmetry. We use the
s-model approximation, i.e., the equation of motion

hb2~b•hb!b50, ~117!

whereb is the rescaled fieldb5f/h.
We do not solve the equation of motion directly, but us

discretized version of the action@35#:

S5E d4x a2~ t !F1

2
]mb•]mb1

l

2
~b221!G , ~118!

wherel is a Lagrange multiplier which fixes the field to th
vacuum manifold ~this corresponds to an infinite Higg
mass!. Tests have shown that this formalism agrees well w
the complementary approach of using the equation of mo
of a scalar field with the Mexican hat potential and sett
the inverse mass of the particle to the smallest scale that
be resolved in the simulation~typically of the order of
10235 GeV), but tends to give better energy momentu
conservation.

FIG. 15. The scalar, vector, tensor, and totalCl power spectrum
is shown from pure radiation sources and for an interpolated sou
While the vector perturbations are somewhat higher in the radia
era, scalar and tensor perturbations are higher in the matter era
the sum is nearly unchanged.
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As we cannot trace the field evolution from the unbrok
phase through the phase transition due to the limited dyna
cal range, we choose initially a random field at a comov
time t52Dx. Different grid points are uncorrelated at a
earlier times@36#.

The use of finite differences in the discretized action
well as in the calculation of the energy momentum ten
introduce immediately strong correlations between neighb
ing grid points. This problem manifests itself in an initi
phase of nonscaling behavior, the length of which varies
tween 10Dx and 20Dx, depending on the variable consid
ered. It is very important to use results from the scali
regime only~cf. Fig. 16!.

In order to reduce the time necessary to reach scaling
to improve the overall accuracy, we try to choose the fin
differences in an optimal way. Our current code calculates
values in the center of each cubic cell defined by the latt
The additional smoothing introduced by this improv
energy-momentum conservation by several percent.4

To calculate the unequal time correlator~UTC!, the value
of the observable under consideration is saved once sca
is reached at timetc ~we checked this by using differen
correlation times! and then correlated at all following tim
steps. While there is some danger of contaminating the e
time correlator~ETC!, which contributes most strongly to th
Cl ’s, with nonscaling sources, this method ensures that
constant forkt→0 is determined with maximal precision fo
the ETC’s. This is very important as the constan
Ci j (0,1), W(0,1), andT(0,1) fix the relative size of scalar
vector, and tensor contributions of the Sachs-Wolfe part
severely influence the resultingCl ’s. In contrast, the CMB
spectrum seems quite stable under small variations of
shape of the UTC’s.

The resulting UTC’s are obtained numerically as fun
tions of the variablesk, t, andtc with t>tc andtc fixed. They
are then linearly interpolated to the required range. We c
struct a Hermitian 1003100 matrix inkt and kt8, with the
values ofkt chosen on a linear scale to maximize the info
mation content, 0<kt<xmax. The choice of a linear scale
ensures good convergence of the sum of the eigenvec
after diagonalization~see Fig. 12!, but still retains enough
data points in the critical region,O(x)51, where the corr-
elators start to decay. In practice we choose as the endp
xmax of the range sampled by the simulation, the value
which the correlator decays by about two orders of mag
tude, typicallyxmax'40. The eigenvectors that are fed in
the Boltzmann code are then interpolated using cubic spl
with the conditionvn(kt)→0 for kt@xmax.

We use several methods to test the accuracy of the si
lation: energy momentum conservation of the defects cod

4Julian Borrill suggested to introduce ‘‘spherical derivatives’’ th
take into account the fact that the vacuum manifold is aN sphere
and therefore curved, and that this curvature should be importa
least in the initial stages of the simulation and for unwinding eve
@37#. So far we have not investigated this idea sufficiently to inclu
it into our production code.

e.
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found to be better than 10% on all scales larger than abo
grid units, as is seen in Fig. 17. A comparison with the ex
spherically symmetric solution in nonexpanding space@35#
shows very good agreement.

The resulting CMB spectrum on Sachs-Wolfe scales
consistent with the line of sight integration of Ref.@7#. Fur-
thermore, the overall shape and amplitude of the uneq
time correlators are quite similar to those found in the a
lytic large-N approximation@38,22,4# ~see Figs. 1–11!. The
main difference of the large-N approximation is that there
the field evolution, Eq.~117!, is approximated by a linea
equation. The nonlinearities in the large-N seeds, which are
due solely to the energy momentum tensor being quadrat
the fields, are much weaker than in the texture model wh
the field evolution itself is nonlinear. Therefore, decohere
which is a purely nonlinear effect, is expected to be mu
weaker in the large-N limit. This is actually the main differ-
ence between the two models as can be seen in Fig. 18

IV. RESULTS AND COMPARISON WITH DATA

A. CMB anisotropies

The Cl ’s for the ‘‘standard’’ global texture model ar
shown in Fig. 14, bottom panel.

Vector and tensor modes are found to be of the sa
order as the scalar component at COBE scales. For the
dard texture model we obtainC10

(S) :C10
(V) :C10

(T);0.9:1.0:0.3,
in good agreement with the predictions of Refs.@21#,
@5,21,17#, and @4#. Due to tensor and vector contribution

FIG. 16. The ETC’s C11(z,1)5^uFu2&(kt) ~panel a! and
C22(z,1)5^uCu2&(kt) ~panel b! are shown for different times. In
grid units the times aret54 ~dashed!, t58 ~dotted!, t512 ~long
dashed!, t516, 20 ~dash dotted, long dash dotted!, and t524
~solid!. ClearlyC22 scales much sooner thanC11. To safely arrive
in the scaling regime one has to wait untilt;16 andCi j (kt50) is
best determined att>20 butkt,1.
12300
4
t

s

al
-

in
re
e
h

e
an-

even assuming perfect coherence~see Fig. 14, top panel!, the
total power spectrum does not increase from large to sm
scales. Decoherence leads to smoothing of oscillations in
power spectrum at small scales and the final power spect
has a smooth shape with a broad, low isocurvature ‘‘hum
at l ;100 and a small residual of the first acoustic peak
l ;350. There is no structure of peaks at small scales.
power spectrum is well fitted by the following fourth-orde
polynomial inx5 log l :

l ~ l 11!Cl

110C10
51.522.6x13.3x221.4x310.17x4.

~119!

The effect of decoherence is less important for the lar
N model, where oscillations and peaks are still visible~see
Fig. 18, bottom panel!. This is due to the fact that the non
linearity of the large-N limit is only in the quadratic energy
momentum tensor. The scalar field evolution is linear in t
limit @38#, in contrast to theN54 texture model. Since de
coherence is inherently due to nonlinearities, we expect i
be stronger for lower values ofN. COBE normalization leads
to e5(0.9260.1)1025 for the large-N limit.

In Fig. 19 we plot the global textureCl power spectrum
for different choices of cosmological parameters. The va
tion of parameters leads to similar effects as in the inflati
ary case, but with smaller amplitude. At small scalesl
>200), theCl ’s tend to decrease with increasingH0 and
they increase when a cosmological constantVL512Vm is
introduced. Nonetheless, the amplitude of the anisotr
power spectrum at highl s remains in all cases on the sam
level like the one at lowl s, without showing the substantia
peak found in inflationary models.H0 and L are the most

FIG. 17. Energy momentum conservation of our numeri
simulations is shown. The lines represent the sum of the te
which has to vanish if energy~solid!, respectively, momentum
~dashed! is conserved, divided by the sum of the absolute value
these terms. The abscissa indicates the wavelength of the pert
tion as fraction of the size of the entire grid.
5-16



t

s
ls
u
is
a
c

et
on

e

ta
te
e
nt

B
ic
t

2
ro
di

i

ies
de-
l
i-

l

tis-
ne

en

t of

on-
ely
re
al,

al

-
re

s

COSMIC MICROWAVE BACKGROUND ANISOTROPIES . . . PHYSICAL REVIEW D 59 123005
promising cosmological parameters which might lead
higher acoustic peaks. Varying the baryon density,Vb , or
adding spatial curvature to the models also induce change
the final spectrum similar to those for inflationary mode
~e.g., the shift in the ‘‘peak’’ position due to changing ang
lar diameter distances if the spatial curvature is nonvan
ing!, but none of them significantly increases the pe
height. We therefore can conclude:the absence of acousti
peaks is a stable prediction of global O(N) models.

The models are normalized to the full CMB data s
which leads to slightly larger values of the normalizati
parametere54pGh2 than pure COBE normalization. In
Table I we give the cosmological parameters and the valu
e for the models shown in Fig. 19.

In order to compare our results with current experimen
data, we have selected a set of 41 different anisotropy de
tions obtained by different experiments, or by the same
periment with different window functions and/or at differe
frequencies. Theoretical predictions and data of CM
anisotropies are usually compared by plotting the theoret
Cl curve along with the CMB measurements converted
band power estimates. We do this in the top panel of Fig.
The data points show an increase in the anisotropies f
large to smaller scales, in contrast to the theoretical pre
tions of the model. This fashion of presenting the data

FIG. 18. Top panel: thef p50 model. Bottom panel: TheCl

power spectrum is shown for the large-N limit ~bold line! and for
the texture model. The main difference is clearly that the largeN
curve shows some acoustic oscillations which are nearly enti
washed out in the texture case.
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surely correct, but lacks information about the uncertaint
in the theoretical model. Therefore, we also compare the
tected mean-square anisotropy,D (Exp) and the experimenta
1-s error, S (Exp)2, directly with the corresponding theoret
cal mean-square anisotropy, given by

D (Th)5
1

4p (
l

~2l 11!Cl Wl , ~120!

where the window functionWl contains all experimenta
details~chop, modulation, beam, etc.! of the experiment.

The theoretical error, in principle, depends on the sta
tics of the perturbations. If the distribution is Gaussian, o
can associate a sample and/or cosmic variance

S (Th)25
1

f

1

8p2 (
l

~2l 11!Wl
2 Cl

2 , ~121!

wheref represents the fraction of the sky sampled by a giv
experiment.

Deviation from Gaussianity leads to an enhancemen
this variance, which can be as large as a factor of 7~see
@39#!. Even if the perturbations are close to Gaussian~which
has been found by simulations on large scales@7,40#!, the
Cl ’s, which are the squares of Gaussian variables, are n
Gaussian. This effect is, however, only relevant for relativ
low l ’s. Keeping this caveat in mind, and lacking a mo
precise alternative, we nevertheless indicate the minim
Gaussian, error calculated according to Eq.~121!. We add a
30% error from the CMB normalization. The numeric
seeds are assumed to be about 10% accurate.

ly

FIG. 19. TheCl power spectrum is shown for different value
of cosmological parameters. In the top panel we chooseVL50,
VCDM50.95, Vb50.05 and varyh. In the bottom panel we fixh
50.5, Vb50.05 and varyVL . We only consider spatially flat uni-
verses,V051.
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R. DURRER, M. KUNZ, AND A. MELCHIORRI PHYSICAL REVIEW D59 123005
In Table II, the detected mean-square anisotropyD (Exp)

with the experimental 1-s error are listed for each exper
ment of our data set. The corresponding sky coverage is
indicated. In Fig. 20 we plot these data points, together w
the theoretical predictions for a texture model withh50.5
andVL50.

We find that, apart from the COBE quadrupole, t
Saskatoon experiment, QMAP, and two points of Pytho
disagree significantly, more than 1s, with our model: Atl
;100 our model disagrees with QMAP but is compatib
with MSAM and PythonV. Aroundl 5200, globalO(N)
models induce substantially lower CMB anisotropies th
those measured in Saskatoon or PythonV.

In the last column of Table II we indicate

x j
25~D j

(Th)2D j
(Exp)!2/~S j

(Th)21S j
(Exp)2!

for the j th experiment, where the theoretical model is t
standard texture model withVL50 andh50.5. The major
discrepancy between data and theory comes from the CO
quadrupole. Leaving out the quadrupole, which can be c
taminated and leads to a similarx2 also for inflationary mod-
els, the data agrees quite well with the model, with the
ception of some data points from Saskatoon, QMAP, a
PythonV. Making a roughx-square analysis, we obtain~ex-
cluding the quadrupole! a valuex25( jx j

2;44 for a total of
40 data points and one constraint. An absolutely reason
value, but one should take into account that the experime
data points which we are considering are not fully indep
dent. The regions of sky sampled by the Saskatoon
MSAM or COBE and Tenerife, for instance, overlap. Non
theless, even reducing the degrees of freedom of our ana
to N536, our x2 is still in the range (N21)6A2(N21)
;4069 and hence still compatible with the data.~We did
not include upper limits which only would have improve
the agreement with the data.!

This shows that even assuming Gaussian statistics,
models are not convincingly ruled out from present CM
data. There is, however, one caveat in this analysis
x-square test is not sensitive to the sign of the discrepa
between theory and experiment. For our models the theo
ical curve is systematically lower than the experiments.

TABLE I. The value of the normalization constante and the
fluctuation amplitudes8 are given for the different models consid
ered. The error ine comes from a best fit normalization to the fu
CMB data set. Cosmological parameters which are not indicated
identical in all models or given byV05Vcdm1VL1Vb51. We
consider only spatially flat models withVb50.05 and a helium
fraction of 23%. The parameter choice indicated in the top line
referred to asstandardtexture model in the text.

VL h e s8

0.0 0.5 (1.6660.17)1025 0.24
0.0 0.8 (1.6760.17)1025 0.34
0.0 1.0 (1.6860.17)1025 0.44
0.4 0.5 (1.6460.16)1025 0.22
0.8 0.5 (1.5960.16)1025 0.16
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example, whenever the discrepancy between theory and
is larger than 0.5s, which happens with nearly half of th
data points~13!, in all cases except for the COBE quadr
pole, the theoretical value is smaller than the data. If sma
and larger are equally likely, the probability of having 12
more equal signs is 2(1311)/213.3.431023. This indicates
that either the model is too low or that the data points
systematically too high. The number 0.003 can, however,
be taken seriously, because we can easily change it by
creasing our normalization with a moderate cost ofx2.

B. Matter distribution

In Table I we show the expected variance of the to
mass fluctuationsR in a ball of radiusR58h21 Mpc, for
different choices of cosmological parameters. We finds8
5(0.4460.07)h ~the error coming from the CMB normal

re

s

FIG. 20. TheCl spectrum obtained in the standard textu
model is compared with data. In the top panel experimental res
and the theoretical curve are shown as functions ofl . In the two
lower panels we indicate the value of each of the 41 experime
data points with 1-s error bars and the corresponding theoretic
value with its uncertainty. The experiments corresponding to
given number are given in Table II. In the middle panel the 8 CO
data points are shown. In the bottom panel other experiments
presented.
5-18
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TABLE II. The CMB anisotropy detections used in our analysis. Columns 3, 4, and 5 denote the value of the anisotropy and th
and lower 1-s errors, respectively. The references are: Tegmark and Hamilton, 1997@41#; de Bernardiset al.,1994@42#; Chenget al., 1994
@43#; Chenget al., 1996 @44#; Chenget al., 1997 @45#; Tanakaet al., 1996 @46#; Gutierrezet al., 1997 @47#; Gundersenet al., 1993 @48#;
Dragovanet al., 1993@49#; Masi et al., 1996@50#; Netterfieldet al., 1996@51#; Scottet al., 1997@52#; de Oliveira-Costaet al., 1998@53#;
Cobleet al., 1999@54#.

Experiment Data point DT2(mK)2 1(mK)2 2(mK)2 Sky coverage Reference x j
2

COBE1 1 25.2 183 25.2 0.65 @41# 125.29
COBE2 2 212 126 128 0.65 @41# 0.02
COBE3 3 256 96.5 96.9 0.65 @41# 0.49
COBE4 4 105.5 48.3 48.2 0.65 @41# 0.74
COBE5 5 101.9 26.5 26.4 0.65 @41# 0.1
COBE6 6 63.4 19.11 18.9 0.65 @41# 1.11
COBE7 7 39.6 14.5 14.5 0.65 @41# 2.55
COBE8 8 42.5 12.7 12.8 0.65 @41# 0.04

ARGO Hercules 1 360 170 140 0.0024 @42# 0.001

MSAM93 2 4680 4200 2450 0.0007 @43# 0.74

MSAM94 3 4261 4091 2087 0.0007 @44# 0.51
MSAM94 4 1960 1352 858 0.0007 @44# 0.01

MSAM95 5 8698 6457 3406 0.0007 @45# 1.47
MSAM95 6 5177 3264 1864 0.0007 @45# 0.30

MAX HR 7 2430 1850 1020 0.0002 @46# 0.001
MAX PH 8 5960 5080 2190 0.0002 @46# 0.41
MAX GUM 9 6580 4450 2320 0.0002 @46# 0.73
MAX ID 10 4960 5690 2330 0.0002 @46# 0.17
MAX SH 11 5740 6280 2900 0.0002 @46# 0.25

Tenerife 12 3975 2855 1807 0.0124 @47# 0.64

South Pole Q 13 480 470 160 0.005 @48# 0.52
South Pole K 14 2040 2330 790 0.005 @48# 0.01

Python 15 1940 189 490 0.0006 @49# 0.37

ARGO Aries 16 580 150 130 0.0024 @50# 0.78

Saskatoon 17 1990 950 630 0.0037 @51# 0.79
Saskatoon 18 4490 1690 1360 0.0037 @51# 3.83
Saskatoon 19 6930 2770 2140 0.0037 @51# 4.60
Saskatoon 20 6980 3030 2310 0.0037 @51# 4.01
Saskatoon 21 4730 3380 3190 0.0037 @51# 1.32

CAT1 22 934 403 232 0.0001 @52# 1.36
CAT2 23 577 416 238 0.0001 @52# 0.62

PYTHONV 24 1094 304 267 0.01 @54# 0.34
PYTHONV 25 897 297 255 0.01 @54# 0.32
PYTHONV 26 473 130 114 0.01 @54# 0.85
PYTHONV 27 165 155 117 0.01 @54# 0.04
PYTHONV 28 265 107 89 0.01 @54# 1.2
PYTHONV 29 372 114 99 0.01 @54# 2.71
123005-19
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TABLE II. ~Continued!.

Experiment Data point DT2(mK)2 1(mK)2 2(mK)2 Sky coverage Reference x j
2

PYTHONV 30 128 196 128 0.01 @54# 0.13

QMAP-K1 31 2227 604 613 0.01 @53# 1.6
QMAP-K2 32 3500 748 781 0.01 @53# 3.4
QMAP-Q 33 2710 546 496 0.01 @53# 3.5
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ization! for a flat model without cosmological constant,
agreement with the results of Ref.@5#. From the observed
cluster abundance, one inferss85(0.5060.04)V20.5 @55#
and s850.5920.16

10.21 @56#. These results, which are obtaine
with the Press-Schechter formula, assume Gaussian s
tics. We thus have to take them with a grain of salt, since
do not know how non-Gaussian fluctuations on cluster sc
are in the texture model. According to Ref.@57#, the Hubble
constant lies in the intervalh.0.7360.0660.08. Hence, in
a flat CDM cosmology, taking into account the uncertain
of the Hubble constant, the texture scenario predicts a
sonably consistent value ofs8.

As already noticed in Refs.@17# and @5#, unbiased global
texture models are unable to reproduce the power of ga
clustering at very large scales,*20h21 Mpc. In Fig. 21 we
show the dark matter power spectrum for three differ
models. In order to quantify this discrepancy we comp
our prediction of the linear matter power spectrum with t
results from a number of infrared~@58#,@59#! and optically
selected~@60#,@61#! galaxy redshift surveys, and with th
real-space power spectrum inferred from the automatic p
measurement~APM! photometric sample~@62#! ~see Fig.
22!. Here, cosmological parameters have important effe
on the shape and amplitude of the matter power spectr
Increasing the Hubble constant shifts the peak of the po
spectrum to smaller scales~in units of h/Mpc), while the

FIG. 21. The dark matter power spectrum for the texture mo
~solid line! is compared with the coherent approximation~short
dashed! and the large-N limit ~long dashed!. The spectra are COBE
normalized and the cosmological parameters areVL50, h50.5.
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inclusion of a cosmological constant enhances large s
power.

We consider a set of models inVL –h space, with linear
bias @63# as additional parameter. In Table III we report f
each survey and for each model the best value of the
parameter obtained byx2 minimization. We also indicate the
value ofx2 ~not divided by the number of data points!. The
data points and the theoretical predictions are plotted in F
22. Our bias parameter strongly depends on the data con
ered. This is not surprising, since also the catalogs are bia
relative to each other.

Models without cosmological constant and withh;0.8
only require a relatively modest biasb;1.3–3. But for these
models the shape of the power spectrum is wrong as ca
seen from the value ofx2 which is much too large. The bia
factor is in agreement with our prediction fors8. For ex-

l
FIG. 22. Matter power spectrum: comparison between data

theory. References are in the text. Data set courtesy of Vog
@70#.
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TABLE III. Analysis of the matter power spectrum. In the first column the catalog is indicated. Colu
2 and 3 specify the model parameters. In columns 4 and 5 we give the bias parameter inferredx2

minimization as well as the value ofx2. Column 6 shows the number of ‘‘independent’’ data points assum
in the analysis.

Catalog h VL Best fit biasb x2 Data points

CfA2-SSRS2 101 Mpc 0.5 0.0 3.4 29 24
CfA2-SSRS2 101 Mpc 0.8 0.0 2.0 40 24
CfA2-SSRS2 101 Mpc 1.0 0.0 1.9 44 24
CfA2-SSRS2 101 Mpc 0.5 0.4 3.9 17 24
CfA2-SSRS2 101 Mpc 0.5 0.8 9.5 4 24

CfA2-SSRS2 130 Mpc 0.5 0.0 5.3 8 19
CfA2-SSRS2 130 Mpc 0.8 0.0 3.4 15 19
CfA2-SSRS2 130 Mpc 1.0 0.0 3.4 16 19
CfA2-SSRS2 130 Mpc 0.5 0.4 5.6 5 19
CfA2-SSRS2 130 Mpc 0.5 0.8 11.1 4 19

LCRS 0.5 0.0 3.0 71 19
LCRS 0.8 0.0 1.8 96 19
LCRS 1.0 0.0 1.6 108 19
LCRS 0.5 0.4 3.7 33 19
LCRS 0.5 0.8 8.7 40 19

IRAS 0.5 0.0 2.3 102 11
IRAS 0.8 0.0 1.3 131 11
IRAS 1.0 0.0 1.3 140 11
IRAS 0.5 0.4 2.8 70 11
IRAS 0.5 0.8 6.3 9 11

IRAS 1.2 Jy 0.5 0.0 4.2 56 29
IRAS 1.2 Jy 0.8 0.0 2.9 92 29
IRAS 1.2 Jy 1.0 0.0 2.9 99 29
IRAS 1.2 Jy 0.5 0.4 4.3 39 29
IRAS 1.2 Jy 0.5 0.8 6.7 28 29

APM 0.5 0.0 3.3 1350 29
APM 0.8 0.0 1.8 1500 29
APM 1.0 0.0 1.7 1466 29
APM 0.5 0.4 3.5 1461 29
APM 0.5 0.8 6.2 1500 29

QDOT 0.5 0.0 4.3 32 19
QDOT 0.8 0.0 2.9 44 19
QDOT 1.0 0.0 2.9 46 19
QDOT 0.5 0.4 4.3 25 19
QDOT 0.5 0.8 7.3 14 19
t

ed
pl
h

a-
les.
,
AS
nfi-
ars
ne-
pace
al
ample, our best fit for the IRAS data, forh;0.8 is b;1.3.
With s8

IRAS5(0.6960.05), this givess8;0.4860.04, com-
patible with the direct computation.

Whether IRAS galaxies are biased is still under deba
Published values for theb parameter, defined asb5V0.6/b,
for IRAS galaxies, range betweenb I50.920.15

10.2 @64# and b I

50.560.1 @65#. Biasing of IRAS galaxies is also suggest
by measurements of bias in the optical band. For exam
Ref. @66# finds bo50.4060.12, in marginal agreement wit
@67#, which obtainsbo50.3560.1. A bias for IRAS galaxies
12300
e.

e,

is not only possible but even preferred inflat global texture
models.

But also with bias, our models are in significant contr
diction with the shape of the power spectrum at large sca
As the values ofx2 in Table III and Fig. 22 clearly indicate
the models are inconsistent with the shape of the IR
power spectrum, and they can be rejected with a high co
dence level. The APM data which has the smallest error b
is the most stringent evidence against texture models. No
theless, these data points are not measured in redshift s
but they come from a deprojection of a two-dimension
5-21
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~2D! catalog into 3D space. This might introduce systema
errors and thus the errors of APM may be underestimate

Models with a cosmological constant agree much be
with the shape of the observed power spectra, the value ox2

being low for all except the APM data. But the values of t
bias factors are extremely high for these models. For
ample, IRAS galaxies should have a biasb;326, resulting
in s8<0.25, and in ab I<0.2 which is too small, even al
lowing for big variances due to non-Gaussian statistics.

The power spectra for the large-N limit and for the coher-
ent approximation are typically a factor 2–3 higher~see Fig.
22!, and the biasing problem is alleviated for these cases.
VL50 we find s850.57h for the large-N limit and s8

50.94h for the coherent approximation. This is no surpri
since only one source functionCs , the analog of the New-
tonian potential, seeds dark matter fluctuations and thus
coherence always enhances the unequal time correlator.
second inequality in Eq.~114! applies. The dark matte
Greens function is not oscillating, so this enhancement tra
lates directly into the power spectrum.

Models which are anticoherent in the sense defined
Sec. II D reduce power on Sachs-Wolfe scales and enha
the power in the dark matter. Anticoherent scaling seeds
thus the most promising candidates which may cure som
the problems of globalO(N) models.

The simple analysis carried out here does not take
account the effects of nonlinearities and redshift distortio
Redshift distortions in the texture case should be less im
tant than in the inflationary case since the peculiar veloci
are rather low~see next paragraph!. Nonlinearities typically
set in atk>0.5h Mpc21 and should not have a big effect o
our main conclusions which come from much larger sca
Inclusion of these corrections will result in more small-sc
power and in a broadening of the spectra, which even
hances the conflict between models and data. Furtherm
variations of other cosmological parameters, like the addit
of massive neutrinos, hot dark matter, which is not cons
ered here, will result in a change of the spectrum on sm
scales but will not resolve the discrepancy at large scale

Nonetheless, scale-dependent biasing may exist and
to a nontrivial relation between the calculated dark ma
power spectrum and the observed galaxy power spectr
We are thus very reluctant to rule out the model by comp
ing two, in principle, different things, the relation of which
far from understood. Therefore, we would prefer to reject
models on the basis of peculiar velocity data, which is m
difficult to measure but most certainly not biased.

C. Bulk velocities

To get a better handle on the missing power on 20 to
h21 Mpc, we investigate the velocity power spectrum whi
is not plagued by biasing problems. The assumption that
axies are fair tracers of the velocity field seems to us m
better justified, than to assume that they are fair tracers o
mass density. We, therefore, test our models against pec
velocity data. We use the data by Ref.@68# which gives the
bulk flow
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2Vm

1.2

2p2 E P~k!W~kR!dk, ~122!

in spheres of radiiR510 to 60h21 Mpc. These data are
derived after reconstructing the three-dimensional veloc
field with the POTENT method~see @68#, and references
therein!.

As we can see from Table IV, the COBE normalized te
ture model predicts too low velocities on large scales wh
compared with POTENT results. Recent measurement
the bulk flow lead to somewhat lower estimates likesv(R)
;(230690) at R560h21 Mpc ~@69#!, but still a discrep-
ancy of about a factor of 2 in the best case remains. Incl
ing a cosmological constant helps at large scales, but
creases the velocities on small scales. If the observatio
bulk velocity data is indeed reliable~there are some doubt
about this@71#!, all globalO(N) models are ruled out.

V. CONCLUSIONS

We have developed a self-contained formalism to de
mine CMB anisotropies and other power spectra for mod
with causal scaling seeds. We have applied it to globalO(N)
models which contain global monopoles and texture. O
main results can be summarized as follows.

Global O(N) models predict a flat spectrum~Harrison-
Zeldovich! of CMB anisotropies on large scales which is
good agreement with the COBE results. Models with vani
ing cosmological constant and a large value of the Hub
parameter gives8;0.4–0.5 which is reasonable.

Independent of cosmological parameters, these model
not exhibit pronounced acoustic peaks in the CMB pow
spectrum.

The dark matter power spectrum from globalO(N) mod-
els withVL50 has reasonable amplitude but does not ag
in its shape with the galaxy power spectrum, especially
very large scales.20h21 Mpc.

Models with considerable cosmological constant ag
relatively well with the shape of the galaxy power spectru
but need very high biasb;4 –6 even with respect to IRAS
galaxies.

The large scale bulk velocities are by a factor of about
5 smaller than the value inferred from@68#.

TABLE IV. Bulk velocities: Observational data from@68# and
theoretical predictions.Dv estimates the observational uncertain
The uncertainties on the theoretical predictions are around;30%.
The modelsVL50 with h50.5 andh51 as well asVL50.8, h
50.5 are investigated.

R sv ~R! Dv h50.5 h51.0 VL50.8

10 494 170 145 205 86
20 475 160 100 134 78
30 413 150 80 98 70
40 369 150 67 78 65
50 325 140 57 65 61
60 300 140 50 56 57
5-22
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In view of the still considerable errors in the CMB da
~see Fig. 20!, and the biasing problem for the dark matt
power spectrum, we consider the last argument as the m
convincing one to rule out globalO(N) models. Even if
velocity data is still quite uncertain, observations genera
agree that bulk velocities on the scale of 50h21 Mpc are
substantially larger than the~50–70! km/s obtained in texture
models.

However, all our constraints have been obtained assum
Gaussian statistics. We know that global defect models
non-Gaussian, but we have not investigated how seve
this influences the above conclusions. Such a study, w
we plan for the future, requires detailed maps of fluctuatio
the resolution of which is always limited by computation
resources. Generically we can just say that non-Gaussia
can only weaken the above constraints.

Our results naturally lead to the question whether all sc
ing seed models are ruled out by the present data. The m
problem of theO(N) model is the missing power at interme
diate scales,l ;3002500 or R;(202100)h21 Mpc. We
have briefly investigated whether this problem can be m
gated in a scaling seed model without vector and tensor
turbations. In this case, also scalar anisotropic stresses
reduced by causality requirements~see Ref.@4#!, and the
compensation mechanism mentioned in Sec. II is effect
For simplicity, we analyze a model with purely scalar pe
turbations and no anisotropic stresses at all,f p50. The seed
function Fs is taken from the texture model~numerical
simulations! and we setCs52Fs . The resulting CMB an-
isotropy spectrum is shown in Fig. 18, top panel. A smea
out acoustic peak with an amplitude of about 2.2 does ind
appear in this model. This is mainly due to the fact th
fluctuations on large scales are smaller in this model, a
also evident from the higher value ofe5(2.260.2)31025.
But also here, the dark matter density fluctuations and b
velocities are substantially lower than the observed gal
density fluctuations or the POTENT bulk flows.

Clearly, this simple example is not sufficient and a mo
thorough analysis of generic scaling seed models is prese
under investigation. So far it is clear that contributions fro
vector and tensor perturbations are severely restricted.
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APPENDIX A: COMPLETE DEFINITIONS
OF GAUGE-INVARIANT PERTURBATION VARIABLES

In this appendix we give precise definitions of all th
gauge-invariant perturbation variables used in this pa
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These definitions, their geometrical interpretation and a sh
derivation of the perturbation equations can be found
@9,13#. We restrict the analysis to the spatially flat case,K
50. We define the perturbed metric by

g5ḡ1a2h, ~A1!

where ḡ denotes the standard Friedmann background,a is
the scale factor, andh denotes the metric perturbation.

1. Scalar perturbations

Scalar perturbations of the metric are of the form

h(S)522A~dt!212iBkj dt dxj

12S HL1
1

3
HTD d i j dxi dxj22k22HTkikj dxi dxj .

~A2!

Computing the perturbation of the Ricci curvature scalar a
the shear of the equal time slices, we obtain

dR54a22k2R, with R5HL1
1

3
HT , ~A3!

K (aniso)5asS kik
j

k2 2
1

3
d i

j Ddxi
^ ] j , ~A4!

with

s5k21ḢT2B. ~A5!

The Bardeen potentials are the combinations

F5R2~ ȧ/a!k21s, ~A6!

C5A2k21@~ ȧ/a!s2ṡ#. ~A7!

They are invariant under infinitesimal coordinate transform
tions ~gauge transformations!.

To define perturbations of the most general energy m
mentum tensor, we introduce the energy densityr and the
energy fluxu as the timelike eigenvalue and normalized
genvector ofTn

m ,

Tm
n um52run, u2521.

We then define the perturbations in the energy density
energy velocity field by

r5 r̄~11d!, ~A8!

u5u0] t1ui] i , ~A9!

u0 is fixed by the normalization condition,u05a21(12A).
In the three space orthogonal tou we define the stress tenso
by

tmn[Pa
mPb

n Tab, ~A10!

where P5u^ u1g is the projection onto the subspace
TM normal tou. It is
5-23
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t0
05t i

05t0
i 50.

The perturbations of pressure and anisotropic stresses ca
parametrized by

t i
j5 p̄@~11pL!d i

j1p i
j #, with p i

i50. ~A11!

For scalar perturbations we set

u05~12A!,
u(S) j

u0
52 i

kj

k
v

and

p j
(S) i5S 2k22kikj1

1

3
d j

i DP.

Studying the behavior of these variables under gauge tr
formations, one finds that the anisotropic stress potentiaP
is gauge invariant. A gauge-invariant velocity variable is t
shear of the velocity field,

s i j
(Sm)5S k22kikj2

1

3
d i j a

3VD , with V5v2k21ḢT .

~A12!

There are several different useful choices of gau
invariant density perturbation variables:

Ds5d13~11w!~ ȧ/a!k21s, ~A13!

Dg5d13~11w!R5Ds13~11w!F, ~A14!

D5Ds13~11w!~ ȧ/a!k21V. ~A15!

In this work we mainly useDg . Herew5p/r denotes the
enthalpy. Clearly, these matter variables can be defined
each matter component separately. For ideal fluids like C
or the baryon photon fluid long before decoupling, anis
tropic stresses vanish andpL5(cs

2/w)d, where cs is the
adiabatic sound speed.

Also scalar perturbations of the photon brightness,i (S) are
not gauge invariant. It has been shown@9# that the combina-
tion

M (S)5i (S)14R14ik21njkjs ~A16!

is gauge invariant. This is the variable which we use here
other work@72# the gauge-invariant variableQ[M1F has
been used. SinceF is independent of the photon directionn,
this difference in the definition shows up only in the mon
poleC0. But clearly, as can be seen from Eq.~A16!, also the
dipoleC1 is gauge dependent. The brightness perturbatio
the neutrinos is defined the same way and will not be
peated here.

2. Vector perturbations

Vector perturbations of the metric are of the form

h(V)52Bj dxj dt1 ik21~klH j1kjHl !dxl dxj , ~A17!
12300
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where B and H are transverse vector fields. The simple
gauge-invariant variable describing the two vectorial degr
of freedom of metric perturbations isS,

S j5k21Ḣ j2Bj . ~A18!

Vectorial anisotropic stresses are gauge invariant. They
of the form

p l j
(V)5 ik21~kjP l1klP j !. ~A19!

The vector degrees of freedom of the velocity field are c
in the vorticity

ul : j2uj ; l5 ia~kjv l2klv j ! ~A20!

with

v j5v j2Bj . ~A21!

Vector perturbations of the photon brightness are gauge
variant. To maintain a consistent notation, we denote th
byM (V).

3. Tensor perturbations

We define tensor perturbations of the metric by

h(T)52Hi j dxidxj , ~A22!

whereHi j is a traceless transverse tensor field.
The only tensor perturbations of the energy moment

tensor are anisotropic stresses,

p l j
(T)5P l j . ~A23!

Tensor perturbations of the photon brightness are den
M (T).

Clearly, all tensor perturbations are gauge invariant~there
are no tensor-type gauge transformations!.

APPENDIX B: THE CMB ANISOTROPY
POWER SPECTRUM

Here we derive in some detail Eqs.~75!, ~84!, and ~91!.
CMB anisotropies are conveniently expanded in spher
harmonics:dT(n)/T05( lmalmYm

l (n). The coefficientsalm

are random variables with zero mean and rotationally inv
ant variances,Cl [^ualmu2&. The mean~over the ensemble!
correlation function of the anisotropy pattern has the st
dard expression:

K dT

T0
~n1!

dT

T0
~n2!L 5

1

4p (
l

~2l 11!Cl Pl ~cosu!,

~B1!

where cosu5n1•n2. To find Eq. ~75! we use the Fourier-
transform normalization

f̂ ~k!5
1

VE f ~x!exp~ ik•x!d3x ~B2!

with some normalization volumeV. Assuming that ensemble
average can be replaced by volume average then imp
5-24
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K dT

T0
~n1!

dT

T0
~n2!L 5

1

VE d3x
dT

T0
~x,n1!

dT

T0
~x,n2!

5
1

~2p!3E d3k
dT

T0
~k,n1!

dT

T0
~k,n2!.

~B3!

Inserting our ansatz~63! for dT/T05 1
4M, and using the

addition theorem for spherical harmonics, we have

K dT

T0
~n1!

dT

T0
~n2!L

5
1

8p (
l ,l 8,m,m8

~21!(l 2l 8)Yl m~n1!Yl 8m8
* ~n2!

3E k2 dk dV k̂ Yl m* ~ k̂!Yl 8m8~ k̂!^s l s l 8
* &~k!

5
1

32p2 (
l

~2l 11!Pl ~n1•n2!E k2 dk^s l s l
* &~k!,

~B4!

from which we can read Eq.~75!.
For vector and tensor fluctuations, the ansatz~77! and

~86! must be taken into account. With the same manipu
tions as above the correlation function of CMB anisotrop
induced by vector modes reads

K dT

T0
~n1!

dT

T0
~n2!L 5

1

128p3E d3k (
l 1l 2

P l 1,l 2~k,n18 ,n28!

3Pl 1~m18!Pl 2~m28!, ~B5!

where the primes indicate that the quantity is considered
the reference system wherek is parallel to thez axis and
~@73#,@16#!

P l 1,l 25~2 i !(l 12l 2)~2l 111!~2l 211!

3A@12~m28!2#@12~m28!2#

1@^s1,l 1
(V) s1,l 2

(V)* &cos~f18!cos~f28!

1^s2,l 1
(V) s2,l 2

(V)* &sin~f18!sin~f28!#. ~B6!

Assuming statistical isotropy which implies

^us1,l
(V)u2&5^us2,l

(V)u2& and ^s1,l
(V)s2,l* (V)&50,

we obtain

K dT~n1!

T0

dT~n2!

T0
L 5

1

128p3 (
l 1l 2

~2l 111!~2l 211!

3~2 i !(l 12l 2) ~B7!

E Y~n18 ,n28!^s1,l 1
(V) s1,l 2

(V)* &Pl 1~m18!Pl 2~m28!d3k, ~B8!
12300
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where

Y5n1•n22m18m28 . ~B9!

Using the recursion formula for Legendre polynomials a
the addition theorem for spherical harmonics, we find af
some manipulations

Cl
(V)5

l ~ l 11!

8p E k2 dk
^us1,l 11

(V) ~ t0 ,k!1s1,l 21
(V) ~ t0 ,k!u2&

~2l 11!2 .

~B10!

For the correlation function of the CMB anisotropies fro
tensor modes our ansatz~86! gives

K dT

T0
~n1!

dT

T0
~n2!L 5

1

128p3E (
l 1l 2

P l 1,l 2~k,n18 ,n28!

3Pl 1~m18!Pl 2~m28!d3k ~B11!

with

P l 1,l 25~2 i ! l 12l 2~2l 111!~2l 211!~12~m18!2!

3~12~m28!2!@^s3,l 1
(T) s3,l 2

(T)* &cos~2f18!cos~2f28!

1^s1,l 1
(T) s1,l 2

(T)* &sin~2f18!sin~2f28!#. ~B12!

Here, statistical isotropy leads to

K dT~n1!

T0

dT~n2!

T0
L 5

1

128p3 (
l 1l 2

~2l 111!~2l 211!

3~2 i !(l 12l 2)E Y~n18 ,n28!

3^s1,l 1
(T) s1,l 2

(T)* &Pl 1~m18!Pl 2~m28!d3k,

~B13!

where

Y5@2~n1•n22m18m28!22„12~m18!2
…„12~m28!2

…#.
~B14!

With straightforward but somewhat cumbersome manipu
tions, applying the recursion formula for Legendre polyn
mials and the addition theorem for spherical harmonics,
then obtain

Cl
(T)5

1

8p

~ l 12!!

~ l 22!! E0

` uS l
(T)~k!u2

~2l 11!2
k2 dk ~B15!

with

S l
(T)5

se,l 22
(T)

2l 21
2

2~2l 11!se,l
(T)

~2l 21!~2l 13!
1

se,l 12
(T)

2l 13
. ~B16!

The formulas~B4!, ~B10!, and ~B15! are used to determine
the CMB anisotropy spectrum.
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