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Cosmic microwave background: Polarization and temperature anisotropies
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Perturbations in the cosmic microwave backgrog@¥B) are generated by primordial inhomogeneities. |
consider the case of CMB anisotropies from one single ordered perturbation source, or seed, existing well
before decoupling between matter and radiation. Such structures could have been left by high energy symme-
tries breaking in the early universe. | focus on the cases of spherical and cylindrical symmetry of the seed. |
give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the
Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describ-
ing the seed. | show how the CMB perturbations manifestly reflect the symmetries of their seeds. In particular,
polarization is uniquely linked to the shape of the source because of its tensorial nature. CMB anisotropies are
obtained with a line of sight integration. They are a function of the position and orientation of the seed along
the photons path. This treatment highlights the undulatory properties of the CMB. | show with numerical
examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching
the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB
anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polariza-
tion waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly
1 deg in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean
amplitude of the signal coming from the seed interior; as expected for a linear structure with<dize! and
density contrasb at decoupling, the temperature anisotropyTd T=§(L/H ~1)?, roughly ten times stronger
than the polarization. These waves could allow one to distinguish relics from high energy processes of the early
universe from pointlike astrophysical sources, because of their angular extension and amplitude. Also, the
marked analogy between polarization and temperature signals offers cross correlation possibilities for the
future detection instruments. It would be interesting to detect these signals in the next 10 arc min CMB map
provided by the Planck Surveyor satellite experimg¢g80556-282(199)07410-X]

PACS numbg(s): 98.70.Vc, 98.80.Cq

[. INTRODUCTION the expansion itself. The quantum fluctuations are thought to

arise from the vacuum in a curved background; they are

The cosmic microwave backgrour@MB) carries de- Stretched out to large scales by the inflationary expansion

tailed information about the high energy physical processe§Self, and set up the seeds of the cosmological perturbations
that occurred in the early universe. Most probably, the mi\We observe todaysee [6] for reviews. However, even

crophysics still hidden to our knowledge left traces that have®dOPting this inflationary scenario, things are still unclear for
been stretched out to large and observable scales by a periwhat concerns the release o_f t_he energy stored in the |_anaton
o ordinary matter and radiation, the so called rehediimg

of a}cgelerated expansion, at_ decou.plm.g between mattgr a eheating era[7]. The oscillations of the inflaton around its
radiation, they imprinted anisotropies in the CMB. This is minimum, combined with the coupling to other fields, can
the reason for the contemporary theoretical and experimentaéstore high energy symmetries that have to be broken to
efforts to understand CMB physics. The theory of CMB reach our low energy minimum; consequently, a postinfla-
anisotropies has been explored extensively in the (sst tionary generation of topological defects may arise, and this
[1,2] and references thergiand, recently, it has been casted occurrence is at the present under investigafi®h Also,

in a complete and organic forfi3]. At the same time, many during inflation itself.many fun'damental fields may act on
experiments are at work to explore the CMB anisotropiesStage and the effective potential may have several minima
toward smaller and smaller angular scalese[4] for re- separated by potential barriers. If this is the case, tunneling
views); this experimental enterprise will culminate with the phenomena occur, and the r!ucleated bubbles are stretched
Planck mission of the next decade that will provide theOUI (o large scales as the ordinary quantum fluctuatises

hole sk d polarizati . 9] for reviews; at reheating the energy stored in the shells is
whole sky temperature and polarization anisotropy Mafynyerted into matter and radiation and bubbly traces may be

down to a minimum detectable perturbation of one part ovefeft in the density distributiorithis possibility, with different

1 million and with an angular resolution of about 10 arc min points of view, has been considered in the last de¢adp.

[5]. Suppose that one of these relics from very high energy
According to the inflationary phenomenology, a scalarphysics is plunged from some very early time into cosmic

field (the inflaton slowly rolls toward the minimum of its matter and radiation, no matter of its composition, that could

potential, giving the nonzero vacuum energy responsible fobe scalar field or cosmic fluid or other. It generates perturba-
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tions around itself, in particular in the photon-baryon fluid. If where #(t)=[{dr/a(7) is the conformal time an& the

also it intersects the last scattering surfdc8S, the place of spatial curvature; | will assume a fl&t=0 background in
origin of the CMB), these perturbations become anisotropieghis work. The perturbed metric tensor is

that we could observe today. These are expected to be well )

recognizable, since in most cases such seed is a spatially 9u=a(n) (¥t hu), @

limited structure, very different from the diffuse fluctuations where a 77)27,w represents the background. Sinte,

of the pure slow-roll inflation; technically speaking, such sig-< 2 gaude freedom reduces the number of phvsicall
nal would be strongly non-Gaussian and non-scale-invariant.. Yur, @ gaug pny y

. significant quantities in the perturbation metric tensor; in this
'gﬁ;’r’nzl:ﬁgs,sﬁriigtlgebsugg?eeéf zcﬁgggp%c;ﬁa?ggjxggtz work | adopt the generalizgd Newtonian gauge in which the
string (cylindrical). Their detection in the CMB anisotropies two_scalilr pe_rturbed metric component ae=hoy/2 and
would be the first observational evidence of the existence of - N1~ N22= a3 [1‘3].' . .
high energy symmetries, and this hope is precisely the mo- The CMB perturbations fjepe.nd op the spacet|me. point
tive of this work. | develop here some useful formulas for the@nd on the photon propagation directionso an appropriate
CMB perturbations and anisotropies from symmetric strucormal mode expansion is needed:
tures; the results armmdependenfrom the particular seed, 3 2
the only characterization being its symmetry, that | take here >y d°k M. el ek o

Onn= | 5 2 2 0 (nkerkn),

spherical or cylindrical. | perform some numerical integra-
tions using these formulas and adopting toy symmetric seeds, 3)
in order to investigate the geometrical and dynamical prop-

erties of their own CMB perturbations and anisotropies. |n(Q+iU)(n,F,ﬁ)M++(Q—iU)(77,F,F1)M,

forthcoming works | will compute the CMB anisotropies

from realistic relics left from high energy physics in the early J d3k 2

> , [(E(™+iB{™)(7,k), ,G"(r k,n)

universe; a pretty example, valid simply for large bubbles in W e =

the density distribution, may be found [i1].
As already mentioned, the treatment of the CMB inhomo- +(E(m)_iB(m))(7’ K) sz(F K] (4)

geneities has been casted recently in a complete and organic ! ! T meE A

form, the total angular momentum meth&}. In turn, itis  whereM. =(o3¥ic;)/2 are convenient basis matrices for

based on the general treatment of the linear cosmologicghe polarization tensoiG" and . ,G" include both spatial

perturbationd 1]; I perform the calculations in this frame, anq angular functions; the spatial ones are the eigenmodes of
respecting the notations as much as possible. The CMB pefpe Laplacian in the metri€l):

turbations involve temperatureST/T=0 in the following

and polarizatio_n,. tha@ is expresged _via the Stokes parameters VZQK(E,i)E Y1Qy == kZQK(IZ,i); (5)

Q and U describing linear polarization. For a given Fourier

mode specified by th& vector, it is convenient to express the angular functions are instead spherical harmonics. In the
the relevant quantities in a frame in which tkelirection s~ ¢@se Of flatness(=0) the Laplace equatiofy) gives plane

the polar axis(the k-frame in the following. The reason is waves, and the expression of the normal modes becomes

that, in the new frame, the scalar, vector, and tensor compo- A

nents of the perturbed metric quantities are coupled, respec- G"=(—i)' \/5—=YM(npexpik-r), (6)
tively, to them=0,= 1,2 indexes of the spherical harmon- 2+1

ics [3]. Of course, transforming back to the real space, the

k-frame guantities must be expressed in the fixed laboratory oGM=(—i)" /4—7Ti2Y|m(ﬁﬁ)M&exp(iIZ~ rN: (7
frame (the lab-frame in the following For a given Fourier 21+1 B

modek, Q is the difference in temperature fluctuations po-

larized in thee, ande, directions ¢ and ¢ being the usual . - .
angles in spherical goordina)esU is the same difference P€eN used to underline that, for edcimode, all the quanti-

where the axes have been rotated by 45 deg around the phieS in Eas-(6),(7), as well as the expansion coefficients in
ton propagation direction. Equivalentlf) and U may be Eds.(3),(4), are expressed in theframe; as customary, the

seen as the expansion coefficients of the polarization tens@xpansion coefficients of the Stokes parame@§ have

into the Pauli matrices; and o4, defined on the basis vec- been decomposed into real and imaginary parts. Throughout
tors ée andé¢ in the k-frame. this work, in order to characterize the polarization within

The background Friedmann-Robertson-Walk@RW) symmetric seeds, | make use of the useful definitiopof
metric is larization direction[12], given entirely in terms of) andU
as follows. It is easy to see that, due to the rotation properties
of the Pauli matrices, the angle

as a difference with respect 8], the notatiom;, MX has

dr? 1 u
+r2d0?|, D a=—tan ' = (8)

ds?=a(7)?| —dn?+
(m) U 5 )
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goes intoa— ¢ under a rotation byg aroundn; thus it  bation(see Sec. Yand do not depend at all on the orienta-

defines a fixed axis on the plane orthogonalthat is the tion of the perturbation in th&-frame, simply because it is
polarization direction. spherical: they depend dnonly. Consequently, posing®k

The underlying cosmological inhomogeneities move the=k*dkdQ; in Eq. (3) the O, coefficients may be extracted
CMB perturbations and are encoded in the expansion coefffrom the angular integral. Thus let us face the pure geometric
cients in Eqgs.(3),(4). Before going to the content of this quantity
work, it is useful to point out the following important dis-

incti i ' i 47 .
tinction. The Fourier transform of any perturbation quantity J' dOs(—i)! YO(R- Rexd k- F 11
A may be written as K=\ oY (n-kexplik-r), (1D

A(R’):|A(E)|ei¢g . 9) where the argument of the spherical harmonics in(Bghas
' been shown(see Appendix A The integral(11) is easily
it is Gaussian if the phases iy are random; specifically in comMputed expanding the plane wave into Bessel and Leg-
these hypothesis, the statistics is completely described by ttdre functions
power spectrun{|A(k)|?). Also it is scale-invariant if the . R
modulus depends only on the scale=(k|) in such a way e'k'rzzl i'(21+D)ji(kn)Py(r-k) (12)
that the power associated to each one is the same at the
horizon r_eenter. On the cc_)ntrary, CMB anisotropies .fromand employing the useful relatiofA11) with n,=k, n,
sources like the ones considered here are non-Gaussian and A A .
non-scale-invariant; their symmetries, encoded in precise '+ @ndns=n. The resultis
properties of both modulus and phases in &, determine K2dk
their unique sign in the CMB. Moreover, | do not require that @:z P,(R- r)f —2®|(77,k)i|(kr)- (13)
they are dominant for structure formation. A high resolution [ 2
CMB map could contain the unambiguous imprint of one
single symmetric seed existing at decoupling plunged in ahis expression gives the CMB temperature perturbation at
global Gaussian signal; even if the power spectrum does n@ny time for the most general spherical perturbation, encoded
contain its sign at all, that would be enormously interestingin the Fourier integral. The dependenceroandr has been
The work is organized as follows. Sections Il and Il con- factored out, and enters only in the Legendre polynomials
tain the analysis of the CMB perturbations in spherical andy,qumentn-r. This is an expected feature of this spherical
cylindrical symmetry, respectively. Section IV contains thecase: for example, focus on the: 1 term, better known as
method for the computation of the CMB polarization andne poppler effect ®, is essentially the velocity of baryons
temperature anisotropies as they would appear on the sky. [B)). the motion of each particle in this spherical case is
Sec. V the results from numerical integrations are showny,gia| of course; then, since this Legendre polynomial is just

Finally, Sec. VI contains the conclusions. n-r, photons propagating on the direction pick up the
usual Doppler cosine contribution at the scattering point.
Il. SPHERICAL SYMMETRY Let us face now the polarization for a spherical seed. A

It is easy to see that spherical structures may be scaldirst simplification is that the scalar perturbations excite the
only, and thus are described by tile=0 modes of the linear E1 Modes only[3], so we can drop th&, terms in the fol-
expansion: there is no way to comb the hair of a sphere ifPWing. Then, as before, tttg, coefficients depend daonly,
such a way to obtain a spherical distribution, and this preSC they can be extracted from the angular integral. As a

vents spherical structures to be made of genuinely véoror difference from the temperature case, teesor spherical
tensoj components. Thus | drop tH® index in the follow- harmonics describe now the angular dependence in&g.

ing, and consider flat space geometkys0. fortunately they admit, fom=0, a simple .express.io'n in
The problem to solve is the following: at a conformal time t€rms of the elementary Legendre polynomials, as it is dem-

7, a perfect CMB detector is placed in a poiﬁtnearby a onstrated in Appendix A:

primordial spherical structure; what is the CMB perturba- o 2041 (1-2)! . . .

tions carried by photons scattered on a directién 2YP(n-k)= 1/ e WPF(H- k), (14
The center of the coordinate frame is placed at the center '

of the Spherical seed. Its Fourier transform depends Only OWhere the* index has been Suppressed since it makes no
the wavevector moduluk and it is therefore the same for (ifference in then=0 case.

any axes orientation: Focus now on theMX matrices. They have to be ex-

pressed in terms of the fixed lab-frame matribés . This is
obtained performing a rotation around thexis in order to
First, let us find the consequence of H40) on the pure Mmake thee, and thee, vectors in thek-frame coincident

temperature perturbatio®. The expansion coefficien®,  With the laboratory ones: the rotation angle is essentially the
in Eq. (3) are proportional to the Fourier transformed pertur-angular coordinate of the projection kfinto the plane or-

r—rek—k. (10
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thogonal ton. For simplicity, but without any loss of gener-
ality, let us orient the lab-frame so thatis the polar axis;

then, it is easy to see that the rotation angle is simply

—(¢it+ ), wheredy, is just the¢ coordinate ok in the lab-

frame; thus, from elementary rotation properties of the Pauli

matrices, the expression b as seen in the lab-frame is
MK =e¥2idin . (15)

The integral in Eq{(4) has now the following form:
=i (I1=2)!
f B2 (=)' \ 7721

xf d0ie* TP2(R-k)-eT2%M, . (16)

k2dk
(2m)3

(Q=iU)M. =,

1=2

Moreover, it is useful to employ the expansi@®) together
with the addition relatiofA10) with n;=r andn,=k:

kT — E

I,m=—

At (nYPnY . an

The integral(16) in d¢; can now be calculated: the 2 ¢k

phases in Eq(15 select them= 2 terms, respectively,
above; once this is done, the integral @, is simple using
the spherical harmonics orthogonali#3); the final result is

(Q+iU)M, +(Q—iU)M_

_A—2id 2i - 2 (1-2)! 2,0 =
=(e "™, +e rM7)|>2 mFﬁ(ﬂ-l’)
k2dk )
Xf P Ei(7.k)ji(kr), (18

where ¢; is the angular coordinate of the projection of the
vector on the plane orthogonal fo Let us check out the
meanings of Eq(18). Again the dependence anandr has

PHYSICAL REVIEW D59 123004

Q-polarization axes

polarization
direction

FIG. 1. Upper panel: polarization within a spherical seed. The
axes displayed show the geometric directions for which the polar-
ization is given by aQ term only, thus fixing the polarization di-
rection as displayed. Lower panel: CMB anisotropies from a spheri-
cal seed. Its center has a distamicieom the last scattering surface;
the anisotropy is symmetric under rotations aroﬁ@dind depends
geometrically on the anglé only.

problem, so that no preferred direction exists for the polar-
ization, since it belongs on the plane orthogonal to the sym-
metry axis.

These results, together with the temperature ones, com-
pletely characterize the CMB perturbation carried by photons
moving in a spherical seed, independently from any other

been completely extracted from the Fourier integral; reallyspecification. The next section contains the same analysis

the matricesM .., basis for the polarization tensor, are out-
side the sum orl and multiply appropriate phases: this

developed here, but based on cylindrical seeds.

makes easy the following geometric consideration. If we

choose the lab axes so that=0, the matrix in Eq(18) is
simply M, + M _= o3 and the polarization quantities results
in a pureQ term; thus Eq(18) gives the difference in the
polarization amplitudes relative to the axes displayed in th
upper panel of Fig. 1, one lying on the plane formed by th

n andr directions and the other orthogonal to the sam
plane. With this axes orientation, the angtein Eq. (8) is
zero: this means that the polarization direction within a

spherical seed lies on the plane formed Myand r, as

lll. CYLINDRICAL SYMMETRY

Scalars can be arranged cylindrically of course, but also
vectors (vorticity is a vectorial feature Consequently, the

§n=0,i1 are allowed. In the vector case however, the ge-

neric k mode of the Fourier transform is a vector of course;

Shus its orientation enters in the angular integrals of E8js.

and (4), that become strongly dependent on the particular
seed considered. For this reason, again | restrict to the scalar
case(dropping the(® index), and employ flat FRWK=0.

sketched in Fig. 1. As a related important point, note the  The Fourier transform of a cylindrically symmetric quan-

second order Legendre polynoml%ﬁ (the temperature case
hadP)); it is meaningful since it guarantees that light propa-
gating radially is not polarized F(lzocsinzaPo: the radial

propagation in spherical symmetry is an axial symmetric

tity A may be expressed as

A K)=A(nky k) (19)
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wherek, k. are the component of on the symmetry axis
and on the equatorial plane respectivédy=kZ+Kk? . If the
seed is invariant under traslations along the symmetry axi
(this case is mentioned as infinite cylindrical seed in the fol-
lowing), then the expression is

A(n,K)=A(nk,) - 2md(ky), (20)
where §(k,) is the Dirac delta. Consequently, the expansion
coefficients of Egs(3) and(4) depend only ork, ,k, in the
first case and ok in the second.

First, consider the temperature perturbation. In cylindrical>
coord|natesd3k k,dk,dk,d¢; and the ®, coefficients
come out of the integral id ¢y, :

Ldk, dk,
> f(ZT 1(m,Ke Ky)

A1 -
xfd@(—i)'\/ZH_lYo(k nekr. (21

Again | make use of the addition relatiqi10), choosing
the polar axis in the lab frame coincident with the symmetry
axis; | apply it twice, both on ther?=\4=/(21+1)P?
above and on the plane wave, expanded as(E{). Paying
the price to increase the number of sums, €4) becomes

|’

>

m'=—1'

|
- 2: (—|)'2|+1Y| (n) i 4mYT (T)

|

><f deiY™ (K)Y * (k),

1’
k. dk. dk,

(27T)3 ®|(771k+1kz)j|’(kr)

(22

where of course&k?=k2 +k2 and r?=r2 +r2. Now, it is
manifest that the integral id ¢j, kills everything except for
the m’= —m terms; thus, the phase M{‘?'(F) precisely fits

together with the phase o‘f’,m(ﬁ), making them relative.
Writing in full the spherical harmonics, the final result is

|
= 2-7. (—)'PM(R-2)em#=4) X il"(21"+1)

1" =|m|

k,dk, dk,

xP.,"(r-2) 0( 7.k kp)ji(kr)

P, "(k-2)P](k-2). (23

It is useful to note that writingk-r =k, -1, +k,z and ex-

PHYSICAL REVIEW D59 123004

|
= > (=D'P(R-Z)em ) S il +1)

- I"=|m|
k. dk, dk
><P,”7(0)P,7W0)f*—*22
4

X 0)(7,k k)e* (kor )P M(k-2);

S

(29)

note that the sum ovdr is restricted to the eveh’+m
terms because of EGA9).

As an alternative approach, one can give up the expansion
of the plane wave in Eq21), and express its argument as
K- r—k+r+cos(¢k ¢;)+k,z. As above, the phase mm*(k)
is @~ Mbik=gM(¢r~4ide~1Mé: the second factor comes out of
the integral, and again fits together with the corresponding
phase on{“(ﬁ). The advantage of this approach is that the
integral indgb; has a note form and the result is

2

Im—

k, dk, dk,

(—i)'P,m(ﬁ.i)eimwM;)f —

Xeikzz®|(7’,k+ ,kZ)Pl_m(R~2)JE+(m,k+r+),
(25

where the function)E, is a combination of the Anger and
Weber functions, defined in Appendix B.

The expressions corresponding to E@®3), (24), and
(25) for an infinite cylindrical structure are simpler because
of the effect of the Dirac delta; it eliminates the dependence
on z, reducing the argument of the exponential in E{l) to
ik, -r, . Also the Legendre polynomials into the integral in
d¢; have now to be calculated f&r z=0, their values being
found using Eq.(A8); from Eg. (A9) only the terms with
evenl+m and!’'+m (and thereford +1') survive. Thus,
the expression fof in this case is similar to Eq24), but
simpler:

|
= > PM(n-z)P; ™(0)eM% )
I,m=—I

x >

(—=1)'F 2217+ 1) PI(0) P, (0)

1'=|m|
k. dk _
xf SOk (kery)
(evenl+m,l'+m,l1+1"). (26)
In the second approach
|
O= 2 (—)'P(n-2)P; M(0)em¢n~ )
I,m=—
k, dk,
Xf 0i(n7,k)IE (MKyry). (27

tracting the exponential regarding the last term from the iniet us check the geometric meanings of the above expres-

tegral ind ¢y, the expressiori23) may be simplified:

sions. First note how the cylindrical symmetry caused com-
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plications, both in the geometric and integral quantities, Q-polarization axes
with respect to the spherical case. However, again the /_ \
dependence on andr has been separated and factored out. K 5.
The symmetry forces the phases of the harmonics with i

argumenlﬁ andr to be relative: for , #0, the perturbation
depends, together with the angle between the symmetry

axis andn, on the direction of the projection af on the

equatorial plane with respect to., as it is intuitive in a
cylindrical problem; the pure Doppler contribution from the
peculiar velocity of photons and baryon®{) may be easily

recognized in thé=1m=1 terms. Ifr lies on the symmetry
axis itself theJE, function in Egs.(25) and (27) reduces
simply to 2m7é,,0, @as shown in Appendix B. As a final

intuitive feature, note how in the casélz, the CMB pertur-
bation for an infinitely long seed possesses a parity symme-
try, n— —n, since all them+0 terms vanish, makingand

" even.

Let us face now the CMB polarization from cylindrical
sources. As in the previous section, tBecoefficients come
out of the integral ind¢; and the tensor harmonics are ex-
pressed as in Eq14). Then the polarization matrices in the

k-frame have to be expressed in terms of the corresponding rig. 2. Upper panel: polarization within a cylindrical seed. For

ones in the lab framd\/l';:e:zi“RMi ; as beforeaj is the  the cases of propagation parallel and orthogonal to the symmetry
angular coordinate of the projection of theversor on the axis, the axes displayed show the geometric directions for which the

~ oL . polarization is given by & term only, thus fixing the polarization
plane orthogonal ta. It is indicated differently from EQ. girections as displayed. Lower panel: CMB anisotropies from a
(15 because (.Jf the.followmg. reason. In th.e previous SeCtIO%Iylindrical seed: a view of thél plane. The representative pot
we were dealing with Spher'cal, perturbat!ons; No matter Ok, 5 distanc® from the last scattering surface; the anisotropy is
how the lab-frame axes were oriented. This freedom allowedy y\metric under reflections dift and depends geometrically on the

us to orient the polar axis ag so thataj was simply related angle § and on|w/2— ¢|.
to the ¢ coordinate ofk. Now things are different: the per-
turbation source has a preferred axis, and the equatorial plane
is therefore different from the polarization plat@thogonal

to n); consequentlygi depends omp; in a less simple way,

as | write below, and this complicates the computations of

ppléri;ation
directions

nxz-k

2| V1— (k-7)2

CcoSaj= (29

course.
Highlighting again the integral inl¢;, the quantities in  Thus, «j is related togy by the following relation, that may
Eq. (4) take the form be easily verified:
k. dk. dk, cosaj = Cosd; Llk2? (30)
*iU)M. = ——Ei(nk, K fd“ - K —(k-n)?
(Q*iU)M. |>2f (2m)? (7K Ky) | deobic 1—(k-n)
L A=2) e . ) .
X (—1) (1521 PZ(n-k)e'(kr=2edm , | Unfortunately, (in my knowledge there is no simple treat-

ment of the angular integral in E(R8) with «aj, given by Eq.

(28 (30). However, there are some interesting and useful particu-
lar cases in which computations are simpler. First, suppose
that the photon propagation directians parallel to the sym-

In spite of its innocent appearance, the integrad iy is not  metry axis. Thusxi= ¢i, Eq. (15) holds, and the Legendre

so available for extracting the dependenceroms in the polynomials can be extracted from the integratligi; , since

previous cases. This is due to the expressionigfaccord-  now n=2z. In the first approach all the task consists in ex-
ing to the definition above, and taking as reference axis th@anding the exponential in Eq28), while the second is
intersection between the planes orthogonahtand z, its  straightforward. The integral precisely kills everything ex-
expression is cept for them=*2 terms:
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, 2lg: LU= 2
- _ F2i¢; _il i’
(Q=iU)M.=M.e |>§:2( i) (|+2)||22 (2I"+1)PjA(r-2)

xfm Ei(m.ks k)i (kn)P(k-2)P;,(k-2)

. +2i : s (I F2 +2
—M.e 2¢|§2( i (|+2)||22| (21" +1)P;;%(0)P;;%(0)

k,dk,dk, i -~ -
Xf— (7. ky)e®#j, (kor,)P2(k-z)  (valid for n=2), (3D

. I—2)! [ k,dk,dk, . ..
(QtiU)Mi=l\/lie12"’5?|>22 (—i)'\/EHZ;,J FEE 2elka2E (ks k) PAK-2)JE. (£2k.r,) (valid for n=2).
(32

This corresponds to the case sketched in the upper panel of Fig. 2, where the propagation direction is parallel to the symmetry
axis. As in the spherical case, orienting the lab axis as in the figar¢hat; =0) yields an equal contribution from the

terms; the polarization is given by a pu@term, giving the difference between the temperature fluctuations of the light
polarized in the directions shown in the upper panel of Fig. 2; also) in Eq.(8), meaning that the polarization direction lies

on the plane formed bﬁl andz (and it is orthogonal tm of course. The same guantities for an infinite cylindrical seed are
easily gained using the Dirac deltdhe sum is restricted to evdrand!’ from Eq. (A9)]:

(Q=iU)M.=M. e+2'¢2 E:;g' I(0)2( 1)+1%2(21" + 1)P/;%(0)P;;%(0)
k,dk, _ , .~ ,
xf o E/(n,ky)j(kyry) (validfor n=z evenl,l’), (33

E/(n,k )JE.(x2k,r.) (validfor n=2, evenl).
(34)

+21 ¢ (l
(Q=IUM.=M.e"4 2, (- )"2\/(|+2),

Just like the spherical case, photons propagating exantiiye symmetry axis have to be not polarized, since no preferred axis
exists on the polarization plane. Let us check that the above results are consistent with this geometric expectatiq81)n Egs.
and (33) this is manifest because the only Bessel function that would survive on theraxisQ) would bej,, but it is not
present, sincé’=2. For what concerns Eq32) and (34), the JE, function inr_ =0 is trivially 0 as is evident from Eq.
(B6).

There is another case of interest for an infinite cylindrical structure: precisely whendinection is orthogonal to the axis.
In this case the polarization plane and the equatorial plane are orthogonal; than it is easy to sgésthabr a+ = where

the constantr is simply the angular coordinate of the projection of the equatorial plane into the polarization one: this is simply
because, for the effect of the Dirac delta, the integration is confined into the equatoriakptabeA necessary step here is
to use a note expansion of the second order Legendre polynomial in term of the elementary ones

Pf(R~ﬁ)=gl a; Pj(k-n), (35)

where the coefficienta; are defined in Appendix B, EJA12). The arguments widely applied in this section lead to the
following expressions of this interesting case:

(Q=iUM. =M e 3 E:;Z;: E (PPOP QMR D, (—1)" D21+ 1PI0)P(0)
1" =|m|
ki dk, ) . ~n .
xf o E/(n,ky)ji(kery) (validfor n-z=0, evenj+I,I+m,l"+m,l+1"), (36)
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- —2) o
alHU)M¢=M¢e””22(—D' a+2;j$§ja“ﬂWijwommwn¢ﬂ

k,dk, i . on
xf e Ei(n,k)JE . (mk,r,) (validfor n-z=0); (37
a

the restriction to the sum in E¢36) comes from the properties of the expansion coefficiantin Eq. (A12) and again from

Eq. (A9). Despite the large number of sums, E86) is workable because all the Legendre polynomials are calculated in the
equatorial plane,i(-z)=(r-z)=(k-2)=0; it will be used for the numerical integrations in Sec. V. Both the expressions
explicitly show the symmetry of the seed; choosing the axes on the polarization plane parallel and orthogonal to the symmetry
axis (so thate=0) implies that Eqs(36) and(37) give no distinction between the modes, giving again a puf@ term; thus

the polarization direction lies in the equatorial plane, as displayed in the upper panel of Fig. 2. As the very final observation,
note that, in contrast to the came=z, now photons propagating away from the symmetry axis,at 0 can be polarized; a
numerical demonstration of this occurrence will be given in Sec. V. Physically this is because there is a preferred axis on the
polarization plane, the symmetry axis itself; formally, now the j=0 term is admitted, so thgg atr , =0 in Eq.(36) and

JE, =278y in Eq. (37) survive; it is straightforward to write down the polarization tensor in this particular case:

(1—2)!
(I+2)!

k,dk,

2 aj|[Pj(0)]2f o Ei(nky) (evenl,j); (39

(QiiU)Mi:MieIZiaZ (—1)2
=2

it depends on nothing more, except for the nature of theabout 6008~ ! and 10! comoving Mpc respectively: for
infinite seed, encoded in tHg coefficients. its thinness this zone is called last scattering surfa&Ss).

The equations | have developed here and in the previouSince it is useful here, | recall that using the conformal time
section describe CMB perturbations, both for temperatur@s temporal coordinate is also convenient since a photon last
and polarization, around symmetric seeds at a given timecattered aty has to travel a comoving distaneg— 7 to
specified by». In the next section | show how to get their reach our spacetime position, indicated in the following with

appearance on the CMB sky. the subscript 0.
As mentioned in the Introduction, the most known class
IV. POLARIZATION AND TEMPERATURE of primordial perturbations is Gaussian afearly) scale-
ANISOTROPIES invariant; a simplification allowed by this statistics is that the

CMB anisotropies have the same spectrum regardless of the

The expressions in the previous sections describe thgosition of the observefcosmic variance subtracted of
CMB polarization and temperatungerturbationsaround a course[13]). The seeds analyzed here represent a radically
symmetric structure, as a function of the conformal time different CMB anisotropy source; technically speaking they
and the geometry of the seed itself. At any time, if a perfectare non-Gaussian and non-scale-invariant. As a consequence
CMB detector is placed around one of the seed analyzed, thsf this, the position of the source along the photons path
measure of the CMB perturbation carried by a photon propabecomes here a physical degree of freedom, and the classi-
gating on a directiom would give the appropriate result fication of the various possibilities is essential to predict how
from the above formulas. the CMB signal from a symmetric seed could appear.

Now let us face the computation of the CMisotropy Let us start from the spherical symmetry. As sketched in
from a symmetric seed. This requires the convolution of thghe lower panel of Fig. 1, the CMB anisotropies are com-
CMB perturbation with the decoupling history of the uni- pletely specified by the comoving distandebetween the
verse. According to the current scenario, CMB photons wergeed center and the LSS peak: the latter is defined as the
last scattered far from us in spacetime, when the scale factgoint from which we receive CMB photons with highest
was approximatively one thousandth than now. Such processrobability[peak ofP( )] on the directiom, corresponding
is described by the last scattering probability betwgeand  to the center of the spherical seed; the observer is far on the
n+dz, function of several cosmological parameters and ofjght and receives on a directian the CMB photons last
the time of course; its expression in terms of the differentialscatiered inside the spherical perturbation, with probability
optical depthr(7) (see Sec. Yis very simple: sketched as a Gaussian in the figure. The whole signal is

symmetric with respect to rotations arouﬁg. Also it is

P(n)=71e"" (39 convenient to define the useful angleoy

With the appropriate numbers, the last scattering probability A-h.=cosé: (40)
peaks on a spherical corona around us moving away with the ¢ '
light speed of course; it has present radius and thickness dffis simply the angle between the photon propagation direc-
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tion n and the direction corresponding to photons coming P'=—(5,—n)n=P-0. (44)
from the center of the spherical seed in the sky. A photon last

scattered aty with directionn carries a CMB perturbation This fixes the guantities needed:

computable with the formulas developed in the previous sec-

tion, thqt require its radla.I coordinate the latter is com- r.=[(7o— 7)2sirP+ (D + ﬁLss)z[(ﬁc&Xﬁn)z

pletely fixed by#, d, and 6:

r=[(d+ 7o~ 7s9%+ (70— 1)~ 2(d+ 17— 759
X ( No— 7])C050]1/2 7 (41) XSiI’]({))( Mo~ 7])(D+ WLSS)]UZ! (45)

+(Nc-nNpp)?]— —2 siné(N¢- NpCosé+Ne- zX Ny

where 7, ss and o mean LSS peak and present conformal
times, respectively; in fact, sincg,— 7 is just the comoving

causal distance covered by a photon last scatteregl atd As expected, the cylindrical symmetry has introduced an an-

[reiagzg]nqlel':s -tgg:yﬁi galml'lr"r?isEcqgri) ;Zt:s wwaettserhzfri;\rlr;plse mgular variable more than the spherical case. The quantities
mgtric casre)(' Once 3\}9 .have spefifid,dgaining the Cl\)/I/By r . andz defined above allow to employ the formulas devel-

polarization and temperature anisotropies from a spherica ped in the previous section to compute the CMB ap!sotropy
seed means performing line of sight integrations for eaclf@rried by the photon last scatteredzaon the directiom; of
direction specified by, as it is exposed below. Of course, COUrse, for an infinite cylindrical seed only the coordinate

the appearance on the sky of the CMB temperature and pés necessary. While anisotropies in the spherical case are
larization anisotropies from one spherical seed is circularcharacterized by a circular imprint, here their shape may vary

more interesting, while nothing forbids photons coming onWith the orientation of the symmetry axis. If it coincides with

the n, direction to carry a temperature perturbation, the geo

z=— (o= 1)cos6+ (1 ss+D)nc- 2. (46)

Nn¢, thus including the observation point, the imprint is cir-
metric constraint treated in Sec. Il forces them to be nofulararound it, and again polarization anisotropies are absent

polarized. A nice example of this occurrence can be found iff" the direction corresponding to the symmetry axis itself. In
[11]. any other case, both polarization and temperature anisotro-

Let us face now the case of CMB anisotropies comingPi€S Would appear symmetric aroundire in the sky, pro-

from cylindrically symmetric seeds. First of all, let us define Jection of the seed symmetry axis on the celestial sphere.

the planell containing the seed symmetry axis and our ob- Finally, the CMB anisotropies both for the spherical and
servation point: the signal is of course symmetric with re-cylindrical cases are obtained through a line of sight integra-

spect to reflections on this plane. Also let us definél a tion along the photon’s path, convolved with the last scatter-

orthogonal versomy;, and one along the symmetry axis, ing probability (see[3]):

regardless of their direction. Take now a representative point -

C on the symmetry axis; in the spherical case it was the (no,hereﬁ)=f [(®@+W)(n,argn)P(7)
sphere’s center, but here, in principle, it could be any point 0
along the axis: inside the seeds itself, or the axis intersection
with the LSS peak, or ultimately the point of minimal dis-

tance from the observation point. Let's defing as the di-

+(P—d)(p,argnie dy, (47

rection of photons coming fror& andD its comoving dis- (Q=iU) (7o, heren)M .
tance from the LSS pedkf courseny;- nc=0); these simple n .
geometric quantities are displayed in Fig. 2, bottom panel. :fo (QxiU)(n,argn)M.P(n)dn; (48

Now take a photon last scattered saton a directionn, de-

§cr|t1edAW|tr1the usuaAlI anAgI@Asand¢ in the frame defined by at eachy, Eqgs. (41) and (45),(46) give the necessary argu-
€3=2, €=ny, ande;=zxny (only |m/2—¢| would be  ments @rg) to compute the CMB perturbationd. accounts
necessary, since the signal does not change for reflections @& the Sachs-Wolfe effect, due to the work spent by the
I1, look at Fig. 3. Let us define for a momerit andO to be photon climbing out of the potential welor hill) in which it

the photon scattering point and the observation point as seamas last scattered; the time derivatives account for the inte-

by the frame centered i6: grated Sachs-Wolfe effect, due to the work spent by the same
R R o R photon crossing the density perturbations on the way toward
P=r,cos¢ ng+r singzxXng+zz, (42 us.
R ) The following consideration introduces the next section.
O=(D+ 7y g9Nnc; (43 As | have already mentioned, a symmetric seed could be a

. . . . spatially limited structure, say a monopole or a bubble for
in order to employ the equations developed in the previougye spherical case, or a string for the cylindrical case. Thus
section we need to know, andz This is easily done by 154 the CMB anisotropy is spatially limited, since the evo-
expressing® as seen in a system with the same axes orienution equations may transport the CMB perturbation at most
tation but centered iD: at a sound horizon distance from the source. Therefore, if the
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perturbed zone does not intersect the LSS, meaning that it 5y=—kv,— 3K2dD,

occupies a spacetime region whé&én) is negligibly small,

the terms®, Q, andU above do not give contributions; in _ a 4p

this situation, the seed cannot signal its presence, except for Vp=—_UpTt k\If+—7anech(v,/—vb), (54)
the integrated Sachs-Wolfe effect if it lies within our Hubble a 3pb

sphere(a d!stlnqtlve and fascma_ltlng signal in this case a”sewhere5s(6p/p) and r= ax.n.o is the differential optical
from cosmic string$14]). Thus, in order to detect the genu- depth;n, is the electron number density arglis the ioniza-
ine CMB signal from a symmetric spatially limited seed, we P Ne y

should be lucky with its spacetime location: it should inter-t!o.n fraction (see the last wo_rk m_referenc{é] for us_eful .
sect the LSS, fitting formulag. Photon equations involve each multipole in

the expansiong3) and(4):

. k . - 2 .
V. THE PEBBLES IN A POND Op=—=-0,-D, O,=kO,— §k®2+ T(vp— @)+ k¥,

Let us apply the formulas developed in the previous sec- 3 (55)
tions. | plunge a toy symmetric source in the cosmic fluid at
the initial time =0, computing its evolution by using the .2 3 {9 J6
linear theory of the cosmological perturbations. At different ®2=§k®1— 7k®3— T(E®2—E E )
times during the evolution, some pictures of the correspond-
ing CMB polarization and temperature perturbations are J5 1 2
taken. Finally, the computation of the line of sight integrals E,=—— kE;— .T(—2+ —Ez), (56)
(47) and(48) simulates the CMB signal as it would appear in 7 10 S
a high resolution _observe_lti_o_n. _ _ and for|=3:
First, let us define the initial density perturbations. For the
spherical case, | take a potential energy condensation with a [ [+1 .
Gaussian shape extending on a comoving radial distBnce ®I:k[m®ll_m®l+l — 70,
r\? . 17— Ji+1)%-4 .
‘I’(r,n=0)=Nexr{—(§) : (49 Ei=K 57 Ei-1- (2|+)3 Ei..|—7E. (57

For the cylindrical case, | take an infinitely long seed, with aln Newtonian gauge the lowest multipoles are linked to the
potential energy condensation on the equatorial plane chaphoton fluid quantities bys,=4©,, v,=0©,, and =,

acterized again by a Gaussian shape and extending on a scald 20,/5. Massless neutrinos can be treated as photons
R, : without the polarization and Thomson scattering terms. Fi-

nally, the equations for the gravitational potentials are

2
ry
Yy, n=0=Mexg —|=—| |. 50
( o ) M ;{ <R+) ( ) k2CD=47TGa2 pC60+pb5b+py57+pv5v
The normalization constants will be fixed below. The Fourier 34 4 4
transforms are easily performed in the frame with origin in + — = pevet povpt —Pyvy—PVvV) , (59
the center of the sources: ka 3 3
87wG
kR\? K2 2=
W (k, p=0)=Nm3?R3 ex;{_<7) } , (51) ke(V+ ) 3 (pym,+p,m,). (59

As it is known[1,2], at early times the above system can be
solved by using the tight coupling approximation between

(52 photons and baryons. The multipole equations are expanded
in powers ofk/7<1. The only zero order terms af#, and

The evolution equations for fluid and CMB quantities may ©1 from Egs.(54),(55), and obey the following equations:

be obtained by the Boltzmann and linearized Einstein equa-

kiR, \?
\P(k+,n=0)=MwRiexp{—< +2+> .

. k .
tions[1-3]. A standard cold dark matt¢€DM) scenario is Op=—0,—-,
assumed, including cold dark matter) ( baryons b), pho- 3
tons (y), and three families of massless neutrinas. (All d 3 3
the equations in the following are written in Fourier space. gy 2P 0,|=kOy+kl 1+ ﬂ)\y’ (60)
The equations for the matter species are dz 4p, 4py
. where®; is assumed to concide with, to the lowest order.
8.=—kvo—3K2D, v,=— gvc+k‘1’, (53) Lr;creasing the order i/ 7 the higher multipoles are given
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FIG. 3. CMB temperature perturbation around a spherical seed FIG. 4. The CMB polarization perturbation around a spherical
with the indicated size as a function of the radial distance from theseed is plotted as in Fig. 3. Note the external polarization waves at
center; the different panels represent the perturbation at differerthe position of the CMB sound horizon at the time considered and
times. Note the temperature waves arising from the oscillations octhe absence of central perturbation.
curring at the horizon crossing.

moving size iSR=10h"1 Mpc, that is well below the effec-

k8 J6 tive horizon at decouplingapproximatively 108~ Mpc).
2:; §®1' Ex= 2 02, 6D The radial profile is shown, and the temperature perturbation
has been computed from E@L3) for photons propagating
Ko Kk \I7—4 perpendicularly to the radial direction, as indicated. The sum
0=~ =—0,_,, == ———FE_4. (62)  converges very rapidly: the heavy line shows the result from
r2l—1 r2l-1 the first ten multipoles, while the light one, almost indistin-

) guishable, indicates the result from the ohiy0 multipole
| integrate in time the systert60),(61),(62) until k/7=0.1  in Eq. (13). The figure points out the wavelike behavior of
occurs, thereafter integrating the complete equations; ofhe CMB perturbations. The initial conditiofpanela) re-
course, care is taken that the results do not depend at all anains unchanged until the horizon crossing, that occurs
this choice. nearly at equivalence for the chosen size. At this time, in
| take adiabatic initial conditions: at early timés=4,  panelb, baryons tend to fall into the potential well, and the
=36,/4=36,/4 (all the velocity are initially zerband the  perturbation amplitude grows. After that, in pamelan op-
second member in E@458) at »=0 is proportional for each posite oscillation due to the pressure reaction takes place,
Fourier mode to the initial perturbation spectru®il) or  pushing the perturbation away from the center. Finally, in
(52); in order to make the following results more clear, the paneld the perturbation is shown just before decoupling: the
latter is normalized with the density contrastaken in the oscillatory behavior caused a temperature perturbation wave
center of the seed at decoupling. This choice is not deperthat is propagating outward. The wave crest is just at the
dent on the particular gauge chosen here, since(B}.is  position of the sound horizon at the time displayed. This
gauge invarian{1]. In the CMB equations, everything is phenomenology is analogous in Fig. 4, where the polariza-
initially zero except for the lowest multipole of the tempera-tion amplitude, computed using E(L8), is shown. At the
ture perturbatiori2]: initial time no perturbation is visible, since all the Fourier
modes are outside the horizon. At the horizon crossing the
0o(0)=—2V(0). (63)  oscillations begin, producing a well visible polarization wave
L ) . . that travels outward with the CMB sound velocity. Note that,
The background evolution is driven by the Einstein equatiornhs an important distinction with respect to the temperature
o case, for the polarization there is no perturbation near the
a_ %aZE (64) center, at smalt. This is a practical realization of the geo-
3 a Pas metric constraint exposed in Sec. Il: photons propagating
radially in a spherical density field must not be polarized,
where the indexa runs over all the fluid species. Now the since no preferred axis exists on the polarization plane.
computation system is ready. The background parameters Figures 5 and 6 show the same analysis on the cylindrical
describe a standard CDM modelQ§=1h=0.50 seed and remarkably the same undulatory phenomenology of
=0.05Qcom=1—Qy). the spherical case occurs. The siz&®is=10h~! Mpc and
Figure 3 shows the time evolution of the CMB tempera-photons propagating perpendicularly to the symmetry and
ture perturbation from the spherical seed. The chosen caadial directions are considered, from E@26) and (36).

a‘2
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FIG. 5. CMB temperature perturbation around a infinite cylin-
drical seed with the indicated size on the equatorial plane, as a
function of the distance from the symmetry axis. The different pan-  FIG. 7. CMB temperaturdtop) and polarization(bottom) an-
els represent the perturbation at different times. Note, in analogysotropy for a spherical seed with the size indicatéds the angle
with the spherical case, the temperature waves arising from thftrom the center. The seed is centered exactly on the last scattering
oscillations occurring at the horizon crossing. surface =0, solid ling, just in front of it (d=30h~! Mpc,

dashed ling and behindd= —30h~! Mpc, dotted-dashed linelt
Again the sum converges very rapidly: the light line in Fig. 5 physically occupies the very central part of the grapks 10 arc
corresponds to thé=0 terms in Eq.(26). At the horizon  min. Note the temperature and polarization anisotropy waves at the
crossing, the competition between pressure and gravity ge@ngular scale corresponding to the CMB sound horizon at decou-
erate CMB temperature and polarization waves propagatingling.
away from the symmetry axis. Just before decoupling, panels
d, temperature and polarization waves are well visible a Fijgure 7 shows the results of the line of sight integrals
CMB sound horizon away from the axis of the Cylindrical (47) and(48), where for S|mp||c|ty 0n|y the Spherica| case is
seed. As an interesting feature, note how in this case thgnhown: | recall that is the angle between the line of sight
polarization for photons scattered on the symmetry axis isnd the one corresponding to the center of the seed. The
nonvanishing: this is evident particularly in pacelThe cen-  jmportance of the different positions of the seed with respect
tral polarization amplitude is in any case smaller than thgg the LSS is evident: the solid line shows the signal if the
mean signal size, since for, —0 in Eq. (36) only thel  spherical perturbation lies exactly on the last scattering sur-
=0 term survive. face,d=0, while the dashed and dotted-dashed lines corre-
spond to the cases=30h"! Mpc andd=—30h"* Mpc,
respectively. The general features pointed of the time evolu-

fi-7=0 tion have been preserved. Simply, the CMB temperature and

= 'r polarization waves propagating outward from the spherical
= o b— seed have been snapped by the decoupling photons. The an-

g r R,~10h- Mpc 1 isotropy waves extend on the scale of a CMB sound horizon

p F 1tz = 10¢ T at decoupling, that is roughly 1 deg in the sky. The tempera-

ture perturbation contains a central spot, that is absent in the
polarization case.

It is important to point out the following considerations.
First, note that the mean amplitude of the signal follows the

5 ° known expectation$15] for a linear structure with sizé
s 2 <H ! and density contrastd at decoupling: ST/T
@ 142=3600 142=1500 | =§(L/H™ 12, roughly ten times stronger than the polariza-
<k © I @ ] tion signal. From the point of view of the dark matter distri-
[P PPN SN PN IR AR IPVINS IV IR S bution, the seed lies in the very central part of the graph, say
0 20 r“ﬁﬁ M‘;‘l] 80 100 20 r4[(;'1’1 Mi‘(’)] 80 100 #=<10 arc min(corresponding to less then HO' Mpc in

Figs. 3 and 4 Also the amplitude of the waves has the same

FIG. 6. The CMB polarization perturbation around an infinite mean magnitude of the signal coming from the location of
cylindrical is plotted as in Fig. 5. In this case, since photons ardhe seed,; really, in the polarization from a spherical seed they
propagating as indicated, a central polarization arises, mostly eviare the very dominant component of the anisotropy. Thus
dent in panel c. they must be considered in any simulation aiming at the
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detection of this kind of signals. Also they could play somependences, and extract them analytically from the Fourier
role in the structure formation around the seed, since they aiiategral in the cases of propagation parallel and orthogonal to
physically made of photons and baryons. Besides, from athe symmetry axis. In the first case the polarization direction
experimental point of view this undulatory occurrence couldjjes on the plane formed by andz; as for the spherical case,
help the detection if structure like these ones should rea"¥)h0t0n5 traveling exactly on the symmetry axis are not po-
exist. Indeed the CMB signal from a spatially limited seed is|arized. In the second case, and for an infinite seed, the po-
extended on the scale of a sound horizon at decoupling evagyization direction is orthogonal to the symmetry axis.
if the size of the seed itself is smaller; therefore it appears as gqor what concerns the CMB anisotropies as observed in
a series of subdegree rings centered on the position of thg, sky, they are computed with an usual line of sight inte-
seed; this can help to discriminate between the signals fro%ation, but the seeds considered here introduce additional
point astrophysical sources from genuine cosmological seeqgyriaples with respect to the ordinary Gaussian case, that
of primordial origin. Also, as it is evident from Fig. 7, @ gpecify their position and orientation along the photons path
marked correlation exists between the temperature and polas\yard us, characterizing their appearance on our CMB sky.
ization signals. Of course, this would improve the signal to  pgjarization and temperature anisotropies from a spherical
noise ratio for high resolution instruments like Planck ca-geeq are circular and specified by the distatibetween the
pable to detect both polarization and temperature anisotropeed center and the LSS peak. As a consequence of the geo-
metric constraints summarized above, CMB polarization an-
isotropy is absent for photons coming from the center of the
seed; on the other hand, nothing prevents them to possess a

At the present time, very high energy physics is stilltemperature perturbation.
rather unknown and only theoretically approached. The Anisotropies from a cylindrical seed are specified by the
breaking of high energy symmetries in the early universalistanceD between a representative point on the symmetry
may have left some traces of their occurrence, like topologiaxis and the LSS peak, as well as on the angular orientation
cal defects or true vacuum bubbles. These relics act as seedkthe symmetry axis itself on the plane containing it and the
for polarization and temperature anisotropies in the cosmiobservation point. Anisotropies may appear in different
microwave backgroundCMB), and this work aims at pro- ways. If the symmetry axis includes the observation point,
viding a general framework in order to predict their signal. what we would see is a circular imprint again; as in the

| have considered the cases of spherical and cylindricaspherical case, CMB polarization anisotropy is absent for
symmetry of the perturbation source; no other specificatiopphotons coming from the center. In any other case, anisotro-
characterizes the seed. | have obtained general formulas dgies would appear symmetric around a line in the sky, pro-
scribing CMB polarization and temperature perturbations, agection of the axis on the celestial sphere, thus giving the
a function of time, generated by the most general structuregenuine sign of a cylindrical seed.
characterized by the mentioned symmetries. The analysis re- | have performed some numerical work on the formulas
gards both the pure CMB perturbation nearby the seeds ardkveloped here, adopting toy symmetric sources in order to
their CMB anisotropy as observed in our sky. Such expressee the pure CMB processes at work with this kind of seed.
sions explicitly show several nice features to their own CMBThe time evolution of the seed and of its corresponding
imprint. CMB perturbation is performed from the initial time, and

In spherical symmetry, the polarization and temperatureseveral pictures are taken before decoupling. The integra-
perturbations depend geometrically on the scalar produdions highlight the undulatory behavior of the CMB pertur-

n-r, where the first is the photon propagation direction andPations. Just like a pebble in a pond, the oscillations occur-
the second the radial versor in the point where CMB is beinging at the horizon crossing produce temperature and
measured. | give explicit expressions in which this depenpolarization perturbation waves that propagate outward with

dence is factored out of the integral over the Fourier perturthe CMB sound velocity. Consequently, the CMB anisotro-
bations modes. In particular the polarization direction-  Pies caused from structures like the ones analyzed here that

intersect the last scattering surface extend at least on 1 deg in

As an important difference between polarization and tem:[he sky, th_at is the 3”9“'6“ scale cqrrespondlng to the CMB
ound horizon at decoupling; the signals contain anisotropy

erature perturbations, the light propagating from the centey ) .
b b ght propagating aves, each one characterized by its own value of tempera-

of the seed is not polarized, since the radial propagation i d polarizati wurbati Thi t of th

spherical symmetry is an axial symmetric problem, so thaf\"® Tn po arlzatlﬁn perturba |on..t d 1S fc&mponen ot %.

no preferred axis exists for the polarization; instead nothin Ignal possesses thé same magnitude of theé oné coming di-
ectly from the seed interior. The mean amplitude roughly

forbids a temperature perturbation. follow the known expectations for a linear structure with size
In cylindrical symmetry the polarization and temperature ) :
y y y P P L<H ! and density contrasts at decoupling: 6T/T

perturbations depend on the productg andr -z, wherezis  _ S(L/H~Y2, roughly ten times stronger than the polariza-
the symmetry axis, as Yvell as on the angular difference beﬂon signal, v,vhereH‘l is the size of the Hubble length at
tween the projections ai andr on the plane orthogonal to - decoupling. The anisotropy waves coming out of a symmet-
z; the r-z dependence is lost if the seed is invariant forric spatially limited seed are a unique proof that the seed
traslations along the symmetry aximentioned as infinite in  itself existed well before decoupling; thus, these waves could
the following). | give formal expressions showing these de-allow to distinguish relics from high energy processes of the

VI. CONCLUSION

thogonal ton of course lies on the plane formed by andr.
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early universe from pointlike astrophysical sources, because (m+1)x

of the angular extension and amplitude. Also, this phenom-  P""?(x) + > P Y (x)+(I—=m)(1+m+1)
enology offers cross correlation possibilities for detectors vi—X

like Planck capable to explore both temperature and polar- X PI"(x) =0, (AB)

ization CMB sky.
Future works will deal with models of real symmetric m
structur_es_, relics_ from high energy physics. Thesg works aim (1_X2)di: —IXP"(x)+(1+m)P 1 (x); (A7)
at predicting their appearance on the CMB map itself before dx
than on the anisotropy power spectrum. Their detection in ]
the high resolution CMB maps provided by the Microwave they can be used to gain the value of any Legendre polyno-
Anisotropy Probe and Planck missions in the next decadglals inx=0:
would be an invaluable insight into the hidden sector of high 0 B 1 1
energy physics. Po(0)=1, P1(0)=0, P3(0)=-1, P30)=0,
ACKNOWLEDGMENTS (I=m)PP(0)=—(I+m=-1)P[5(0),
The first half of this work was performed at the NASA/ P""2(0)=—(1—m)(I+m+1)P["(0). (A8)
Fermilab Astrophysics center. It was supported by the DOE
and the NASA grant NAG 5-7092. | warmly thank the hos- Also note that
pitality of the Theoretical Astrophysics Group. Also, | wish
to thank Luca Amendola and Franco Occhionero for constant P"(0)=0 forodd |+m. (A9)

encouragement.
In this work | have often used the addition relation for

APPENDIX A: SPHERICAL HARMONICS spherical harmonics, given by

AND RELATED QUANTITIES

|
~A A A N N
The spherical harmonics are expressed as usual as Piny-ng)=5—= 1m§_| Y'(n) Y™ (ny),  (A10)

[(21+1) (I—=m)! : and the following useful integral relation, that may be veri-
m — m |m¢ ]
Yi(0.4)= 47  (1+m)! Pricosg)e™, (Al fieq easily using the addition relation itself:

i 1 .~ A ~ A 4 .~ A
where the Legendre polynomials are defined by f dQﬁlP|(n1'n2)P|r(n1' fy) =5 = :1 P/(Ry-Ng).
dm (A11)
P =(=1)M(1-x*)™2—Py(x),
dx™ Second order Legendre polynomials admit the following ex-
pansion[16]:
P 0=(~ D" B (m=0), (A2
' (I+myr ! ’ PA(x)= 2, a;P;(x), (A12)
j=<I

where x=cos6. Legendre polynomials and spherical har-

monics obey the orthogonality relations where

2 (+m)! a;=0 for j>I or I+]j odd,

1
dx PP(X)P(X) =8y 57— ~———,
L ()P 211 (I—m)! aj=—21(1-1)(2j+1)/(41+2) for I=j, (A13)

f sinadedqsv{“*(a,¢)Y[*,"(0,¢):5”,5mm,, (A3) a;=2(2j+1) for j<l and|+j even.

The tensor spherical harmonics are defined in terms of the

and are eigenmodes of the parity operator: ordinary ones by

P(—x)—(— 1) *MPM(x). A4 [=2)1]

| ( )—( ) | (x) (A4) tZYIm(X): N aﬁ—cotea(,
Legendre polynomials satisfy the following note recurrence )
relations: 2m -
I—Sina(a(,—cota)Jr = Y'(0,¢);
(I=m)P"(x) =x(21 = 1)P™ ;(x) — (I +m—1) P (x), s!
(A5) (A14)
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the normalization coefficient may vary in literature. Equation 1 (7 _
(14) is easily obtained in the following way. From EGA\6) E.(2)= ;f sin(vf—zsing)do. (B3)
one can immediately see that 0

1 I(1+1) The two following equalities are easily gained using elemen-
COLOPI(X)= = 5 P2(x)— >—Pi(x). (A15) tary integration algebra:
2w
Also the equality f exgd *i(vep—Bsing)lde
0
7P (X) =~ PY(x) + PA(x) (A16) =a[J,(B) IE,(B)]+me" " [I_(B)FIE_(B)],
v1=x (B4)

holds by using elementary derivation. Using again &®) 5
for m=0 and putting Eqs(A15) and (A7) together, the J wexr[ti(vq&—ﬂsinq&)]dd)
wanted equation is obtained: 0

21+1 (1-2)! wivaiz (372 .
LYP(x)= ?ﬁpf(x). (A17) =e” ’Zf_ﬂ/zexrhl(—V¢+/3005¢>)]d¢>- (BS)

If vis integer, all the functions in the integrals are periodical
on the 27 interval, so as the integrals above do not depend

This appendix contains some useful integration relationson the starting point. Thus the following equality holds:
Focus on the integral

APPENDIX B: ANGER AND WEBER FUNCTIONS

- fzweXF{ii(—mqurﬁcos(b)]d(ﬁ

fo exg *i(vp—pBsing)lde=m[J,(B)*IiE,(B)] ° _
= e "M In(B) FIEm(B)]

(R8ﬁ>0), (Bl) + 77_eIiVﬂ'/Z[J_m(ﬂ) +ij E—m(ﬁ)]

whereJ, andE, are the Anger and Weber functions, respec- =JE.(m,pB); (B6)
tively (see[17] for useful recurrence relations B
it is valid for m=» integer and R@>0; the last equality is
J(2)= EJ'Wcos(va—zsinG)de, (B2) a pure definitio_n. Note that i_n the particular cg8e 0, the
mJo above expression reduces simply to &,,-
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