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Cosmic microwave background: Polarization and temperature anisotropies
from symmetric structures
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SISSA/ISAS, Via Beirut 4, I-34014 Trieste, Italy

~Received 26 June 1998; published 18 May 1999!

Perturbations in the cosmic microwave background~CMB! are generated by primordial inhomogeneities. I
consider the case of CMB anisotropies from one single ordered perturbation source, or seed, existing well
before decoupling between matter and radiation. Such structures could have been left by high energy symme-
tries breaking in the early universe. I focus on the cases of spherical and cylindrical symmetry of the seed. I
give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the
Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describ-
ing the seed. I show how the CMB perturbations manifestly reflect the symmetries of their seeds. In particular,
polarization is uniquely linked to the shape of the source because of its tensorial nature. CMB anisotropies are
obtained with a line of sight integration. They are a function of the position and orientation of the seed along
the photons path. This treatment highlights the undulatory properties of the CMB. I show with numerical
examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching
the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB
anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polariza-
tion waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly
1 deg in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean
amplitude of the signal coming from the seed interior; as expected for a linear structure with sizeL<H21 and
density contrastd at decoupling, the temperature anisotropy isdT/T.d(L/H21)2, roughly ten times stronger
than the polarization. These waves could allow one to distinguish relics from high energy processes of the early
universe from pointlike astrophysical sources, because of their angular extension and amplitude. Also, the
marked analogy between polarization and temperature signals offers cross correlation possibilities for the
future detection instruments. It would be interesting to detect these signals in the next 10 arc min CMB map
provided by the Planck Surveyor satellite experiment.@S0556-2821~99!07410-X#

PACS number~s!: 98.70.Vc, 98.80.Cq
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I. INTRODUCTION

The cosmic microwave background~CMB! carries de-
tailed information about the high energy physical proces
that occurred in the early universe. Most probably, the
crophysics still hidden to our knowledge left traces that ha
been stretched out to large and observable scales by a p
of accelerated expansion; at decoupling between matter
radiation, they imprinted anisotropies in the CMB. This
the reason for the contemporary theoretical and experime
efforts to understand CMB physics. The theory of CM
anisotropies has been explored extensively in the past~see
@1,2# and references therein! and, recently, it has been caste
in a complete and organic form@3#. At the same time, many
experiments are at work to explore the CMB anisotrop
toward smaller and smaller angular scales~see @4# for re-
views!; this experimental enterprise will culminate with th
Planck mission of the next decade that will provide t
whole sky temperature and polarization anisotropy m
down to a minimum detectable perturbation of one part o
1 million and with an angular resolution of about 10 arc m
@5#.

According to the inflationary phenomenology, a sca
field ~the inflaton! slowly rolls toward the minimum of its
potential, giving the nonzero vacuum energy responsible
0556-2821/99/59~12!/123004~15!/$15.00 59 1230
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the expansion itself. The quantum fluctuations are though
arise from the vacuum in a curved background; they
stretched out to large scales by the inflationary expans
itself, and set up the seeds of the cosmological perturbat
we observe today~see @6# for reviews!. However, even
adopting this inflationary scenario, things are still unclear
what concerns the release of the energy stored in the infl
into ordinary matter and radiation, the so called reheating~or
preheating! era@7#. The oscillations of the inflaton around it
minimum, combined with the coupling to other fields, c
restore high energy symmetries that have to be broken
reach our low energy minimum; consequently, a postin
tionary generation of topological defects may arise, and
occurrence is at the present under investigation@8#. Also,
during inflation itself many fundamental fields may act
stage and the effective potential may have several min
separated by potential barriers. If this is the case, tunne
phenomena occur, and the nucleated bubbles are stret
out to large scales as the ordinary quantum fluctuations~see
@9# for reviews!; at reheating the energy stored in the shells
converted into matter and radiation and bubbly traces may
left in the density distribution~this possibility, with different
points of view, has been considered in the last decade@10#!.

Suppose that one of these relics from very high ene
physics is plunged from some very early time into cosm
matter and radiation, no matter of its composition, that co
be scalar field or cosmic fluid or other. It generates pertur
©1999 The American Physical Society04-1
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CARLO BACCIGALUPI PHYSICAL REVIEW D 59 123004
tions around itself, in particular in the photon-baryon fluid.
also it intersects the last scattering surface~LSS, the place of
origin of the CMB!, these perturbations become anisotrop
that we could observe today. These are expected to be
recognizable, since in most cases such seed is a spa
limited structure, very different from the diffuse fluctuation
of the pure slow-roll inflation; technically speaking, such s
nal would be strongly non-Gaussian and non-scale-invari
Also, such structures are expected to possess~approximate!
symmetries, like a bubble or a monopole~spherical! and a
string ~cylindrical!. Their detection in the CMB anisotropie
would be the first observational evidence of the existence
high energy symmetries, and this hope is precisely the
tive of this work. I develop here some useful formulas for t
CMB perturbations and anisotropies from symmetric str
tures; the results areindependentfrom the particular seed
the only characterization being its symmetry, that I take h
spherical or cylindrical. I perform some numerical integr
tions using these formulas and adopting toy symmetric se
in order to investigate the geometrical and dynamical pr
erties of their own CMB perturbations and anisotropies.
forthcoming works I will compute the CMB anisotropie
from realistic relics left from high energy physics in the ea
universe; a pretty example, valid simply for large bubbles
the density distribution, may be found in@11#.

As already mentioned, the treatment of the CMB inhom
geneities has been casted recently in a complete and org
form, the total angular momentum method@3#. In turn, it is
based on the general treatment of the linear cosmolog
perturbations@1#; I perform the calculations in this frame
respecting the notations as much as possible. The CMB
turbations involve temperature (dT/T[Q in the following!
and polarization, that is expressed via the Stokes param
Q andU describing linear polarization. For a given Fouri
mode specified by thekW vector, it is convenient to expres
the relevant quantities in a frame in which thek̂ direction is
the polar axis~the k̂-frame in the following!. The reason is
that, in the new frame, the scalar, vector, and tensor com
nents of the perturbed metric quantities are coupled, res
tively, to them50,61,62 indexes of the spherical harmon
ics @3#. Of course, transforming back to the real space,
k̂-frame quantities must be expressed in the fixed labora
frame ~the lab-frame in the following!. For a given Fourier
modekW , Q is the difference in temperature fluctuations p
larized in theêu and êf directions (u andf being the usual
angles in spherical coordinates!; U is the same difference
where the axes have been rotated by 45 deg around the
ton propagation direction. Equivalently,Q and U may be
seen as the expansion coefficients of the polarization te
into the Pauli matricess3 ands1, defined on the basis vec
tors êu and êf in the k̂-frame.

The background Friedmann-Robertson-Walker~FRW!
metric is

ds25a~h!2S 2dh21
dr2

12Kr 2
1r 2dV2D , ~1!
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where h(t)5*0
t dt/a(t) is the conformal time andK the

spatial curvature; I will assume a flatK50 background in
this work. The perturbed metric tensor is

gmn5a~h!2~gmn1hmn!, ~2!

where a(h)2gmn represents the background. Sincehmn

!gmn , a gauge freedom reduces the number of physic
significant quantities in the perturbation metric tensor; in t
work I adopt the generalized Newtonian gauge in which
two scalar perturbed metric component areC5h00/2 and
2F5h115h225h33 @1,3#.

The CMB perturbations depend on the spacetime po
and on the photon propagation directionn̂, so an appropriate
normal mode expansion is needed:

Q~h,rW,n̂!5E d3k

~2p!3 (
l

(
m522

2

Q l
(m)~h,kW !Gl

m~rW,kW ,n̂!,

~3!

~Q1 iU !~h,rW,n̂!M11~Q2 iU !~h,rW,n̂!M2

5E d3k

~2p!3 (
l>2

(
m522

2

@~El
(m)1 iBl

(m)!~h,kW !12Gl
m~rW,kW ,n̂!

1~El
(m)2 iBl

(m)!~h,kW !22Gl
m~rW,kW ,n̂!#, ~4!

whereM65(s37 is1)/2 are convenient basis matrices f
the polarization tensor.Gl

m and 62Gl
m include both spatial

and angular functions; the spatial ones are the eigenmode
the Laplacian in the metric~1!:

¹2QK~kW ,xW ![g i j QK u i j 52k2QK~kW ,xW !; ~5!

the angular functions are instead spherical harmonics. In
case of flatness (K50) the Laplace equation~5! gives plane
waves, and the expression of the normal modes become

Gl
m5~2 i ! lA 4p

2l 11
Yl

m~ n̂k̂!exp~ ikW•rW !, ~6!

62Gl
m5~2 i ! lA 4p

2l 11 62Yl
m~ n̂k̂!M6

k̂ exp~ ikW•rW !; ~7!

as a difference with respect to@3#, the notationn̂k̂ , M6
k̂ has

been used to underline that, for eachkW mode, all the quanti-
ties in Eqs.~6!,~7!, as well as the expansion coefficients
Eqs.~3!,~4!, are expressed in thek̂ frame; as customary, the
expansion coefficients of the Stokes parametersQ,U have
been decomposed into real and imaginary parts. Through
this work, in order to characterize the polarization with
symmetric seeds, I make use of the useful definition ofpo-
larization direction@12#, given entirely in terms ofQ andU
as follows. It is easy to see that, due to the rotation proper
of the Pauli matrices, the angle

a5
1

2
tan21

U

Q
~8!
4-2
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COSMIC MICROWAVE BACKGROUND: POLARIZATION . . . PHYSICAL REVIEW D59 123004
goes intoa2f under a rotation byf around n̂; thus it
defines a fixed axis on the plane orthogonaln̂, that is the
polarization direction.

The underlying cosmological inhomogeneities move
CMB perturbations and are encoded in the expansion co
cients in Eqs.~3!,~4!. Before going to the content of thi
work, it is useful to point out the following important dis
tinction. The Fourier transform of any perturbation quant
D may be written as

D~kW !5uD~kW !ueifkW ; ~9!

it is Gaussian if the phases infkW are random; specifically in
these hypothesis, the statistics is completely described by
power spectrum̂ uD(kW )u2&. Also it is scale-invariant if the
modulus depends only on the scale (k5ukW u) in such a way
that the power associated to each one is the same a
horizon reenter. On the contrary, CMB anisotropies fro
sources like the ones considered here are non-Gaussian
non-scale-invariant; their symmetries, encoded in prec
properties of both modulus and phases in Eq.~9!, determine
their unique sign in the CMB. Moreover, I do not require th
they are dominant for structure formation. A high resoluti
CMB map could contain the unambiguous imprint of o
single symmetric seed existing at decoupling plunged i
global Gaussian signal; even if the power spectrum does
contain its sign at all, that would be enormously interesti

The work is organized as follows. Sections II and III co
tain the analysis of the CMB perturbations in spherical a
cylindrical symmetry, respectively. Section IV contains t
method for the computation of the CMB polarization a
temperature anisotropies as they would appear on the sk
Sec. V the results from numerical integrations are sho
Finally, Sec. VI contains the conclusions.

II. SPHERICAL SYMMETRY

It is easy to see that spherical structures may be sc
only, and thus are described by them50 modes of the linear
expansion; there is no way to comb the hair of a sphere
such a way to obtain a spherical distribution, and this p
vents spherical structures to be made of genuinely vecto~or
tensor! components. Thus I drop the(0) index in the follow-
ing, and consider flat space geometry,K50.

The problem to solve is the following: at a conformal tim
h, a perfect CMB detector is placed in a pointrW nearby a
primordial spherical structure; what is the CMB perturb
tions carried by photons scattered on a directionn̂?

The center of the coordinate frame is placed at the ce
of the spherical seed. Its Fourier transform depends only
the wavevector modulusk and it is therefore the same fo
any axes orientation:

rW→r⇔kW→k. ~10!

First, let us find the consequence of Eq.~10! on the pure
temperature perturbationQ. The expansion coefficientsQ l
in Eq. ~3! are proportional to the Fourier transformed pert
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bation ~see Sec. V! and do not depend at all on the orient
tion of the perturbation in thek̂-frame, simply because it is
spherical: they depend onk only. Consequently, posingd3k
5k2dkdV k̂ in Eq. ~3! the Q l coefficients may be extracte
from the angular integral. Thus let us face the pure geome
quantity

E dV k̂~2 i ! lA 4p

2l 11
Yl

0~ n̂• k̂!exp~ ikW•rW !, ~11!

where the argument of the spherical harmonics in Eq.~6! has
been shown~see Appendix A!. The integral~11! is easily
computed expanding the plane wave into Bessel and L
endre functions

eikW•rW5(
l

i l~2l 11! j l~kr !Pl~ r̂ • k̂! , ~12!

and employing the useful relation~A11! with n̂15 k̂, n̂2

5 r̂ , andn̂35n̂. The result is

Q5(
l

Pl~ n̂• r̂ !E k2dk

2p2
Q l~h,k! j l~kr !. ~13!

This expression gives the CMB temperature perturbation
any time for the most general spherical perturbation, enco
in the Fourier integral. The dependence onn̂ and r̂ has been
factored out, and enters only in the Legendre polynom
argumentn̂• r̂ . This is an expected feature of this spheric
case: for example, focus on thel 51 term, better known as
the Doppler effect (Q1 is essentially the velocity of baryon
@2#!; the motion of each particle in this spherical case
radial of course; then, since this Legendre polynomial is j
n̂• r̂ , photons propagating on the directionn̂ pick up the
usual Doppler cosine contribution at the scattering point.

Let us face now the polarization for a spherical seed
first simplification is that the scalar perturbations excite
El modes only@3#, so we can drop theBl terms in the fol-
lowing. Then, as before, theEl coefficients depend onk only,
so they can be extracted from the angular integral. A
difference from the temperature case, thetensor spherical
harmonics describe now the angular dependence in Eq.~7!;
fortunately they admit, form50, a simple expression in
terms of the elementary Legendre polynomials, as it is de
onstrated in Appendix A:

2Yl
0~ n̂• k̂!5A2l 11

4p

~ l 22!!

~ l 12!!
Pl

2~ n̂• k̂!, ~14!

where the6 index has been suppressed since it makes
difference in them50 case.

Focus now on theM6
k̂ matrices. They have to be ex

pressed in terms of the fixed lab-frame matricesM6 . This is
obtained performing a rotation around then̂ axis in order to
make theêu and theêf vectors in thek̂-frame coincident
with the laboratory ones: the rotation angle is essentially
angular coordinate of the projection ofk̂ into the plane or-
4-3
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CARLO BACCIGALUPI PHYSICAL REVIEW D 59 123004
thogonal ton̂. For simplicity, but without any loss of gene
ality, let us orient the lab-frame so thatn̂ is the polar axis;
then, it is easy to see that the rotation angle is sim
2(f k̂1p), wheref k̂ is just thef coordinate ofkW in the lab-
frame; thus, from elementary rotation properties of the Pa

matrices, the expression ofM6
k̂ as seen in the lab-frame is

M6
k̂ 5e72if k̂M6 . ~15!

The integral in Eq.~4! has now the following form:

~Q6 iU !M65(
l>2

E k2dk

~2p!3
El~h,k!~2 i ! lA~ l 22!!

~ l 12!!

3E dV k̂e
ikW•rWPl

2~ n̂• k̂!•e72if k̂M6 . ~16!

Moreover, it is useful to employ the expansion~12! together
with the addition relation~A10! with n̂15 r̂ and n̂25 k̂:

eikW•rW5 (
l ,m52 l

l

i l4p j l~kr !Yl
m~ r̂ !Yl

m* ~ k̂!. ~17!

The integral~16! in df k̂ can now be calculated: thee72if k̂

phases in Eq.~15! select them572 terms, respectively
above; once this is done, the integral ondu k̂ is simple using
the spherical harmonics orthogonality~A3!; the final result is

~Q1 iU !M11~Q2 iU !M2

5~e22if r̂M11e2if r̂M2!(
l>2

A~ l 22!!

~ l 12!!
Pl

2~ n̂• r̂ !

3E k2dk

2p2
El~h,k! j l~kr !, ~18!

wheref r̂ is the angular coordinate of the projection of therW

vector on the plane orthogonal ton̂. Let us check out the
meanings of Eq.~18!. Again the dependence onn̂ and r̂ has
been completely extracted from the Fourier integral; rea
the matricesM6 , basis for the polarization tensor, are ou
side the sum onl and multiply appropriate phases: th
makes easy the following geometric consideration. If
choose the lab axes so thatf r̂50, the matrix in Eq.~18! is
simply M11M25s3 and the polarization quantities resul
in a pureQ term; thus Eq.~18! gives the difference in the
polarization amplitudes relative to the axes displayed in
upper panel of Fig. 1, one lying on the plane formed by
n̂ and r̂ directions and the other orthogonal to the sa
plane. With this axes orientation, the anglea in Eq. ~8! is
zero: this means that the polarization direction within
spherical seed lies on the plane formed byn̂ and r̂ , as
sketched in Fig. 1. As a related important point, note
second order Legendre polynomialPl

2 ~the temperature cas
hadPl); it is meaningful since it guarantees that light prop
gating radially is not polarized (Pl

2}sin2uPl): the radial
propagation in spherical symmetry is an axial symme
12300
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problem, so that no preferred direction exists for the pol
ization, since it belongs on the plane orthogonal to the sy
metry axis.

These results, together with the temperature ones, c
pletely characterize the CMB perturbation carried by photo
moving in a spherical seed, independently from any ot
specification. The next section contains the same anal
developed here, but based on cylindrical seeds.

III. CYLINDRICAL SYMMETRY

Scalars can be arranged cylindrically of course, but a
vectors ~vorticity is a vectorial feature!. Consequently, the
m50,61 are allowed. In the vector case however, the
neric kW mode of the Fourier transform is a vector of cours
thus its orientation enters in the angular integrals of Eqs.~3!
and ~4!, that become strongly dependent on the particu
seed considered. For this reason, again I restrict to the sc
case~dropping the(0) index!, and employ flat FRW,K50.

The Fourier transform of a cylindrically symmetric qua
tity D may be expressed as

D~h,kW ![D~h,k1 ,kz! , ~19!

FIG. 1. Upper panel: polarization within a spherical seed. T
axes displayed show the geometric directions for which the po
ization is given by aQ term only, thus fixing the polarization di
rection as displayed. Lower panel: CMB anisotropies from a sph
cal seed. Its center has a distanced from the last scattering surface

the anisotropy is symmetric under rotations aroundn̂c and depends
geometrically on the angleu only.
4-4
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wherekz ,k1 are the component ofkW on the symmetry axis
and on the equatorial plane respectively,k1

2 5kx
21ky

2 . If the
seed is invariant under traslations along the symmetry
~this case is mentioned as infinite cylindrical seed in the
lowing!, then the expression is

D~h,kW ![D~h,k1!•2pd~kz!, ~20!

whered(kz) is the Dirac delta. Consequently, the expans
coefficients of Eqs.~3! and~4! depend only onk1 ,kz in the
first case and onk1 in the second.

First, consider the temperature perturbation. In cylindri
coordinatesd3k5k1dk1dkzdf k̂ and the Q l coefficients
come out of the integral indf k̂ :

Q5(
l
E k1dk1dkz

~2p!3
Q l~h,k1 ,kz!

3E df k̂~2 i ! lA 4p

2l 11
Yl

0~ k̂•n̂!eikW•rW. ~21!

Again I make use of the addition relation~A10!, choosing
the polar axis in the lab frame coincident with the symme
axis; I apply it twice, both on theYl

05A4p/(2l 11)Pl
0

above and on the plane wave, expanded as Eq.~17!. Paying
the price to increase the number of sums, Eq.~21! becomes

Q5 (
l ,m52 l

l

~2 i ! l
4p

2l 11
Yl

m~ n̂! (
l 8,m852 l 8

l 8

i l 84pYl 8
m8~ r̂ !

3E k1dk1dkz

~2p!3
Q l~h,k1 ,kz! j l 8~kr !

3E df k̂Yl
m* ~ k̂!Yl 8

m8* ~ k̂!, ~22!

where of coursek25k1
2 1kz

2 and r 25r 1
2 1r z

2 . Now, it is
manifest that the integral indf k̂ kills everything except for

the m852m terms; thus, the phase ofYl 8
m8( r̂ ) precisely fits

together with the phase ofYl
m(n̂), making them relative.

Writing in full the spherical harmonics, the final result is

Q5 (
l ,m52 l

l

~2 i ! l Pl
m~ n̂• ẑ!eim(f n̂2f r̂ ) (

l 8>umu
i l 8~2l 811!

3Pl 8
2m

~ r̂ • ẑ!E k1dk1dkz

4p2
Q l~h,k1 ,kz! j l 8~kr !

3Pl
2m~ k̂• ẑ!Pl 8

m
~ k̂• ẑ!. ~23!

It is useful to note that writingkW•rW5kW 1•rW11kzz and ex-
tracting the exponential regarding the last term from the
tegral indf k̂ , the expression~23! may be simplified:
12300
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Q5 (
l ,m52 l

l

~2 i ! l Pl
m~ n̂• ẑ!eim(f n̂2f r̂ ) (

l 8>umu
i l 8~2l 811!

3Pl 8
m

~0!Pl 8
2m

~0!E k1dk1dkz

4p2

3Q l~h,k1 ,kz!e
ikzzj l 8~k1r 1!Pl

2m~ k̂• ẑ!; ~24!

note that the sum overl 8 is restricted to the evenl 81m
terms because of Eq.~A9!.

As an alternative approach, one can give up the expan
of the plane wave in Eq.~21!, and express its argument a
kW•rW5k1r 1cos(fk̂2fr̂)1kzz. As above, the phase ofYl

m* ( k̂)
is e2 imf k̂5eim(f r̂2f k̂)e2 imf r̂; the second factor comes out o
the integral, and again fits together with the correspond
phase ofYl

m(n̂). The advantage of this approach is that t
integral indf k̂ has a note form and the result is

Q5 (
l ,m52 l

l

~2 i ! l Pl
m~ n̂• ẑ!eim(f n̂2f r̂ )E k1dk1dkz

~2p!3

3eikzzQ l~h,k1 ,kz!Pl
2m~ k̂• ẑ!JE1~m,k1r 1!,

~25!

where the functionJE1 is a combination of the Anger an
Weber functions, defined in Appendix B.

The expressions corresponding to Eqs.~23!, ~24!, and
~25! for an infinite cylindrical structure are simpler becau
of the effect of the Dirac delta; it eliminates the dependen
on z, reducing the argument of the exponential in Eq.~21! to
ikW 1•rW1 . Also the Legendre polynomials into the integral
df k̂ have now to be calculated fork̂• ẑ50, their values being
found using Eq.~A8!; from Eq. ~A9! only the terms with
even l 1m and l 81m ~and thereforel 1 l 8) survive. Thus,
the expression forQ in this case is similar to Eq.~24!, but
simpler:

Q5 (
l ,m52 l

l

Pl
m~ n̂• ẑ!Pl

2m~0!eim(f n̂2f r̂ )

3 (
l 8>umu

~21! l 1( l 1 l 8)/2~2l 811!Pl 8
m

~0!Pl 8
2m

~0!

3E k1dk1

2p
Q l~h,k1! j l 8~k1r 1!

~even l 1m,l 81m,l 1 l 8!. ~26!

In the second approach

Q5 (
l ,m52 l

l

~2 i ! l Pl
m~ n̂• ẑ!Pl

2m~0!eim(f n̂2f r̂ )

3E k1dk1

4p2
Q l~h,k1!JE1~m,k1r 1!. ~27!

Let us check the geometric meanings of the above exp
sions. First note how the cylindrical symmetry caused co
4-5
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CARLO BACCIGALUPI PHYSICAL REVIEW D 59 123004
plications, both in the geometric and integral quantiti
with respect to the spherical case. However, again

dependence onn̂ and r̂ has been separated and factored o
The symmetry forces the phases of the harmonics w

argumentn̂ andrW to be relative: forr 1Þ0, the perturbation
depends, together with the angle between the symm

axis andn̂, on the direction of the projection ofn̂ on the

equatorial plane with respect tor̂ 1 , as it is intuitive in a
cylindrical problem; the pure Doppler contribution from th
peculiar velocity of photons and baryons (Q1) may be easily

recognized in thel 51,m51 terms. IfrW lies on the symmetry
axis itself theJE1 function in Eqs.~25! and ~27! reduces
simply to 2pdm0, as shown in Appendix B. As a fina

intuitive feature, note how in the casen̂uuẑ, the CMB pertur-
bation for an infinitely long seed possesses a parity sym

try, n̂→2n̂, since all themÞ0 terms vanish, makingl and
l 8 even.

Let us face now the CMB polarization from cylindrica
sources. As in the previous section, theEl coefficients come
out of the integral indf k̂ and the tensor harmonics are e
pressed as in Eq.~14!. Then the polarization matrices in th

k̂-frame have to be expressed in terms of the correspon

ones in the lab frame:M6
k̂ 5e72ia k̂M6 ; as beforea k̂ is the

angular coordinate of the projection of thek̂ versor on the

plane orthogonal ton̂. It is indicated differently from Eq.
~15! because of the following reason. In the previous sect
we were dealing with spherical perturbations; no matter
how the lab-frame axes were oriented. This freedom allow
us to orient the polar axis asn̂, so thata k̂ was simply related
to thef coordinate ofk̂. Now things are different: the per
turbation source has a preferred axis, and the equatorial p
is therefore different from the polarization plane~orthogonal
to n̂); consequently,a k̂ depends onf k̂ in a less simple way,
as I write below, and this complicates the computations
course.

Highlighting again the integral indf k̂ , the quantities in
Eq. ~4! take the form

~Q6 iU !M65(
l>2

E k1dk1dkz

~2p!3
El~h,k1 ,kz!E df k̂

3~2 i ! lA~ l 22!!

~ l 12!!
Pl

2~ n̂• k̂!ei (kW•rW72a k̂)M6 .

~28!

In spite of its innocent appearance, the integral indf k̂ is not
so available for extracting the dependence onn̂ as in the
previous cases. This is due to the expression ofa k̂ ; accord-
ing to the definition above, and taking as reference axis
intersection between the planes orthogonal ton̂ and ẑ, its
expression is
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cosa k̂5
n̂3 ẑ• k̂

un̂3 ẑuA12~ k̂•n̂!2
. ~29!

Thus,a k̂ is related tof k̂ by the following relation, that may
be easily verified:

cosa k̂5cosf k̂A12~ k̂• ẑ!2

12~ k̂•n̂!2
. ~30!

Unfortunately,~in my knowledge! there is no simple treat
ment of the angular integral in Eq.~28! with a k̂ given by Eq.
~30!. However, there are some interesting and useful part
lar cases in which computations are simpler. First, supp
that the photon propagation directionn̂ is parallel to the sym-
metry axis. Thusa k̂5f k̂ , Eq. ~15! holds, and the Legendre
polynomials can be extracted from the integral indf k̂ , since
now n̂5 ẑ. In the first approach all the task consists in e
panding the exponential in Eq.~28!, while the second is
straightforward. The integral precisely kills everything e
cept for them572 terms:

FIG. 2. Upper panel: polarization within a cylindrical seed. F
the cases of propagation parallel and orthogonal to the symm
axis, the axes displayed show the geometric directions for which
polarization is given by aQ term only, thus fixing the polarization
directions as displayed. Lower panel: CMB anisotropies from

cylindrical seed: a view of theP plane. The representative pointCW

has a distanceD from the last scattering surface; the anisotropy
symmetric under reflections onP and depends geometrically on th
angleu and onup/22fu.
4-6
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~Q6 iU !M65M6e72if r̂(
l>2

~2 i ! lA~ l 22!!

~ l 12!! (l 8>2

i l 8~2l 811!Pl 8
72

~ r̂ • ẑ!

3E k1dk1dkz

4p2
El~h,k1 ,kz! j l 8~kr !Pl

2~ k̂• ẑ!Pl 8
62

~ k̂• ẑ!

5M6e72if r̂(
l>2

~2 i ! lA~ l 22!!

~ l 12!! (l 8>2

i l 8~2l 811!Pl 8
72

~0!Pl 8
62

~0!

3E k1dk1dkz

4p2
El~h,k1 ,kz!e

ikzzj l 8~k1r 1!Pl
2~ k̂• ẑ! ~valid for n̂5 ẑ!, ~31!

~Q6 iU !M65M6e72if r̂(
l>2

~2 i ! lA~ l 22!!

~ l 12!! E k1dk1dkz

~2p!3
eikzzEl~h,k1 ,kz!Pl

2~ k̂• ẑ!JE1~62,k1r 1! ~valid for n̂5 ẑ!.

~32!

This corresponds to the case sketched in the upper panel of Fig. 2, where the propagation direction is parallel to the s
axis. As in the spherical case, orienting the lab axis as in the figure~so thatf r̂50) yields an equal contribution from the6
terms; the polarization is given by a pureQ term, giving the difference between the temperature fluctuations of the
polarized in the directions shown in the upper panel of Fig. 2; also,a50 in Eq.~8!, meaning that the polarization direction lie
on the plane formed byn̂ and ẑ ~and it is orthogonal ton̂ of course!. The same quantities for an infinite cylindrical seed a
easily gained using the Dirac delta@the sum is restricted to evenl and l 8 from Eq. ~A9!#:

~Q6 iU !M65M6e72if r̂(
l>2

A~ l 22!!

~ l 12!!
Pl

2~0! (
l 8>2

~21!( l 1 l 8)/2~2l 811!Pl 8
72

~0!Pl 8
62

~0!

3E k1dk1

2p
El~h,k1! j l 8~k1r 1! ~valid for n̂5 ẑ even l ,l 8!, ~33!

~Q6 iU !M65M6e72if r̂(
l>2

~21! l /2A~ l 22!!

~ l 12!!
Pl

2~0!E k1dk1

4p2
El~h,k1!JE1~62,k1r 1! ~valid for n̂5 ẑ, even l !.

~34!

Just like the spherical case, photons propagating exactlyon the symmetry axis have to be not polarized, since no preferred
exists on the polarization plane. Let us check that the above results are consistent with this geometric expectation. In~31!
and ~33! this is manifest because the only Bessel function that would survive on the axis (r 150) would bej 0, but it is not
present, sincel 8>2. For what concerns Eqs.~32! and ~34!, the JE1 function in r 150 is trivially 0 as is evident from Eq.
~B6!.

There is another case of interest for an infinite cylindrical structure: precisely when then̂ direction is orthogonal to the axis
In this case the polarization plane and the equatorial plane are orthogonal; than it is easy to see thata k̂ is ã or ã1p where
the constantã is simply the angular coordinate of the projection of the equatorial plane into the polarization one: this is
because, for the effect of the Dirac delta, the integration is confined into the equatorial planekz50. A necessary step here
to use a note expansion of the second order Legendre polynomial in term of the elementary ones

Pl
2~ k̂•n̂!5(

j < l
aj l Pj~ k̂•n̂!, ~35!

where the coefficientsajl are defined in Appendix B, Eq.~A12!. The arguments widely applied in this section lead to
following expressions of this interesting case:

~Q6 iU !M65M6e72i ã(
l>2

A~ l 22!!

~ l 12!! (
j ,m52 j

j

aj l Pj
m~0!Pj

2m~0!eim(f n̂2f r̂ ) (
l 8>umu

~21! l 1( l 81 l )/2~2l 811!Pl 8
m

~0!Pl 8
2m

~0!

3E k1dk1

2p
El~h,k1! j l 8~k1r 1! ~valid for n̂• ẑ50, even j 1 l ,l 1m,l 81m,l 1 l 8!, ~36!
123004-7
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~Q6 iU !M65M6e72i ã(
l>2

~2 i ! lA~ l 22!!

~ l 12!! (
j ,m52 j

j

aj l Pj
m~0!Pj

2m~0!eim(f n̂2f r̂ )

3E k1dk1

4p2
El~h,k1!JE1~m,k1r 1! ~valid for n̂• ẑ50!; ~37!

the restriction to the sum in Eq.~36! comes from the properties of the expansion coefficientsajl in Eq. ~A12! and again from
Eq. ~A9!. Despite the large number of sums, Eq.~36! is workable because all the Legendre polynomials are calculated in
equatorial plane, (n̂• ẑ)5( r̂ • ẑ)5( k̂• ẑ)50; it will be used for the numerical integrations in Sec. V. Both the express
explicitly show the symmetry of the seed; choosing the axes on the polarization plane parallel and orthogonal to the s
axis ~so thatã50) implies that Eqs.~36! and~37! give no distinction between the6 modes, giving again a pureQ term; thus
the polarization direction lies in the equatorial plane, as displayed in the upper panel of Fig. 2. As the very final obse
note that, in contrast to the casen̂5 ẑ, now photons propagating away from the symmetry axis atr 150 can be polarized; a
numerical demonstration of this occurrence will be given in Sec. V. Physically this is because there is a preferred ax
polarization plane, the symmetry axis itself; formally, now them5 j 50 term is admitted, so thatj 0 at r 150 in Eq. ~36! and
JE152pdm0 in Eq. ~37! survive; it is straightforward to write down the polarization tensor in this particular case:

~Q6 iU !M65M6e72i ã(
l>2

~21! l /2A~ l 22!!

~ l 12!!(j > l
aj l @Pj~0!#2E k1dk1

2p
El~h,k1! ~even l , j !; ~38!
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it depends on nothing more, except for the nature of
infinite seed, encoded in theEl coefficients.

The equations I have developed here and in the prev
section describe CMB perturbations, both for temperat
and polarization, around symmetric seeds at a given t
specified byh. In the next section I show how to get the
appearance on the CMB sky.

IV. POLARIZATION AND TEMPERATURE
ANISOTROPIES

The expressions in the previous sections describe
CMB polarization and temperatureperturbationsaround a
symmetric structure, as a function of the conformal timeh
and the geometry of the seed itself. At any time, if a perf
CMB detector is placed around one of the seed analyzed
measure of the CMB perturbation carried by a photon pro
gating on a directionn̂ would give the appropriate resu
from the above formulas.

Now let us face the computation of the CMBanisotropy
from a symmetric seed. This requires the convolution of
CMB perturbation with the decoupling history of the un
verse. According to the current scenario, CMB photons w
last scattered far from us in spacetime, when the scale fa
was approximatively one thousandth than now. Such proc
is described by the last scattering probability betweenh and
h1dh, function of several cosmological parameters and
the time of course; its expression in terms of the differen
optical deptht(h) ~see Sec. V! is very simple:

P~h!5 ṫe2t. ~39!

With the appropriate numbers, the last scattering probab
peaks on a spherical corona around us moving away with
light speed of course; it has present radius and thicknes
12300
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about 6000h21 and 10h21 comoving Mpc respectively: for
its thinness this zone is called last scattering surface~LSS!.
Since it is useful here, I recall that using the conformal tim
as temporal coordinate is also convenient since a photon
scattered ath has to travel a comoving distanceh02h to
reach our spacetime position, indicated in the following w
the subscript 0.

As mentioned in the Introduction, the most known cla
of primordial perturbations is Gaussian and~nearly! scale-
invariant; a simplification allowed by this statistics is that t
CMB anisotropies have the same spectrum regardless o
position of the observer~cosmic variance subtracted o
course@13#!. The seeds analyzed here represent a radic
different CMB anisotropy source; technically speaking th
are non-Gaussian and non-scale-invariant. As a consequ
of this, the position of the source along the photons pa
becomes here a physical degree of freedom, and the cl
fication of the various possibilities is essential to predict h
the CMB signal from a symmetric seed could appear.

Let us start from the spherical symmetry. As sketched
the lower panel of Fig. 1, the CMB anisotropies are co
pletely specified by the comoving distanced between the
seed center and the LSS peak: the latter is defined as
point from which we receive CMB photons with highe
probability@peak ofP(h)] on the directionn̂c corresponding
to the center of the spherical seed; the observer is far on
right and receives on a directionn̂ the CMB photons last
scattered inside the spherical perturbation, with probabi
sketched as a Gaussian in the figure. The whole signa
symmetric with respect to rotations aroundn̂c . Also it is
convenient to define the useful angleu by

n̂•n̂c5cosu; ~40!

it is simply the angle between the photon propagation dir
4-8



in
la

e

a

m

ic
ac
e,
p

la
on
eo
no
d

in
ne
b

re

oi
th
in
tio
s-

e

s

e

ou

ien

an-
ities
el-
py

are
ary
th
ir-
sent
In
tro-

.
nd
ra-
er-

-

he

nte-
me
ard

n.
e a
for
hus
o-
ost
the

COSMIC MICROWAVE BACKGROUND: POLARIZATION . . . PHYSICAL REVIEW D59 123004
tion n̂ and the direction corresponding to photons com
from the center of the spherical seed in the sky. A photon
scattered ath with direction n̂ carries a CMB perturbation
computable with the formulas developed in the previous s
tion, that require its radial coordinater; the latter is com-
pletely fixed byh, d, andu:

r 5@~d1h02hLSS!
21~h02h!222~d1h02hLSS!

3~h02h!cosu#1/2 , ~41!

wherehLSS and h0 mean LSS peak and present conform
times, respectively; in fact, sinceh02h is just the comoving
causal distance covered by a photon last scattered ath and
reaching us today, gaining Eq.~41! is a matter of simple
trigonometry; see Fig. 1. This completes the spherically sy
metric case. Once we have specifiedd, gaining the CMB
polarization and temperature anisotropies from a spher
seed means performing line of sight integrations for e
direction specified byu, as it is exposed below. Of cours
the appearance on the sky of the CMB temperature and
larization anisotropies from one spherical seed is circu
more interesting, while nothing forbids photons coming
the n̂c direction to carry a temperature perturbation, the g
metric constraint treated in Sec. II forces them to be
polarized. A nice example of this occurrence can be foun
@11#.

Let us face now the case of CMB anisotropies com
from cylindrically symmetric seeds. First of all, let us defi
the planeP containing the seed symmetry axis and our o
servation point: the signal is of course symmetric with
spect to reflections on this plane. Also let us define aP

orthogonal versor,n̂P , and one along the symmetry axis,ẑ,
regardless of their direction. Take now a representative p
CW on the symmetry axis; in the spherical case it was
sphere’s center, but here, in principle, it could be any po
along the axis: inside the seeds itself, or the axis intersec
with the LSS peak, or ultimately the point of minimal di
tance from the observation point. Let’s definen̂C as the di-
rection of photons coming fromCW andD its comoving dis-
tance from the LSS peak~of coursen̂P•n̂C50); these simple
geometric quantities are displayed in Fig. 2, bottom pan
Now take a photon last scattered ath on a directionn̂, de-
scribed with the usual anglesu andf in the frame defined by
ê35 ẑ, ê15n̂P, and ê25 ẑ3n̂P ~only up/22fu would be
necessary, since the signal does not change for reflection
P, look at Fig. 2!. Let us define for a momentPW andOW to be
the photon scattering point and the observation point as s
by the frame centered inCW :

PW 5r 1cosf n̂P1r 1sinf ẑ3n̂P1zẑ, ~42!

OW 5~D1hLSS!n̂C ; ~43!

in order to employ the equations developed in the previ
section we need to knowr 1 and z. This is easily done by
expressingPW as seen in a system with the same axes or
tation but centered inOW :
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PW 852~h02h!n̂5PW 2OW . ~44!

This fixes the quantities needed:

r 15†~h02h!2sin2u1~D1hLSS!
2@~ n̂C• ẑ3n̂P!2

1~ n̂C•n̂P!2#222 sinu~ n̂C•n̂Pcosf1n̂C• ẑ3n̂P

3sinf!~h02h!~D1hLSS!‡
1/2, ~45!

z52~h02h!cosu1~hLSS1D !n̂C• ẑ. ~46!

As expected, the cylindrical symmetry has introduced an
gular variable more than the spherical case. The quant
r 1 andz defined above allow to employ the formulas dev
oped in the previous section to compute the CMB anisotro
carried by the photon last scattered ath on the directionn̂; of
course, for an infinite cylindrical seed only ther 1 coordinate
is necessary. While anisotropies in the spherical case
characterized by a circular imprint, here their shape may v
with the orientation of the symmetry axis. If it coincides wi
n̂C , thus including the observation point, the imprint is c
cular around it, and again polarization anisotropies are ab
on the direction corresponding to the symmetry axis itself.
any other case, both polarization and temperature aniso
pies would appear symmetric around aline in the sky, pro-
jection of the seed symmetry axis on the celestial sphere

Finally, the CMB anisotropies both for the spherical a
cylindrical cases are obtained through a line of sight integ
tion along the photon’s path, convolved with the last scatt
ing probability ~see@3#!:

Q~h0 ,here,n̂!5E
0

h0
@~Q1C!~h,arg,n̂!P~h!

1~Ċ2Ḟ!~h,arg,n̂!e2t#dh, ~47!

~Q6 iU !~h0 ,here,n̂!M6

5E
0

h0
~Q6 iU !~h,arg,n̂!M6P~h!dh; ~48!

at eachh, Eqs.~41! and ~45!,~46! give the necessary argu
ments (arg) to compute the CMB perturbations.C accounts
for the Sachs-Wolfe effect, due to the work spent by t
photon climbing out of the potential well~or hill! in which it
was last scattered; the time derivatives account for the i
grated Sachs-Wolfe effect, due to the work spent by the sa
photon crossing the density perturbations on the way tow
us.

The following consideration introduces the next sectio
As I have already mentioned, a symmetric seed could b
spatially limited structure, say a monopole or a bubble
the spherical case, or a string for the cylindrical case. T
also the CMB anisotropy is spatially limited, since the ev
lution equations may transport the CMB perturbation at m
at a sound horizon distance from the source. Therefore, if
4-9
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CARLO BACCIGALUPI PHYSICAL REVIEW D 59 123004
perturbed zone does not intersect the LSS, meaning th
occupies a spacetime region whereP(h) is negligibly small,
the termsQ, Q, andU above do not give contributions; i
this situation, the seed cannot signal its presence, excep
the integrated Sachs-Wolfe effect if it lies within our Hubb
sphere~a distinctive and fascinating signal in this case ar
from cosmic strings@14#!. Thus, in order to detect the genu
ine CMB signal from a symmetric spatially limited seed, w
should be lucky with its spacetime location: it should inte
sect the LSS.

V. THE PEBBLES IN A POND

Let us apply the formulas developed in the previous s
tions. I plunge a toy symmetric source in the cosmic fluid
the initial time h50, computing its evolution by using th
linear theory of the cosmological perturbations. At differe
times during the evolution, some pictures of the correspo
ing CMB polarization and temperature perturbations
taken. Finally, the computation of the line of sight integra
~47! and~48! simulates the CMB signal as it would appear
a high resolution observation.

First, let us define the initial density perturbations. For
spherical case, I take a potential energy condensation w
Gaussian shape extending on a comoving radial distancR:

C~r ,h50!5N expF2S r

RD 2G . ~49!

For the cylindrical case, I take an infinitely long seed, with
potential energy condensation on the equatorial plane c
acterized again by a Gaussian shape and extending on a
R1 :

C~r 1 ,h50!5M expF2S r 1

R1
D 2G . ~50!

The normalization constants will be fixed below. The Four
transforms are easily performed in the frame with origin
the center of the sources:

C~k,h50!5Np3/2R3 expF2S kR

2 D 2G , ~51!

C~k1 ,h50!5MpR1
2 expF2S k1R1

2 D 2G . ~52!

The evolution equations for fluid and CMB quantities m
be obtained by the Boltzmann and linearized Einstein eq
tions @1–3#. A standard cold dark matter~CDM! scenario is
assumed, including cold dark matter (c), baryons (b), pho-
tons (g), and three families of massless neutrinos (n). All
the equations in the following are written in Fourier spa
The equations for the matter species are

ḋc52kvc23k2Ḟ, v̇c52
ȧ

a
vc1kC, ~53!
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ḋb52kvb23k2Ḟ,

v̇b52
ȧ

a
vb1kC1

4rg

3rb
anesT~vg2vb!, ~54!

whered[(dr/r) and ṫ5axenesT is the differential optical
depth;ne is the electron number density andxe is the ioniza-
tion fraction ~see the last work in reference@3# for useful
fitting formulas!. Photon equations involve each multipole
the expansions~3! and ~4!:

Q̇052
k

3
Q12Ḟ, Q̇15kQ02

2

5
kQ21 ṫ~vb2Q1!1kC,

~55!

Q̇25
2

3
kQ12

3

7
kQ32 ṫS 9

10
Q22

A6

10
E2D ,

Ė252
A5

7
kE32 ṫS 1

10
Q21

2

5
E2D , ~56!

and for l>3:

Q̇ l5kF l

2l 21
Q l 212

l 11

2l 13
Q l 11G2 ṫQ l ,

Ėl5kFAl 224

2l 21
El 212

A~ l 11!224

2l 13
El 11G2 ṫEl . ~57!

In Newtonian gauge the lowest multipoles are linked to
photon fluid quantities bydg54Q0 , vg5Q1, and pg
512Q2/5. Massless neutrinos can be treated as phot
without the polarization and Thomson scattering terms.
nally, the equations for the gravitational potentials are

k2F54pGa2Frcdc1rbdb1rgdg1rndn

1
3

k

ȧ

a S rcvc1rbvb1
4

3
rgvg

4

3
rnvnD G , ~58!

2k2~C1F!5
8pG

3
~rgpg1rnpn!. ~59!

As it is known@1,2#, at early times the above system can
solved by using the tight coupling approximation betwe
photons and baryons. The multipole equations are expan
in powers ofk/ ṫ!1. The only zero order terms areQ0 and
Q1 from Eqs.~54!,~55!, and obey the following equations:

Q̇052
k

3
Q12Ḟ,

d

dh F S 11
3rb

4rg
DQ1G5kQ01kS 11

3rb

4rg
DC, ~60!

whereQ1 is assumed to concide withvb to the lowest order.
Increasing the order ink/ ṫ the higher multipoles are given
by
4-10
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Q25
k

ṫ

8

9
Q1 , E252

A6

4
Q2 , ~61!

Q l5
k

ṫ

l

2l 21
Q l 21 , El5

k

ṫ

Al 224

2l 21
El 21 . ~62!

I integrate in time the system~60!,~61!,~62! until k/ ṫ50.1
occurs, thereafter integrating the complete equations;
course, care is taken that the results do not depend at a
this choice.

I take adiabatic initial conditions: at early timesdc5db
53dg/453dn/4 ~all the velocity are initially zero! and the
second member in Eq.~58! at h50 is proportional for each
Fourier mode to the initial perturbation spectrum~51! or
~52!; in order to make the following results more clear, t
latter is normalized with the density contrastd taken in the
center of the seed at decoupling. This choice is not dep
dent on the particular gauge chosen here, since Eq.~58! is
gauge invariant@1#. In the CMB equations, everything i
initially zero except for the lowest multipole of the temper
ture perturbation@2#:

Q0~0!522C~0!. ~63!

The background evolution is driven by the Einstein equat

ȧ2

a2
5

8pG

3
a2(

a
ra , ~64!

where the indexa runs over all the fluid species. Now th
computation system is ready. The background parame
describe a standard CDM model (V051,h50.5,Vb
50.05,VCDM512Vb).

Figure 3 shows the time evolution of the CMB tempe
ture perturbation from the spherical seed. The chosen

FIG. 3. CMB temperature perturbation around a spherical s
with the indicated size as a function of the radial distance from
center; the different panels represent the perturbation at diffe
times. Note the temperature waves arising from the oscillations
curring at the horizon crossing.
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moving size isR510h21 Mpc, that is well below the effec-
tive horizon at decoupling~approximatively 100h21 Mpc).
The radial profile is shown, and the temperature perturba
has been computed from Eq.~13! for photons propagating
perpendicularly to the radial direction, as indicated. The s
converges very rapidly: the heavy line shows the result fr
the first ten multipoles, while the light one, almost indisti
guishable, indicates the result from the onlyl 50 multipole
in Eq. ~13!. The figure points out the wavelike behavior
the CMB perturbations. The initial condition~panel a) re-
mains unchanged until the horizon crossing, that occ
nearly at equivalence for the chosen size. At this time,
panelb, baryons tend to fall into the potential well, and th
perturbation amplitude grows. After that, in panelc, an op-
posite oscillation due to the pressure reaction takes pl
pushing the perturbation away from the center. Finally,
paneld the perturbation is shown just before decoupling: t
oscillatory behavior caused a temperature perturbation w
that is propagating outward. The wave crest is just at
position of the sound horizon at the time displayed. T
phenomenology is analogous in Fig. 4, where the polar
tion amplitude, computed using Eq.~18!, is shown. At the
initial time no perturbation is visible, since all the Fouri
modes are outside the horizon. At the horizon crossing
oscillations begin, producing a well visible polarization wa
that travels outward with the CMB sound velocity. Note th
as an important distinction with respect to the temperat
case, for the polarization there is no perturbation near
center, at smallr. This is a practical realization of the geo
metric constraint exposed in Sec. II: photons propagat
radially in a spherical density field must not be polarize
since no preferred axis exists on the polarization plane.

Figures 5 and 6 show the same analysis on the cylindr
seed and remarkably the same undulatory phenomenolog
the spherical case occurs. The size isR1510h21 Mpc and
photons propagating perpendicularly to the symmetry a
radial directions are considered, from Eqs.~26! and ~36!.

d
e
nt
c-

FIG. 4. The CMB polarization perturbation around a spheri
seed is plotted as in Fig. 3. Note the external polarization wave
the position of the CMB sound horizon at the time considered
the absence of central perturbation.
4-11
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Again the sum converges very rapidly: the light line in Fig
corresponds to thel 50 terms in Eq.~26!. At the horizon
crossing, the competition between pressure and gravity g
erate CMB temperature and polarization waves propaga
away from the symmetry axis. Just before decoupling, pa
d, temperature and polarization waves are well visible
CMB sound horizon away from the axis of the cylindric
seed. As an interesting feature, note how in this case
polarization for photons scattered on the symmetry axis
nonvanishing: this is evident particularly in panelc. The cen-
tral polarization amplitude is in any case smaller than
mean signal size, since forr 1→0 in Eq. ~36! only the l
50 term survive.

FIG. 5. CMB temperature perturbation around a infinite cyl
drical seed with the indicated size on the equatorial plane, a
function of the distance from the symmetry axis. The different p
els represent the perturbation at different times. Note, in ana
with the spherical case, the temperature waves arising from
oscillations occurring at the horizon crossing.

FIG. 6. The CMB polarization perturbation around an infin
cylindrical is plotted as in Fig. 5. In this case, since photons
propagating as indicated, a central polarization arises, mostly
dent in panel c.
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Figure 7 shows the results of the line of sight integr
~47! and~48!, where for simplicity only the spherical case
shown; I recall thatu is the angle between the line of sigh
and the one corresponding to the center of the seed.
importance of the different positions of the seed with resp
to the LSS is evident: the solid line shows the signal if t
spherical perturbation lies exactly on the last scattering s
face,d50, while the dashed and dotted-dashed lines co
spond to the casesd530h21 Mpc andd5230h21 Mpc ,
respectively. The general features pointed of the time evo
tion have been preserved. Simply, the CMB temperature
polarization waves propagating outward from the spher
seed have been snapped by the decoupling photons. Th
isotropy waves extend on the scale of a CMB sound hori
at decoupling, that is roughly 1 deg in the sky. The tempe
ture perturbation contains a central spot, that is absent in
polarization case.

It is important to point out the following consideration
First, note that the mean amplitude of the signal follows
known expectations@15# for a linear structure with sizeL
<H21 and density contrastd at decoupling: dT/T
.d(L/H21)2, roughly ten times stronger than the polariz
tion signal. From the point of view of the dark matter dist
bution, the seed lies in the very central part of the graph,
u<10 arc min~corresponding to less then 10h21 Mpc in
Figs. 3 and 4!. Also the amplitude of the waves has the sam
mean magnitude of the signal coming from the location
the seed; really, in the polarization from a spherical seed t
are the very dominant component of the anisotropy. Th
they must be considered in any simulation aiming at

a
-
y
e

e
i-

FIG. 7. CMB temperature~top! and polarization~bottom! an-
isotropy for a spherical seed with the size indicated;u is the angle
from the center. The seed is centered exactly on the last scatte
surface (d50, solid line!, just in front of it (d530h21 Mpc,
dashed line!, and behind (d5230h21 Mpc, dotted-dashed line!. It
physically occupies the very central part of the graph,u<10 arc
min. Note the temperature and polarization anisotropy waves a
angular scale corresponding to the CMB sound horizon at dec
pling.
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detection of this kind of signals. Also they could play som
role in the structure formation around the seed, since they
physically made of photons and baryons. Besides, from
experimental point of view this undulatory occurrence co
help the detection if structure like these ones should re
exist. Indeed the CMB signal from a spatially limited seed
extended on the scale of a sound horizon at decoupling e
if the size of the seed itself is smaller; therefore it appear
a series of subdegree rings centered on the position of
seed; this can help to discriminate between the signals f
point astrophysical sources from genuine cosmological se
of primordial origin. Also, as it is evident from Fig. 7,
marked correlation exists between the temperature and p
ization signals. Of course, this would improve the signal
noise ratio for high resolution instruments like Planck c
pable to detect both polarization and temperature anisotr

VI. CONCLUSION

At the present time, very high energy physics is s
rather unknown and only theoretically approached. T
breaking of high energy symmetries in the early unive
may have left some traces of their occurrence, like topolo
cal defects or true vacuum bubbles. These relics act as s
for polarization and temperature anisotropies in the cos
microwave background~CMB!, and this work aims at pro
viding a general framework in order to predict their signa

I have considered the cases of spherical and cylindr
symmetry of the perturbation source; no other specifica
characterizes the seed. I have obtained general formulas
scribing CMB polarization and temperature perturbations
a function of time, generated by the most general structu
characterized by the mentioned symmetries. The analysi
gards both the pure CMB perturbation nearby the seeds
their CMB anisotropy as observed in our sky. Such expr
sions explicitly show several nice features to their own CM
imprint.

In spherical symmetry, the polarization and temperat
perturbations depend geometrically on the scalar prod
n̂• r̂ , where the first is the photon propagation direction a
the second the radial versor in the point where CMB is be
measured. I give explicit expressions in which this dep
dence is factored out of the integral over the Fourier per
bations modes. In particular the polarization direction~or-
thogonal ton̂ of course! lies on the plane formed byn̂ andr̂ .
As an important difference between polarization and te
perature perturbations, the light propagating from the ce
of the seed is not polarized, since the radial propagatio
spherical symmetry is an axial symmetric problem, so t
no preferred axis exists for the polarization; instead noth
forbids a temperature perturbation.

In cylindrical symmetry the polarization and temperatu
perturbations depend on the productsn̂• ẑ andr̂ • ẑ, whereẑ is
the symmetry axis, as well as on the angular difference
tween the projections ofn̂ and r̂ on the plane orthogonal to
ẑ; the r̂ • ẑ dependence is lost if the seed is invariant
traslations along the symmetry axis~mentioned as infinite in
the following!. I give formal expressions showing these d
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pendences, and extract them analytically from the Fou
integral in the cases of propagation parallel and orthogona
the symmetry axis. In the first case the polarization direct
lies on the plane formed byn̂ andẑ; as for the spherical case
photons traveling exactly on the symmetry axis are not
larized. In the second case, and for an infinite seed, the
larization direction is orthogonal to the symmetry axis.

For what concerns the CMB anisotropies as observed
our sky, they are computed with an usual line of sight in
gration, but the seeds considered here introduce additi
variables with respect to the ordinary Gaussian case,
specify their position and orientation along the photons p
toward us, characterizing their appearance on our CMB s

Polarization and temperature anisotropies from a spher
seed are circular and specified by the distanced between the
seed center and the LSS peak. As a consequence of the
metric constraints summarized above, CMB polarization
isotropy is absent for photons coming from the center of
seed; on the other hand, nothing prevents them to posse
temperature perturbation.

Anisotropies from a cylindrical seed are specified by t
distanceD between a representative point on the symme
axis and the LSS peak, as well as on the angular orienta
of the symmetry axis itself on the plane containing it and
observation point. Anisotropies may appear in differe
ways. If the symmetry axis includes the observation po
what we would see is a circular imprint again; as in t
spherical case, CMB polarization anisotropy is absent
photons coming from the center. In any other case, aniso
pies would appear symmetric around a line in the sky, p
jection of the axis on the celestial sphere, thus giving
genuine sign of a cylindrical seed.

I have performed some numerical work on the formu
developed here, adopting toy symmetric sources in orde
see the pure CMB processes at work with this kind of se
The time evolution of the seed and of its correspond
CMB perturbation is performed from the initial time, an
several pictures are taken before decoupling. The inte
tions highlight the undulatory behavior of the CMB pertu
bations. Just like a pebble in a pond, the oscillations occ
ring at the horizon crossing produce temperature a
polarization perturbation waves that propagate outward w
the CMB sound velocity. Consequently, the CMB anisot
pies caused from structures like the ones analyzed here
intersect the last scattering surface extend at least on 1 de
the sky, that is the angular scale corresponding to the C
sound horizon at decoupling; the signals contain anisotr
waves, each one characterized by its own value of temp
ture and polarization perturbation. This component of
signal possesses the same magnitude of the one comin
rectly from the seed interior. The mean amplitude roug
follow the known expectations for a linear structure with si
L<H21 and density contrastd at decoupling: dT/T
.d(L/H21)2, roughly ten times stronger than the polariz
tion signal, whereH21 is the size of the Hubble length a
decoupling. The anisotropy waves coming out of a symm
ric spatially limited seed are a unique proof that the se
itself existed well before decoupling; thus, these waves co
allow to distinguish relics from high energy processes of
4-13
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CARLO BACCIGALUPI PHYSICAL REVIEW D 59 123004
early universe from pointlike astrophysical sources, beca
of the angular extension and amplitude. Also, this pheno
enology offers cross correlation possibilities for detect
like Planck capable to explore both temperature and po
ization CMB sky.

Future works will deal with models of real symmetr
structures, relics from high energy physics. These works
at predicting their appearance on the CMB map itself bef
than on the anisotropy power spectrum. Their detection
the high resolution CMB maps provided by the Microwa
Anisotropy Probe and Planck missions in the next dec
would be an invaluable insight into the hidden sector of h
energy physics.
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APPENDIX A: SPHERICAL HARMONICS
AND RELATED QUANTITIES

The spherical harmonics are expressed as usual as

Yl
m~u,f!5A~2l 11!

4p

~ l 2m!!

~ l 1m!!
Pl

m~cosu!eimf, ~A1!

where the Legendre polynomials are defined by

Pl
m~x!5~21!m~12x2!m/2

dm

dxm
Pl~x!,

Pl
2m~x!5~21!m

~ l 2m!!

~ l 1m!!
Pl

m~x! ~m>0!, ~A2!

where x5cosu. Legendre polynomials and spherical ha
monics obey the orthogonality relations

E
21

1

dx Pl
m~x!Pl 8

m
~x!5d l l 8

2

2l 11

~ l 1m!!

~ l 2m!!
,

E sinududfYl
m* ~u,f!Yl 8

m8~u,f!5d l l 8dmm8 , ~A3!

and are eigenmodes of the parity operator:

Pl
m~2x!→~21! l 1mPl

m~x!. ~A4!

Legendre polynomials satisfy the following note recurren
relations:

~ l 2m!Pl
m~x!5x~2l 21!Pl 21

m ~x!2~ l 1m21!Pl 22
m ~x!,

~A5!
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Pl
m12~x!1

2~m11!x

A12x2
Pl

m11~x!1~ l 2m!~ l 1m11!

3Pl
m~x!50, ~A6!

~12x2!
dPl

m

dx
52 lxPl

m~x!1~ l 1m!Pl 21
m ~x!; ~A7!

they can be used to gain the value of any Legendre poly
mials in x50:

P0
0~0!51, P1

0~0!50, P1
1~0!521, P2

1~0!50,

~ l 2m!Pl
m~0!52~ l 1m21!Pl 22

m ~0!,

Pl
m12~0!52~ l 2m!~ l 1m11!Pl

m~0!. ~A8!

Also note that

Pl
m~0!50 for odd l 1m. ~A9!

In this work I have often used the addition relation f
spherical harmonics, given by

Pl~ n̂1•n̂2!5
4p

2l 11 (
m52 l

l

Yl
m~ n̂1!Yl

m* ~ n̂2!, ~A10!

and the following useful integral relation, that may be ve
fied easily using the addition relation itself:

E dV n̂1
Pl~ n̂1•n̂2!Pl 8~ n̂1•n̂3!5d l l 8

4p

2l 11
Pl~ n̂2•n̂3!.

~A11!

Second order Legendre polynomials admit the following e
pansion@16#:

Pl
2~x!5(

j < l
aj l Pj~x!, ~A12!

where

ajl 50 for j . l or l 1 j odd,

ajl 522l ~ l 21!~2 j 11!/~4l 12! for l 5 j , ~A13!

ajl 52~2 j 11! for j , l and l 1 j even.

The tensor spherical harmonics are defined in terms of
ordinary ones by

62Yl
m~x!5A~ l 22!!

~ l 12!! F ]u
22cotu]u

7
2m

sinu
~]u2cotu!1

m2

sin2u
GYl

m~u,f!;

~A14!
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the normalization coefficient may vary in literature. Equati
~14! is easily obtained in the following way. From Eq.~A6!
one can immediately see that

cotu]uPl~x!52
1

2
Pl

2~x!2
l ~ l 11!

2
Pl~x!. ~A15!

Also the equality

]u
2Pl~x!5

x

A12x2
Pl

1~x!1Pl
2~x! ~A16!

holds by using elementary derivation. Using again Eq.~A6!
for m50 and putting Eqs.~A15! and ~A7! together, the
wanted equation is obtained:

2Yl
0~x!5A2l 11

4p

~ l 22!!

~ l 12!!
Pl

2~x!. ~A17!

APPENDIX B: ANGER AND WEBER FUNCTIONS

This appendix contains some useful integration relatio
Focus on the integral

E
0

p

exp@6 i ~nf2b sinf!#df5p@Jn~b!6 iEn~b!#

~Reb.0!, ~B1!

whereJn andEn are the Anger and Weber functions, respe
tively ~see@17# for useful recurrence relations!:

Jn~z!5
1

pE0

p

cos~nu2z sinu!du, ~B2!
D

ns

c
//

er

s.
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En~z!5
1

pE0

p

sin~nu2z sinu!du. ~B3!

The two following equalities are easily gained using elem
tary integration algebra:

E
0

2p

exp@6 i ~nf2b sinf!#df

5p@Jn~b!6 iEn~b!#1pe6 inp@J2n~b!7 iE2n~b!#,

~B4!

E
0

2p

exp@6 i ~nf2b sinf!#df

5e6 inp/2E
2p/2

3p/2

exp@7 i ~2nf1b cosf!#df. ~B5!

If n is integer, all the functions in the integrals are periodic
on the 2p interval, so as the integrals above do not depe
on the starting point. Thus the following equality holds:

E
0

2p

exp@6 i ~2mf1b cosf!#df

5pe6 imp/2@Jm~b!7 iEm~b!#

1pe7 inp/2@J2m~b!6 iE2m~b!#

5JE6~m,b!; ~B6!

it is valid for m5n integer and Reb.0; the last equality is
a pure definition. Note that in the particular caseb50, the
above expression reduces simply to 2pdm0.
,
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