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Random matrix model for Wilson fermions on the lattice

Holger Hehl and Andreas Scha¨fer
Institut für Theoretische Physik, Universita¨t Regensburg, Universita¨tsstrasse 31, D-93040 Regensburg, Germany

~Received 17 June 1998; published 19 April 1999!

We describe a random matrix model suitable for the simulation of the eigenvalues of the Dirac operator on
the lattice for Wilson fermions. We compare the obtained global eigenvalue spectrum for various values of the
hopping parameterk with the lattice results of Kalkreuter. The agreement is surprisingly good.
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Recently, it became clear that the microscopic spec
properties of the lattice QCD Dirac operator are univer
and can be reproduced by simple models that only sh
basic symmetry properties with real QCD@1,2#. Such models
are provided by random matrix theory~RMT! @1,3#. This
universality has recently been demonstrated for the stagg
lattice Dirac operator in quenched@4# and unquenched@5#
SU~2!. Since the Banks-Casher formulaS5pr(0)/V @6#
links the spectral density at zero virtuality to the chiral co
densateS, the distribution of the small eigenvalues is
great importance for, e.g., the understanding of the ch
phase transition. RMT has also solved a long-standing p
lem of lattice calculations at finite chemical potential@7#.
Recently, also the predictions for the energy scale at wh
RMT and lattice QCD start to deviate were confirmed, wh
among others tested the validity of the Gell-Mann–Oake
Renner relation on the lattice@8#. While RMT makes reliable
predictions only for microscopic spectral fluctuations, the
successes encourage us to see if the global spectral prop
can be reproduced. This is the aim of our contribution for
case of Wilson fermions. Since the universality argum
only applies to microscopic properties, one cannot hope t
global spectra except for very special cases. We analyze
a case, namely, gauge theories with infinitely strong c
pling, i.e., b→0. Such systems can be hoped to be su
ciently chaotic as to show random matrix characteris
even on global scales. Furthermore, our model studies
gest that to describe Wilson fermions a 434 block structure
is needed in random matrix theory. We expect this to h
true also for a description of microscopic properties at n
zerob. Random matrix models for Wilson fermions at no
zerob do not yet exist, but are of great practical importan

We start our analysis with the Euclidean action of latt
SU~2! theory with Wilson fermions in the fundamental re
resentation which can be written as

SE5
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Tr @UP~n!1UP

† ~n!#J , ~1!

with the Wilson parameterr, which we set to 1 in the fol-
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lowing @9#. The gauge fieldsAm are contained in the link
variables U. With this action a gauge-invariant partitio
function can be constructed from which one can obt
vacuum expectation values of operator products in the u
way. In these partition functions we average over all gau
field configurations.

In random matrix theory we substitute the Dirac opera
which includes the gauge fields by random matrices o
particular ensemble to model the very strong fluctuations
the Dirac operator when calculated with lattice gauge theo
The integration is then performed over the independent
tries of the matrices@1#. With this approximation the gluons
decouple from the quarks and can be integrated out; i.e.,
can be neglected in random matrix models if one is o
interested in quark observables. The symmetry propertie
the random matrix depend on the underlying gauge gr
and the fermion representation. Usually in QCD we are de
ing with fermions in the fundamental representation of t
SU~3! gauge group, in which case one has to use the Ga
ian unitary ensemble~GUE!. In order to compare our result
with Kalkreuter @10# who investigated the operatorg5(D”
1m) for massive Wilson fermions in an SU~2! gauge field
background we have to use matrices of the Gaussian
thogonal ensemble~GOE! @11#. The Euclidean partition
function with two random matrices can be written accordi
to the above arguments as

Z5E D@A,B#e2SAA†A2SBB†BE D@c†,c#e2c†~D” 1m!c,

~2!

with the parametersSA and SB that scale the distribution
variance of the Gaussian ensembles. We will now specify
operatorD” 1m in Eq. ~5! and explain why we are using tw
different random matrices.

In the following we separate the Dirac spinors into le
and right-handed fieldscL,R5 1

2 (17g5)c with the Euclidean
g552g5

M . Furthermore, we distinguish betweenevenand
odd lattice sites. These two sublattices couple rather indep
dently ~the two groups are often called ‘‘red’’ and ‘‘black’
lattice sites in analogy to the colors of a checkerboard!. The
spinor field is then written as (cR

e ,cL
e ,cR

o ,cL
o), wherecR,L

e,o

5„cR,L
e,o(1), . . . ,cR,L

e,o(N/2)… are vectors with respect to th
lattice sitesxm(1), . . . ,xm(N).
©1999 The American Physical Society04-1
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FIG. 1. Spectral densities of the massive Dirac operator for various values of the hopping parameterk. On the right hand side are show
Kalkreuter’s results forb50.0 extracted from the first picture of Fig. 2, but with eigenvalue normalization as on the left hand side
chosen parameters on the left areSA52/25, SB58/25. The hopping parameter isk51/2, 1/4, 1/5, and 1/8, respectively.
117504-2
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In the above basis the mass term of Eq.~1! is simply a
434 block diagonal matrix and the interaction ter
becomes

2
1

2
~cL

e†cL
o1cR

e†cR
o1cL

o†cL
e1cR

o†cR
e ! ~3a!

2
1

2
~2cL

e†gṁcR
o2cR

e†gṁcL
o1cL

o†gṁcR
e1cR

o†gṁcL
e! ~3b!

2
i

2
ga~cL

e†AṁcL
o1cR

e†AṁcR
o2cL

o†Aṁ
†
cL

e2cR
o†Aṁ

†
cR

e ! ~3c!

FIG. 2. Kalkreuter’s results forb50.0, 1.8, and 2.8, respec
tively. The eigenvalues are normalized to lie between21 and 1.
The symbols!, 1, 3, L, h, and n correspond to quenche
data withk values of 0.25, 0.20, 1/6, 0.15, 0.125, and 0.10, resp
tively. The solid line shows unquenched data atk50.15 andb
52.12.
11750
2
i

2
ga~2cL

e†A” cR
o2cR

e†A” cL
o2cL

o†A” †cR
e2cR

o†A” †cL
e!. ~3d!

The notationṁ indicates thatm is not a free Lorentz index
but is contracted with a corresponding one that is hidden
the c ’s. We have expanded the link variablesU ṁ to first
order inAṁ, i.e., U ṁ511 igaAṁ . The term~3a! then leads
to the constant block matrix

S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D . ~4a!

In ~3c! we replaceAṁ with i/ga times the random matrixA
such that we get the block matrix

S 0 0 2A 0

0 0 0 2A

2A† 0 0 0

0 2A† 0 0

D . ~4b!

In ~3d! we do the same withA” but calling the random matrix
B which gives us

S 0 0 0 1B

0 0 1B 0

0 2B† 0 0

2B† 0 0 0

D . ~4c!

In the remaining term~3b! which has the same structure a
~3d! we are faced with a currentlike form, bilinear in th
fields. As in~3c! differentg matrices are used depending o
the lattice sites which makes this term sufficiently random
be absorbed in the matrixB. To obtain the above matrices w
have rescaled the Dirac fields by 1/A21/2.

The expansion ofU ṁ we used to argue for our assume
block structure is justified in the perturbative domain
small g. Here we are rather interested in the ergodic regi
of fully developed chaoticity, which corresponds to rath
largeg. However, we are only interested in the general sy
metry properties, which are the same in both regimes.

Adding up the above contributions~4! we arrive at the
following expression for the complete Dirac operator:

D” 1m5S 1

2k
0 12A B

0
1

2k
B 12A

12A† 2B† 1

2k
0

2B† 12A† 0
1

2k

D . ~5!

Neglecting the distinction between even and odd fie
and looking at the chiral structure only,D” has the structure

c-
4-3
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of a 232 block matrix, namely, (*0
0*) since it is anticommut-

ing with g5. This ensures that the eigenvalues ofD” are dis-
tributed around zero symmetrically. Let us stress that
have in no way derived Eq.~5!. We basically only give some
hand-waving arguments for the form in Eq.~6! which is then
tested against the numerical data. Definitely in the end m
realistic models will differ from~5! but we believe that they
will share the 434 structure.

Kalkreuter investigated in his analyses the opera
g5(D” 1m), and so we have to multiply~5! by g5. Here we
must carefully keep in mind that theB matrix resulted from
the A” term which implicitly contains theg matrices.
When we also define our spinor basis according
(cR

e ,2cL
e ,cR

o ,cL
o) we finally arrive at

g5~D” 1m!5S 1

2k
0 12A B

0 2
1

2k
B 12A

12A† B† 1

2k
0

B† 12A† 0 2
1

2k

D . ~6!

At first we tried to determine the spectral density of t
above operator analytically. For this purpose we chose
~6! as the matrix in the determinant of Eq.~2! and integrated
out the 23 1

2 (N/2)(N/211) real matrix variables by mean
of the Hubbard-Stratonovich transformation which lead t
partition function with integration over only 8 complex var
ables. It turned out that the resulting saddle point equati
are too complicated to be solved analytically so that we
cided to diagonalize the operator matrix numerically.

We calculated the eigenvalues of this matrix for a lar
number of random variables matching the selected ensem
~GOE!. We display the results in histograms for several v
ues of the parameterk5(2m18)21 ~see Fig. 1!. Our results
ie
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are on the left side of this figure. They are compared with
correspondingb50 data of Kalkreuter taken from@12#
which are shown on the right side.

One can clearly see the splitting of the spectral den
r(l) into two distinct symmetric parts at a critical value ofk
between 0.2 and 0.25 as well as a slight dent on top of
half-circle-like densities. The structures come about as
lows. The separation of the two half-circular structures is d
to the diagonal term 1/2k. The splitting of the two peaks fo
each half-circle-like structure results from the constant ‘‘1
in ~5!. These dependences are in good agreement with
data. The matricesA andB fluctuate according to the random
matrix constantsSA andSB @see Eq.~2!#. If SA andSB are
large, the structure gets washed out. IfSA andSB are differ-
ent, the half-circle-like structures become asymmetric.

Since the gauge fields in the action are completely
placed by random variables, the best agreement has t
expected forb50. The comparison shows that in this lim
of extremely strong coupling RMT is actually able to fit th
global eigenvalue spectrum surprisingly well. A detail whi
is missed is the slight difference in height of the two maxim
for, e.g., positivel. Also the falloff for large eigenvalues is
steeper for the lattice results.

With decreasing coupling strength the agreement for
global spectrum becomes worse, as is seen by comparing
left hand side of Fig. 1 to the lower two pictures of Fig.
and one reaches the usual situation in which RMT can o
describe the microscopic fluctuations.

Let us conclude: We defined for the first time a rando
matrix model which is suitable for the description of th
eigenvalue spectrum of the Dirac operator~multiplied byg5)
for an SU~2! gauge theory with Wilson fermions. A simila
model should allow to study, e.g., the distribution propert
of the lowest eigenvalues for SU~3!-Wilson fermions@13#
and for the operator (D” 1m) instead ofg5(D” 1m), which is
a problem of great practical importance.

We thank T. Wettig for very helpful discussions. Th
work has been supported by BMBF.
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