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Random matrix model for Wilson fermions on the lattice
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We describe a random matrix model suitable for the simulation of the eigenvalues of the Dirac operator on
the lattice for Wilson fermions. We compare the obtained global eigenvalue spectrum for various values of the
hopping parametex with the lattice results of Kalkreuter. The agreement is surprisingly good.
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Recently, it became clear that the microscopic spectralowing [9]. The gauge field#\, are contained in the link
properties of the lattice QCD Dirac operator are universalariables U. With this action a gauge-invariant partition
and can be reproduced by simple models that only sharkinction can be constructed from which one can obtain
basic symmetry properties with real Q€D,2]. Such models vacuum expectation values of operator products in the usual
are provided by random matrix theoRMT) [1,3]. This  way. In these partition functions we average over all gauge
universality has recently been demonstrated for the staggerdigtld configurations.
lattice Dirac operator in quenchdd] and unquenchegb] In random matrix theory we substitute the Dirac operator
SU(2). Since the Banks-Casher formula=mp(0)/V [6]  which includes the gauge fields by random matrices of a
links the spectral density at zero virtuality to the chiral con-particular ensemble to model the very strong fluctuations of
densateX, the distribution of the small eigenvalues is of the Dirac operator when calculated with lattice gauge theory.
great importance for, e.g., the understanding of the chiralhe integration is then performed over the independent en-
phase transition. RMT has also solved a long-standing proltries of the matricegl]. With this approximation the gluons
lem of lattice calculations at finite chemical potentji@l.  decouple from the quarks and can be integrated out; i.e., they
Recently, also the predictions for the energy scale at whiclean be neglected in random matrix models if one is only
RMT and lattice QCD start to deviate were confirmed, whichinterested in quark observables. The symmetry properties of
among others tested the validity of the Gell-Mann—Oakes-the random matrix depend on the underlying gauge group
Renner relation on the latti¢8]. While RMT makes reliable and the fermion representation. Usually in QCD we are deal-
predictions only for microscopic spectral fluctuations, theseéng with fermions in the fundamental representation of the
successes encourage us to see if the global spectral propert®(3) gauge group, in which case one has to use the Gauss-
can be reproduced. This is the aim of our contribution for thdan unitary ensembléGUE). In order to compare our results
case of Wilson fermions. Since the universality argumenwith Kalkreuter [10] who investigated the operatoys(D
only applies to microscopic properties, one cannot hope to fitt m) for massive Wilson fermions in an $2) gauge field
global spectra except for very special cases. We analyze suttackground we have to use matrices of the Gaussian or-
a case, namely, gauge theories with infinitely strong couthogonal ensembl€éGOE) [11]. The Euclidean partition
pling, i.e., B—0. Such systems can be hoped to be suffi-function with two random matrices can be written according
ciently chaotic as to show random matrix characteristicgo the above arguments as
even on global scales. Furthermore, our model studies sug-
gest that to describe Wilson fermions &4 block structure
is needed in random matrix theory. We expect this to hold Z:f D[A,B]e‘zAATA‘EBBTBJ DLyt yle ¥ @mw
true also for a description of microscopic properties at non- @)
zero B. Random matrix models for Wilson fermions at non-
zeroB do not yet exist, but are of great practical importance.

We start our analysis with the Euclidean action of latticeWith the parameter& , and g that scale the distribution
SU(2) theory with Wilson fermions in the fundamental rep- variance of the Gaussian ensembles. We will now specify the
resentation which can be written as operatord + m in Eqg. (5) and explain why we are using two

different random matrices.

1 + 1 + In the following we separate the Dirac spinors into left-
Se=5. 2 ging(n)—3 n% [¢'(n)(r=y,)U,(n) and right-handed fieldg, = (17 ys) 4 with the Euclidean
’ ys=—7va . Furthermore, we distinguish betweewenand
Xy(n+ )+ yf(n+ w)(r+ YM)UL(”) Y(n)] oddlattice sites. These two sublattices couple rather indepen-

dently (the two groups are often called “red” and “black”

4 1 lattice sites in analogy to the colors of a checkerbpaftie
s _= t
+ 9° ; 1 4Tr[Up(n)+ Ue(m](, @ spinor field is then written asy,y¢ , R, ¥1), whereyg?
=(yg1(1), . .. g1 (N/2)) are vectors with respect to the
with the Wilson parameter, which we set to 1 in the fol- lattice sitesx,(1), ... X,(N).
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FIG. 1. Spectral densities of the massive Dirac operator for various values of the hopping parar@etehe right hand side are shown
Kalkreuter’s results fo3=0.0 extracted from the first picture of Fig. 2, but with eigenvalue normalization as on the left hand side. The
chosen parameters on the left &g=2/25, 3z=8/25. The hopping parameter is=1/2, 1/4, 1/5, and 1/8, respectively.
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The notationu indicates thai is not a free Lorentz index

08 1 but is contracted with a corresponding one that is hidden in
R the ¢'s. We have expanded the link variables, to first
PO) 06 1 order inA,, i.e.,U,=1+igaA,. The term(3g then leads
il to the constant block matrix
0 01 0
M 1 000 1 s
o . 4
011 —0.8 —0.6 -04 0.2 0 02 04 06 08 1 ! 000
A 0100
density ¢, #=1.8 . . . .
e s B B A In (3c) we replaceA, with i/ga times the random matrid
such that we get the block matrix
0 0 -A O
0 0 0 -—-A
(4b)

-AT 0 0 0
o -A" 0 o0
In (3d) we do the same witi but calling the random matrix
B which gives us
0 0 0O +B
0 0O +B O
g=28 o -B" 0 o0
3 B 0 0 o

~1 0806 0.4 02 ¢ 02 04 06 08 1

(40

density @),
T

T

In the remaining tern{3b) which has the same structure as
(3d) we are faced with a currentlike form, bilinear in the
fields. As in(3c¢) different y matrices are used depending on
the lattice sites which makes this term sufficiently random to
be absorbed in the matrB To obtain the above matrices we
have rescaled the Dirac fields byyH 1/2.

The expansion otJ,, we used to argue for our assumed
block structure is justified in the perturbative domain of
0 - & small g. Here we are rather interested in the ergodic regime
7108060402 0 02 04 06 08 1 of fully developed chaoticity, which corresponds to rather

FIG. 2. Kalkreuter's results fog=0.0, 1.8, and 2.8, respec- argeg. However, we are only interested in the general sym-
tively. The eigenvalues are normalized to lie betweeh and 1.  Metry properties, which are the same in both regimes.

The symbolsx, +, X, ¢, O, andA correspond to quenched  Adding up the above contribution@) we arrive at the
data with« values of 0.25, 0.20, 1/6, 0.15, 0.125, and 0.10, respecfollowing expression for the complete Dirac operator:
tively. The solid line shows unquenched dataxat0.15 andg

_ 1
=2.12. P 0 1—A B
K
In the above basis the mass term of Ef). is simply a 1
4x4 block diagonal matrix and the interaction term 0 5 B 1-A
K
becomes . D+m= . )
_aAt  _pt
— S URR R YR (33 1=A B 5 0
1 et .. ;0 et . 0 ot.. e ot. . e -BT 1-Af 0 i
- 5( — YL YuR— YR YL U VR T YR Y0 (3D) 2%

_ - eth. 104 seftp. 0 otat e otat e Neglecting the distinction between even and odd fields
2 9AWCALT YR ALIR™ VLA YL YR AR 30 and looking at the chiral structure onl, has the structure
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of a 2x 2 block matrix, namely,¥) since it is anticommut- are on the left side of this figure. They are compared with the
ing with ys. This ensures that the eigenvaluesivfare dis-  corresponding3=0 data of Kalkreuter taken fronil2]
tributed around zero symmetrically. Let us stress that wavhich are shown on the right side. _
have in no way derived Eq5). We basically only give some ~ One can clearly see the splitting of the spectral density
hand-waving arguments for the form in E) which is then ~ P()) into two distinct symmetric parts at a critical valuesof
tested against the numerical data. Definitely in the end morB8€tween 0.2 and 0.25 as well as a slight dent on top of the

realistic models will differ from(5) but we believe that they half-circle-like densities. The structures come about as fol-
will share the 4< 4 structure. lows. The separation of the two half-circular structures is due

Kalkreuter investigated in his analyses the operat0|IO the diagc_)nal term 1i2 The splitting of the two peaks fgr”
ye(D+m), and so we have to multipl{5) by vs. Here we each half-circle-like structure results from the constant “1

o ) in (5). These dependences are in good agreement with the
must carefully kgep in m|_nq that tri# matrlx resulted .from dat(a.)The matrice?A andB fluctuate agcording to the random
the A term which implicitly contains they matrices. ooy constants , and g [see Eq(2)]. If 2, and3g are
When we also define our spinor basis according Qe the structure gets washed outs jf and3. are differ-

(YR, — ¥L . ¥R, ¥0) we finally arrive at ent, the half-circle-like structures become asymmetric.
1 Since the gauge fields in the action are completely re-
— 0 1-A B placed by random variables, the best agreement has to be
2K expected for8=0. The comparison shows that in this limit
1 of extremely strong coupling RMT is actually able to fit the
0 o B 1-A global eigenvalue spectrum surprisingly well. A detail which

. (6) is missed is the slight difference in height of the two maxima
for, e.g., positivex. Also the falloff for large eigenvalues is

1-A" BT — 0 -
2% steeper for the lattice results.
With decreasing coupling strength the agreement for the
Bf  1—-Af 0 _ i global spectrum becomes worse, as is seen by comparing the
2K left hand side of Fig. 1 to the lower two pictures of Fig. 2,

and one reaches the usual situation in which RMT can only
escribe the microscopic fluctuations.

Let us conclude: We defined for the first time a random
matrix model which is suitable for the description of the

At first we tried to determine the spectral density of the
above operator analytically. For this purpose we chose Ed.
(6) as the matrix in the determinant of E®) and integrated

1 : g
out the 2< 5(N/2)(N/2+ 1) real matrix variables by means eigenvalue spectrum of the Dirac operatoultiplied by ye)

of the Hubbard-Stratonovich transformation which lead to & : ) X 75,

. : o ) - for an SU2) gauge theory with Wilson fermions. A similar
partition function with integration over only 8 complex vari- model should allow to study, e.g., the distribution properties
ables. It turned out that the resulting saddle point equation(s)f the lowest eigenvalues f,or.$.é)-WiIson fermions[13]
are too complicated to be solved analytically so that we deénd for the opergtorIZHm) instead ofys(ID +m), which is
cided to diagonalize the operator matrix numerically. a problem of areat practical im ortanycie '

We calculated the eigenvalues of this matrix for a large P 9 P P '
number of random variables matching the selected ensemble
(GOB). We display the results in histograms for several val- We thank T. Wettig for very helpful discussions. This

ues of the parameter=(2m+8) ! (see Fig. 1 Our results work has been supported by BMBF.
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