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Orbital angular momentum in deep inelastic scattering
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In this work we address several issues associated with the orbital angular momentum relevant for leading
twist polarized deep inelastic scattering. We present a detailed analysis of the light-front helicity operator
~generator of rotations in the transverse plane! in QCD. We explicitly show that the operator constructed from
the manifestly gauge invariant, symmetric energy momentum tensor in QCD, in the gaugeA150, after the
elimination of constraint variables, is equal to the naive canonical form of the light-front helicity operator plus
surface terms. Restricting to the topologically trivial sector, we eliminate the residual gauge degrees of freedom
and surface terms. Having constructed the gauge fixed light-front helicity operator, we introduce quark and
gluon orbital helicity distribution functions relevant for polarized deep inelastic scattering as a Fourier trans-
form of the forward hadron matrix elements of appropriate bilocal operators. The utility of these definitions is
illustrated with the calculation of anomalous dimensions in perturbation theory. We explicitly verify the
helicity sum rule for dressed quark and gluon targets in light-front perturbation theory. We also consider the
internal orbital helicity of a composite system in an arbitrary reference frame and contrast the results in the
nonrelativistic situation versus the light-front~relativistic! case.@S0556-2821~99!00211-8#

PACS number~s!: 11.10.Ef, 11.40.2q, 12.38.Bx, 13.60.Hb
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I. INTRODUCTION

The role of orbital angular momentum in deep inelas
scattering was first emphasized by Sehgal@1# and Ratcliff
@2#. Recently, orbital angular momentum in QCD has
tracted a lot of attention@3# in the context of the composition
of nucleon helicity~in light-front quantization! in terms of
quark and gluon degrees of freedom. The well-known po
ized structure functiong1 measures~ignoring anomaly! the
chirality of quarks and antiquarks in the nucleon in the de
inelastic region. On the light front, chirality coincides wi
helicity and thusg1 constitutes a measurement of the intri
sic helicity of fermionic constituents in the nucleon. Sin
experimentally this contribution to the nucleon helicity
shown to be very small, great interest has arisen in the c
tributions of intrinsic gluon helicity and quark and gluo
internal orbital helicities in understanding the nucleonic s
structure.

In this work, first, we study the generator of the rotatio
in the transverse plane~which we call the light-front helicity
operator! in light-front QCD starting from the manifestly
gauge invariant, symmetric, energy-momentum tensor. T
operator appears to be interaction dependent. Further, it
tains unphysical degrees of freedom~constraint variables in
light-front theory! and it is even unclear whether this oper
tor will generate the correct transformation laws pertain
to an angular momentum operator. To proceed, we pick
light-front gaugeA150 and use the constraint equations
eliminate the unphysical degrees of freedom. At this sta
we still have the residual gauge freedom in this gauge a
ciated with x2 independent gauge transformations. We
strict our considerations to thetopologically trivial sector
and require that the physical field vanish at the bound
(x2,'→`). This eliminates the residual gauge freedomand
also all thesurface terms. The resultinggauge fixed helicity
operatoragrees with the naive canonical one~which is free
of interactions and naturally separates into quark and gl
0556-2821/99/59~11!/116013~8!/$15.00 59 1160
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orbital and spin helicities! at the operator level.
Having constructed the gauge fixed orbital helicity ope

tor in the topologically trivial sector of QCD, we proceed
define nonperturbative parton distributions as the Fou
transform along the light-front longitudinal direction of th
forward hadron matrix element of appropriate bilocal ope
tors for light-front internal orbital helicity. Apart from pro
viding nonperturbative information on the distribution
nucleon helicity among its partonic constituents, they se
another useful purpose for the perturbative region. As
have recently shown@4#, by replacing the hadron target by
dressed parton target in the definition of the distributi
function, one can easily calculate the splitting functions a
corresponding anomalous dimensions of leading twist op
tors. One can also investigate other issues of perturba
concern in the case of higher twist operators. The met
uses intuitive light-front Fock space expansion for the ope
tors in the bilocal expressions and also for the state.
proceed to explicitly evaluate the splitting functions and c
responding anomalous dimensions relevant for orbital he
ity at one loop level in a physically transparent manner.

There have been recent studies of the quark orbital mo
using nonrelativistic quark models@5#. It is of importance to
study in what respect the physics of orbital helicity in t
relativistic case differs from its nonrelativistic counterpart.
the context ofgauge-fixed light-front helicity operatorin
QCD which is free from interactions we address this issue
the Appendix.

II. LIGHT-FRONT HELICITY OPERATOR J3

FROM THE MANIFESTLY GAUGE INVARIANT
ENERGY MOMENTUM TENSOR

It is well known that even though theenergy-momentum
density ~which gives rise to Hamiltonian and three
momentum! and thegeneralized angular momentum dens
~which gives rise to angular momentum and boosts! can be
©1999 The American Physical Society13-1
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A. HARINDRANATH AND RAJEN KUNDU PHYSICAL REVIEW D 59 116013
expressed in a manifestly covariant, gauge invariant fo
the explicit form of Poincare generators in quantum fie
theory depends on the frame of reference and may also
pend up on the gauge choice. This of course does not im
that the theory has lost Lorenz and gauge symmetry.
symmetries are no longer manifest, but the physical obs
ables in the theory still obey the consequences of the s
metries.

Poincare generators can be further classified as kinem
cal ~which do not contain interactions and do not change
quantization surface! and dynamical~which contain interac-
tions and change the quantization surface!. Which operator is
dynamical and which is kinematical of course depends on
choice of quantization surface. It is well known that in ligh
front field theory, on which our formalism of deep inelas
scattering is based, the generators of boosts and the rot
in the transverse plane~light-front helicity! are kinematical
like three momenta whereas the generators of rotations a
the two transverse axes are dynamical like the Hamilton
The operator in light-front field theory relevant to the ‘‘pro
ton spin crisis’’ is the light-front helicity operator which be
longs to the kinematical subgroup. In light-front literature,
is customary to construct this operator from the canon
symmetric energy momentum tensor and one explicitly fin
that this operator is indeed free of interaction and has
same form as in free field theory@6#.

In non-Abelian gauge theories such as QCD, one sho
be extra cautious since such theories are known to exh
nontrivial topological effects. In this work, we restrict ou
attention to the topologically trivial sector of QCD. In th
sector, interactions do not affect kinematical generators@7#.
In view of the prevailing confusion in the literature~see Ref.
@8# for a list of recent papers on the subject!, we provide an
explicit demonstration of this fact in this section in the ca
of the light-front helicity operator.

We start from the manifestly gauge invariant, symmet
energy momentum tensor in QCD:

Qmn5
i

2
c̄@gmDn1gnDm#c2FmlaFl

na2gmn

3H 2
1

4
~Flsa!21c̄~ iglDl2m!cJ , ~2.1!

where iD m5 i ]m1gAm, Fmla5]mAla2]lAma

1g fabcAmbAlc, Fl
na5]nAl

a2]lAna1g fabcAnbAl
c .

We define the light-front helicity operator

J 35
1

2E dx2d2x'@x1Q122x2Q11#. ~2.2!

J 3 is a manifestly gauge invariant operator by constructi
However, it depends explicitly on the interaction and do
not appear to be a kinematical operator at all. Furthermor
is not apparent thatJ 3 generates the correct transformatio
as an angular momentum operator. Thus at this stage, w
not justified to call it a helicity operator.

Explicitly, we have
11601
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J 35
1

2E dx2d2x'H x1F i

2
c̄~g1D21g2D1!c2F1laFl

2aG
2x2F i

2
c̄~g1D11g1D1!c2F1laFl

1aG J . ~2.3!

The fermion field can be decomposed asc65L6c, with
L65 1

4 g7g6. We shall work in the gaugeA150. In this
gauge, we still have residual gauge freedom associated
x2-independent gauge transformations. Note that onlyc1

andAi are dynamical variables whereasc2 andA2 are con-
strained.

We have

i

2
c̄~g1D21g2D1!c5c1†i ]2c11gc1†Tac1Aa

2

1
i

2
c̄g2i ]1c. ~2.4!

Using the constraint equation

i ]1c25@a'
•~ i ]'1gA'!1g0m#c1, ~2.5!

to eliminate the constraint variablec2 we arrive at, after
some algebra,

i

2
c̄g2]1c5 ic1†]2c11

1

2
]1~c1†S3c1!1gc1†Tac1A2a

1
i

2
]1~c2†a2c1!2

i

2
]2~c1†c1!. ~2.6!

Now we restrict ourselves to the topologically trivial sect
by requiring that the dynamical fields (c1 andAi) vanish at
x2,i→`. The residual gauge freedom and the surface te
are no longer present and so we drop total derivatives of]1

and]2. Note that the term involving]1 is not a surface term
sinceQ12 is multiplied byx1.

Collecting the results together, we have

i

2
c̄~g1D21g2D1!c52ic1†]2c11

1

2
]1~c1†S3c1!

12gc1†Tac1A2a, ~2.7!

whereS35 ig1g2.
In the gaugeA150,

2F1laFl
2a52

1

2
~]1!2A2aA2a1]1Aja~]2Aja2] jA2a!

1g fabc~]1Aja!A2bAjc1
1

2
]1~]1A2aA2a!.

~2.8!

We have the constraint equation for the elimination of t
variableA2,
3-2
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ORBITAL ANGULAR MOMENTUM IN DEEP INELASTIC . . . PHYSICAL REVIEW D59 116013
1

2
~]1!2A2a5]1] iAia1g fabcAib]1Aic12gc1†Tac1.

~2.9!

Thus

2F1laFl
2a5] iAia]1A2a1]1Aja~]2Aja2] jA2a!

22gc1†Tac1A2a1
1

2
]1~]1A2aA2a!

2]1~] iAiaA2a!

5]1A1a]2A1a1]1A2a]2A2a22gc1†Tac1A2a

1]1~A1a]1A2a!1
1

2
]1~]1A2aA2a!

2]1~] iAiaA2a!2]1~A1a]1A2a!. ~2.10!

Collecting the results together,

Q1252ic1†]2c11
1

2
]1~c1†S3c1!1]1A1a]2A1a

1]1A2a]2A2a1]1~A1a]1A2a!. ~2.11!

We have dropped the surface terms atx256`. By a similar
calculation,

Q1152ic1†]1c12
1

2
]2~c1†S3c1!1]1A1a]1A1a

1]1A2a]1A2a1]2~A2a]1A1a!. ~2.12!

From the above two equations it is clear thatQ11 andQ12

agree with the free field theory form at the operator lev
This shows that in light-front quantization, withA150
gauge,J 35J3 ~the naive canonical form independent of i
teractions! at the operator level, provided the fields vanish
the boundary. Explicitly,

J35Jf (o)
3 1Jf ( i )

3 1Jg(o)
3 1Jg( i )

3 ~2.13!

with

Jf (o)
3 5E dx2d2x'c1†i ~x1]22x2]1!c1,

Jf ( i )
3 5

1

2E dx2d2x'c1†S3c1,

Jg(o)
3 5

1

2E dx2d2x'$x1@]1A1]2A11]1A2]2A2#

2x2@]1A1]1A11]1A2]1A2#%,

Jg( i )
3 5

1

2E dx2d2x'@A1]1A22A2]1A1#.

~2.14!

The color indices are implicit in these equations.
11601
l.

t

Using canonical commutation relations, we explicitly fin
that

i @Jf (o)
3 ,c1~x!#5~x1]22x2]1!c1~x!, ~2.15!

i @Jf ( i )
3 ,c1~x!#5

1

2
g1g2c1~x!, ~2.16!

i @Jg(o)
3 ,Ai~x!#5~x1]22x2]1!Ai~x!,

~2.17!

i @Jg( i )
3 ,Ai~x!#52e i j A

j~x!. ~2.18!

Thus these operators do qualify as angular momentum
erators~generators of rotations in the transverse plane! in the
theory @6#.

To summarize, the helicity operator constructed fro
manifestly gauge invariant, symmetric, energy moment
tensor in QCD, in the gaugeA150, and after the elimination
of constraint variables, is equal to the naive canonical fo
of the light-front helicity operator plus surface terms. In t
topologically trivial sector, we can legitimately require th
dynamical fields to vanish at the boundary. This elimina
the residual gauge degrees of freedom and removes the
face terms. Thus we have a gauge fixed Poincare gene
which we consider in the following sections.

III. ORBITAL HELICITY DISTRIBUTION FUNCTIONS

We define the orbital helicity distribution for the fermio

DqL~x,Q2!5
1

4pP1E dhe2 ihx

3^PSu@c̄~j2!g1i ~x1]22x2]1!c~0!1H.c.#uPS& ~3.1!

with h5 1
2 P1j2. Here uPS& denotes the hadron state wit

momentumP and helicityS.
We define the light-front orbital helicity distribution fo

the gluon as

DgL~x,Q2!5
21

4pP1E dhe2 ihx^PSu@x1F1a~j2!]2Aa~0!

2x2F1a~j2!]1Aa~0!#uPS&. ~3.2!

These distributions are defined in analogy with the more
miliar intrinsic helicity distributions for quarks and gluon
given as follows.

For the fermion, the intrinsic light-front helicity distribu
tion function is given by

Dq~x,Q2!5
1

8pS1E dhe2 ihx

3^PSu@c̄~j2!g1S3c~0!1H.c.#uPS&, ~3.3!

whereS35 ig1g2. This is the same as the chirality distribu
tion functiong1.

For the gluon, the intrinsic light-front helicity distribution
is defined@9# as
3-3
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A. HARINDRANATH AND RAJEN KUNDU PHYSICAL REVIEW D 59 116013
Dg~x,Q2!52
i

4p~P1!2xE dhe2 ihx

3^PSuF1a~j2!F̃a
1~0!uPS&. ~3.4!

The dual tensor

F̃mn5
1

2
emnrsFrs with e112252. ~3.5!

Note that the above distribution functions are defined
the light-front gaugeA150. In the two-component represen
tation @10# we have the dynamical fermion field,

c1~x!5(
l

xlE dk1d2k'

2~2p!3Ak1
„bl~k!e2 ikx1d2l

† ~k!eikx
…,

~3.6!

and the dynamical gauge field

Ai~x!5(
l
E dk1d2k'

2~2p!3k1 „« i~l!al~k!e2 ikx1H.c.…,

~3.7!

with

$bl~k!,bl8
†

~k8!%5$dl~k!,dl8
†

~k8!%

52~2p!3k1d~k12k81!d2~k'2k'8 !dll8 ,

~3.8!

@al~k!,al8
†

~k8!#52~2p!3k1d~k12k81!d2~k'2k'8 !dll8 ,
~3.9!

andxl is the eigenstate ofsz in the two-component spino
of c1 by the use of the following light-frontg matrix rep-
resentation@11#:

g05F0 2 i

i 0 G , g35F0 i

i 0G , g i5F2 i s̃ i 0

0 i s̃ iG
~3.10!

with s̃15s2,s̃252s1 and« i(l) the polarization vector of
transverse gauge field.

Note that integration of the above distribution functio
over x is directly related to the expectation values of t
corresponding helicity operators as follows:

E
0

1

dxDq~x,Q2!5
1

N ^PSuJq( i )
3 uPS&,

E
0

1

dxDqL~x,Q2!5
1

N ^PSuJq(o)
3 uPS&,

E
0

1

dxDg~x,Q2!5
1

N ^PSuJg( i )
3 uPS&,
11601
n

E
0

1

dxDgL~x,Q2!5
1

N ^PSuJg(o)
3 uPS&,

~3.11!

whereN52(2p)3P1d3(0).

IV. PERTURBATIVE CALCULATION
OF ANOMALOUS DIMENSIONS

In this section, we evaluate the internal helicity distrib
tion functions for a dressed quark in perturbative QCD
replacing the hadron target by a dressed quark target.
have provided the necessary details of the calculation wh
may serve as the stepping stone for more realistic calcula
with meson target. From this simple calculation, we ha
illustrated how easily one can extract the relevant splitt
functions and evaluate the corresponding anomalous dim
sions. Note that since we are not interested in exhaus
calculation of various anomalous dimensions and the p
pose of this section being illustrative, we can safely drop
derivative of delta function in the following calculations an
work explicitly with forward matrix element.

The dressed quark state with fixed helicity can be
pressed as

uk1,k' ,l&5Fl~k!bl
†~k!u0&

1 (
l1l2

E dk1
1d2k'1

A2~2p!3k1
1

dk2
1d2k'2

A2~2p!3k2
1

3A2~2p!3k1d3~k2k12k2!

3Fl1l2

l ~k;k1 ,k2!bl1

† ~k1!al2

† ~k2!u0&1•••,

~4.1!

where the normalization of the state is determined by

^k81,k'8 ,l8uk1,k' ,l&52~2p!3k1dl,l8d~k12k81!

3d2~k'2k'8 !. ~4.2!

We introduce the boost invariant amplitudesc1
l and

cs1 ,l2

l (x,k') respectively by Fl(k)5c1
l and

Fl1l2

l (k;k1 ,k2)5(1/AP1)cs1l2

l (x,k'). From the light-

front QCD Hamiltonian, to lowest order in perturbatio
theory, we have

cs1l2

l ~x,k'!52
g

A2~2p!3
Ta

x~12x!

k'
2 1mq

2~12x!2xs1

†

3
1

A12x
H 2

k'
i

12x
1

1

x
~ s̃'•k'!s̃ i

2 imqs̃ i
12x

x J xl« i* ~l2! c1
l . ~4.3!

Herex is the longitudinal momentum fraction carried by th
quark. We shall ignore themq dependence in the above wav
function which can lead to higher twist effects in orbit
3-4
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helicity. In the following we take the helicity of the dresse
quark to be1 1

2 . Due to transverse boost invariance, witho
loss of generality, we take the transverse momentum of
initial quark to be zero.

First we evaluate the gluon intrinsic helicity distributio
function given in Eq.~3.4! in the dressed quark state.

The nonvanishing contribution comes from the qua
gluon state. We get

Dg~12x,Q2!5 (
s1 ,l2

l2E d2k'cs1l2

↑ * ~x,k'!cs1l2

↑ ~x,k'!

5
as

2p
Cf ln

Q2

m2 x2~12x!2
1

12x

3F 1

x2~12x!2 2
1

~12x!2G . ~4.4!

The first~second! term inside the square brackets arises fr
the state with gluon helicity11 (21). Thus we have the
gluon intrinsic helicity contribution in the dressed quark st

Dg~12x,Q2!5
as

2p
Cf ln

Q2

m2~11x!. ~4.5!

Note that the gluon distribution function has the argum
(12x) since we have assignedx to the quark in the dresse
quark state.

Next we evaluate the quark orbital helicity distributio
function given in Eq.~3.1! in the dressed quark state. Th
nonvanishing contribution comes from the quark-gluon sta
We get

DqL~x,Q2!5 (
s1 ,l2

E d2k'~12x!cs1l2

↑ * ~x,k'!

3S 2 i
]

]f Dcs1l2

↑ ~x,k'!

52
as

2p
Cf ln

Q2

m2~12x!x2

3~12x!2
1

12x F 1

x2~12x!2 2
1

~12x!2G . ~4.6!

The first~second! term inside the square brackets arises fr
the state with gluon helicity11 (21). Thus we have the
quark orbital helicity contribution in the dressed quark st

DqL~x,Q2!52
as

2p
Cf ln

Q2

m2~12x!~11x!. ~4.7!

Similarly we get the gluon orbital helicity distribution de
fined in Eq.~3.2! in the dressed quark state
11601
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DgL~12x,Q2!5 (
s1 ,l2

E d2k'xcs1l2

↑ * ~x,k'!

3S 2 i
]

]f Dcs1l2

↑ ~x,k'!

52
as

2p
Cf ln

Q2

m2 x~11x!. ~4.8!

We note that the helicity is conserved at the quark glu
vertex. For the initial quark of zero transverse momentu
total helicity of the initial state is the intrinsic helicity of th
initial quark, namely,1 1

2 in our case. Since we have ne
glected quark mass effects, the final quark also has intrin
helicity 1 1

2 . Thus total helicity conservation implies that th
contributions from gluon intrinsic helicity and quark an
gluon internal orbital helicities have to cancel. This is read
verified using Eqs.~4.5!, ~4.7!, and~4.8!.

From Eqs.~4.5!, ~4.7! and ~4.8! we extract the relevan
splitting functions. The splitting functions are

PSS(gq)~12x!5Cf~11x!,

PLS(qq)~x!52Cf~12x2!,

PLS(gq)~12x!52Cfx~11x!. ~4.9!

We define the anomalous dimensionAn5*0
1dxxn21P(x).

The anomalous dimensions are given by

ASS(gq)
n 5Cf

n12

n~n11!
, ALS(qq)

n 52Cf

2

n~n12!
,

ALS(gq)
n 52Cf

n14

n~n11!~n12!
. ~4.10!

These anomalous dimensions agree with those given in
recent work of Ha¨gler and Scha¨fer @12#.

V. VERIFICATION OF HELICITY SUM RULE

Helicity sum rule for the fermion target is given by

1

N ^PSu@Jq( i )
3 1Jq(o)

3 1Jg( i )
3 1Jg(o)

3 #uPS&56
1

2
. ~5.1!

For boson target the RHS of the above equation should
replaced by the corresponding helicity.

Here we verify the correctness of our definitions of dist
bution functions in the context of helicity sum rule for
dressed quark as well as a dressed gluon target pertu
tively. For simplicity, we take the external transverse m
menta of the target to be zero so that there is no net ang
momentum associated with the center of mass of the tar
Using the field expansions, given in Eqs.~3.6! and~3.7!, we
have
3-5
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Jf (o)
3 5 i(

s
E dk1d2k'

2~2p!3k1 Fb†~k,s!Fk2
]

]k1 2k1
]

]k2Gb~k,s!

1d†~k,s!Fk2
]

]k1 2k1
]

]k2Gd~k,s!G ,
Jf ( i )

3 5
1

2 (
l

lE dk1d2k'

2~2p!3k1@b†~k,l!b~k,l!

1d†~k,l!d~k,l!#,

Jg(o)
3 5 i(

l
E dk1d2k'

2~2p!3k1 a†~k,l!Fk2
]

]k1 2k1
]

]k2Ga~k,l!,

j g( i )
3 5(

l
lE dk1d2k'

2~2p!3k1 a†~k,l!a~k,l!. ~5.2!

For a dressed quark target having helicity1 1
2 we get

1

N ^P,↑uJf ( i )
3 uP,↑&q5E dxF1

2
d~12x!

1
a

2p
Cf ln

Q2

m2 F 11x2

~12x!1

1
3

2
d~12x!G G

5
1

2
,

1

N ^P,↑uJf (o)
3 uP,↑&q52

a

2p
Cf ln

Q2

m2E dx~12x!~1

1x!,

1

N ^P,↑uJg( i )
3 uP,↑&q5

a

2p
Cf ln

Q2

m2E dx~11x!,

1

N ^P,↑uJg(o)
3 uP,↑&q52

a

2p
Cf ln

Q2

m2E dx x~11x!.

~5.3!

Adding all the contributions, we get

1

N ^P,↑uJf ( i )
3 1Jf (o)

3 1Jg( i )
3 1Jg(o)

3 uP,↑&q5
1

2
. ~5.4!

For a dressed gluon having helicity11, the corresponding
expressions are worked out to be the following:

1

N ^P,↑uJf ( i )
3 uP,↑&g50,

1

N ^P,↑uJf (o)
3 uP,↑&g5

a

2p
NfTf ln

Q2

m2E dx@x21~12x!2#,
11601
1

N ^P,↑uJg( i )
3 uP,↑&g5c1* c1

512
a

2p
NfTf ln

Q2

m2E dx@x21~12x!2#,

1

N ^P,↑uJg(o)
3 uP,↑&g50. ~5.5!

Adding all the contributions, we get

1

N ^P,↑uJf ( i )
3 1Jf (o)

3 1Jg( i )
3 1Jg(o)

3 uP,↑&g51. ~5.6!

Note that in evaluating the above expression, we have u
the Fock expansion of the target states. For the dressed q
we have used Eq.~4.1!, while for gluon we have used simila
expansion but ignored two-gluon Fock sector for simplici

VI. SUMMARY, CONCLUSIONS AND DISCUSSION

We have presented a detailed analysis of the light-fr
helicity operator~generator of rotations in the transver
plane! in QCD. We have explicitly shown that the operat
constructed from manifestly gauge invariant, symmetric
ergy momentum tensor in QCD, in the gaugeA150, and
after the elimination of constraint variables, is equal to t
naive canonical form of the light-front helicity operator plu
surface terms. In the topologically trivial sector, we can
gitimately require the dynamical fields to vanish at t
boundary. This eliminates the residual gauge degrees of f
dom and removes the surface terms.

Next, we have defined nonperturbative quark and glu
orbital helicity distribution functions as Fourier transform
forward hadron matrix elements of appropriate bilocal ope
tors with bilocality only in the light-front longitudinal space
We have calculated these distribution functions by replac
the hadron target by a dressed parton providing all the n
essary details. From these simple calculations we have il
trated the utility of the newly defined distribution function
in the calculation of splitting functions and hence anomalo
dimensions in perturbation theory. We have also verified
helicity sum rule explicitly to the first nontrivial order in
perturbation theory.

Lastly, in the Appendix, we have compared and co
trasted the expressions for internal orbital helicity in nonr
ativistic and light-front~relativistic! cases. Our calculation
shows that the role played by particle masses in the inte
orbital angular momentum in the nonrelativistic case is
placed by the longitudinal momentum fraction in the relat
istic case. Although four terms appear in the expression
L3 for individual particles in two body system, only the ter
proportional to the total internalL3 contributes due to trans
verse boost invariance of the multiparton wave function
light-front dynamics. We also note the occurrence of the lo
gitudinal momentum fractionx2(x1) multiplied by the total
internal L3 in the expressions ofL3 for particle one~two!.
This explains why one needs to take first moment with
spect tox as well as (12x) for the respective distributions in
obtaining the helicity sum rule@3#.
3-6
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Our explicit demonstration that the operator construc
from manifestly gauge invariant, symmetric energy mom
tum tensor in QCD, in the gaugeA150, and after the elimi-
nation of constraint variables and residual gauge freedom
equal to the naive canonical form of the light-front helici
operator is facilitated by the fact that in light-front theo
only transverse gauge fields are dynamical degrees of f
dom. The conjugate momenta~color electric fields! are con-
strained variables in the theory. Thus we were able to sh
explicitly that the resulting gauge fixed operator is free
interactions. The question naturally arises as to whether
result is valid in other gauges also. Several years ago, in
context of magnetic monopole solutions, it has been sho
@13# that in Yang-Mills-Higgs system, quantized in the ax
gaugeA350 using the Dirac procedure, the angular mome
tum operator constructed from manifestly gauge invari
symmetric energy momentum tensor differs from the cano
cal one only by surface terms. In the study of QCD inA3
50 gauge, it has been shown@14# that in the presence o
surface terms, Poincare algebra holds only in the phys
subspace. The situation inA050 gauge or in covarian
gauges where unphysical degrees of freedom are presen
be investigated. Another interesting problem to be studie
the helicity conservation in the topologically nontrivial se
tor of QCD and its implications, if any, for deep inelast
scattering.
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APPENDIX: INTERNAL ORBITAL HELICITY:
NONRELATIVISTIC VERSUS LIGHT-FRONT

„RELATIVISTIC … CASE

Here we address the nonrelativistic versus the light-fr
case. We need to decompose the total orbital angular
mentum of a composite system as a sum of the orbital an
lar momentum associated with internal motion and the
bital angular momentum associated with the center of m
motion. We are interested only in the former and not in
latter. For illustrative purposes, consider a two body sys
consisting of two particles with massesm1 andm2 and mo-
mentak1 and k2. Let P denote the total momentum. In th
nonrelativistic case, letq denote the relative momentum, i.e
q5(m2k12m1k2)/(m11m2). It is well known @5# that the
contribution of particle one~two! to the third component o
internal orbital angular momentum is given by

L1(2)
3 5 i

m2(1)

m11m2
Fq2

]

]q1 2q1
]

]q2G . ~A1!

Next consider the light-front case. Letk15(k1
1 ,k1

') and
k25(k2

1 ,k2
') denote the single particle momenta andP

5(P1,P') denote the total momentum of the two partic
system, i.e.,k1

1,i1k2
1,i5P1,i . Light-front kinematics allows

us to introduce boost-invariant internal transverse mom
tum q' and longitudinal momentum fractionxi by
11601
d
-

is

e-

w
f
is

he
n
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-
t
i-

al

to
is

t
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r-
ss
e
m

n-

k1
'5q'1x1P', k1

15x1P1, k2
'52q'1x2P',

k2
15x2P1, ~A2!

we havex11x251 andq'5x2k1
'2x1k2

' . For the first par-
ticle, we have

L1
35 i Fk1

2 ]

]k1
1 2k1

1 ]

]k1
2G

5 ix2Fq2
]

]q1 2q1
]

]q2G1 ix1FP2
]

]P1 2P1
]

]P2G
1 ix1x2FP2

]

]q1 2P1
]

]q2G1 i Fq2
]

]P1 2q1
]

]P2G .
~A3!

For the second particle, we have

L2
35 i Fk2

2 ]

]k2
1 2k2

1 ]

]k2
2G

5 ix1Fq2
]

]q1 2q1
]

]q2G1 ix2FP2
]

]P1 2P1
]

]P2G
2 ix1x2FP2

]

]q1 2P1
]

]q2G2 i Fq2
]

]P1 2q1
]

]P2G .
~A4!

Total orbital helicity

L35L1
31L2

35 i Fq2
]

]q1 2q1
]

]q2G1 i FP2
]

]P1 2P1
]

]P2G .
~A5!

Thus we have decomposed the total orbital helicity of a t
particle system into internal orbital helicity and the orbit
helicity associated with the ‘‘center of mass motion.’’

Note that the internal orbital helicity carried by partic
one is the total internal helicity multiplied by the longitudin
momentum fraction carried by particle two and vice ver
This factor can be understood by comparison with the sit
tion in nonrelativistic dynamics and recalling the close an
ogy between Galilean relativity and light-front dynamics
the transverse plane. In nonrelativistic two-body proble
the center of mass coordinate is defined byRW 5(m1rW1

1m2rW2)/(m11m2). The generator of Galilean boost isBW 5

2( imirW i . Thus in nonrelativistic dynamics,RW 52BW /M with
M5m11m2. In light-front dynamics, the variable analogou
to B' is E', the generator of transverse boost and the v
able analogous toM is P1. Thus in light-front theory, the
transverse center of mass coordinateR'5( iki

1r i
'/( iki

1

5x1r 1
'1x2r 2

' . Thus we recognize that instead ofm2 /(m1

1m2)@m1 /(m11m2)# in nonrelativistic theory,x2@x1# ap-
pears in light-front theory.

By comparing light-front~relativistic! and nonrelativistic
cases, we readily see that the role played by particle ma
3-7
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in individual contributions to the third component of intern
orbital angular momentum in nonrelativistic dynamics is
placed by longitudinal momentum fractions in relativis
~light-front! theory. This also shows that the physical pictu
of the third component of internal orbital angular momentu
is drastically different in non-relativistic and relativist
cases. We stress that it is only the latter, in which par
-

11601
-

n

masses do not appear at all, that is of relevance to
nucleon helicity problem. Lastly, we emphasize that it is t
transverse boost invariance in light front dynamics th
makes possible the separation of dynamics associated
the center of mass and the internal dynamics.In equal-time
relativistic theory, this separation cannot be achieved at
kinematical level since boosts are dynamical.
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@12# P. Hägler and A. Scha¨fer, Phys. Lett. B430, 179 ~1998!.
@13# N.H. Christ, A.H. Guth, and E.J. Weinberg, Nucl. Phys.B114,

61 ~1976!.
@14# I. Bars and F. Green, Nucl. Phys.B142, 157 ~1978!.
3-8


