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Orbital angular momentum in deep inelastic scattering
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In this work we address several issues associated with the orbital angular momentum relevant for leading
twist polarized deep inelastic scattering. We present a detailed analysis of the light-front helicity operator
(generator of rotations in the transverse p)aneQCD. We explicitly show that the operator constructed from
the manifestly gauge invariant, symmetric energy momentum tensor in QCD, in the Aduge, after the
elimination of constraint variables, is equal to the naive canonical form of the light-front helicity operator plus
surface terms. Restricting to the topologically trivial sector, we eliminate the residual gauge degrees of freedom
and surface terms. Having constructed the gauge fixed light-front helicity operator, we introduce quark and
gluon orbital helicity distribution functions relevant for polarized deep inelastic scattering as a Fourier trans-
form of the forward hadron matrix elements of appropriate bilocal operators. The utility of these definitions is
illustrated with the calculation of anomalous dimensions in perturbation theory. We explicitly verify the
helicity sum rule for dressed quark and gluon targets in light-front perturbation theory. We also consider the
internal orbital helicity of a composite system in an arbitrary reference frame and contrast the results in the
nonrelativistic situation versus the light-frofrelativistic case[S0556-282199)00211-§

PACS numbes): 11.10.Ef, 11.40-q, 12.38.Bx, 13.60.Hb

[. INTRODUCTION orbital and spin helicitigsat the operator level.
Having constructed the gauge fixed orbital helicity opera-

The role of orbital angular momentum in deep inelastictor in the topologically trivial sector of QCD, we proceed to
scattering was first emphasized by Sehidgl and Ratcliff ~ define nonperturbative parton distributions as the Fourier
[2]. Recently, orbital angular momentum in QCD has at-transform along the light-front longitudinal direction of the
tracted a lot of attentiofB] in the context of the composition forward hadron matrix element of appropriate bilocal opera-
of nucleon helicity(in light-front quantizatioh in terms of  tors for light-front internal orbital helicity. Apart from pro-
quark and gluon degrees of freedom. The well-known polarviding nonperturbative information on the distribution of
ized structure functiory; measuregignoring anomaly the  nucleon helicity among its partonic constituents, they serve
chirality of quarks and antiquarks in the nucleon in the deegnother useful purpose for the perturbative region. As we
inelastic region. On the light front, chirality coincides with have recently showpd], by replacing the hadron target by a
helicity and thusy, constitutes a measurement of the intrin- dressed parton target in the definition of the distribution
sic helicity of fermionic constituents in the nucleon. Sincefunction, one can easily calculate the splitting functions and
experimentally this contribution to the nucleon helicity is corresponding anomalous dimensions of leading twist opera-
shown to be very small, great interest has arisen in the corfors. One can also investigate other issues of perturbative
tributions of intrinsic gluon helicity and quark and gluon concern in the case of higher twist operators. The method
internal orbital helicities in understanding the nucleonic spinuses intuitive light-front Fock space expansion for the opera-
structure. tors in the bilocal expressions and also for the state. We

In this work, first, we study the generator of the rotationsproceed to explicitly evaluate the splitting functions and cor-
in the transverse plarfevhich we call the light-front helicity ~responding anomalous dimensions relevant for orbital helic-
operatoy in light-front QCD starting from the manifestly ity at one loop level in a physically transparent manner.
gauge invariant, symmetric, energy-momentum tensor. This There have been recent studies of the quark orbital motion
operator appears to be interaction dependent. Further, it cotsing nonrelativistic quark modef$]. It is of importance to
tains unphysical degrees of freeddponstraint variables in study in what respect the physics of orbital helicity in the
light-front theory and it is even unclear whether this opera- relativistic case differs from its nonrelativistic counterpart. In
tor will generate the correct transformation laws pertainingthe context ofgauge-fixed light-front helicity operatoin
to an angular momentum operator. To proceed, we pick th&CD which is free from interactions we address this issue in
light-front gaugeA " =0 and use the constraint equations tothe Appendix.
eliminate the unphysical degrees of freedom. At this stage,
we still have the residual gauge freedom in this gauge asso-
ciated withx™ independent gauge transformations. We re-
strict our considerations to thepologically trivial sector
and require that the physical field vanish at the boundary
(x~*—). This eliminates the residual gauge freed@mnd It is well known that even though thenergy-momentum
also all thesurface termsThe resultinggauge fixed helicity density (which gives rise to Hamiltonian and three-
operatoragrees with the naive canonical ofvehich is free  momentum and thegeneralized angular momentum density
of interactions and naturally separates into quark and gluofwhich gives rise to angular momentum and bopstn be

. LIGHT-FRONT HELICITY OPERATOR J3
FROM THE MANIFESTLY GAUGE INVARIANT
ENERGY MOMENTUM TENSOR
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expressed in a manifestly covariant, gauge invariant form,

the explicit form of Poincare generators in quantum field J3= de d?x [
theory depends on the frame of reference and may also de-
pend up on the gauge choice. This of course does not imply
that the theory has lost Lorenz and gauge symmetry. The
symmetries are no longer manifest, but the physical observ-

ables in the theory still obey the consequences of the symyp,o fermlon field can be decomposed #s= A &, with

metries. AT=1y7»". We shall work in the gaugd*=0. In this
Poincare generators can be further classified as klnemat{Jauge we stlll have residual gauge freedom assomated with

cal (which do not contain interactions and do not change thg( -independent gauge transformations. Note that afily
guantization surfageand dynamicalwhich contain interac- andA' are dynamical variables where@s andA~ are con-
tions and change the quantization surfa®@hich operator is strained.

dynamical and which is kinematical of course depends on the We have
choice of quantization surface. It is well known that in light-
front field theory, on which our formalism of deep inelastic
scattering is based, the generators of boosts and the rotation —(//('y D2+ D) y=y  Tid?yt + gyt T AL
in the transverse plan@ight-front helicity) are kinematical
like three momenta whereas the generators of rotations about i
the two transverse axes are dynamical like the Hamiltonian. + Ez/;yziﬁ* . (2.9
The operator in light-front field theory relevant to the “pro-
ton spin crisis” is the light-front helicity operator which be-
longs to the kinematical subgroup. In light-front literature, it
is customary to construct this operator from the canonical
symmetric energy momentum tensor and one explicitly finds
that this operator is indeed free of interaction and has th
same form as in free field theofg].

In non-Abelian gauge theories such as QCD, one shoul
be extra cautious since such theories are known to exhibi} 1
nontrivial topological effects. In this work, we restrict our _,/,y2,9+ y=iyt TRyt + = g1(¢+‘rg3¢ )+gyt T2yt AR
attention to the topologically trivial sector of QCD. In this 2
sector, interactions do not affect kinematical generaftots i i
In view of the prevailing confusion in the literatu¢see Ref. + _(9+(¢—Ta2¢+)_ =d%( ¢+T¢+)_ (2.6)
[8] for a list of recent papers on the subjeate provide an 2 2
explicit demonstration of this fact in this section in the case

[
1 51/1(7+D2+ '}/2D+)lﬂ_ F+)\aFia}

[
2 E¢(y+D1+ YD) y— FHAaFla ] (2.3

Using the constraint equation
oty =[at-(id" +gA" )+ y°m]yT, (2.5

%o eliminate the constraint variabl¢~ we arrive at, after
gome algebra,

of the light-front helicity operator. Now we restrict ourselves to the topologically trivial sector
We start from the manifestly gauge invariant, symmetrlcby requiring that the dynamical fieldg/( andA’) vanish at
energy momentum tensor in QCD: '—o0, The residual gauge freedom and the surface terms

are no longer present and so we drop total derivatives of
i andd?. Note that the term involving® is not a surface term
@uvzilp[ yED?+ y DA yy— FHAAETR_ gy since®+2_ is multiplied by x*.
Collecting the results together, we have

1 _
X{ == (Froa) 2+ #(iy"Dy—m)yp, (2.1 i— 1
| 3(FProd tpIyDAmmy], (20 SWY D2+ YD ) y=2iy Tyt + S Aty TSIy
where iD#=igt+gAr, Fra=grpara—grpra +2gy Tt A%, 2.7
+gfabCA/LbA)\C, F;a=&VAi—z?)\Ava-i-gfabcAybAi.
We define the light-front helicity operator where33=iyly2,
In the gaugeA™ =

1
J3:§f dx dX[x@F2-x2@*1]. (2.2 1 ' ja_
—F MR S(97)PATRAR gt ATR(2AT - A%

J° is a manifestly gauge invariant operator by construction.

However, it depends explicitly on the interaction and does +gfabs(9T Al2)AZPAIC + 1(9+((9+A‘aA2"").

not appear to be a kinematical operator at all. Furthermore, it 2

is not apparent thaf® generates the correct transformations (2.9

as an angular momentum operator. Thus at this stage, we are

not justified to call it a helicity operator. We have the constraint equation for the elimination of the
Explicitly, we have variableA™,
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%((9+)2A—a:(9+(9iAia+gfabcAiba+Aic+Zgw+TTa¢+_
(2.9
Thus
_ FH\aFia:&iAiaa+A2a+a+Aja((92Aja_ﬁjAZa)
_zg¢+TTa¢+A2a+ %(9+(a+A—aA2a)
_&Jr(o—,iAiaAZa)
= 9T ALag2ALa L ot A2352N28 Dyt TRy T A2R
+ 9L (ALt AZ3) 4 ;&+(6+A_3A2a)
— 9T (JARAZR) — 5t (AlaglaZa). (2.10
Collecting the results together,
®+2=2i1//”321//*+%al(¢”23¢+)+a+A1ao72Ala
+ 3T AZ2A%2+ gL (ARG T AZR), (2.11)

We have dropped the surface termxat= + . By a similar
calculation,

®+1: 2i l/I+T(911//+ _%02(¢+T23¢+) + &+A1a071A1a
+ T AZGIAZ+ 2 (AZ35T AR, (2.12

From the above two equations it is clear tkst* and® ™2

agree with the free field theory form at the operator level.

This shows that in light-front quantization, with*=0

gauge,73=J2 (the naive canonical form independent of in-
teraction$ at the operator level, provided the fields vanish at

the boundary. Explicitly,

3_173 3 3 3
J7=Jt0) T 51y T Ig00) T Ja0i)

(2.13

with
J?(o):f dx—d? g Ti(x2a?— X2ty g,
3 1 — 42y L+ t3,+
Jf(i)zz dX d X 1,[/ 2 l,[/ y
3 1 —q429L Al 3+ Al 2A1 4 9+ A2 272
Jg(0)=§ dx dox {x [T A A+ T A9 A7)
—x[at AL AL+ 9T AZ5AZ]L,

1
Bn=73 f dx~d3 [AT9TAZ—AZgT AL,
(2.14

The color indices are implicit in these equations.
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Using canonical commutation relations, we explicitly find
that

i[3F0) " (0]=(x*P=x2Ny* (x),  (2.19
1
i[‘]fg(i) A= E)’l)’ZIr/ﬁ(X), (2.1
i[350) Al ()] = (xE0? = X271 A (x),
(2.17
i[350) A (X)]=—&;Al(x). (2.18

Thus these operators do qualify as angular momentum op-
erators(generators of rotations in the transverse plan¢he
theory|[6].

To summarize, the helicity operator constructed from
manifestly gauge invariant, symmetric, energy momentum
tensor in QCD, in the gaug&™ =0, and after the elimination
of constraint variables, is equal to the naive canonical form
of the light-front helicity operator plus surface terms. In the
topologically trivial sector, we can legitimately require the
dynamical fields to vanish at the boundary. This eliminates
the residual gauge degrees of freedom and removes the sur-
face terms. Thus we have a gauge fixed Poincare generator
which we consider in the following sections.

Ill. ORBITAL HELICITY DISTRIBUTION FUNCTIONS

We define the orbital helicity distribution for the fermion

1 .
AqL(X,QZ) = 4WP+f d’/]eil X

X(PY[ (&) yTi(xt?—x2aY) y(0) +H.c]|PS (3.1

with »=3P* ¢~ . Here|PS) denotes the hadron state with
momentumP and helicityS.

We define the light-front orbital helicity distribution for
the gluon as

-1 ,
AGLKQ7) = g | dme HPSIXF A(£)A,(0)

—X?FT (&) 0*AL(0)]|PS). (3.2
These distributions are defined in analogy with the more fa-
miliar intrinsic helicity distributions for quarks and gluons
given as follows.

For the fermion, the intrinsic light-front helicity distribu-
tion function is given by

1 )
Aq(xin)z 87Ts+j d7797”7x

X(PY[¥(£)y" S3(0)+H.c]|PS), (3.3

where33=iyy2. This is the same as the chirality distribu-
tion functiong;.

For the gluon, the intrinsic light-front helicity distribution
is defined[9] as
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i )
Ag(x,Q%)=— mj dne '™

X(PYF**(£7)F1(0)|PS). (3.4
The dual tensor

- 1 .

F‘“’=§6’”’NFPU with e"172=2. (3.9

Note that the above distribution functions are defined in

the light-front gaugéA ™ =0. In the two-component represen-
tation [10] we have the dynamical fermion field,

dk*d%k, (
2(2m)3Jk*

w+<x>=§ fo

by(k)e **+d", (k)e™),

(3.6

and the dynamical gauge field

dktd%k, .
Al (x) ZJ 22m )3k+(8'(>\)ax(k)e"kx+H.c.),

3.7

with

{ba(K), b}, (k") ={d\(k),d;, (K')}

=2(2m)3k* S(kT =K' ) 8%(k, —K|) Sy

(3.9

[ay(k),al, (k")]=2(2m)3 " 8(k* =K' ") 8% (k. —K[) Sy
(3.9

and y, is the eigenstate af, in the two-component spinor
of ¢, by the use of the following light-fronty matrix rep-
resentatior 11]:

, [0 —i , [0 i —ig" 0
7o) YT o) YT o F
(3.10
with o'= 02, 5%=— o' and&'(\) the polarization vector of

transverse gauge field.

Note that integration of the above distribution functions
over x is directly related to the expectation values of the

corresponding helicity operators as follows:

1 1
JO dqu(X,Q2)=N<P333(i)|PS>’
f dxAqg(x,Q%) = N<PSJ /P9,

f dXAg(X Q )= N<PS‘]g(|)|PS>1
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1 1
JO dxAg, (x,Q%)= N<PSJS(0)|PS>’
(3.11)
where N'=2(27)3P* 5%(0).

IV. PERTURBATIVE CALCULATION
OF ANOMALOUS DIMENSIONS

In this section, we evaluate the internal helicity distribu-
tion functions for a dressed quark in perturbative QCD by
replacing the hadron target by a dressed quark target. We
have provided the necessary details of the calculation which
may serve as the stepping stone for more realistic calculation
with meson target. From this simple calculation, we have
illustrated how easily one can extract the relevant splitting
functions and evaluate the corresponding anomalous dimen-
sions. Note that since we are not interested in exhaustive
calculation of various anomalous dimensions and the pur-
pose of this section being illustrative, we can safely drop the
derivative of delta function in the following calculations and
work explicitly with forward matrix element.

The dressed quark state with fixed helicity can be ex-
pressed as

[k*,ky Ny =D k)b](k)|0)

dkjd?k,; dkjd?k, ,
_|_
o J2(2m)3K) 2(2m)%K;
X \2(27) %kt 83 (k—ky—ky)

X @)\ (KKy,kp)bl (ky)a] (kp)|0)+- -,

4.2
where the normalization of the state is determined by
(K" * KN KTk ANy =2(27)3k T 8\ d(kT—K' )

x 8%(k, — k). 4.2
We introduce the boost invariant amplitudeg) and
l/fﬁ,lmz(x,xi) respectively by ®k)=¢} and
dbilkz(k;kl,kz)=(1/\/F)¢§1A2(x,xi). From the light-

front QCD Hamiltonian, to lowest order in perturbation
theory, we have

Vg o) = — e T X
o T pom)d KA mE(1-x)2

; ~i1 X i* A
—imgo' — —(x\& (No) ¥7. 4.3

Herex is the longitudinal momentum fraction carried by the
quark. We shall ignore then, dependence in the above wave
function which can lead to higher twist effects in orbital
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helicity. In the following we take the helicity of the dressed ) 2 Lt .
quark to be+ 3. Due to transverse boost invariance, without AgL(1-xQ%)= 2> | d2txyl \ *(xxt)

loss of generality, we take the transverse momentum of the 12
initial quark to be zero. 9
First we evaluate the gluon intrinsic helicity distribution x|l ﬁ) lﬁllxz )
function given in Eq(3.4) in the dressed quark state.
The nonvanishing contribution comes from the quark- N Q?
gluon state. We get - ﬁcf lnFX(lJFX)' 4.9

Ag(1-x,Q)= 2, )\Zf d?kt wl'l)\z*(x’KL)wI’l)\z(X’KL) We note that the helicity is conserved at the quark gluon
T1:A2 vertex. For the initial quark of zero transverse momentum,
total helicity of the initial state is the intrinsic helicity of the

s Q? ) , 1 initial quark, namely,+ 3 in our case. Since we have ne-
= Zcf lnFX (1-x) 1—x glected quark mass effects, the final quark also has intrinsic
helicity + 3. Thus total helicity conservation implies that the
1 1 contributions from gluon intrinsic helicity and quark and
X =2~ a=x2|" (4.4 gluon internal orbital helicities have to cancel. This is readily

verified using Eqs(4.5), (4.7), and(4.8).

i o ) From Egs.(4.5, (4.7) and (4.8) we extract the relevant
The first(secondl term inside the square brackets arises fromsplitting functions. The splitting functions are

the state with gluon helicity+1 (—1). Thus we have the

gluon intrinsic helicity contribution in the dressed quark state Paggq(1—X)=Ci(11),
a 2 - .
29(1-xQ%=5,C: '”%f(lm. 4.9 PLstag(0=—C(1-33),
PLS(gq)(l_X):_CfX(1+X). (4.9

Note that the gluon distribution function has the argument
(1—x) since we have assignedto the quark in the dressed We define the anomalous dimensiM:fédxx”‘lp(x).

quark state. The anomalous dimensions are given by
Next we evaluate the quark orbital helicity distribution
function given in Eq.(3.1) in the dressed quark state. The n+2 2
ichi TR n — n —
C\(/Jnvamshmg contribution comes from the quark-gluon state. Assgq)—cfm, Alsiqq= —Cfm,
e get
Al =-C —n+4 4.1
Aqu(x,Q)= X, dZKi(l—X)%llexz*(x,Ki) LS9~ ~Tp(n+1)(n+2)° (4.10
()’1,)\2
A . These anomalous dimensions agree with those given in the
X\ =l e o, (XK) recent work of Hgler and Schier [12].
o 2 V. VERIFICATION OF HELICITY SUM RULE
—__s = (1—x)x2 - . L
=—5_Ciln MZ(l X)X Helicity sum rule for the fermion target is given by
X (1—x)2 ! L (4.6) 1 3 3 3 3 1
1-x|x3(1-x)%2 (1—-x)?|" ' N(PS[Jq(i)+‘]q(o)+‘]g(i)+‘]g(o)]|PS>:iz- (5.9

The first(second term inside the square brackets arises fromFor boson target the RHS of the above equation should be
the state with gluon helicityt 1 (—1). Thus we have the replaced by the corresponding helicity.
quark orbital helicity contribution in the dressed quark state Here we verify the correctness of our definitions of distri-
bution functions in the context of helicity sum rule for a
. Q2 dressed quark as well as a dressed gluon target perturba-
Ag(x,Q%)=—=—=CsIn—%(1—x)(1+x). (4.7 tively. For simplicity, we take the external transverse mo-
2m K menta of the target to be zero so that there is no net angular
momentum associated with the center of mass of the target.
Similarly we get the gluon orbital helicity distribution de- Using the field expansions, given in E¢8.6) and(3.7), we
fined in Eq.(3.2) in the dressed quark state have
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+d2 1

‘Jf(o) IE fw b (k S)

J kla b(k
"k K e Pk

+dT(k,s)| k?

J
pRa akz}d(k S)|:

+d2ki

I =3 2 xfz(z LB (kb(k )

+dT(k,\)d(k,\)],

dk*d?k* P P
Jow= '2 fwa kk)[ #od K oz|alkon),
d + 2 L
i50= E fz(z—ra (k,Ma(k,N). (5.2

For a dressed quark target having helicityy we get

1
55(1—X)

J\/<P 1195 (|)|P e= f dx

1+x?
2l(1-x)4

a Q2
2 Cf |n

+351
5( X)

N =

2
<P 130 P )=~ Cfan fdx(l—x)(l

+X),
N<P T|J (,)|P o= CfIn fdx(1+x)

Cfln f dx x(1+Xx).
(5.3

N<P 1135 P:1)q= =

Adding all the contributions, we get

11930+ I70) + 50y + Ia0)| P Me=5. (64

N<P

For a dressed gluon having helicity1, the corresponding

expressions are worked out to be the following:
1 3
N<P1T|‘Jf(i)|PvT>g:Ov

1
N(P,T|Jf’(o)|P Tg= N (T In—f dx[x?+(1-x)?],

PHYSICAL REVIEW D 59116013

AP P D=

2
-1 iNfo '”%J dX[x*+(1—x)2],

27
J\f<P 1135 a0 P:T)g=0 (5.9
Adding all the contributions, we get
N<P 1133 (,)+Jf(o)+J (|)+‘Jg(o)|P g=1. (5.6

Note that in evaluating the above expression, we have used
the Fock expansion of the target states. For the dressed quark
we have used Ed4.1), while for gluon we have used similar
expansion but ignored two-gluon Fock sector for simplicity.

VI. SUMMARY, CONCLUSIONS AND DISCUSSION

We have presented a detailed analysis of the light-front
helicity operator(generator of rotations in the transverse
plang in QCD. We have explicitly shown that the operator
constructed from manifestly gauge invariant, symmetric en-
ergy momentum tensor in QCD, in the gaué=0, and
after the elimination of constraint variables, is equal to the
naive canonical form of the light-front helicity operator plus
surface terms. In the topologically trivial sector, we can le-
gitimately require the dynamical fields to vanish at the
boundary. This eliminates the residual gauge degrees of free-
dom and removes the surface terms.

Next, we have defined nonperturbative quark and gluon
orbital helicity distribution functions as Fourier transform of
forward hadron matrix elements of appropriate bilocal opera-
tors with bilocality only in the light-front longitudinal space.
We have calculated these distribution functions by replacing
the hadron target by a dressed parton providing all the nec-
essary details. From these simple calculations we have illus-
trated the utility of the newly defined distribution functions
in the calculation of splitting functions and hence anomalous
dimensions in perturbation theory. We have also verified the
helicity sum rule explicitly to the first nontrivial order in
perturbation theory.

Lastly, in the Appendix, we have compared and con-
trasted the expressions for internal orbital helicity in nonrel-
ativistic and light-front(relativistic cases. Our calculation
shows that the role played by particle masses in the internal
orbital angular momentum in the nonrelativistic case is re-
placed by the longitudinal momentum fraction in the relativ-
istic case. Although four terms appear in the expression of
L 5 for individual particles in two body system, only the term
proportional to the total interndl; contributes due to trans-
verse boost invariance of the multiparton wave function in
light-front dynamics. We also note the occurrence of the lon-
gitudinal momentum fractiom,(x;) multiplied by the total
internal L5 in the expressions of ; for particle onétwo).
This explains why one needs to take first moment with re-
spect tox as well as (1 x) for the respective distributions in
obtaining the helicity sum rulgs3].
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Our explicit demonstration that the operator constructed ki=q'+x.Pt, ki=xP", ki=—-qg"+x,P",
from manifestly gauge invariant, symmetric energy momen-
tum tensor in QCD, in the gauge’ =0, and after the elimi- ki =x,P*, (A2)
nation of constraint variables and residual gauge freedom, is
equal to the naive canonical form of the light-front helicity we havex;+x,=1 andg* =x,ki —x;k3 . For the first par-
operator is facilitated by the fact that in light-front theory ticle. we have
only transverse gauge fields are dynamical degrees of free-

dom. The conjugate momenteolor electric fields are con- s | . @ . 9

strained variables in the theory. Thus we were able to shok1=1 klm_klm

explicitly that the resulting gauge fixed operator is free of 1 !

interactions. The question naturally arises as to whether this P P P P
result is valid in other gauges also. Several years ago, in the =ix, Q2 —1—qt —3 | +ixq| P?—=1— pl_z}
context of magnetic monopole solutions, it has been shown aq aq aP oP

[13] that in Yang-Mills-Higgs system, quantized in the axial P P P P
gaugeA;=0 using the Dirac procedurg, the angular momen- +iX1Xy PZF - Plp} +i [ qzﬁ - qlﬁ}.
tum operator constructed from manifestly gauge invariant q q

symmetric energy momentum tensor differs from the canoni- (A3)
cal one only by surface terms. In the study of QCDA#g

=0 gauge, it has been shoW4] that in the presence of For the second particle, we have

surface terms, Poincare algebra holds only in the physical

subspace. The situation iA°=0 gauge or in covariant | 3_ kZi_kli
gauges where unphysical degrees of freedom are present is t6 2oky 2ok5
be investigated. Another interesting problem to be studied is
the helicity conservation in the topologically nontrivial sec- i , d . 9 i , 0 . 9
tor of QCD and its implications, if any, for deep inelastic =1/ A" 5a1 = 502\ T1X2 P -p1 P 52
scattering.
Cixpxg PP il g2t gt Y
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Total orbital helicity

APPENDIX: INTERNAL ORBITAL HELICITY: P P P
NONRELATIVISTIC VERSUS LIGHT-FRONT L3=L3+L3=i qza_ql_qlﬁf +i PZW—Pla? .

(RELATIVISTIC ) CASE (A5)

Here we address the nonrelativistic versus the light-front

case. We need to decompose the total orbital angular mothus we have decomposed the total orbital helicity of a two
yarticle system into internal orbital helicity and the orbital

mentum of a composite system as a sum of the orbital angu== " : , g =
lar momentum associated with internal motion and the or\'€liCity associated with the “center of mass motion.”
Note that the internal orbital helicity carried by particle

bital angular momentum associated with the center of mass ' ; - o LI
motion. We are interested only in the former and not in the®N® iS the total internal helicity multiplied by the longitudinal

latter. For illustrative purposes, consider a two body systenflomentum fraction carried by particle two and vice versa.
consisting of two particles with masseg andm, and mo- This factor can be understood by comparison with the situa-

mentak, andk,. Let P denote the total momentum. In the tion in nonrelativistic dy“a”?ic.s and rgcalling the closg angl—
nonrelativistic case, leg denote the relative momentum, i.e., ogy between Galilean relativity an.dillght—front dynamics in
q= (MK, — myk,)/(my +m,). It is well known [5] that the the transverse plane. In nonrelativistic two-bgdy prqblem,
contribution of particle onétwo) to the third component of the center of mass coordinate is defined By-(myr,
internal orbital angular momentum is given by +m,r,)/(m;+ms,). The generator of Galilean boostBs=

—Eimifi . Thus in nonrelativistic dynamic§= —B/M with

L3 =i Myay | , 9 Al J Al M =m;+m,. In light-front dynamics, the variable analogous
1(2)=! Q=19 -—| (A1) L .
m;+my| " 9q aq to B~ is E-, the generator of transverse boost and the vari-

able analogous t# is P*. Thus in light-front theory, the
Next consider the light-front case. Lkt=(k; ,k;) and  transverse center of mass coordindke =3 k; ri/3;k;"
k,=(k; ,k;) denote the single particle momenta aRd =X1r7+X,r3 . Thus we recognize that instead wh/(m,
=(P*,P") denote the total momentum of the two particle +m,)[m, /(m;+m,)] in nonrelativistic theoryx,[x;] ap-
system, i.e.k; '+ks'=P™, Light-front kinematics allows pears in light-front theory.
us to introduce boost-invariant internal transverse momen- By comparing light-front(relativistico and nonrelativistic
tum g+ and longitudinal momentum fractiax by cases, we readily see that the role played by particle masses
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in individual contributions to the third component of internal masses do not appear at all, that is of relevance to the
orbital angular momentum in nonrelativistic dynamics is re-nucleon helicity problem. Lastly, we emphasize that it is the
placed by longitudinal momentum fractions in relativistic transverse boost invariance in light front dynamics that
(light-front) theory. This also shows that the physical picturemakes possible the separation of dynamics associated with
of the third component of internal orbital angular momentumthe center of mass and the internal dynaminsequal-time

is drastically different in non-relativistic and relativistic relativistic theory, this separation cannot be achieved at the
cases. We stress that it is only the latter, in which partorkinematical level since boosts are dynamical
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