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We develop a perturbative framework with which to discuss departures from exact Lorentz invariance and
explore their potentially observable ramifications. Tiny noninvariant terms introduced into the standard model
Lagrangian are assumed to be renormalizabimension<4), invariant undeiSU(3)® SU(2)® U(1) gauge
transformations, and rotationally and translationally invariant in a preferred frame. There are a total of 46
independenCPT-even perturbations of this kind, all of which preserve anomaly cancellation. They define the
energy-momentum eigenstates and their maximal attainable velocities in the high-energy limit. The effects of
these perturbations increase rapidly with energy in the preferred frame, more rapidly than ti@®€adfd
perturbations. Our analysis of Lorentz-violating kinematics reveals several striking new phenomena that are
relevant both to cosmic-ray physi@s.g., by undoing the Greisen, Zatsepin, and Kuz'min cliafid neutrino
physics(e.g., by generating novel types of neutrino oscillatjo$hese may lead to new and sensitive high-
energy tests of special relativity)S0556-282(99)00111-3

PACS numbes): 11.30.Cp

I. INTRODUCTION This effect, which we call vacuumeZenkov radiation, is
absent below a characteristic energy and turns on abruptly

Experimental tests of Lorentz invariance have become reence that energy is reached. Such is not always the case, as
markably accurate. To give a quantitative measure of thishe following example shows.
accuracy, one imagines adding tiny Lorentz-violating terms Let ¥ denote a set ofi complex scalar fields assembled
to a conventional Lagrangian. Experiments can test Lorentinto a column vector. If we assume invariance undetdf®
invariance by setting upper bounds to the coefficients ofyroup¥ —e '*W¥, the most general free Lagrangian is
these terms. One common choidq is to alter the coeffi-
cient of the square of the magnetic field in the Lagrangian of L=0,VY*Z"V —¥* MV, (1.2
guantum electrodynamics:

where Z and M? are positive Hermitian matrices. We can
B2—(1+¢)B2. (1.1  always linearly transform the fields to makethe identity
and M? diagonal, thus obtaining the standard theorynof
Among other effects, this term causes the velocity of light, decoupled free fields. Consider adding to the Lagrangian the
given byc?=1+e¢, to differ from the maximum attainable Lorentz-violating term
velocity of a material body, which remains equal to one. ,
(Shortly we shall consider more general Lorentz-violating L—L+3VedV, (1.3
perturbations.

The perturbation(1.1) breaks Lorentz invariance. It is where e is a Hermitian matrix. Ife does not commute with
translationally and rotationally invariant in the frame in M?, there is no way to disentangle the fields. The single-
which we are working(“the preferred frame’ but not in  particle energy-momentum eigenstates go from eigenstates
any other frame. If the preferred frame is the one in whichof M2 at low momenta to eigenstates et high momenta.
the cosmic microwave background is isotropic, tiny and caldn contrast with vacuum &enkov radiation, this effect,
culable anisotropies should appear in laboratory experimentsvhich we call velocity mixing, turns on gradually. Gradual
High-precision spectroscopic experiments that fail to findeffects allow one to obtain high accuracy by combining mod-
such anisotropies[2,3] set the bound|1—c?|=|e|<6 erately high energies with moderately high precision.

X 1022 A more striking gradual effect appears if this system is

In a paper published last yep4] we pointed out that a Mminimally coupled to electro-magnetism. In this case, a me-
better bound could be obtained from a very different sort ofSon can decay to a less massive meson plus a photon at a rate
experiment ifc<1. In this case a charged particle traveling growing with the cube of the energy. Analogous terms in the
faster than light rapidly radiates photons until it is no longerstandard model can drive the otherwise-forbidden decay
superluminal. Thus no primary cosmic-ray proton can havex —e" + vy and the 0-0 transitiol " — 7" + y.
energy greater thaM/\1—c>=M|e| 2 whereM is the This example shows that what meant by “high energy”
proton mass. Because primary protons with energies up tt this context depends very much on the details of the sys-
10?% eV are seen, we set the boune £2<10"2% almost an tem under consideration. For simplicity, suppese2 and
order of magnitude stronger than the atomic-physics boundet M?=diag(M{,M3). The transition from eigenstates of
High accuracy is obtained from high energy rather than highvi? to those ofe occurs at energies \/(le— Mzz)lelz. For
precision. Moreover our bound requires no assumption abouhe neutral kaon system, this energy is many orders of mag-
our velocity in the preferred frame. nitude less than the characteristic energy of vacuwereg-
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kov radiation(if the dimensionless invariance-violating pa- Il. GENERALITIES

rameters in the tVYO processes are compayable Here we develop the formalism needed to determine the
These are just illustrative examples. In Sec. Il we study all

) : o ; observable consequences of Lorentz violation so as to obtain
local Lorentz-invariance violating interactions that are rota-

recise high-energy tests of special relativity.
tionally and translationally invariant in a preferred frame andp g 9y P y
of renormalizable typdi.e., having mass dimensiog4).!

. ) A. Building Lagrangians
(Some of the results in Secs. Il A and Il B were first estab- g -agrang

lished by Kosteleckyand Colladay[5]. We derive them We first construct all CPT-even Lorentz-violating
anew here, both for completeness and because we wish fgtationally-invariant perturbations for a general renormaliz-
emphasize features relevant to high-energy tests. able theory of scalars, spinors and gauge mesons. We also

Lorentz-violating perturbations can be divided into two show that the matrix elements of these interactions grow

classes, depending on whether they are even or odd undth energy more rapidly than those of théPT-odd

CPT. For a state with energy, we show in Sec. Il A that the Lo:/?/r:i-(\a”?Lagn%lljrr];izzcr:it;?r?s.some well-known properties of
expectation values of th@PT-even interactions grow likE?2 gin by 9 brop

for large E, while those of theCPT-odd interactions grow the Lorentz groufs (3,1) [6]. We assemble all the fields in

. . . the theory into a big vectab. The action ofA, an element of
like E. Because we are interested in effects of very wea y 9

3,1), on these fields is effected by a unitary operator in
interactions made detectable by high energies, we limit OurHi(Ibeat spaceU(A)'I ! y & unttary op !

selves primarily to a study of th€PT-even interaction.

(Both our examples are of this clas#n Sec. Il B we con- U(A)T®(X)U(A)=D(A)D(A x), (2.1
struct the most gener@lPT-even interaction for the standard

model and show that it preserves anomaly cancellation. whereD(A) is some finite-dimensional representation of the
Sec. I C we discuss certain approximations that we will use-Créntz group. _

later on. As an illuminating exercise, in Sec. Il D we work '€ Lie algebra 08Q3,1) may be written as thécom-
out the kinematics ofi-body decays in the special case in pleX) sum of two commuting angular momenta") and
which off-diagonal matrix elements of the velocity-mixing J©). An irreducible finite-dimensional representation of the
matrices may be neglected. Novel phenomena arise. For egroup may be labeled by two half integejs,andj_, and is
ample, a decay can be kinematically allowed both at low anaf dimension (2, +1)(2j _+1). We sometimes write the
high energy, but forbidden for an intermediate range of enfields forming the basis for the irreducible representation as
ergies. @, m_, Wherem. is the eigenvalue ojlgi).

The last section applies our formalism to various possibly The values of {, ,j_) are (0,0 for a scalar;(0,1/2 or
observable manifestations of Lorentz violation. We discusg1/2,0 for a Weyl spinor, depending on its chirality;
phenomena involving charged leptons in Sec. Il A, in par-(1/2,1/2 for a 4-vector;(1,1) for a traceless symmetric ten-
ticular the possible appearance of radiative muon decay abor; and the direct sum @f,0) and(0,1) for an antisymmet-
high energies. We discuss phenomena involving neutrinos inc tensor. The complex conjugates of a set of fields trans-
Sec. Ill B, where we show how searches for neutrino oscilforming according to | ,j_) transform according to
lations at high energy and long baseline can provide new anti - .j ).
powerful tests of special relativity. We discuss hadronic For R(e#f), a rotation about an axis by an anglef,
manifestations of Lorentz-violation in Sec. Il C, especially R R R R
those relating to ultrahigh energy cosmic rays. An Appendix D(R(ef))=exd —i(I+I)).ed]. (2.2
explains why, contrary to our earlier assertigH, the ob- . _
served absence of a velocity difference between right- anéfor B(e¢), a Lorentz boost in a directioa by rapidity ¢,
left-handed photongwhich would violate CPT) does not R . R R
constrain the appearance @PT-violating effects elsewhere. D(B(e¢))=exd (3" —=J7))-eq]. 2.3

Finally, for the anti-unitaryCPT operator(},

-1 —(—1\2+pt—
The condition of renormalizability can be given the usual justi- Q) Q=(-1)T+P(—x). 2.4
fication: If we assume that breaking of Lorentz invariance occurs at

some very small distance scale, only the renormalizable interactions We are ready to.begm pur a}naIyS|s. From E22) we
survive the renormalization-group running of the couplings to ex-N0te that every rotationally invariant terg in the Lagrang-

perimentally accessible scales. ian must lie in a representation for whigh=j_=j. EI-
2This argument would be evaded if t@PT-even couplings were €mentary angular-momentum theory tells us that the term is

on the order of the squares of tl@&PT-odd ones, expressed as i

dimensionless ratios to an appropriate mass scale. This would be ' —1)"p 2

consistent with both renormalization-group flow and our energy- £ ocm;j (1) ®m, - 25

growth rule, and would lead to the dominance of B@T-odd

interactions at moderately high energies. We mainly ignore thidf the state| ) is boosted in the-direction by rapiditye, the

possibility here. expectation value of’ is transformed according to
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tr(a , 2 2j¢ o We now turn to gauge mesons. The couplings of the
(U (B(e))L'(0)U(B(e))| )€ (| ©; —;(0)|¥) gauge mesons to the scalars and spinors is completely deter-

mined by gauge invariance, so we need only look at the
gauge-field self-couplings. Let us begin with a single Abe-
lian gauge field, and let us express it in terms of an electric
and a magnetic field, defined, as usual, By=F° and B'

=%eiijjk. Out of these we can make three independent

+0(el2~29),
(2.6)

That is, (L") grows at large energy lik&?. As we shall
show shortly, the largest value phttainable with operators ; ; : . :
of renormaliyzable tyge i5—1, a tﬁr)aceless symmetrFiJc tensor rotational invariants of renormalizable typeyhich we may

=4 : 22 32 BB 32 ; .
which is CPT even. The only other rotationally-invariant choo§e to_beE B% E-B, a”f‘% ' The fII’S.t two are Lor
possibilities arej =1/2, a vector, which i<CPT odd, andj entz invariants; we are left witB?, just as in the first ex-
=0, a Lorentz invariant scalar. ample of Sec. . , _

Let us begin by considering only scalar fields. With no, A 9eneral gauge group is locally the product of simple
loss of generality we can consider these to be all real. T actors and Abelian factors. Gauge invariance forbids cross
attainj=1 we need at least two derivative operators, and fo erms between gauge fields belonging to dlfferent s!mple fac-
renormalizability we can have no more than t d no tors, so for each simple factor we have one interaction, of the

more than two scalar fieldlsThus the only possibility is form 3,B?.B?, where the sum runs over the generators of
the factor. For the Abelian factors we can have cross terms,
1 _ but we can eliminate them by an orthogonal transformation
=D idPeand P, (2.77  on the Abelian generators; thus we again obtain Bhéerm
2 b for each factor.

wheree,, is a real symmetric matrix and the sum runs over B. The almost Lorentz-invariant standard model
the scalar fields(Of course, we could just as well have said
that the only possibility iéEa,b&Oqﬁaeaba%b; the difference
is a Lorentz invariant.

Now let us consider spinors. With no loss of generality

As an example, let us construct the 1 interactions in
the standard model with three generations of quarks and lep-
tons. There are only a few terms in the bosonic sector of the

model: oneB? term for each factor of the gauge group and

we may_take Ogr fundamental f'elds thbe a sendd/2,0 one velocity-mixing term for the Higgs doublet, for a total of
Weyl spinors,u?; the conjugate fieldsy?', are then(0,1/2 four real parameters

spinor;. The only Lorentz-invariant interactiohs either cc_)uple The number of parameters is much greater in the fermi-
two spinors of the same type or couple a spinor, a conjugalgnic sector of the model. Each family of spinor fields trans-
spinor, and a derivative. The most general free Lagrangian igyyms |ike the direct sum of five inequivalent irreducible
1 1 representations of thBU(3)®SU(2)®U(1) gauge group.
fi(g _ >3 T ut L Gauge invariance excludes cross terms between different ir-
Wildp=o-d)zut 2u oMU+ 2u oyMu®, (2.9 redu%ible representations, but not those between families.
Thus we have five 83 Hermitian velocity-mixing matrices
where Z is a HermitiannxXn matrix andM is a (possibly  of the form(2.9), for 45 additional real parameters.
compley symmetric matrix. We can always make a linear A small reduction in the number of parameters may be
transformation such thatis one andM is real, positive, and effected by field redefinitions. We can rescale the space co-
diagonal. We then have the theorymfree spinj particles, ordinates while leaving the time cooIdinate unchanged,
each of which is its own antiparticle. thereby eliminating one of the gauge-fi@d terms. Finally,
The only way to construct a renormalizable interactionwe note that the minimal standard model conserves each lep-
with j=1 is to couple together a spinor, a conjugate spinorfon flavor. Thus, we may multiply the lepton fields by a
and a derivative. Thus we obtain phase factor depending only on flavor so as to make two of
the off-diagonal elements in one of the lepton velocity-

1 E at™ b mixing matrices real while not affecting the Lorentz-
2 = '€ant! o- U7, (29 jnvariant Lagrangian. Thus the standard model involves a
total of 4+45-3=46 independent Lorentz-violatingout
wheree,, is a Hermitian matrix. CPT-conserving parameters(We remark in passing that

A particularly simple case is that of tw(L/2,0 Weyl the_re are a cqmpgrable number of parameters corrgsponding
spinors carrying opposite charges unde(@) internal sym- 1 j =2 CPT-iolating departures from Lorentz invarianke.
metry group. Then one Weyl spinor and the conjugate of the We used gauge invariance throughout this construction,
other can be joined to make a single Dirac bispinarthe but it has been the gauge invariance of the classical Lagrang-

most general free Lagrangian is the standard Dirac Lagrand@n- IS this theory gauge-invariant as a quantum theory?
ian, and the most genergk 1 interaction is hrased another way, we know that anomalies cancel in the

standard model, but does the cancellation persist when we

1. . .
Z¢iﬁ-7[6+(1+ ¥s)+€e_(1—ys) 14, (2.10

3The CPT-odd termA- B, whereA is the vector potential, is dis-
wheree.. are real numbers. cussed in the Appendix.
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take account of the 46 noninvariant terms? We demonstrate C a1\ — !
. Xx=(1—-3€e)X', Xo=Xp,
below that it doeé. ) A
Our demonstration depends on the classic analysis of A'=(1-3e)A, Ag=A,. (2.19

anomalies in Lorentz-invariant non-Abelian gauge theories
[7]. This begins by showing that the full theory is anomaly-In terms of these variables, theterm disappears from the
free(to all orders in perturbation theorif the corresponding Lagrangian(and from the regularization procedureThe
theory of massless spinors coupled to extero@umber  contributions of each multiplet to the anomaly is the same as
gauge fields is anomaly-free. If we assemble all the spinoit would be if e were zero, except that unprimed variables are
fields into a column vectou, the Lagrangian for such a replaced by primed ones. This replacement has no effect on
theory is Eqg. (2.13, which is invariant under general coordinate trans-
.. formations. Thus the contributions of the irreducible multip-
iu"(Dg—o-D)u, (2.1  lets are independent ef If they cancel where vanishesas

they do, they cancel for general
where the covariant derivativl ,, is defined byD ,=d,

+A,, with A, a matrix-valued field composed of the gauge

. . i . . . ) C. From Lagrangian to particles
fields with their associated coupling matrices. If we define a grang P

gauge transformation of the fields in the usual way, Particle properties of free fields follow trivially from the
Lagrangian, but things are more difficult for interacting
su=dwu, OA,=[dw,A,]l-d,d0, (2.12  fields. For simplicity we study the energy-momentum rela-

tion for one real scalar field afrenormalizedl massm. The
where dw is an infinitesimal gauge transformation, it may generalization to more complicated systems is straightfor-
appear that the theory defined by E.11) is gauge- ward. If the theory is Lorentz-invariant, the inverse renor-
invariant. However, this is not necessarily so. A carefullymalized propagator has the form
regulated computation aiV(A), the generating functional of 1, )
connected Green'’s functions, yields —iD™ =(p*—m)A(p?), (2.1

1 for some functionA. We normalize the field conventionally
SW=— Trf d*%e“ ™ Swd ,(2A,0, A+ AAA,). so thatA(m?) =1, then add a Lorentz-violating interaction to
4872 a the theory with some small coefficieatas in Eq.(2.7). We
(2.13 begin in the linear approximation, retaining terms only first
order ine. Later we investigate whether this approximation
Only if this expression(“the anomaly”) vanishes is the s justified. The addition oD~ must transform like the 00
theory in fact gauge-invariant. Projection operators on irregomponent of a traceless symmetric tensor. The only possi-
dumble.representatlons _of the gauge group commute A‘M)Fh bility is a multiple of 4p°p°—g°°p2=452+3p2. The p?
andA,, ; thus a convenient way to gvaluate .the trace IS Qg can be absorbed i, whence Eq(2.16 becomes
sum the contributions of the irreducible multiplets. For the
standard model, this sum vanishes.
We wish to extend all this to a theory with a Lorentz-
violating interaction of the form2.9). That is to say, Eq.
(2.17) is replaced by

—iD 1=(p2-m?)A(p?)+ep?B(p?),  (2.17)

for some functionB. It is convenient to normalize the
Lorentz-violating interaction such th&(m?)=1.
- R To first order ine, the shift in the zeroes dd ! is
iu"(Dg—(1—3€)o-D)u, (2.19
. iy N , p2=E2—p?=m?+ ep?. (2.18
where e is a Hermitian matrix acting only on the flavor in-
dices. This replacement alters the high-momentum behaviolthe ener . . .
; C gy-momentum relation may be rewritten in the
of the spinor propagator and we must alter our regularization ) i 5 cooo g
procedure accordingly. If we use massive regulator fields, thé€emingly conventional fornk“=p-c®+m-c”, with c the
derivative terms in their Lagrangian must be of the formmaximal attainable velocity anthc” the rest energy of the
(2.14), not(2.11). Likewise, if we regulate the measure in the Particle. However, it must be remembered thithas been
path integral, we must use the differential operator from Eqchanged by the factor totle andm?® has been diminished by
(2.14), not from Eq.(2.11). a factor of (1+ €)2. Of course, the tiny mass shift is of no
We must sum over irreducible multiplets, which may be e€xperimental interest, but this is very much not the case for
chosen to be eigenspaces «fln each eigenspace, the La- the shift in C2, as we saw in Sec.»l. Abrupt effects turn on
grangian is of the fornm(2.14) with e a number. We may when the dimensionless parametg’/m? is of order unity,
introduce new variable@enotes by primesby while for gradual effectglike u*—e*+y) the energy at
which the effect becomes significant can be many orders of
magnitude smaller.
“We were disappointed to discover this; we had hoped that the Even for gradual effects is typically very large and we
condition of anomaly cancellation would put some constraints ormust ask whether new Lorentz-invariant physics at high en-
our 46 free parameters. ergies might affect our predictions. Equati¢n18 shows
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that this does not happen. Even thouis large,p? remains  total momentum. It follows that all momenta are collinear in

O(m?) and the possible new physics remains irrelevant.  the configuration of minimum total energy. We use this fact
When can the linear approximation be trusted? It can certo simplify our analysis and replacfea by p,. the longitu-

talunlybbettrustteéj ;‘or flreet—fleld thgorly, \f[vhere ils exact. It caninal (and only nonzerpcomponent 05-

a'so be trusted forleptons and eleclroweak gauge mesons. Ein Mmust be stationary under variations of the decay mo-

e e o, eve ey at Ieaue et sum unchanged. Inodueng 3
’ propag PP agrange multiplieru, we must make

by those of free field theory.

Things are trickier for hadrons. A detailed investigation of
QCD with Lorentz-noninvariant terms is beyond our ken, but 2 Ea— U( E Pa— Do) (2.21
we can make an educated guess on the basis of a simple
model. Let us take QCD and rescale the space coordinatesationary, where here and in the remainder of this section
but not the time coordinates, as in E@.19. In the new the sum is over the decay products. Differentiating with re-
coordinates, we seem to have a noninvariant theory, but it igpect top,, we find
just QCD wearing a false beard. All that happens is fitah
Eq. (2.16 is replaced byp?—ep?. Thus an expansion in u— dE,
powers ofe is in fact an expansion in powers ep?/AZ, dp,
whereA is the QCD mass scale. Since typical hadron masses
are O(A), this implies that for gradual effects the linear Wherev, is the velocity of theath particle.(We have used
approximation is a very good one, while for abrupt effects itHamilton’s equations at the last stgfhus all the decay
is 0n|y a rough approximation_ Of course, a rough approxi_parti-C'eS move with a common velocity Furthermore, the
mation is not a useless one; it can give us a qualitative picrelation
ture of what is going on, and evéwith a modest amount of
ItEJOCrIg yield correct order-of-magnitude quantitative predic- dEm,=U>, dpy=udp, (2.23

=vg,, (2.22

_ _ ) shows thau=dE,,/dpg-
D. The kinematics of particle decays We can now explore the limits of small and langg. For

In this section we analyze the decay of a particle into Po=0, the minimum energy configuration is one in which all
other particles in our Lorentz noninvariant theorj€s We  the decay momenta vanish; the decay is allowed if an only if
make three simplifying assumptiond that all particles are
spinless. The extension to spiinparticles is straightforward MeC3= >, myC2. (2.24
and has no effect on our conclusiolg) that the linear ap-

proximation is valid; and3) that the matrix elements of the L . . .
Of course, physics is certainly nearly Lorentz invariant, so

invariance-violating perturbation between particles with dif—,[hat thec.’s can differ onlv verv sliahtly. For all practical
ferent masses are negligible. Thus we obtain a set of particles a y very sightly. P

each of which obeys an energy-momentum relation of thPUrPOses, we can drop them from EQ.24.

form (2.18. That is to say, theth particle has, in addition to a F%rxrnizgrgbepg, u m_llfﬁé Z(raleurltrairslritilr:/ilrsl;[il;e?jng W?Vi(;an
its own mass,m,, its own maximum attainable velocity pp a 9Y CaPa . gy y giving

(“its own velocity of light”) c,, and obeys the energy- all the momentum to the particle with the smallestn this
momentum relati)(;n 9 a y oy limit, the decay is allowed if

- Co>minc,, 2.2
E2= p2c2+ mic?, (219 0> Mnincs (223

In what follows we usea=0 for the decaying particle and and is forbidden ifco<<minc,. (We must go beyond the

a=1,... n for the decay products. ultrarelativistic approximation to settle the questioncyf
A decay is kinematically permitted if we can arrange the=min Ca..) . _
decay products such that their total momentunpsand Equations(2.24 and (2.25 are independent. A decay is

allowed or forbidden in the high energy limit regardless of
whether it is allowed or forbidden at low energies. It is in-
n.{eresting to ask what can happen at intermediate energies.

their total energy i€,. Let Eqn(po) denote the minimum
total energy of the decay products for given total momentu

Po- The decay is possible if and only if For example, can there be alternating bands of allowed and
R forbidden energies?
Eo=Emin(Po), (2.20 We begin by answering this question when all the decay

products have nonzero masses; afterwards we will extend our
because iE,;,<E, we can obtain equality by adding oppo- analysis to deal with massless particles. Let us rewrite the
site transverse components to two of the decay momenta. condition for allowed decaygo=E,,, as
If we delete the transverse components of all decay mo- o _
menta, we lower the final-state energy without changing the MoCo=Emin(Po) — CoPo=Y(Po)- (2.26
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We shall prove that every stationary point ¥fis a local If there is more than one massless particle among the
maximum. Differentiating Eq(2.26) yields decay products, we can lowEt,;, by giving all the momen-
tum carried by the massless particles to the one with the
1dY ) , smallest value ot. Thus_ no g_enerality i_s lost by restricting
§d—:EminU—Copo=E (Ca—C5)Pas (2.27 our;elves tg the case in which there is only one massless
Po particle, which we label bya=1.

) Consider a configuration witp, fixed and the remaining
where we have usefl,=c2p,/u at the last step. The deriva- iatri i i
a= CaPa momentump,— p4, distributed among the massive particles

tive vanishes at a stationary point, so at least one term in thgy a5 to minimize their total energy. The total energy of this
sum must be negativey>min,..oC,. Note that this condi-  configuration is

tion coincides with Eq(2.25), the condition that the process
be allowed at high energy. E=c1p1+E/in(Po—P1), (2.30
Differentiating once more, we find
whereE_, is the minimum energy computed for the massive

1d%  du S (2 z)dpa particles only. Thus
52 ~Co
2.dp; dpo - du dE/dp;=c;—Uu’(Po—P1), (2.31
_du 2 2 PaCh whereu’, the common velocity of the massive particles, is a
_d_poE (Ca_co)u(cz_uz)' (2.28 monotone increasing function of their total momentum.
a

There are two caseél) u’(pg) <c;, so thatE is a monotone

At a stationary point, we can use the vanishing of 327 increasing function opy andE = Epin(Po). The massless

to write this as parpcle carries no momentur/n so that the gnalysus is the same
as in the massive cas€) u’(pg)>c,, which is possible
2 2 only if
l d_Y_ ﬂ E ( 2_ CZ)& Ca — CO i
2 dp2 dpo a” “0 2-u? cZ-u? 1< rr::r; Ca, (2.32
a
(2.29
du pa(cg—cg)Z for otherwiseu’ cannot reaclt, . In this case, increasing;
=—-Uu— : lowersE until u’ reaches,, and

dpy = (ci—u?)(ci—u?)

_ . o Emin=C1(Po— Po) + Efnin(Po). (233
As po increases monotonically from zero to infinity,in-
creases monotonically from zero to mig. Thusdu/dpyis  wherepy is defined byu’(p;)=c,. This analysis proceeds
positive, as are the factorsg(— u?) and (cé—uz), these last as in the massive case up to and including Eg<27 and
by Eq.(2.25. This completes the proof. (2.25, but the computation ad?Y/d p(z) is different. Because

Because every stationary point¥fs a local maximumy  only p, depends omp,

can have at most one stationary pointYlhas no stationary
points, it is a monotone function @k, and can crosmacg at 1 d?y
most once. This leads to four possibiliti€d) The decay is =
allowed at all energies(2) The decay is forbidden at all

energies.(3) The decay i_s allowed for all energies below a by Egs.(2.25 and(2.32. Just as in the case of only massive
certain energy and forbidden for greater energids.The decay products, every stationary pointYofs a local maxi-

decay is forbidden for all energies below a certain energy, o, Thyus we reach the same conclusions here as we did
and allowed for all greater energies.Mfhas one stationary there®

point® it may crossmacg twice, the first time from below
and the second time from above. This adds one more possi-
bility: (5) The decay is forbidden for a certain band of energy
but allowed for all energies above or below this band. There Here we examine effects @PT-conserving departures
are no other possibilities. from Lorentz invariance on the behavior of ultrarelativistic
Our arguments break down if there are massless particlgsarticles. Our treatment of leptonic phenoméBacs. Il A
among the decay productd-or example, we can no longer
write energy and momentum as functions of velogityev-
ertheless, we now show that our conclusions remain valid.

dp;
— —=(c?-c})—=(c’-c?)c,<0, 2.3
deé(l O)dpo(l 0)C1 (2.34

lll. APPLICATIONS

The borderline situation, where the stationary poin¥ofccurs at
Po=Pg, Must be treated separately. In this case we must use the
analysis forp,<p, to computed?Y/d pé from below and that for

®The necessary and sufficient conditions ¥6to have an extre- py>p; to compute it from above. The two answers do not agree
mum are Eq.(2.29 and E(cg—cg)ma>0 [which ensures that because the second derivativeYofs not continuous at the station-
Y(po) increases negry=_0]. ary point, but it does not matter because both are negative.
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and 1ll B) is not subject to the qualifications discussed inexperimental upper limif9]: A=2x10"°. Consequently,
Sec. I D. However, the hadronic phenomdimaSec. I  no strong bound or,—c, can be deduced from observa-
often involve hadron energies so large tBafsc? is compa-  tions of energetic cosmic-ray photons.

rable to the QCD mass scale. Thus, our treatment of tlees Radiative muon dec&The decay modg—e+ vy is of-
energy-independent parameters is not always justified. Thien searched for but never found. This is not surprising: it is
error affects the values of the Lorentz-violating parametergorbidden in the minimal standard model. Although induced
needed to produce novel phenomena, but not the phenomehs radiative corrections in models with neutrino masses, the
themselves. expected branching ratio is far too small to be detected.
However, and as we noted elsewhdrE0,11], Lorentz-
violating perturbations that are not flavor diagonal can lift

. . N the accidental symmetry ordinarily preventing radiative de-
Tests of Lorentz invariance from photon stabili§up-  cay.

pose that the velocity of light exceeds the maximal attainable ‘Recall that the velocity eigenstates of high-energy leptons
velocity (MAV) of electrons, i.e.¢,>c., where for the mo- 4o not in general coincide with their mass eigenstates at low
ment we ignore possible flavor and helicity dependences. lnergy. In the following analysis, we ignore possible mix-
foIIo_vvs [4] that photons of sufficient energy are unstable. |nings of electrons and muons with tau leptons. The relevant
particular, the decay portion of the Lagrangian takes the following form in the
preferred frame:

A. Phenomena involving charged leptons

y—>e’+e* (3.1

becomes kinematically permitted when the photon en&gy (ue)y- (p—eA{Cri(1+ys) +C 3 (1— 3/5)}('u ,
exceeds R/\/5,e, Whered,.=c2—cZ. The decay rate of 3.2
photons well above this thresholdlig .~ %a&YeE. The fact '

that primary cosmic-ray photons with energies up to 20 TeMyhere » and e denote fields corresponding to mass eigen-

have been detected lets us set the liit-ce<10™*. Note  states. The matriceg r (which would be unit matrices were
that| 8. is not so well constrained: the absence of vacuum grentz symmetry unbrokerare

Cerenkov radiation by electrons with energies up to 500 GeV

sets the limitc,—c,<5X10 3 In a similar manner, much 1[ 2C,+ 8C,COS 20, 5C, sin 20,
weaker constraints may be placed on the MAVs of the CaEE e sin 26 oe— sc.cos2. |t 2T L,R.
heavier charged leptons. a a a a a 33

More stringent tests of Lorentz invariance might be imag-

ined to regult from the_ stability of photons under decay intoqy,q mixing angled, determines the velocity eigenstates of
two neutrinos, for whlch_ the thre_shold_energ_y depends Offt_handed leptons(or right-handed antileptopswhose
tiny neutrino masses. This mode is forbidden in the standargl »\/g arec, +15c, . Similarly, 6 determines the velocity

model, which attributes neither masses nor magnetic moéigenstates of right-handed leptofw left-handed antilep-

ments to neutrinos, but there is a considerable body of ©Mong, whose MAVs differ byscg . All four maximal veloci-

pirical evidence for neutrino oscillations, and hence for neusiaq are known to be very close ¢g, the velocity of light in
trino masses. The nonstandard physics responsible Q. m ’

neutrino masses could generate neutrino magnetic moments Electroweak gauge invariance implies that the matf{_ix

via Igop_/dlag_rams, ther,eby enabll_ng t_he_ decaySVjL V' appears in the kinetic-energy of neutrinos as well as charged
and v+ v’ (with v and v’ necessarily distinct chiral neutri- leptons. In Sec. Ill B we show how the paramefers dc,

nos. ; : :
. and 6, may be constrained by experiments or observations
The decay rate of a photon with ener§ywell above involving neutrinos.

threshold into rleutrons_|sFW,~)\2’,’u§5iVE3, where the For the analysis to follow, it is convenient to define the
flgvor-changlng magnetic moment” of the neutrinoNg.g small parameters:
with ug=e/2m, (the Bohr magneton We assume,=c,,
and put 5w=cf/— c2. Because the magnetic interaction is €2=|5c,sin 26,2, a=L,R. (3.9
dimension-fiverather than dimension-four, like the elecjric
I',,, is quadratic ino,,, rather than lineaf It follows thatthe  The flavor-changing terms in E¢3.2), namely
range of an energetic photon is cosmological even if the
neutrino magnetic moment gmplausibly set equal to its Llenten)iy-(p—eAle
+3(er—€er)uy-(p—eA)ysetHc., (3.5

"Our estimates of ., andT’,, are lowest order in the appropriate
Lorentz-invariant operators, with photons satisfying the Lorentz-induce the decay procegs—e+y. We shall see that its
violating dispersion relatiorE2— p?=sE2=""m2.” The decay helicity-dependent partial decay rate-isxe2M %, whereM
rates arel’edest~ @M, and I',, |rest~ (A g)?m3 in the “photon  is the muon mass anglis its Lorentz factor in the preferred
rest frame.” These expressions yield our results when boosted tirame. This rate increases with the cube of the muon energy
the lab frame. rather than falling with ZE. Thus flavor-changing Lorentz-
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violations, if they are present, will cauge—e+y to be- was performeflthe results confirm the expected time dila-
come the dominant decay mode of muons at sufficiently highion of the muon lifetime to an accuracy of one part in a
energies. thousand 13]. Because the muons in the ring favor neither
The rate of radiative muon decay is controlled by thehelicity when time-averaged, we obtain the linfit +bg
muon energy and the magnitudes of the Lorentz-violating<2.7x10 °, or
parameters. Otherwise, it is a first-order electromagnetic ef-
fect, not a weak decay. Its branching ratio B €2+e3<5x10"% from muong—2  (3.10
~ae2y*M 7y, where 7y is the lifetime of a muon at rest.
Departures from Lorentz invariance also modify the rates ofvhich is inferior to that obtained from the direct search, Eq.
allowed processes, such as-u+v andu—e+v+p, but (3.7, but not by much(The agreement between theoretical
in these cases the conventional decay rdtgsy and their ~and experimental values @—2 provides an independent
Lorentz-violating correctiongof the form €2y°T) are both  but much weaker test of Lorentz invariance.
intrinsically weak. They do not involve the enormous en- The muon collider—a threat avertedlorentz-violating
hancement factoraM r,=2.6x 10'°> that appears in the effects consistent with the above constraints could interfere
branching ratio for radiative muon decay. That is why thewith the operation of a future muon collider. In Ref40]
most sensitive tests of Lorentz invariance in this context ar@nd [11], we took as a necessary condition for its proper
obtained from the study of muons, and in particular, from thefunctioning, that the muon decay rate at the design energy of
search for a lifetime anomaly of muons at ultrahigh energiesthe collider must not exceed twice its expected value. This
The interaction(3.5), treated in lowest order perturbation criterion, assuming unpolarized beams, translateg (i
theory, yields the rate for radiative muon decay. A straight-+bg)y'<1. Thus a 1 TeV collider requireb +bg<2
forward but tedious computatiofgenerously carried out for X106 (or ef+€3<3x 10 %3. The constraints discussed
us by Mark Wiseg yields the following result for its branch- above are much weaker than this. However, we suggested
ing ratiowhen the muon is at rest that constraints sufficient to protect the muon collider might
be obtained through studies of cosmic rays.
aMry , 042t 2 The highest energy cosmic-ray muons arise from forward
i (e +er)=6.4X10"(e +€r). (3.0  decays of secondary pions. These are mostly longitudinally
polarized ug and u,", so that searches for a lifetime

The current experimental limftL2], B<4.9x 10" yields anomaly of these muons can set a boundbgn which is
an upper limit on the relevant Lorentz-violating parameter: proportional to the linear combination &8+ €. Although
€. can be severely constrained by observations of neutrino
€+ €43<8x10°% from muon decay at rest. oscillations, it is possible thatg> €, . Absent anya priori
(3.7 knowledge of the rati@, /eg,a bound orby, yields a 69-fold
weaker bound obg+b, .
In particular, we suggestdd 0] how a comparison of un-

The branching ratio for Lorentz-violating radiative muon
decay is a rapidly increasing function of the energy. DireClyarqround muon fluxes with different flight times but the

searches for it do not seem feasible. Nonetheless one mighf e gjant depth in rock might yield the required constraint.
Qet(_act the o_nset of this mo‘?“? through Its effeEt on t_he muo&ollowing our suggestion, Narasimham and Krishnaswamy
lifetime, v¥h|gh for ultrarelativistic left-handed = (or right-  [14] have analyzed data taken at the Kolar Gold fields. Their
handedu™) is preliminary result ishg<<8x 10 8 An even stronger con-

straint has been obtained by Cowsik and Sreekahtah
YTo aM g

()= where b = (6862 + €2) from their considerations of data concerning horizontal air

1+b y* 30 ROTLY showers. They obtain the remarkably strong boung

(3.8 <10 2. From Eq.(3.9), this bound corresponds to
and for ultrarelativistic right-handed - (or left-handedu ™) 68¢’+€2<107%° from air showers. (3.11)
is
The results to either of these recent cosmic-ray analyses are

(y)= Y7o where bo= aM 70(6862+62) sufficient to safeguard the muon collider from a weakening
TRY)=T bry*’ R Lo oRE of the relativistic dilation of the muon lifetime. Indeed, taken

(3.9 by themselves, they provide sensitive tests of special relativ-
ity. For example, the air shower resulvith ¢, =eg and
(These calculations were also carried out for us by Markmaximal velocity mixing of muons and electrongelds the
Wise) At sufficient high energy, the lifetime of muons with following constraint on the difference of maximal velocities
either helicity decreases witi > rather than increasing with  of the two velocity eigenstates:
Y-
The CERNg—2 experiment, aside from measuring the ¢’ —cle,<4x10" 2, (3.12
muon’s anomalous magnetic moment, offers a precise test of
the energy dependence of its lifetime. A&=29.3 (corre-  We shall show in Sec. Ill B how neutrino physics can do
sponding to the “magic energy” at which the experiment even better.
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B. Phenomena involving neutrinos where the mixing angl® and phase factoA appearing in
Although differencesamong neutrino velocities are se- E9- (3-14 (and expressed in the flavor bas#e given im-
verely constrained directlyby studies of neutrino oscilla- plicitly in terms of eight convention-independent parameters:

tions, discussed belgwand indirectly[from constraints in- . _ 5 7 o
volving muons or electrons discussed in Sec. Il A 8id2) A sin 20 =|6m*sin 20r/E+20be'” sin 20,

gauge invariance there are only weak constraints on neu- +25cd”E sin 26 |

trino maximal velocities as such. The current limjt, e (3.15
—cy|<10*8, results from the detection of neutrinos from A cos 20 = 5m? cos 26, /E+ 2b cos 26, ’
Supernova 1987a[16]. A stronger limit, [c,—c,|<2 "

X 10 16, may be set if neutrinos from gamma-ray bursts at +25cEcos 24, .

cosmological distances could be detedted|, but this result

pales in comparison to other tests of Lorentz invariance thathe parameters characterizing the oscillations are three mix-

have beer(or could be set. ing anglesfy,, ¢,,andd., two complex phasesy and 7',
Lorentz-violating neutrino oscillatior’s We showed in and the differences between the eigenvalues of the matrices

Refs.[4] and [11] how CPT-conserving Lorentz violations M b, andc, denoted respectively bym?, &b, and sc.

lead to neutrino oscillations even if neutrinos are maséless(Note thatéc here is the same asc_ in Sec. IllA) To

However, observable neutrino oscillations may result from dllustrate the possibilities inherent in Eq&.14) and(3.19,

combination of effects involving neutrino masses and Lor-we mention a few special cases of Lorentz-violating two-

entz violation. flavor neutrino oscillations:
Neutrinos with modest energygven solar neutringsare
nevertheless ultrarelativistic particles because neutring sinz{(émZR/4E)\/1+(E/ EO)Z}
masses are known to be small. For this reason, searches fof 1~ 1) =1~ 1+ (E/Eq)* (3.163
neutrino oscillations can provide exquisitely sensitive tests of 0
Lorentz invariance. We assume there exist three chiral neu- i \/72
trinos with Majorana masses given by the complex symmet- =1— SiM(SuRE2) V1+(Eo/E)}
ric matrix m in a flavor-diagonal basis. Conventional neu- 1+ (Eo/E)*
trino oscillations are described in terms of the Hermitian (3.16b
squared-mass matrin®=mm'. In particular, observable os-
cillation effects depend on two differences of squared masses =1—sir? 26 sir?{R(SmM?/4E + 6b/2+ 5cE/2)},
and four parameters akin to the Kobayashi-Maskawa angles (3.169

and phase in the quark sector. .

With Lorentz symmetry violated, the description of neu- Where Eq=m?/(25c).Equation(3.163 corresponds tdy,
trino oscillations becomes much more complicated. Al-=7/4 with sb=sin26,=0. It yields maximal mass oscilla-
though we usually negle@PT-violating interactions, in this tions for E<Eg, but essentially none foE>E,. Equation
case it is hardly any work to include them. Thus, in addition(3.160 corresponds to a converse case With= /4 and
to our usual velocity-mixing term, parameterizeddyy 3x3 ~ db=sin26,,=0: maximal velocity oscillations at high en-
Hermitian matrix of maximum attainable velocities, we al- €rgy, but none at low energy.
low the most generaCPT-odd symmetry violating interac-  To obtain Eqg.(3.160, we set all three mixing angles
tion, u'bu, whereb is also a X3 Hermitian matrix. The equal and puy= 7' =0. In this case, the energy-momentum
energies of ultra-relativistic neutrinos with definite momen-eigenstates are independent of energy. This example encom-

tum p are the eigenvalues of the matrix: passes all three scenarios discussed by Foot, Leung, and Ya-
suda [19] for atmospheric neutrino oscillations—each of
cp+m?/2p+b. (3.13  which, they say, is consistent with the atmospheric neutrino

data reported by Super-Kamiokanid].
Neutrino energy eigenstates in the limit of high energy are Conventional neutrino oscillations depend only BIE,
the eigenvectors of the matrix just as at low energy they the ratio of the flight-length of the neutrino to its energy. If
are the eigenvectors of the matrix. Lorentz symmetry is violated, the dependence of these pa-
To avoid undue complexity, we limit ourselves to a dis- rameters is more complicated. Nonetheless, neutrino experi-
cussion of two-flavor neutrino oscillations. Imagine neutri- ments performed at a variety of energies can severely con-
nos to be produced with a definite momentum and flavoktrain the Lorentz-violating parameters. Let us give a simple
(v, wherel =e or u) and detected after travelling a distance example related to accelerator searchesupr- v, oscilla-
Rthroug_h empty space. Their oscillations satisfy a seeminglyjons. The strongest current limit odm? (with sin?26,,
conventional formula: ~1), 6m?<0.09 e\, follows from a relatively low energy
) ) experiment{21]. Higher energy neutrino experiments, such
P(v— ) =1-sin’ 20 sir{AR/4}, 314 g Ref.[22], offer less stringent constraints @m? but are
better suited to search for Lorentz-violating velocity oscilla-
tions. From that experiment, and assuming’ sig~1, we
8Similar effects can result from violations of the equivalence prin-find for the difference of the maximal velocities of the two
ciple rather than special relativify.8]. velocity eigenstates:
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lc'—c|, , <6x10 % (3.17 thatc,—c,0>0. The processr®— 2y (the dominant decay
s mode of neutral pionsbecomes kinematically forbidden for

Finally, we note that stringent constraints on #88T-  pions with energies exceedin@ZmW/\/Czy—czw. Con-
violating parameters that affect neutrino oscillations haveversely, photons with energies significantly ab&eill de-
been obtained from altogether different laboratory expericay rapidly according to the schemg= y+ #°. This ex-
ments. According to one of its collaboratdi23], the spec- ample is not entirely academic. Suppose, for example,
troscopic test of Lorentz invariance described[8] con- o
strains the parameteb; (as defined by9 Colladay and Cy~Cq0=Cy~Ce=Cy—Cro=10"" 320
Kostalecky[5)). They obtain|bs| <710 eV for elec- For this case, all modes of° decay are kinematically for-

—21 _
tsrsl?seif;?lak;ﬂ;dliﬁ >c<)&r9 modeg ;%rdnilslctlﬁgnpsré;‘lt-ahr?etjoggizer ecorl':’idden at pion energies exceeding"16V. Thus ultra-high-
responds loosejto the constraintb,d <3x 10 ¢ eV. This energy (UHE) primary cosmic rays may include neutral

L pions (if they are stabilized by tiny departures from Lorentz
result Squ.eStS th_a(tP_T-onatmg effects are too sma!l to invariance, but not photongwhich would be destabilized by
affect neutrino oscillations, except when the source distanc

. i fhe same mechanigm
far exceeds the d|ameter of the Eaf#ls in the case of solar Stable neutrons®rdinarily, neutron decayn—p+e-
or extra-solar neutrings

+v) is allowed but proton beta decap{e"+n+v) is

) _ kinematically forbidden. As we have seen in Sec. Il D, de-
C. Phenomena involving hadrons partures from Lorentz invariance can affect the kinematics of

To each particle species we assign a maximal attainabldecay processes. They even can invert this pattern. To see

velocity ¢, . That is, we assume that a dispersion relation offow this can come about, we examine the casec.=c,

the form E2=c2p?+m2c? describes a particle of typa ~ <Ca. Conventional relativistic kinematics may be used in

moving freely in the preferred frame. Many Lorentz- this examplgwith ¢, as “the speed of light}, provided that

violating (but CPT-conserving phenomena may be de- the neutron is assigned an effective magg given by

scribed in terms of the purely kinematic effects of these pa-

rameters. For simplicity, we ignore the helicity dependence may=mj— (c5—C3)p?, (3.21

of the MAVSs, although it could easily be taken into account. R

Flavor-changing effects are not relevant to the phenomenghere p is its momentum in the preferred frame. Neutron
discussed in this section and are likewise ignored. beta decay is allowed if and only gz>m,+m,. Ex-

The neutral kaon systerhorentz-violating effects can be Ppressed in terms of the neutron eneifgyin the preferred
abrupt or gradual. We gaye examples of each in Sec. |—th#ame, this condition becomes
sudden onset of vacuume@nkov radiation by energetic

. _ 1/2
protons, and an energy-dependent modulation of the behav- _ mr2'|_(mp+ me)z~ e 102
ior of neutral kaons. Although our primary focus here is on <Ei= c2— 2 =2.7x1 c—cC ev.
abrupt hadronic effects, it is illustrative to examine the latter pomn poon (3.22

phenomenon in more detail. We consider the special case in

which the velocity and mass eigenstates of neutral kaongvith our choice of Lorentz-violating parametersgutrons

coincide, and in which the MAVs ok andKg are not the with energies exceeding,Eare stable particles that can be

same:Cy —Cy # 0. This leads to an energy dependence ofpresent among UHE cosmic rays

their apparent mass difference, as determined by observa- In a similar manner, we can deduce the necessary and

tions of time-dependent interference phenomena: sufficient conditions for proton beta decay to be kinemati-
cally permitted. It is

AM:AM|rest+MB72(CKL_CKS)1 (3.18
2 2 04 71/2
my—(m,—mg) o| 10
where y and 3 are the Lorentz factor and velocity of the E>Ep=\/—5 5 —=4.1x10" | — ev,
decaying kaons. A careful analysis of the experimental data Cp~Cn Cp~Cn (3.23

carried out by Hambye, Mann, and Sark&#]| yields the

0 . . .
bound with E the proton energy in the preferred frame. For this
_ o1 particular exampleprotons with energies exceeding Bre
|CKL CKs|<3X 107 (3.19 unstable particles that cannot be present among UHE cos-
_ mic rays
_ Stable neutral pions®et us turn to abrupt phenomena. A The above results are expressed in terms of a nominal
simple example involves neutral pions and photons. SUppos@noice,cp—cnz 10724 lying beyond the sensitivity of cur-
rent tests of Lorentz invariance. Thus it is conceivable that
the highest energy cosmic-ray primaries are stable neutrons.

®Here we neglect possibI8PT violations involving right-handed Evading the GZK cutc¥ Soon after the discovery of the
electrons. cosmic background radiatiofCBR), Greisen[26] and Zat-

00ther tests o£PTand Lorentz invariance using neutral mesons sepin and Kuz'minGZK) [27] saw how it limits the propa-
are discussed in Reffi24] and elsewherg25]. gation of UHE cosmic rays. Primary nucleons with sufficient
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energy will suffer inelastic impacts with CBR photons. This formation would be relaxed. Should it much exceed this

results in what is known as the GZK cutoff, saying thatvalue, the formation reaction would be precluded off virtu-

nucleons with energies-5x10'° eV cannot reach us from ally all CBR photons.

further than~50 Mpc. However, the primary cosmic-ray en-  Reaction(3.24) is the dominant process leading to the

ergy spectrum seems to extend well beyon® By [28]. GZK cutoff as originally formulated. However, k(1232
The mechanism producing UHE cosmic rays is unknownformation is not possible, a weakened version of the cutoff

Exotic origins have been suggested, such as topological deray result from nonresonant photoproduction:

fects, active galactic nuclei, and gamma-ray buf&9].

These schemes are constrained or ruled out by the GZK cut-

off. Other explanations are designed to evade the GZK cut-

off: a primary flux of magnetic monopold$0], *“ Z-boson p+y(CBR=p+m. 3.29

bursts” produced by collisions of cosmic UHE neutrinos off

relatively nearby relic neutrinds81], and decay products of

hypothetical super-heavy relic particlg32]. If c,=c,, the threshold energy for pion production &
We have little to say about the origin of UHE cosmic =M (2M,+M;)/4w. However, asc,—c, is increased

rays. Rather, we point out that there may not be a Gzkfrom zero, the threshold grows. AS—c, the pion energy

cutoff after all. Tiny departures from Lorentz invariance, too E, must remain finite. Equatio®.20 yields the kinematic

small to have been detected otherwise, have effects that igondition for reaction(3.27) to occur

crease rapidly with energy and can kinematically prevent

cosmic-ray nucleons from undergoing inelastic collisions m?
with CBR photons. The cutoff thereby undone, a deeply cos- 20=(C,—Cy)E + _ (3.28
mological origin of UHE cosmic rays becomes tendl38a]. -

To see how the GZK cutoff is affected by Lorentz viola-
tion, consider the formation reaction yielding the first pion-This condition may be satisfied if and only if
nucleon resonance:

~ 2w?
p+¥(CBR)—A(1232, (3.24 Gy Cp< (@)= ~5X10 A wlwol?.  (3.29
m

w

by which a nucleon with energl collides inelastically with

a CBR photon of energy. The target photon energies are a peaciion(3.27), and multiple pion production as well, are
thermal distribution with temperaturg=2.73 K, or kKT yinematically forbiddenat all proton energiesif Cr—Cp

=w,=2.35X10 % eV. For a head-on impact, the condition 3
Eq. (2.20 determining whether the reaction can take place isC 5_(2))~15: (or t)hivgﬁfga!sucasfe:; ahtgt(zrr?;ll ge:zdzfct?::togrs’
approximately = Cp @o pp p p p ,

even eliminate it entirely so that no vestige of the cutoff
survives!?

At present, lacking detailed observations of the highest
energy cosmic rays and more precise tests of special relativ-
ity, we must regard as an intriguingly open question whether
there is a GZK cutoff, and consequently, whether cosmic
rays with energies above the cutoff can travel cosmological
. _ distances.
wherec, —c,, is the -relevant Lorentz-violating parameter. -If Finally we note that tiny departures from Lorentz invari-
Ca=Cp, Eq.(3.223 yleids the usual threshold energy for this 5nce sich as we have discussed earlier in this section, can
processk;=(Mj—Mp)/4w. Otherwise it yields a quadratic eyplain the remarkable correlation discovered by Farrar and
inequality in E which can be satisfied if and only ifc{  Bjermann: that the five highest energy cosmic ray events
—Cp) < 8(w)=wl/2E;. Asc,—cCy, is increased toward, the  appear to point toward compact radio-loud quagad. We
threshold for the formation reaction grows towar®:2  suggest that these events could have been produced by UHE
However, if it exceeds its critical value, primary neutrons arising from sources at large redshift.

These particles could be stablecif>c,; they could be im-
munized against the GZK cutoff &,.>c,. They are unde-
2 2 flected by intergalactic magnetic fields because they are neu-
Ca—Cp>—5———=17x10 wl/we)?>, (3.2  tral.
Mi—Mj

M2 M3
20+ —=(cy—C,)E+ —, 3.2
2F ( A p) 2E ( 5)

_ . . _ Noted that much largefand experimentally intolerableviola-
reaction(3.24) becomes kinematically forbidden for d@l.  (ions of Lorentz invariance would be needed to produce a notice-
Recalling that the photon spectrum is thermal, we see that éple effect on the interactions of UHE cosmic rays with nuclei in
Ca—Cp~8(wp), the GZK cutoff due to resonank(1232  the atmosphere.
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IV. CONCLUSIONS conveying their resultg¢as well as those of V. S. Narasim-
ham and M. R. Krishnaswamyo us prior to publication,
Larry Hunter for alerting us to the precision experiment in
Which he was a collaborator, and Barry Barish, George Field,
Giorgio Giacomelli, Roman Jackiw, Alan Kosteleckgnd

A wide variety of experiments and observations offer very

be interpreted in terms of differences of MAVs of different

particles, such as would result from Lorentz-violatimit Jean Zinn-Justin for enlightening discussions. This work was

CPT-conserving perturbations of the standard-model La- . : ; .
grangian. The strongest constraints of this kind of which Wesupported in part by the National Science Foundation under

are aware have been mentioned earlier and are listed belogra™ NSF-PHYS-92-18167.

c,—C,<1x10% Sec. I[4]
APPENDIX: WRONG REASONING MADE RIGHT

In our first paper on this subje¢fi4] we advanced an
argument for neglectin@PT-odd Lorentz-violating interac-
tions.

The argument was based on studig] of an electro-
magnetic interaction proportional td e A'FK=A.B.
(This term is not gauge-invariant but it makes a gauge-
invariant contribution to the actionThe new term makes an
addition to the space-space part of the photon self-energy:

lcm—c,|<6x107%% Sec. |[2]
|c’—c|,,e,,#<6><10‘22 Sec. 1B [22]
lc'—c|,e<4X10"# Sec. Il A [15]

ek, —Ckd<3X107?'  Sec. Il C [24]

. _ I1;; I (p)+imep, Al
Two of these constraints result from cosmic-ray observa- (P =1L (P) Fipeijip (AL)
tions, the others from experiments performed at very high
(acceleratorengines, or in one case, at low energy. They are

consm:re]nt V;"th ?mCt Lodren_tz ||nva|1r|ance Pto a_bﬁremsmn Otfwhere,u is a constant with dimensions of mass. The added
”_‘Olret. an_f wen y-(t)net “eumat t[)aaces. d(')SSII € sy”mme Nerm causes vacuum birefringence; the experimental absence
violations, It present at afl, must be exceedingly Small. HOW ¢ yis effect in radio-astronomy observations of distant qua-

much further must experimenters test special relativity; Wheréars and radio galaxies leads to a very stringent upper bound
) 5 . - . ,
is enough enough? Our analysis addresses this question. 14=<10"3 eV. In Ref. [4] we argued that anyCPT-odd

We have seen that ma_1X|maI velocity differences lying tWOLorentz-vioIating interaction would induce an addition to the
or three orders of magnitude below the current bounds can

produce dramatic observable effects. Some would suppres@drangian proportional t&- B. Thus the extreme smallness
or forbid the processes underlying the GZK cutoff, thereby®f # IS evidence for the extreme smallness of @#T-odd
permitting UHE cosmic-ray nucleons to travel cosmologicaliNtéractions, and further searches foPT-violating effects
distances. Another could stabilize UHE cosmic-ray neutrons2€ Pointless. Unfortunately, this argument is invalid.
which would point toward their astrophysical sources. Maxi- €t Us consider interactions for which the Lagrange den-
mal velocity differences of neutrinos can help to explain theSity (not just the actionis invariant under electromagnetic
observed properties of both solar and atmospheric neutrino§2uge transformations; for brevity, we will refer to these
Fortunately, much can be done. Further observations ofiMPly @s “gauge-invariant interactions.” We will show that
UHE cosmic rays are essential. They may confirm a preIO first orderm_any gauge-mvwm@t?T—odd |nter:_:1ct|on, and
dicted “bump” just below the cutoff35] resulting from (@ @ny order in the Lorentz-invariant interactions,van-
products of inelastic collisions of primary protons with CBR iShes. (This confirms the expectation that gauge-invariant
photons, thereby providing evidence for the GZK cutoff. Or,1€rms in the Lagrange density cannot induce gauge-
they could belie the cutoff by confirming the Farrar- noninvariant one$.Thus th_e fact thap is known to be tiny
Biermann contentior{34] that the highest energy events Offers no strong constraint on the magnitude of gauge-
originate at cosmological distances. Dedicated searches féfvariantCPT-violating interactions. .
velocity oscillations of solar neutrinos, or of accelerator- It IS useful to analyze a simple example before giving our
produced~TeV neutrinos at baselines 6f1000 km, could ~ Proof in full generality. Letl’,,(p,q) be the one-particle
reveal Lorentz-violating neutrino velocity differences asimeducible(1Pl) Green's function for two photons and one
small as 10%5. Finally, laboratory searches for diurnal Lorentz-violating interaction Lagrangian. Here the photon

anisotropies more sensitive than any done before have biith indexu (v) carries momenturp (q). [Thus the Lorentz-
come feasibld36]. violating interaction carries momentum (p+q).] In first

order in the Lorentz-violating interaction
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Because the Lorentz-violating interaction is assumed to be To prove the inductive step, we need some information
gauge invariant]’ obeys the Ward identities from the once well-known theory of Feynman-diagram sin-
gularities[38]. For real external momenta, the case of inter-
p“I,,(P,q) =0, (A3a)  est here, the theory can be reduced to a set of simple algo-
rithms: (1) A given Feynman graph generates a family of
and reduced graphs, each obtained by taking some proper subset
of the internal lines of the graph and contracting them to
q'T ,.(p,q)=0. (A3b)  points.(2) The reduced graph leads to a singularity if it can
be interpreted as a diagram of a classical process occurring in
Now let us assume we compufeby summing only those space-time, with all particle@hat is to say, all uncontracted
diagrams that have no internal photons. These diagrams hawusternal line$ on the mass shell and moving forward in time.
only massive-particfé internal lines; thus, in this approxi- (3) If there is a singularity, the associated discontinuity is
mation,I" is analytic atp=q=0. Differentiating Eqs(A3a)  calculated by the usual Feynman rules except tpat-(m?
with respect top” and settingp=0, we findI' ,,(00)=0.  +je)~1 is replaced bys(p?—m?)6(p°) in the propagators
Thus every nonvanishing term in the Taylor expansiot'of for the uncontracted internal lines.
has at least one factor of I' is O(p). The same reasoning  \ve are now ready to use induction. We assume the theo-
applied to Eq(A3b) tells us thatl" is O(q). Sincep andq e js true forr or fewer internal photon lines and consider
are independent variableg, is O(pg). Thus, by Eq.(A2),  he singularities of graphs with+ 1 internal photons. Since

g 2 -

Fhe add|t[gn to the self-energy @(p°) and makes a vanish- all energies inserted into the graph are arbitrarily small, there
mg;;\ontr; u??; t?]'“;/ iven rested on analvticity at vani his not enough energy to create a massive particle and all
in m?)rgeonc;umeug‘oertgn;[el eisn(teerr?al ahzlt)(;ncs ():/aerll % dﬁc'emassive—particle lines must be contracted. Thus the reduced
19 - ' . =Y N P . P - graph contains only photon lines, joined together at vertices
smgular_ltles at precisely th|_s pomt_._ln the remainder of thlsWhich represent contracted subgraphs of the original graph
gppendlx we study these singularities and prove the foIIowif we sum, in some fixed order of perturbation theory, all .

ing. o1 1y,
Theorem Let Filn)...# (p1...p,) denote then-photon graphs Iea’dlng to the same reduced graph, the'vertlces be-

, SLee P . . . come thel™s at the appropriate order of perturbation theory.

1PI1 Green'’s function, and let us introduce a uniform scalmg(We are being a bit sloppy here: subgraphs of a 1P| graph
parameteh by replacingp, by Ap, . Then to either zeroth or  heaq not be 1PI, so the vertices can contain tree graphs.

first order in theCPT-odd interaction, and to any finite order g vever. it is easy to check that these have no effect on the
in the Lorentz-invariant interactions, and for any posite/e power—cc;unting of the next paragraph.

I vanishes as\ goes to zero more rapidly than" . Because some of the internal photons in the original graph
(Note that our announced resuyit=0, is a corollary of this st be uncontracted, anline vertex in the reduced graph
theorem fom=2.) _ o _ must have or fewer internal photon lines and, by the induc-
The p_roof proceeds by induction in the number of internal,,e hypothesis, must vanish at smallmore rapidly than
photon lines. A€, It will be convenient to consider this as one factor of

We begin with the case of no internal photon lines. In this, 1-¢ 5 each photon line attached to the vertex. We can
c_asel“(“) is analytic at vanishing external momentum, and, tonow compute thex-dependence of the discontinuity. Every
first order in the Lorentz-violating interactions, the argumentgyiernal photon contributes a factor ¥~ €. Every internal
is a straightforward generalization of that for the simple ©X-photon contributes a factor af2~ € from its two ends and a
ample above. We treat theexternal momenta as indepen- tacior of \ 2 from the &-function, yielding no net contribu-

dent variables, Ietti_ng the Lorentz-violating' interaction caryyjon. Every independent loop integration contributes a factor
off the momentum inserted at the photon lines. We then usgs ) 4 Thus the discontinuity vanishes faster thelh 4"~

the Ward identities to show that the leading term in the Tayiyherel is the number of loops. This in turn vanishes faster
lor series iSO(p; . .. pp) =O(A"). , __ than\"" ¢, which is the result we neeflt is critical that we

This does not work in zeroth order in Lorentz violation, are computing the discontinuity and not the fdll The
because there is no Lorentz-violating interaction to carry off5(p2) 6(p°) propagators in the reduced graph keep the inter-
the momentum. The best we can do is to chapse. . dn-1  nal momenta small when the external momenta are small and
as our independent variables and use the Ward 'dent't'%gitimize the use of a small-momentum bound for the ver-
to show that the leading term isO(p;...pn—1) tices]

— -1 . .
=O(\""").However, the term zeroth order in Lorentz vio- * once we have the discontinuity, we can construct a func-
lation is Lorentz invariant, and there is no Lorentz-invariantiion with that discontinuity, for example, by integrating a

way to construct a rank tensor as a multilinear function of gispersion relation. This function also vanishes faster than
n—1 independent vectors. Thus this term must vanish, angn-¢ Thus™ is the sum of a singular function that van-
the leading term is at beQ(A"). ishes faster than"~ € and a function that is free of singu-
larities, that is to say, an analytic function. But we can use
the same arguments for the analytic function that we used for
2Neutrino masses may be tiny on the scale of high-energy physthe case of no internal photon lines to show that it vanishes
ics, but they are enormous on the scale of radio waves. like \". This completes the proof.
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