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High-energy tests of Lorentz invariance

Sidney Coleman and Sheldon L. Glashow
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 18 December 1998; published 28 April 1999!

We develop a perturbative framework with which to discuss departures from exact Lorentz invariance and
explore their potentially observable ramifications. Tiny noninvariant terms introduced into the standard model
Lagrangian are assumed to be renormalizable~dimension<4!, invariant underSU(3)^ SU(2)^ U(1) gauge
transformations, and rotationally and translationally invariant in a preferred frame. There are a total of 46
independentCPT-even perturbations of this kind, all of which preserve anomaly cancellation. They define the
energy-momentum eigenstates and their maximal attainable velocities in the high-energy limit. The effects of
these perturbations increase rapidly with energy in the preferred frame, more rapidly than those ofCPT-odd
perturbations. Our analysis of Lorentz-violating kinematics reveals several striking new phenomena that are
relevant both to cosmic-ray physics~e.g., by undoing the Greisen, Zatsepin, and Kuz’min cutoff! and neutrino
physics~e.g., by generating novel types of neutrino oscillations!. These may lead to new and sensitive high-
energy tests of special relativity.@S0556-2821~99!00111-3#

PACS number~s!: 11.30.Cp
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I. INTRODUCTION

Experimental tests of Lorentz invariance have become
markably accurate. To give a quantitative measure of
accuracy, one imagines adding tiny Lorentz-violating ter
to a conventional Lagrangian. Experiments can test Lore
invariance by setting upper bounds to the coefficients
these terms. One common choice@1# is to alter the coeffi-
cient of the square of the magnetic field in the Lagrangian
quantum electrodynamics:

BW 2→~11e!BW 2. ~1.1!

Among other effects, this term causes the velocity of lightc,
given by c2511e, to differ from the maximum attainable
velocity of a material body, which remains equal to on
~Shortly we shall consider more general Lorentz-violati
perturbations.!

The perturbation~1.1! breaks Lorentz invariance. It i
translationally and rotationally invariant in the frame
which we are working~‘‘the preferred frame’’! but not in
any other frame. If the preferred frame is the one in wh
the cosmic microwave background is isotropic, tiny and c
culable anisotropies should appear in laboratory experime
High-precision spectroscopic experiments that fail to fi
such anisotropies@2,3# set the bound u12c2u5ueu,6
310222.

In a paper published last year@4# we pointed out that a
better bound could be obtained from a very different sort
experiment ifc,1. In this case a charged particle travelin
faster than light rapidly radiates photons until it is no long
superluminal. Thus no primary cosmic-ray proton can ha
energy greater thanM /A12c25M ueu21/2, whereM is the
proton mass. Because primary protons with energies u
1020 eV are seen, we set the bound 12c2,10223, almost an
order of magnitude stronger than the atomic-physics bou
High accuracy is obtained from high energy rather than h
precision. Moreover our bound requires no assumption ab
our velocity in the preferred frame.
0556-2821/99/59~11!/116008~14!/$15.00 59 1160
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This effect, which we call vacuum Cˇ erenkov radiation, is
absent below a characteristic energy and turns on abru
once that energy is reached. Such is not always the cas
the following example shows.

Let C denote a set ofn complex scalar fields assemble
into a column vector. If we assume invariance under theU~1!
groupC→e2 ilC, the most general free Lagrangian is

L5]mC* Z]mC2C* M2C, ~1.2!

where Z and M2 are positive Hermitian matrices. We ca
always linearly transform the fields to makeZ the identity
and M2 diagonal, thus obtaining the standard theory ofn
decoupled free fields. Consider adding to the Lagrangian
Lorentz-violating term

L→L1] iCe] iC, ~1.3!

wheree is a Hermitian matrix. Ife does not commute with
M2, there is no way to disentangle the fields. The sing
particle energy-momentum eigenstates go from eigenst
of M2 at low momenta to eigenstates ofe at high momenta.
In contrast with vacuum Cˇ erenkov radiation, this effect
which we call velocity mixing, turns on gradually. Gradu
effects allow one to obtain high accuracy by combining mo
erately high energies with moderately high precision.

A more striking gradual effect appears if this system
minimally coupled to electro-magnetism. In this case, a m
son can decay to a less massive meson plus a photon at a
growing with the cube of the energy. Analogous terms in
standard model can drive the otherwise-forbidden de
m1→e11g and the 0-0 transitionK1→p11g.

This example shows that what meant by ‘‘high energ
in this context depends very much on the details of the s
tem under consideration. For simplicity, supposen52 and
let M25diag(M1

2,M2
2). The transition from eigenstates o

M2 to those ofe occurs at energies;A(M1
22M2

2)/e12. For
the neutral kaon system, this energy is many orders of m
nitude less than the characteristic energy of vacuum Cˇ eren-
©1999 The American Physical Society08-1
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SIDNEY COLEMAN AND SHELDON L. GLASHOW PHYSICAL REVIEW D59 116008
kov radiation~if the dimensionless invariance-violating p
rameters in the two processes are comparable!.

These are just illustrative examples. In Sec. II we study
local Lorentz-invariance violating interactions that are ro
tionally and translationally invariant in a preferred frame a
of renormalizable type~i.e., having mass dimension<4!.1

~Some of the results in Secs. II A and II B were first esta
lished by Kostelecky´ and Colladay@5#. We derive them
anew here, both for completeness and because we wis
emphasize features relevant to high-energy tests.!

Lorentz-violating perturbations can be divided into tw
classes, depending on whether they are even or odd u
CPT. For a state with energyE, we show in Sec. II A that the
expectation values of theCPT-even interactions grow likeE2

for large E, while those of theCPT-odd interactions grow
like E. Because we are interested in effects of very we
interactions made detectable by high energies, we limit o
selves primarily to a study of theCPT-even interactions.2

~Both our examples are of this class!. In Sec. II B we con-
struct the most generalCPT-even interaction for the standar
model and show that it preserves anomaly cancellation
Sec. II C we discuss certain approximations that we will u
later on. As an illuminating exercise, in Sec. II D we wo
out the kinematics ofn-body decays in the special case
which off-diagonal matrix elements of the velocity-mixin
matrices may be neglected. Novel phenomena arise. Fo
ample, a decay can be kinematically allowed both at low a
high energy, but forbidden for an intermediate range of
ergies.

The last section applies our formalism to various possi
observable manifestations of Lorentz violation. We disc
phenomena involving charged leptons in Sec. III A, in p
ticular the possible appearance of radiative muon deca
high energies. We discuss phenomena involving neutrino
Sec. III B, where we show how searches for neutrino os
lations at high energy and long baseline can provide new
powerful tests of special relativity. We discuss hadro
manifestations of Lorentz-violation in Sec. III C, especia
those relating to ultrahigh energy cosmic rays. An Appen
explains why, contrary to our earlier assertion@4#, the ob-
served absence of a velocity difference between right-
left-handed photons~which would violateCPT! does not
constrain the appearance ofCPT-violating effects elsewhere

1The condition of renormalizability can be given the usual jus
fication: If we assume that breaking of Lorentz invariance occur
some very small distance scale, only the renormalizable interact
survive the renormalization-group running of the couplings to
perimentally accessible scales.

2This argument would be evaded if theCPT-even couplings were
on the order of the squares of theCPT-odd ones, expressed a
dimensionless ratios to an appropriate mass scale. This woul
consistent with both renormalization-group flow and our ener
growth rule, and would lead to the dominance of theCPT-odd
interactions at moderately high energies. We mainly ignore
possibility here.
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II. GENERALITIES

Here we develop the formalism needed to determine
observable consequences of Lorentz violation so as to ob
precise high-energy tests of special relativity.

A. Building Lagrangians

We first construct all CPT-even Lorentz-violating
rotationally-invariant perturbations for a general renorma
able theory of scalars, spinors and gauge mesons. We
show that the matrix elements of these interactions gr
with energy more rapidly than those of theCPT-odd
Lorentz-violating interactions.

We begin by summarizing some well-known properties
the Lorentz groupSO(3,1) @6#. We assemble all the fields in
the theory into a big vectorF. The action ofL, an element of
O~3,1!, on these fields is effected by a unitary operator
Hilbert spaceU~L!:

U~L!†F~x!U~L!5D~L!F~L21x!, ~2.1!

whereD~L! is some finite-dimensional representation of t
Lorentz group.

The Lie algebra ofSO~3,1! may be written as the~com-

plex! sum of two commuting angular momenta,JW (1) and

JW (2). An irreducible finite-dimensional representation of t
group may be labeled by two half integers,j 1 and j 2 , and is
of dimension (2j 111)(2j 211). We sometimes write the
fields forming the basis for the irreducible representation
Fm1 ,m2

, wherem6 is the eigenvalue ofJz
(6) .

The values of (j 1 , j 2) are ~0,0! for a scalar;~0,1/2! or
~1/2,0! for a Weyl spinor, depending on its chirality
~1/2,1/2! for a 4-vector;~1,1! for a traceless symmetric ten
sor; and the direct sum of~1,0! and~0,1! for an antisymmet-
ric tensor. The complex conjugates of a set of fields tra
forming according to (j 1 , j 2) transform according to
( j 2 , j 1).

For R(eWu), a rotation about an axiseW by an angleu,

D„R~eWu!…5exp@2 i ~JW ~1 !1JW ~2 !!•eWu#. ~2.2!

For B(eWf), a Lorentz boost in a directioneW by rapidity f,

D„B~eWf!…5exp@~JW ~1 !2JW ~2 !!•eWf#. ~2.3!

Finally, for the anti-unitaryCPT operatorV,

V21F~x!V5~21!2 j 1F†~2x!. ~2.4!

We are ready to begin our analysis. From Eq.~2.2! we
note that every rotationally invariant termL8 in the Lagrang-
ian must lie in a representation for whichj 15 j 2[ j . El-
ementary angular-momentum theory tells us that the term

L8} (
m52 j

j

~21!mFm,2m . ~2.5!

If the stateuc& is boosted in thez-direction by rapidityf, the
expectation value ofL8 is transformed according to
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HIGH-ENERGY TESTS OF LORENTZ INVARIANCE PHYSICAL REVIEW D59 116008
^cuU†
„B~eW zf!…L8~0!U„B~eW zf!…uc&}e2 j f^cuF j ,2 j~0!uc&

1O~e~2 j 22!f!.
~2.6!

That is, ^L8& grows at large energy likeE2 j . As we shall
show shortly, the largest value ofj attainable with operators
of renormalizable type isj 51, a traceless symmetric tenso
which is CPT even. The only other rotationally-invarian
possibilities arej 51/2, a vector, which isCPT odd, andj
50, a Lorentz invariant scalar.

Let us begin by considering only scalar fields. With
loss of generality we can consider these to be all real.
attain j 51 we need at least two derivative operators, and
renormalizability we can have no more than two~and no
more than two scalar fields!. Thus the only possibility is

1

2 (
a,b

] if
aeab]

ifb, ~2.7!

whereeab is a real symmetric matrix and the sum runs ov
the scalar fields.~Of course, we could just as well have sa
that the only possibility is12 (a,b]0faeab]

0fb; the difference
is a Lorentz invariant.!

Now let us consider spinors. With no loss of general
we may take our fundamental fields to be a set ofn ~1/2,0!
Weyl spinors,ua; the conjugate fields,ua†, are then~0,1/2!
spinors. The only Lorentz-invariant interactions either cou
two spinors of the same type or couple a spinor, a conjug
spinor, and a derivative. The most general free Lagrangia

u†i ~]02sW •]W !Zu1
1

2
uTsyMu1

1

2
u†syM

†u* , ~2.8!

where Z is a Hermitiann3n matrix andM is a ~possibly
complex! symmetric matrix. We can always make a line
transformation such thatZ is one andM is real, positive, and
diagonal. We then have the theory ofn free spin-12 particles,
each of which is its own antiparticle.

The only way to construct a renormalizable interacti
with j 51 is to couple together a spinor, a conjugate spin
and a derivative. Thus we obtain

1

2 (
a,b

i eabu
a†sW •]Wub, ~2.9!

whereeab is a Hermitian matrix.
A particularly simple case is that of two~1/2,0! Weyl

spinors carrying opposite charges under aU~1! internal sym-
metry group. Then one Weyl spinor and the conjugate of
other can be joined to make a single Dirac bispinor,c, the
most general free Lagrangian is the standard Dirac Lagra
ian, and the most generalj 51 interaction is

1

4
cW i ]W•gW @e1~11g5!1e2~12g5!#c, ~2.10!

wheree6 are real numbers.
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We now turn to gauge mesons. The couplings of
gauge mesons to the scalars and spinors is completely d
mined by gauge invariance, so we need only look at
gauge-field self-couplings. Let us begin with a single Ab
lian gauge field, and let us express it in terms of an elec
and a magnetic field, defined, as usual, byEi5F0i and Bi

5 1
2 e i jkF jk . Out of these we can make three independ

rotational invariants of renormalizable type,3 which we may
choose to beEW 22BW 2, EW •BW , andBW 2. The first two are Lor-
entz invariants; we are left withBW 2, just as in the first ex-
ample of Sec. I.

A general gauge group is locally the product of simp
factors and Abelian factors. Gauge invariance forbids cr
terms between gauge fields belonging to different simple f
tors, so for each simple factor we have one interaction, of
form (aBW a

•BW a, where the sum runs over the generators
the factor. For the Abelian factors we can have cross ter
but we can eliminate them by an orthogonal transformat
on the Abelian generators; thus we again obtain oneB2 term
for each factor.

B. The almost Lorentz-invariant standard model

As an example, let us construct thej 51 interactions in
the standard model with three generations of quarks and
tons. There are only a few terms in the bosonic sector of
model: oneBW 2 term for each factor of the gauge group a
one velocity-mixing term for the Higgs doublet, for a total
four real parameters.

The number of parameters is much greater in the fer
onic sector of the model. Each family of spinor fields tran
forms like the direct sum of five inequivalent irreducib
representations of theSU(3)^ SU(2)^ U(1) gauge group.
Gauge invariance excludes cross terms between differen
reducible representations, but not those between fami
Thus we have five 333 Hermitian velocity-mixing matrices
of the form ~2.9!, for 45 additional real parameters.

A small reduction in the number of parameters may
effected by field redefinitions. We can rescale the space
ordinates while leaving the time coordinate unchang
thereby eliminating one of the gauge-fieldBW 2 terms. Finally,
we note that the minimal standard model conserves each
ton flavor. Thus, we may multiply the lepton fields by
phase factor depending only on flavor so as to make two
the off-diagonal elements in one of the lepton veloci
mixing matrices real while not affecting the Lorent
invariant Lagrangian. Thus the standard model involve
total of 414523546 independent Lorentz-violating~but
CPT-conserving! parameters.~We remark in passing tha
there are a comparable number of parameters correspon
to j 5 1

2 CPT-violating departures from Lorentz invariance!
We used gauge invariance throughout this construct

but it has been the gauge invariance of the classical Lagra
ian. Is this theory gauge-invariant as a quantum theo
Phrased another way, we know that anomalies cancel in
standard model, but does the cancellation persist when

3The CPT-odd termAW •BW , whereAW is the vector potential, is dis-
cussed in the Appendix.
8-3
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SIDNEY COLEMAN AND SHELDON L. GLASHOW PHYSICAL REVIEW D59 116008
take account of the 46 noninvariant terms? We demonst
below that it does.4

Our demonstration depends on the classic analysis
anomalies in Lorentz-invariant non-Abelian gauge theor
@7#. This begins by showing that the full theory is anoma
free~to all orders in perturbation theory! if the corresponding
theory of massless spinors coupled to externalc-number
gauge fields is anomaly-free. If we assemble all the spi
fields into a column vectoru, the Lagrangian for such a
theory is

iu†~D02sW •DW !u, ~2.11!

where the covariant derivativeDm is defined byDm5]m
1Am , with Am a matrix-valued field composed of the gau
fields with their associated coupling matrices. If we defin
gauge transformation of the fields in the usual way,

du5dvu, dAm5@dv,Am#2]mdv, ~2.12!

where dv is an infinitesimal gauge transformation, it ma
appear that the theory defined by Eq.~2.11! is gauge-
invariant. However, this is not necessarily so. A carefu
regulated computation ofW(A), the generating functional o
connected Green’s functions, yields

dW52
1

48p2
TrE d4xemnlsdv]m~2An]lAs1AnAlAs!.

~2.13!

Only if this expression~‘‘the anomaly’’! vanishes is the
theory in fact gauge-invariant. Projection operators on ir
ducible representations of the gauge group commute withdv
and Am ; thus a convenient way to evaluate the trace is
sum the contributions of the irreducible multiplets. For t
standard model, this sum vanishes.

We wish to extend all this to a theory with a Lorent
violating interaction of the form~2.9!. That is to say, Eq.
~2.11! is replaced by

iu†
„D02~12 1

2 e!sW •DW …u, ~2.14!

wheree is a Hermitian matrix acting only on the flavor in
dices. This replacement alters the high-momentum beha
of the spinor propagator and we must alter our regulariza
procedure accordingly. If we use massive regulator fields,
derivative terms in their Lagrangian must be of the fo
~2.14!, not ~2.11!. Likewise, if we regulate the measure in th
path integral, we must use the differential operator from
~2.14!, not from Eq.~2.11!.

We must sum over irreducible multiplets, which may
chosen to be eigenspaces ofe. In each eigenspace, the La
grangian is of the form~2.14! with e a number. We may
introduce new variables~denotes by primes! by

4We were disappointed to discover this; we had hoped that
condition of anomaly cancellation would put some constraints
our 46 free parameters.
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xW5~12 1
2 e!xW8, x05x08 ,

AW 85~12 1
2 e!AW , A085A0 . ~2.15!

In terms of these variables, thee term disappears from the
Lagrangian ~and from the regularization procedure!. The
contributions of each multiplet to the anomaly is the same
it would be if e were zero, except that unprimed variables a
replaced by primed ones. This replacement has no effec
Eq. ~2.13!, which is invariant under general coordinate tran
formations. Thus the contributions of the irreducible multi
lets are independent ofe. If they cancel whene vanishes~as
they do!, they cancel for generale.

C. From Lagrangian to particles

Particle properties of free fields follow trivially from th
Lagrangian, but things are more difficult for interactin
fields. For simplicity we study the energy-momentum re
tion for one real scalar field of~renormalized! massm. The
generalization to more complicated systems is straight
ward. If the theory is Lorentz-invariant, the inverse reno
malized propagator has the form

2 iD 215~p22m2!A~p2!, ~2.16!

for some functionA. We normalize the field conventionall
so thatA(m2)51, then add a Lorentz-violating interaction t
the theory with some small coefficiente, as in Eq.~2.7!. We
begin in the linear approximation, retaining terms only fi
order in e. Later we investigate whether this approximatio
is justified. The addition ofD21 must transform like the 00
component of a traceless symmetric tensor. The only po

bility is a multiple of 4p0p02g00p254pW 213p2. The p2

term can be absorbed inA, whence Eq.~2.16! becomes

2 iD 215~p22m2!A~p2!1epW 2B~p2!, ~2.17!

for some functionB. It is convenient to normalize the
Lorentz-violating interaction such thatB(m2)51.

To first order ine, the shift in the zeroes ofD21 is

p25E22pW 25m21epW 2. ~2.18!

The energy-momentum relation may be rewritten in t

seemingly conventional formE25pW 2c21m2c4, with c the
maximal attainable velocity andmc2 the rest energy of the
particle. However, it must be remembered thatc2 has been
changed by the factor to 11e andm2 has been diminished by
a factor of (11e)2. Of course, the tiny mass shift is of n
experimental interest, but this is very much not the case
the shift in c2, as we saw in Sec. I. Abrupt effects turn o

when the dimensionless parameterepW 2/m2 is of order unity,
while for gradual effects~like m1→e11g) the energy at
which the effect becomes significant can be many order
magnitude smaller.

Even for gradual effects,E is typically very large and we
must ask whether new Lorentz-invariant physics at high
ergies might affect our predictions. Equation~2.18! shows

e
n

8-4
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HIGH-ENERGY TESTS OF LORENTZ INVARIANCE PHYSICAL REVIEW D59 116008
that this does not happen. Even thoughE is large,p2 remains
O(m2) and the possible new physics remains irrelevant.

When can the linear approximation be trusted? It can c
tainly be trusted for free-field theory, where it is exact. It c
also be trusted for leptons and electroweak gauge mes
For these particles, all couplings are weak, all radiative c
rections are small, and all propagators are well approxima
by those of free field theory.

Things are trickier for hadrons. A detailed investigation
QCD with Lorentz-noninvariant terms is beyond our ken, b
we can make an educated guess on the basis of a si
model. Let us take QCD and rescale the space coordin
but not the time coordinates, as in Eq.~2.15!. In the new
coordinates, we seem to have a noninvariant theory, but
just QCD wearing a false beard. All that happens is thatp2 in

Eq. ~2.16! is replaced byp22epW 2. Thus an expansion in

powers ofe is in fact an expansion in powers ofepW 2/L2,
whereL is the QCD mass scale. Since typical hadron mas
are O(L), this implies that for gradual effects the line
approximation is a very good one, while for abrupt effects
is only a rough approximation. Of course, a rough appro
mation is not a useless one; it can give us a qualitative
ture of what is going on, and even~with a modest amount o
luck! yield correct order-of-magnitude quantitative pred
tions.

D. The kinematics of particle decays

In this section we analyze the decay of a particle inton
other particles in our Lorentz noninvariant theories@8#. We
make three simplifying assumptions:~1! that all particles are
spinless. The extension to spin-1

2 particles is straightforward
and has no effect on our conclusions;~2! that the linear ap-
proximation is valid; and~3! that the matrix elements of th
invariance-violating perturbation between particles with d
ferent masses are negligible. Thus we obtain a set of part
each of which obeys an energy-momentum relation of
form ~2.18!. That is to say, theath particle has, in addition to
its own mass,ma , its own maximum attainable velocit
~‘‘its own velocity of light’’ ! ca , and obeys the energy
momentum relation

Ea
25pW a

2ca
21ma

2ca
4. ~2.19!

In what follows we usea50 for the decaying particle an
a51, . . . ,n for the decay products.

A decay is kinematically permitted if we can arrange t

decay products such that their total momentum ispW 0 and

their total energy isE0 . Let Emin(pW 0) denote the minimum
total energy of the decay products for given total moment

pW 0 . The decay is possible if and only if

E0>Emin~pW 0!, ~2.20!

because ifEmin,E0 we can obtain equality by adding oppo
site transverse components to two of the decay moment

If we delete the transverse components of all decay m
menta, we lower the final-state energy without changing
11600
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total momentum. It follows that all momenta are collinear
the configuration of minimum total energy. We use this fa

to simplify our analysis and replacepW a by pa , the longitu-

dinal ~and only nonzero! component ofpW .
Emin must be stationary under variations of the decay m

menta that leave their sum unchanged. Introducing
Lagrange multiplieru, we must make

( Ea2uS ( pa2p0D ~2.21!

stationary, where here and in the remainder of this sec
the sum is over the decay products. Differentiating with
spect topa , we find

u5
dEa

dpa

5va , ~2.22!

whereva is the velocity of theath particle.~We have used
Hamilton’s equations at the last step.! Thus all the decay
particles move with a common velocityu. Furthermore, the
relation

dEmin5u( dpa5udp0 ~2.23!

shows thatu5dEmin /dp0 .
We can now explore the limits of small and largep0 . For

p050, the minimum energy configuration is one in which a
the decay momenta vanish; the decay is allowed if an onl

m0c0
2>( maca

2. ~2.24!

Of course, physics is certainly nearly Lorentz invariant,
that theca’s can differ only very slightly. For all practica
purposes, we can drop them from Eq.~2.24!.

For very largep0 , u must be ultrarelativistic and we ca
approximateEa by capa . The energy is minimized by giving
all the momentum to the particle with the smallestc. In this
limit, the decay is allowed if

c0.min
aÞ0

ca , ~2.25!

and is forbidden ifc0,minca . ~We must go beyond the
ultrarelativistic approximation to settle the question ifc0
5min ca .)

Equations~2.24! and ~2.25! are independent. A decay i
allowed or forbidden in the high energy limit regardless
whether it is allowed or forbidden at low energies. It is i
teresting to ask what can happen at intermediate energ
For example, can there be alternating bands of allowed
forbidden energies?

We begin by answering this question when all the dec
products have nonzero masses; afterwards we will extend
analysis to deal with massless particles. Let us rewrite
condition for allowed decay,E0>Emin , as

m0
2c0

4>Emin
2 ~p0!2c0

2p0
2[Y~p0!. ~2.26!
8-5
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We shall prove that every stationary point ofY is a local
maximum. Differentiating Eq.~2.26! yields

1

2

dY

dp0

5Eminu2c0
2p05( ~ca

22c0
2!pa , ~2.27!

where we have usedEa5ca
2pa /u at the last step. The deriva

tive vanishes at a stationary point, so at least one term in
sum must be negative,c0.minaÞ0ca . Note that this condi-
tion coincides with Eq.~2.25!, the condition that the proces
be allowed at high energy.

Differentiating once more, we find

1

2

d2Y

dp0
2

5
du

dp0
( ~ca

22c0
2!

dpa

du

5
du

dp0
( ~ca

22c0
2!

paca
2

u~ca
22u2!

. ~2.28!

At a stationary point, we can use the vanishing of Eq.~2.27!
to write this as

1

2

d2Y

dp0
2
5

du

dp0
( ~ca

22c0
2!

pa

u
F ca

2

ca
22u2

2
c0

2

c0
22u2G

~2.29!

52u
du

dp0
(

pa~ca
22c0

2!2

~ca
22u2!~c0

22u2!
.

As p0 increases monotonically from zero to infinity,u in-
creases monotonically from zero to minca . Thusdu/dp0 is
positive, as are the factors (ca

22u2) and (c0
22u2), these last

by Eq. ~2.25!. This completes the proof.
Because every stationary point ofY is a local maximum,Y

can have at most one stationary point. IfY has no stationary
points, it is a monotone function ofp0 and can crossm0

2c0
4 at

most once. This leads to four possibilities:~1! The decay is
allowed at all energies.~2! The decay is forbidden at a
energies.~3! The decay is allowed for all energies below
certain energy and forbidden for greater energies.~4! The
decay is forbidden for all energies below a certain ene
and allowed for all greater energies. IfY has one stationary
point,5 it may crossm0

2c0
4 twice, the first time from below

and the second time from above. This adds one more po
bility: ~5! The decay is forbidden for a certain band of ener
but allowed for all energies above or below this band. Th
are no other possibilities.

Our arguments break down if there are massless part
among the decay products.~For example, we can no longe
write energy and momentum as functions of velocity.! Nev-
ertheless, we now show that our conclusions remain val

5The necessary and sufficient conditions forY to have an extre-
mum are Eq.~2.25! and ((ca

22c0
2)ma.0 @which ensures tha

Y(p0) increases nearp050].
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If there is more than one massless particle among
decay products, we can lowerEmin by giving all the momen-
tum carried by the massless particles to the one with
smallest value ofc. Thus no generality is lost by restrictin
ourselves to the case in which there is only one mass
particle, which we label bya51.

Consider a configuration withp1 fixed and the remaining
momentum,p02p1 , distributed among the massive particl
so as to minimize their total energy. The total energy of t
configuration is

E5c1p11Emin8 ~p02p1!, ~2.30!

whereEmin8 is the minimum energy computed for the massi
particles only. Thus

dE/dp15c12u8~p02p1!, ~2.31!

whereu8, the common velocity of the massive particles, is
monotone increasing function of their total momentu
There are two cases:~1! u8(p0),c1 , so thatE is a monotone
increasing function ofp1 andEmin5Emin8 (p0). The massless
particle carries no momentum so that the analysis is the s
as in the massive case.~2! u8(p0).c1 , which is possible
only if

c1,min
aÞ1

ca , ~2.32!

for otherwiseu8 cannot reachc1 . In this case, increasingp1
lowersE until u8 reachesc1 , and

Emin5c1~p02p08!1Emin8 ~p08!, ~2.33!

wherep08 is defined byu8(p08)5c1 . This analysis proceed
as in the massive case up to and including Eqs.~2.27! and
~2.25!, but the computation ofd2Y/dp0

2 is different. Because
only p1 depends onp0 ,

1

2

d2Y

dp0
2

5~c1
22c0

2!
dp1

dp0

5~c1
22c0

2!c1,0, ~2.34!

by Eqs.~2.25! and~2.32!. Just as in the case of only massiv
decay products, every stationary point ofY is a local maxi-
mum. Thus we reach the same conclusions here as we
there.6

III. APPLICATIONS

Here we examine effects ofCPT-conserving departure
from Lorentz invariance on the behavior of ultrarelativis
particles. Our treatment of leptonic phenomena~Secs. III A

6The borderline situation, where the stationary point ofY occurs at
p05p08 , must be treated separately. In this case we must use
analysis forp0,p08 to computed2Y/dp0

2 from below and that for
p0.p08 to compute it from above. The two answers do not ag
because the second derivative ofY is not continuous at the station
ary point, but it does not matter because both are negative.
8-6
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and III B! is not subject to the qualifications discussed
Sec. I D. However, the hadronic phenomena~in Sec. III C!
often involve hadron energies so large thatEAdc2 is compa-
rable to the QCD mass scale. Thus, our treatment of theca as
energy-independent parameters is not always justified. T
error affects the values of the Lorentz-violating paramet
needed to produce novel phenomena, but not the phenom
themselves.

A. Phenomena involving charged leptons

Tests of Lorentz invariance from photon stability. Sup-
pose that the velocity of light exceeds the maximal attaina
velocity ~MAV ! of electrons, i.e.,cg.ce , where for the mo-
ment we ignore possible flavor and helicity dependence
follows @4# that photons of sufficient energy are unstable.
particular, the decay

g→e21e1 ~3.1!

becomes kinematically permitted when the photon energE
exceeds 2me /Adge, wheredge[cg

22ce
2. The decay rate of

photons well above this threshold isGee.
1
2 adgeE. The fact

that primary cosmic-ray photons with energies up to 20 T
have been detected lets us set the limitcg2ce,10215. Note
that udgeu is not so well constrained: the absence of vacu
Čerenkov radiation by electrons with energies up to 500 G
sets the limit:ce2cg,5310213. In a similar manner, much
weaker constraints may be placed on the MAVs of
heavier charged leptons.

More stringent tests of Lorentz invariance might be ima
ined to result from the stability of photons under decay in
two neutrinos, for which the threshold energy depends
tiny neutrino masses. This mode is forbidden in the stand
model, which attributes neither masses nor magnetic
ments to neutrinos, but there is a considerable body of
pirical evidence for neutrino oscillations, and hence for n
trino masses. The nonstandard physics responsible
neutrino masses could generate neutrino magnetic mom
via loop diagrams, thereby enabling the decaysg→n1n8
and n̄1 n̄8 ~with n and n8 necessarily distinct chiral neutri
nos!.

The decay rate of a photon with energyE well above
threshold into neutrons is:Gnn8;l2mB

2dgn
2 E3, where the

flavor-changing ‘‘magnetic moment’’ of the neutrino islmB
with mB[e/2me ~the Bohr magneton!. We assumecn5cn8
and putdgn5cg

22cn
2. Because the magnetic interaction

dimension-five~rather than dimension-four, like the electric!,
Gnn8 is quadratic indgn rather than linear.7 It follows that the
range of an energetic photon is cosmological even if
neutrino magnetic moment is~implausibly! set equal to its

7Our estimates ofGee andGnn8 are lowest order in the appropriat
Lorentz-invariant operators, with photons satisfying the Loren

violating dispersion relationE22pW 25dE2[ ‘ ‘ mg
2.’ ’ The decay

rates areGeeurest;amg and Gnn8urest;(lmB)2mg
3 in the ‘‘photon

rest frame.’’ These expressions yield our results when booste
the lab frame.
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experimental upper limit@9#: l52310210. Consequently,
no strong bound oncg2cn can be deduced from observa
tions of energetic cosmic-ray photons.

Radiative muon decay? The decay modem→e1g is of-
ten searched for but never found. This is not surprising: i
forbidden in the minimal standard model. Although induc
by radiative corrections in models with neutrino masses,
expected branching ratio is far too small to be detect
However, and as we noted elsewhere@10,11#, Lorentz-
violating perturbations that are not flavor diagonal can
the accidental symmetry ordinarily preventing radiative d
cay.

Recall that the velocity eigenstates of high-energy lept
do not in general coincide with their mass eigenstates at
energy. In the following analysis, we ignore possible m
ings of electrons and muons with tau leptons. The relev
portion of the Lagrangian takes the following form in th
preferred frame:

~m̄ē!gW •~pW 2eAW !$CR
1
2 ~11g5!1CL

1
2 ~12g5!%S m

e D ,

~3.2!

wherem and e denote fields corresponding to mass eige
states. The matricesCL,R ~which would be unit matrices were
Lorentz symmetry unbroken! are

Ca[
1

2S 2c̄a1dca cos 2ua dca sin 2ua

dca sin 2ua 2c̄a2dca cos 2ua
D , a5L,R.

~3.3!

The mixing angleuL determines the velocity eigenstates
left-handed leptons~or right-handed antileptons! whose
MAVs are c̄L6 1

2 dcL . Similarly, uR determines the velocity
eigenstates of right-handed leptons~or left-handed antilep-
tons!, whose MAVs differ bydcR . All four maximal veloci-
ties are known to be very close tocg , the velocity of light in
vacuum.

Electroweak gauge invariance implies that the matrixCL
appears in the kinetic-energy of neutrinos as well as char
leptons. In Sec. III B we show how the parametersc̄L , dcL
and uL may be constrained by experiments or observati
involving neutrinos.

For the analysis to follow, it is convenient to define th
small parameters:

ea
2[udca sin 2uau2, a5L,R. ~3.4!

The flavor-changing terms in Eq.~3.2!, namely

1
2 ~eR1eR!m̄gW •~pW 2eAW !e

1 1
2 ~eR2eR!m̄gW •~pW 2eAW !g5e1H.c., ~3.5!

induce the decay processm→e1g. We shall see that its
helicity-dependent partial decay rate is;aea

2Mg3,whereM
is the muon mass andg is its Lorentz factor in the preferred
frame. This rate increases with the cube of the muon ene
rather than falling with 1/E. Thus flavor-changing Lorentz

-

to
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violations, if they are present, will causem→e1g to be-
come the dominant decay mode of muons at sufficiently h
energies.

The rate of radiative muon decay is controlled by t
muon energy and the magnitudes of the Lorentz-violat
parameters. Otherwise, it is a first-order electromagnetic
fect, not a weak decay. Its branching ratio isB
;aea

2g4Mt0 , wheret0 is the lifetime of a muon at rest
Departures from Lorentz invariance also modify the rates
allowed processes, such asp→m1n andm→e1n1 n̄, but
in these cases the conventional decay ratesG0 /g and their
Lorentz-violating corrections~of the forme2g3G0) are both
intrinsically weak. They do not involve the enormous e
hancement factoraMt0.2.631015 that appears in the
branching ratio for radiative muon decay. That is why t
most sensitive tests of Lorentz invariance in this context
obtained from the study of muons, and in particular, from
search for a lifetime anomaly of muons at ultrahigh energ

The interaction~3.5!, treated in lowest order perturbatio
theory, yields the rate for radiative muon decay. A straig
forward but tedious computation~generously carried out fo
us by Mark Wise! yields the following result for its branch
ing ratio when the muon is at rest:

B5
aMt0

4
~eL

21eR
2 !.6.431014~eL

21eR
2 !. ~3.6!

The current experimental limit@12#, B,4.9310211, yields
an upper limit on the relevant Lorentz-violating paramete

eL
21eR

2,8310226 from muon decay at rest.
~3.7!

The branching ratio for Lorentz-violating radiative muo
decay is a rapidly increasing function of the energy. Dir
searches for it do not seem feasible. Nonetheless one m
detect the onset of this mode through its effect on the m
lifetime, which for ultrarelativistic left-handedm2 ~or right-
handedm1) is

tL~g!5
gt0

11bLg4
, where bL[

aMt0

30
~68eR

21eL
2!,

~3.8!

and for ultrarelativistic right-handedm2 ~or left-handedm1)
is

tR~g!5
gt0

11bRg4
, where bR[

aMt0

30
~68eL

21eR
2 !.

~3.9!

~These calculations were also carried out for us by M
Wise.! At sufficient high energy, the lifetime of muons wit
either helicity decreases withg23 rather than increasing with
g.

The CERNg22 experiment, aside from measuring th
muon’s anomalous magnetic moment, offers a precise te
the energy dependence of its lifetime. Atg529.3 ~corre-
sponding to the ‘‘magic energy’’ at which the experime
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was performed! the results confirm the expected time dil
tion of the muon lifetime to an accuracy of one part in
thousand@13#. Because the muons in the ring favor neith
helicity when time-averaged, we obtain the limitbL1bR
,2.731029, or

eL
21eR

2,5310225 from muon g22 ~3.10!

which is inferior to that obtained from the direct search, E
~3.7!, but not by much.~The agreement between theoretic
and experimental values ofg22 provides an independen
but much weaker test of Lorentz invariance.!

The muon collider—a threat averted. Lorentz-violating
effects consistent with the above constraints could interf
with the operation of a future muon collider. In Refs.@10#
and @11#, we took as a necessary condition for its prop
functioning, that the muon decay rate at the design energ
the collider must not exceed twice its expected value. T
criterion, assuming unpolarized beams, translates to1

2 (bL
1bR)g4,1. Thus a 1 TeV collider requiresbL1bR,2
310216 ~or eL

21eR
2,3310232). The constraints discusse

above are much weaker than this. However, we sugge
that constraints sufficient to protect the muon collider mig
be obtained through studies of cosmic rays.

The highest energy cosmic-ray muons arise from forw
decays of secondary pions. These are mostly longitudin
polarized mR

2 and mL
1 , so that searches for a lifetim

anomaly of these muons can set a bound onbR , which is
proportional to the linear combination 68eL

21eR
2. Although

eL can be severely constrained by observations of neut
oscillations, it is possible thateR@eL . Absent anya priori
knowledge of the ratioeL /eR ,a bound onbR yields a 69-fold
weaker bound onbR1bL .

In particular, we suggested@10# how a comparison of un-
derground muon fluxes with different flight times but th
same slant depth in rock might yield the required constra
Following our suggestion, Narasimham and Krishnaswa
@14# have analyzed data taken at the Kolar Gold fields. Th
preliminary result isbR,8310218. An even stronger con-
straint has been obtained by Cowsik and Sreekantan@15#
from their considerations of data concerning horizontal
showers. They obtain the remarkably strong boundbR
,10225. From Eq.~3.9!, this bound corresponds to

68eL
21eR

2,10239 from air showers. ~3.11!

The results to either of these recent cosmic-ray analyses
sufficient to safeguard the muon collider from a weaken
of the relativistic dilation of the muon lifetime. Indeed, take
by themselves, they provide sensitive tests of special rela
ity. For example, the air shower result~with eL5eR and
maximal velocity mixing of muons and electrons! yields the
following constraint on the difference of maximal velocitie
of the two velocity eigenstates:

uc82cuem,4310221. ~3.12!

We shall show in Sec. III B how neutrino physics can
even better.
8-8
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B. Phenomena involving neutrinos

Although differencesamong neutrino velocities are se
verely constrained directly~by studies of neutrino oscilla
tions, discussed below! and indirectly@from constraints in-
volving muons or electrons discussed in Sec. III A viaSU~2!
gauge invariance#, there are only weak constraints on ne
trino maximal velocities as such. The current limit,ucn

2cgu,1028, results from the detection of neutrinos fro
Supernova 1987a@16#. A stronger limit, ucn2cgu,2
310216, may be set if neutrinos from gamma-ray bursts
cosmological distances could be detected@17#, but this result
pales in comparison to other tests of Lorentz invariance
have been~or could be! set.

Lorentz-violating neutrino oscillations? We showed in
Refs. @4# and @11# how CPT-conserving Lorentz violations
lead to neutrino oscillations even if neutrinos are massle8

However, observable neutrino oscillations may result from
combination of effects involving neutrino masses and L
entz violation.

Neutrinos with modest energy~even solar neutrinos! are
nevertheless ultrarelativistic particles because neut
masses are known to be small. For this reason, searche
neutrino oscillations can provide exquisitely sensitive tests
Lorentz invariance. We assume there exist three chiral n
trinos with Majorana masses given by the complex symm
ric matrix m in a flavor-diagonal basis. Conventional ne
trino oscillations are described in terms of the Hermiti
squared-mass matrixm25mm†. In particular, observable os
cillation effects depend on two differences of squared mas
and four parameters akin to the Kobayashi-Maskawa an
and phase in the quark sector.

With Lorentz symmetry violated, the description of ne
trino oscillations becomes much more complicated.
though we usually neglectCPT-violating interactions, in this
case it is hardly any work to include them. Thus, in additi
to our usual velocity-mixing term, parameterized byc, a 333
Hermitian matrix of maximum attainable velocities, we a
low the most generalCPT-odd symmetry violating interac
tion, u†bu, whereb is also a 333 Hermitian matrix. The
energies of ultra-relativistic neutrinos with definite mome
tum p are the eigenvalues of the matrix:

cp1m2/2p1b. ~3.13!

Neutrino energy eigenstates in the limit of high energy
the eigenvectors of the matrixc, just as at low energy they
are the eigenvectors of the matrixm2.

To avoid undue complexity, we limit ourselves to a d
cussion of two-flavor neutrino oscillations. Imagine neut
nos to be produced with a definite momentum and fla
(n l , wherel 5e or m! and detected after travelling a distan
R through empty space. Their oscillations satisfy a seemin
conventional formula:

P~n l→n l !512sin2 2Q sin2$DR/4%, ~3.14!

8Similar effects can result from violations of the equivalence pr
ciple rather than special relativity@18#.
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where the mixing angleQ and phase factorD appearing in
Eq. ~3.14! ~and expressed in the flavor basis! are given im-
plicitly in terms of eight convention-independent paramete

D sin 2Q5udm2 sin 2um /E12dbeih sin 2ub

12dceih8E sin 2uc u,
~3.15!

D cos 2Q5dm2 cos 2um /E12db cos 2ub

12dcE cos 2uc .

The parameters characterizing the oscillations are three m
ing angles,um , ub ,anduc , two complex phases,h andh8,
and the differences between the eigenvalues of the matr
m2, b, and c, denoted respectively bydm2, db, and dc.
~Note thatdc here is the same asdcL in Sec. III A.! To
illustrate the possibilities inherent in Eqs.~3.14! and ~3.15!,
we mention a few special cases of Lorentz-violating tw
flavor neutrino oscillations:

P~n l→n l !512
sin2$~dm2R/4E!A11~E/E0!2%

11~E/E0!4
~3.16a!

512
sin2$~dvRE/2!A11~E0 /E!2%

11~E0 /E!4

~3.16b!

512sin2 2u sin2$R~dm2/4E1db/21dcE/2!%,

~3.16c!

whereE0[dm2/(2dc).Equation~3.16a! corresponds toum
5p/4 with db5sin 2uc50. It yields maximal mass oscilla
tions for E!E0 , but essentially none forE@E0 . Equation
~3.16b! corresponds to a converse case withuc5p/4 and
db5sin 2um50: maximal velocity oscillations at high en
ergy, but none at low energy.

To obtain Eq.~3.16c!, we set all three mixing angle
equal and puth5h850. In this case, the energy-momentu
eigenstates are independent of energy. This example enc
passes all three scenarios discussed by Foot, Leung, and
suda @19# for atmospheric neutrino oscillations—each
which, they say, is consistent with the atmospheric neutr
data reported by Super-Kamiokande@20#.

Conventional neutrino oscillations depend only onR/E,
the ratio of the flight-length of the neutrino to its energy.
Lorentz symmetry is violated, the dependence of these
rameters is more complicated. Nonetheless, neutrino exp
ments performed at a variety of energies can severely c
strain the Lorentz-violating parameters. Let us give a sim
example related to accelerator searches fornm2ne oscilla-
tions. The strongest current limit ondm2 ~with sin2 2um
;1), dm2,0.09 eV2, follows from a relatively low energy
experiment@21#. Higher energy neutrino experiments, su
as Ref.@22#, offer less stringent constraints ondm2 but are
better suited to search for Lorentz-violating velocity oscil
tions. From that experiment, and assuming sin2 um;1, we
find for the difference of the maximal velocities of the tw
velocity eigenstates:

-

8-9
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SIDNEY COLEMAN AND SHELDON L. GLASHOW PHYSICAL REVIEW D59 116008
uc82cunenm
,6310222. ~3.17!

Finally, we note that stringent constraints on theCPT-
violating parameters that affect neutrino oscillations ha
been obtained from altogether different laboratory exp
ments. According to one of its collaborators@23#, the spec-
troscopic test of Lorentz invariance described in@3# con-
strains the parameterb3 ~as defined by Colladay an
Kostalecký @5#!. They obtainub3u,7310219 eV for elec-
trons andub3u,1.2310221 eV for nucleons. The former re
sult, expressed in our model and in the preferred frame,
responds loosely9 to the constraintubeeu,3310216 eV. This
result suggests thatCPT-violating effects are too small to
affect neutrino oscillations, except when the source dista
far exceeds the diameter of the Earth~as in the case of sola
or extra-solar neutrinos!.

C. Phenomena involving hadrons

To each particle species we assign a maximal attain
velocity ca . That is, we assume that a dispersion relation
the form E25ca

2p21ma
2ca

4 describes a particle of typea
moving freely in the preferred frame. Many Lorent
violating ~but CPT-conserving! phenomena may be de
scribed in terms of the purely kinematic effects of these
rameters. For simplicity, we ignore the helicity dependen
of the MAVs, although it could easily be taken into accou
Flavor-changing effects are not relevant to the phenom
discussed in this section and are likewise ignored.

The neutral kaon system. Lorentz-violating effects can be
abrupt or gradual. We gave examples of each in Sec. I—
sudden onset of vacuum Cˇ erenkov radiation by energeti
protons, and an energy-dependent modulation of the be
ior of neutral kaons. Although our primary focus here is
abrupt hadronic effects, it is illustrative to examine the lat
phenomenon in more detail. We consider the special cas
which the velocity and mass eigenstates of neutral ka
coincide, and in which the MAVs ofKL andKS are not the
same:cKL

2cKS
Þ0. This leads to an energy dependence

their apparent mass difference, as determined by obse
tions of time-dependent interference phenomena:

DM5DM urest1Mbg2~cKL
2cKS

!, ~3.18!

where g and b are the Lorentz factor and velocity of th
decaying kaons. A careful analysis of the experimental d
carried out by Hambye, Mann, and Sarkar@24# yields the
bound10

ucKL
2cKS

u,3310221. ~3.19!

Stable neutral pions?Let us turn to abrupt phenomena.
simple example involves neutral pions and photons. Supp

9Here we neglect possibleCPT violations involving right-handed
electrons.

10Other tests ofCPTand Lorentz invariance using neutral meso
are discussed in Ref.@24# and elsewhere@25#.
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that cg2cp0.0. The processp0→2g ~the dominant decay
mode of neutral pions! becomes kinematically forbidden fo
pions with energies exceedingE5mp /Acg

22cp
2 . Con-

versely, photons with energies significantly aboveE will de-
cay rapidly according to the scheme:g→g1p0. This ex-
ample is not entirely academic. Suppose, for example,

cg2cp05cg2ce5cg2cp0510222. ~3.20!

For this case, all modes ofp0 decay are kinematically for-
bidden at pion energies exceeding 1019 eV. Thus ultra-high-
energy ~UHE! primary cosmic rays may include neutr
pions ~if they are stabilized by tiny departures from Loren
invariance!, but not photons~which would be destabilized by
the same mechanism!.

Stable neutrons?Ordinarily, neutron decay (n→p1e2

1 n̄) is allowed but proton beta decay (p→e11n1n) is
kinematically forbidden. As we have seen in Sec. II D, d
partures from Lorentz invariance can affect the kinematics
decay processes. They even can invert this pattern. To
how this can come about, we examine the casecp5ce5cn

,cn . Conventional relativistic kinematics may be used
this example~with cp as ‘‘the speed of light’’!, provided that
the neutron is assigned an effective massmeff given by

meff
2 [mn

22~cp
22cn

2!pW 2, ~3.21!

where pW is its momentum in the preferred frame. Neutro
beta decay is allowed if and only ifmeff.mp1me . Ex-
pressed in terms of the neutron energyE in the preferred
frame, this condition becomes

E,E15Amn
22~mp1me!

2

cp
22cn

2
.2.731019 F 10224

cp2cn
G 1/2

eV.

~3.22!

With our choice of Lorentz-violating parameters,neutrons
with energies exceeding E1 are stable particles that can be
present among UHE cosmic rays.

In a similar manner, we can deduce the necessary
sufficient conditions for proton beta decay to be kinema
cally permitted. It is

E.E2.Amn
22~mp2me!

2

cp
22cn

2
.4.131019 F 10224

cp2cn
G 1/2

eV,

~3.23!

with E the proton energy in the preferred frame. For th
particular example,protons with energies exceeding E2 are
unstable particles that cannot be present among UHE c
mic rays.

The above results are expressed in terms of a nom
choice,cp2cn510224, lying beyond the sensitivity of cur-
rent tests of Lorentz invariance. Thus it is conceivable t
the highest energy cosmic-ray primaries are stable neutr

Evading the GZK cutoff? Soon after the discovery of th
cosmic background radiation~CBR!, Greisen@26# and Zat-
sepin and Kuz’min~GZK! @27# saw how it limits the propa-
gation of UHE cosmic rays. Primary nucleons with sufficie
8-10



is
a

n-

n
l d

cu
cu

ff
f

ic
ZK
oo
t
en
n
os

a-
n

a

n
i

If
is
c

at

his
u-

e

toff

e

ns,
or
off

est
ativ-
her

ic
ical

ri-
can

and
nts

UHE
t.

eu-

ice-
in

HIGH-ENERGY TESTS OF LORENTZ INVARIANCE PHYSICAL REVIEW D59 116008
energy will suffer inelastic impacts with CBR photons. Th
results in what is known as the GZK cutoff, saying th
nucleons with energies.531019 eV cannot reach us from
further than;50 Mpc. However, the primary cosmic-ray e
ergy spectrum seems to extend well beyond 1020 eV @28#.

The mechanism producing UHE cosmic rays is unknow
Exotic origins have been suggested, such as topologica
fects, active galactic nuclei, and gamma-ray bursts@29#.
These schemes are constrained or ruled out by the GZK
off. Other explanations are designed to evade the GZK
off: a primary flux of magnetic monopoles@30#, ‘‘ Z-boson
bursts’’ produced by collisions of cosmic UHE neutrinos o
relatively nearby relic neutrinos@31#, and decay products o
hypothetical super-heavy relic particles@32#.

We have little to say about the origin of UHE cosm
rays. Rather, we point out that there may not be a G
cutoff after all. Tiny departures from Lorentz invariance, t
small to have been detected otherwise, have effects tha
crease rapidly with energy and can kinematically prev
cosmic-ray nucleons from undergoing inelastic collisio
with CBR photons. The cutoff thereby undone, a deeply c
mological origin of UHE cosmic rays becomes tenable@33#.

To see how the GZK cutoff is affected by Lorentz viol
tion, consider the formation reaction yielding the first pio
nucleon resonance:

p1g~CBR!→D~1232!, ~3.24!

by which a nucleon with energyE collides inelastically with
a CBR photon of energyv. The target photon energies are
thermal distribution with temperatureT52.73 K, or kT
[v052.3531024 eV. For a head-on impact, the conditio
Eq. ~2.20! determining whether the reaction can take place
approximately

2v1
M p

2

2E
>~cD2cp!E1

MD
2

2E
, ~3.25!

wherecD2cp is the relevant Lorentz-violating parameter.
cD5cp , Eq. ~3.25! yields the usual threshold energy for th
process,Ef5(MD

2 2M p
2)/4v. Otherwise it yields a quadrati

inequality in E which can be satisfied if and only if (cD

2cp), d̂(v)[v/2Ef . As cD2cp is increased towardd̂, the
threshold for the formation reaction grows toward 2Ef .
However, if it exceeds its critical value,

cD2cp.
2v2

MD
2 2M p

2
.1.7310225@v/v0#2, ~3.26!

reaction ~3.24! becomes kinematically forbidden for allE.
Recalling that the photon spectrum is thermal, we see th
cD2cp;d̂(v0), the GZK cutoff due to resonantD~1232!
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formation would be relaxed. Should it much exceed t
value, the formation reaction would be precluded off virt
ally all CBR photons.

Reaction~3.24! is the dominant process leading to th
GZK cutoff as originally formulated. However, ifD~1232!
formation is not possible, a weakened version of the cu
may result from nonresonant photoproduction:

p1g~CBR!→p1p. ~3.27!

If cp5cp , the threshold energy for pion production isEp
5Mp(2M p1Mp)/4v. However, ascp2cp is increased
from zero, the threshold grows. AsE→`, the pion energy
Ep must remain finite. Equation~2.20! yields the kinematic
condition for reaction~3.27! to occur

2v>~cp2cp!Ep1
mp

2

2Ep

. ~3.28!

This condition may be satisfied if and only if

cp2cp, d̃~v![
2v2

mp
2

.5310224@v/v0#2. ~3.29!

Reaction~3.27!, and multiple pion production as well, ar
kinematically forbiddenat all proton energiesif cp2cp

. d̃(v). For the actual case of a thermal gas of photo
cp2cp;d̃(v0) would suppress photopion production,
even eliminate it entirely so that no vestige of the cut
survives.11

At present, lacking detailed observations of the high
energy cosmic rays and more precise tests of special rel
ity, we must regard as an intriguingly open question whet
there is a GZK cutoff, and consequently, whether cosm
rays with energies above the cutoff can travel cosmolog
distances.

Finally we note that tiny departures from Lorentz inva
ance, such as we have discussed earlier in this section,
explain the remarkable correlation discovered by Farrar
Biermann: that the five highest energy cosmic ray eve
appear to point toward compact radio-loud quasars@34#. We
suggest that these events could have been produced by
primary neutrons arising from sources at large redshif
These particles could be stable ifcp.cn ; they could be im-
munized against the GZK cutoff ifcp.cn . They are unde-
flected by intergalactic magnetic fields because they are n
tral.

11Noted that much larger~and experimentally intolerable! viola-
tions of Lorentz invariance would be needed to produce a not
able effect on the interactions of UHE cosmic rays with nuclei
the atmosphere.
8-11
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IV. CONCLUSIONS

A wide variety of experiments and observations offer ve
precise tests of special relativity. Many of these results
be interpreted in terms of differences of MAVs of differe
particles, such as would result from Lorentz-violating~but
CPT-conserving! perturbations of the standard-model L
grangian. The strongest constraints of this kind of which
are aware have been mentioned earlier and are listed be

cp2cg,1310223 Sec. I @4#

ucm2cgu,6310222 Sec. I @2#

uc82cunenm
,6310222 Sec. III B @22#

uc82cume,4310221 Sec. III A @15#

ucKL
2cKS

u,3310221 Sec. III C @24#

Two of these constraints result from cosmic-ray obser
tions, the others from experiments performed at very h
~accelerator! engines, or in one case, at low energy. They
consistent with strict Lorentz invariance to a precision
more than twenty-one decimal places. Possible symm
violations, if present at all, must be exceedingly small. H
much further must experimenters test special relativity; wh
is enough enough? Our analysis addresses this question

We have seen that maximal velocity differences lying t
or three orders of magnitude below the current bounds
produce dramatic observable effects. Some would supp
or forbid the processes underlying the GZK cutoff, there
permitting UHE cosmic-ray nucleons to travel cosmologi
distances. Another could stabilize UHE cosmic-ray neutro
which would point toward their astrophysical sources. Ma
mal velocity differences of neutrinos can help to explain
observed properties of both solar and atmospheric neutri

Fortunately, much can be done. Further observations
UHE cosmic rays are essential. They may confirm a p
dicted ‘‘bump’’ just below the cutoff@35# resulting from
products of inelastic collisions of primary protons with CB
photons, thereby providing evidence for the GZK cutoff. O
they could belie the cutoff by confirming the Farra
Biermann contention@34# that the highest energy even
originate at cosmological distances. Dedicated searches
velocity oscillations of solar neutrinos, or of accelerato
produced;TeV neutrinos at baselines of;1000 km, could
reveal Lorentz-violating neutrino velocity differences
small as 10225. Finally, laboratory searches for diurn
anisotropies more sensitive than any done before have
come feasible@36#.
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APPENDIX: WRONG REASONING MADE RIGHT

In our first paper on this subject@14# we advanced an
argument for neglectingCPT-odd Lorentz-violating interac-
tions.

The argument was based on studies@37# of an electro-

magnetic interaction proportional to1
2 e0i jkAiF jk5AW •BW .

~This term is not gauge-invariant but it makes a gau
invariant contribution to the action.! The new term makes an
addition to the space-space part of the photon self-energ

P i j ~p!→P i j ~p!1 ime i jkpk, ~A1!

wherem is a constant with dimensions of mass. The add
term causes vacuum birefringence; the experimental abs
of this effect in radio-astronomy observations of distant q
sars and radio galaxies leads to a very stringent upper bo
m<10233 eV. In Ref. @4# we argued that anyCPT-odd
Lorentz-violating interaction would induce an addition to t

Lagrangian proportional toAW •BW . Thus the extreme smallnes
of m is evidence for the extreme smallness of allCPT-odd
interactions, and further searches forCPT-violating effects
are pointless. Unfortunately, this argument is invalid.

Let us consider interactions for which the Lagrange d
sity ~not just the action! is invariant under electromagneti
gauge transformations; for brevity, we will refer to the
simply as ‘‘gauge-invariant interactions.’’ We will show tha
to first order in any gauge-invariantCPT-odd interaction, and
to any order in the Lorentz-invariant interactions,m van-
ishes. ~This confirms the expectation that gauge-invaria
terms in the Lagrange density cannot induce gau
noninvariant ones.! Thus the fact thatm is known to be tiny
offers no strong constraint on the magnitude of gau
invariantCPT-violating interactions.

It is useful to analyze a simple example before giving o
proof in full generality. LetGmn(p,q) be the one-particle
irreducible~1PI! Green’s function for two photons and on
Lorentz-violating interaction Lagrangian. Here the phot
with indexm ~n! carries momentump ~q!. @Thus the Lorentz-
violating interaction carries momentum2(p1q).# In first
order in the Lorentz-violating interaction

Pmn~p!5Gmn~p,2p!. ~A2!
8-12
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Because the Lorentz-violating interaction is assumed to
gauge invariant,G obeys the Ward identities

pmGmn~p,q!50, ~A3a!

and

qnGmn~p,q!50. ~A3b!

Now let us assume we computeG by summing only those
diagrams that have no internal photons. These diagrams
only massive-particle12 internal lines; thus, in this approxi
mation,G is analytic atp5q50. Differentiating Eqs.~A3a!
with respect topm and settingp50, we find Gmn(0,q)50.
Thus every nonvanishing term in the Taylor expansion oG
has at least one factor ofp; G is O(p). The same reasonin
applied to Eq.~A3b! tells us thatG is O(q). Sincep andq
are independent variables,G is O(pq). Thus, by Eq.~A2!,
the addition to the self-energy isO(p2) and makes a vanish
ing contribution tom.

The proof we have given rested on analyticity at vani
ing momentum. Unfortunately, internal photons can prod
singularities at precisely this point. In the remainder of t
appendix we study these singularities and prove the follo
ing.

Theorem. Let Gm1 . . . mn

(n) (p1 . . . pn) denote then-photon

1PI Green’s function, and let us introduce a uniform scal
parameterl by replacingpa by lpa . Then to either zeroth o
first order in theCPT-odd interaction, and to any finite orde
in the Lorentz-invariant interactions, and for any positivee,
G (n) vanishes asl goes to zero more rapidly thanln2e.
~Note that our announced result,m50, is a corollary of this
theorem forn52.)

The proof proceeds by induction in the number of inter
photon lines.

We begin with the case of no internal photon lines. In t
caseG (n) is analytic at vanishing external momentum, and,
first order in the Lorentz-violating interactions, the argume
is a straightforward generalization of that for the simple e
ample above. We treat then external momenta as indepe
dent variables, letting the Lorentz-violating interaction ca
off the momentum inserted at the photon lines. We then
the Ward identities to show that the leading term in the T
lor series isO(p1 . . . pn)5O(ln).

This does not work in zeroth order in Lorentz violatio
because there is no Lorentz-violating interaction to carry
the momentum. The best we can do is to chooseq1 . . . qn21
as our independent variables and use the Ward ident
to show that the leading term isO(p1 . . . pn21)
5O(ln21).However, the term zeroth order in Lorentz vi
lation is Lorentz invariant, and there is no Lorentz-invaria
way to construct a rankn tensor as a multilinear function o
n21 independent vectors. Thus this term must vanish,
the leading term is at bestO(ln).

12Neutrino masses may be tiny on the scale of high-energy p
ics, but they are enormous on the scale of radio waves.
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To prove the inductive step, we need some informat
from the once well-known theory of Feynman-diagram s
gularities@38#. For real external momenta, the case of int
est here, the theory can be reduced to a set of simple a
rithms: ~1! A given Feynman graph generates a family
reduced graphs, each obtained by taking some proper su
of the internal lines of the graph and contracting them
points.~2! The reduced graph leads to a singularity if it c
be interpreted as a diagram of a classical process occurrin
space-time, with all particles~that is to say, all uncontracte
internal lines! on the mass shell and moving forward in tim
~3! If there is a singularity, the associated discontinuity
calculated by the usual Feynman rules except that (p22m2

1 i e)21 is replaced byd(p22m2)u(p0) in the propagators
for the uncontracted internal lines.

We are now ready to use induction. We assume the th
rem is true forr or fewer internal photon lines and consid
the singularities of graphs withr 11 internal photons. Since
all energies inserted into the graph are arbitrarily small, th
is not enough energy to create a massive particle and
massive-particle lines must be contracted. Thus the redu
graph contains only photon lines, joined together at verti
which represent contracted subgraphs of the original gra
If we sum, in some fixed order of perturbation theory,
graphs leading to the same reduced graph, the vertices
come theG’s at the appropriate order of perturbation theo
~We are being a bit sloppy here: subgraphs of a 1PI gr
need not be 1PI, so the vertices can contain tree gra
However, it is easy to check that these have no effect on
power-counting of the next paragraph.!

Because some of the internal photons in the original gr
must be uncontracted, anm-line vertex in the reduced grap
must haver or fewer internal photon lines and, by the indu
tive hypothesis, must vanish at smalll more rapidly than
lm2e. It will be convenient to consider this as one factor
l12e for each photon line attached to the vertex. We c
now compute thel-dependence of the discontinuity. Eve
external photon contributes a factor ofl12e. Every internal
photon contributes a factor ofl22e from its two ends and a
factor of l22 from thed-function, yielding no net contribu-
tion. Every independent loop integration contributes a fac
of l4. Thus the discontinuity vanishes faster thanln14L2e,
whereL is the number of loops. This in turn vanishes fas
thanln2e, which is the result we need.@It is critical that we
are computing the discontinuity and not the fullG. The
d(p2)u(p0) propagators in the reduced graph keep the in
nal momenta small when the external momenta are small
legitimize the use of a small-momentum bound for the v
tices.#

Once we have the discontinuity, we can construct a fu
tion with that discontinuity, for example, by integrating
dispersion relation. This function also vanishes faster th
ln2e. ThusG (n) is the sum of a singular function that van
ishes faster thanln2e and a function that is free of singu
larities, that is to say, an analytic function. But we can u
the same arguments for the analytic function that we used
the case of no internal photon lines to show that it vanis
like ln. This completes the proof.

s-
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