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In the heavy quark limit, the heavy baryomg) (w stands for%, E or Q andQ=b or c) are regarded as
composed of a heavy quark and an axial vector, light diquark with good spin and isospin quantum numbers.
Based on this diquark picture we establish the Bethe-SalgB®&requation forwg) in the limit where the
heavy quark has infinite magssi,— . It is found that in this limit there are three components in the BS wave
function forwg*) . Assuming the kernel to consist of a scalar confinement term and a one-gluon-exchange term
we derive three coupled integral equations for the three BS scalar functions in the covariant instantaneous
approximation. Numerical solutions for the three BS scalar functions are presented, including a discussion of
their dependence on the various input parameters. These solutions are applied to calculate the Isgur-Wise
functions ¢(w) and ¢(w) for the weak transitions()g*)ﬁﬂ(c*). Using these we give predictions for the
Cabibbo-allowed nonleptonic decay widths and up-down asymmetrieﬁgesﬂf:*) plus a pseudoscalar or
vector meson[S0556-282(199)07909-4

PACS numbegps): 11.10.St, 12.39.Hg, 14.20.Lq, 14.20.Mr

I. INTRODUCTION theoretical studies of heavy baryon properties to begin.
Theoretically, HQET can simplify the physical processes
The physics of heavy hadrons has been a subject of innvolving heavy quarks, since with the aid of HQET the
tense interest in recent years. One reason for this is that mof!mber of independent form factors is reduced. For instance,
and more experimental data are being accumulated. Anoth&} leading order of the g expansion only one form factor
reason is the discovery of the new flavor and spin symmetrighe Isgur-Wise functionremains for the\,,— A transition,
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establishment of heavy quark effective the¢dQET) [1]. 40 Isgur-Wise functiongNote thatw{” is a notation im-

However, in comparison with the heavy meson case, heavg

. . lying either g or wg.) The behavior of these functions
baryons have been studied much less, both experimental epends on the nonperturbative effects of QCD which con-

and theoretically. . o ) trol the dynamics inside a heavy hadron. Hence some non-
On the other hand, the experimental situation with heavyye rhative QCD model has to be adopted from which these
baryons has been improving recently, with more measurersgyr-Wise functions can be obtained. In previous wi@k
ments becoming available. For instance, OPAL has meape established the Bethe-Salpet&®S) equation forAq,
sured some physical quantities far,, such as its lifetime which is assumed to be composed of a heavy quarkand
and the production branching ratio for the inclusive semilep-a scalar diquark. Some theoretical predictions fgy— A .
tonic decayA ,— Al ~vX [2]. Furthermore, measurements of Were also obtained. It is the purpose of the present paper to
the nonleptonic decay of,, have also been made, through generalize such an approach to the heavy baryof§d,, and
the well-known process\,—AJ/y. The discrepancy be- consequently give some phenomenological predictions for
tween the measurements made by U&land those by the the weak decays of such baryons. _
Collider Detector at FermilalfCDF) [4] and CERNe'e™ When the quark mass is very heavy compared with the
collider LEP Collaboration§5] appears to have been settled QCD scaleAqcp, the light degrees of freedom in a heavy
by the new measurement from CDE]. However, compared Paryon,Aq (Q=b orc), become blind to the flavor and spin
with D and B mesons, the data for heavy baryons are stilduantum numbers of the heavy quark because of the
very limited. In addition toA,, there have been few data on SU(2)¢x SU(2) symmetry. Therefore, the light degrees of

other bottom baryon§7], although we expect more data to re€dom have good quantum numbers, including angular mo-

; N .~ mentum and isospin. These quantum numbers can be used to
appear in the near future. Clearly the time is right for serlousClassify heavy baryons. For example, the light degrees of
freedom of A5 have zero angular momentum and isospin.
e . _ _ For 3%, the angular momentum and parit§ of the light
. Email address: xhguo@physics.adelaide.edu.au degrees of freedom are"1and the isospin is also 1 in order
Email address: athomas@physics.adelaide.edu.au to guarantee that the total wave function of the hadron is

Email address: awilliam@physics.adelaide.edu.au antisymmetric. Hence it is natural to consider the heavy
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baryon to be composed of a heavy quark and a light diquarkwhere u(v) is the Dirac spinor andi,(v) is the Rarita-

This is our underlying assumption. Schwinger vector spinoB}(v) satisfies the following con-
Based on the picture of the composition of the heavyditions:

baryon which we have just presented, the three body system

is simplified to a two body system. We establish the BS $B(v)=B}(v), v*B(v)=0, y“Bi(v)zO. 2

equation for the heavy baryona{”’, in this picture. The

heavy quark symmetry can be used to simplify the form ofThe above constraints fan=1 can be seen frongu(v)

the BS wave function greatly. It can be shown that in the=u(v) while for m=2, they are the properties of a spin-

limit mg—oo there are three components in the BS waveRarita-Schwinger vector spinor.

function, and hence we have three corresponding scalar func- Under a Lorentz transformatiof [10],

tions. We solve the BS equation numerically by assuming )

that the kernel contains a scalar confinement term and a one- B,—A.DA)B,, &)

quon—exchgnge term. The explicit dependence _Of the _B§vhereD(A) is the spinorial representation a&f. Under the

wave function on the parameters of the model _W|II be Q'S'heavy quark spin transformatigs],

cussed. Furthermore, we calculate the Isgur-Wise functions

in terms of the BS wave functions and give theoretical pre- B,— — vs0€éB,, (4
dictions for the Cabibbo-allowed two body nonleptonic de-
caysz—>Q§*) plus a pseudoscalar or vector meson. where e=e;,e,,e; are three mutually orthogonal four-

dimensional unit vectors which are also orthogonal t.e.,
e-v=0) andeiz: —1(i=1,2,3). The three unit vectors are
associated with the heavy quark spin operators which are
generators of th&U(2), symmetry.

Sincewg‘) is composed oftg andA,,, we can define the
BS wave function o’ by

The light degrees of freedom @f$’ belong b a 6 rep-
resentation of flavor S(3). Taking Q=b as an example,
o) includes 307 2% and Q). The total
spins ofwg and w’é are 3 and 3 respectively. There is no
strange quark irEQ*) while there is one strange quark in
E&) and two inQ§) respectively.

The remainder of this paper is organized as follows. In
Sec. Il we establish the BS equation for the heavy quark and
axial vector light diquark system a.m'd discuss the form of thewhereP=m w0 is the total momentum ab®) andw is its
kernel. In Sec. Ill we derive explicitly the coupled integral @ Q
equations for the BS scalar wave functions. In Sec. IV wevelocity. Letmg andmp be the masses of the heavy quark
discuss the normalization condition of the BS wave functionand the light diquark in the baryon. Let us defing
by exploiting the normalization of the Isgur-Wise function at =Mgq/(Mg+mp) and\;=mp/(Mg+mp) and letp be the
the zero recoil point_ The numerical solutions of the BSI’E'&tiVE momentum of the two constituents. The BS wave
equation and their dependence on the parameters in offnction in momentum space is defined as
model are presented in Sec. V. In Sec. VI we calculate the
Isgur-Wise functions and give predictions for the decay m _ iP-Xf

. X (XI!XZIP) €
widths and up-down asymmetry parameters Sfbcr—&f:*) #

plus a pseudoscalar or vector meson. Finally, Sec. VI con- ] ]
tains a summary and discussions. whereX=N\;X;+ \ X, is the coordinate of the center of mass

and x=Xx;,—X,. The momentum of the heavy quark 5
=\.P+p and that of the diquark ip,=—\,P+p.
Il. BS EQUATION FOR It can be shown thaj%,,(p) satisfies the following BS
equation[13]

Xu(X1,%2,P)=(0[Tyhg(x1) A (Xo) [0 (P)),  (5)

4

(ZT)Aleip'Xx,Tﬂ(p), (6)

As discussed in Sec. b)g‘) is regarded as a bound state

of a heavy quarkiq, and a light axial vector diquarlé,, . dq
In the following, ug denotes the Dirac spinor afg and 7, Xbm(P)=Se(N 1P+ p)f 2Gpu(P.p,a)
represents the polarization vector Af,. ThenB,=uqg7, (2)
; i3
can be decomposed into spinand spin3 states[10,17]] X xb (@) SE(—AoP+p), @

which representvg and a)’é respectively. These two states

are degenerate in the heavy quark limit. Using the notation ofvhereG,,(P,p,q) is the kernel, which is defined as the sum

Refs.[11,17 this doublet is described bB’T(v), wherem  of all the two particle irreducible diagrams with respect to

=1,2 correspond tag and w’é respectivelyp,, is the ve- the heavy_ quark and the Iight diquark. For convenience, in
locity of the heavy baryon anl, =B}, + B2 [10]. Explicitly, ~ the following we use the variables

we can write pIEU'p_)\me8‘>v ptzp—(v.p)v. (8)

1 . . .
B,lL(U): ﬁ()’;ﬁv“))’su(v), Then in the leading order of thertiy expansion we have

B2(v)=u,(v) (1) Se(AP+p)= e —, 9
M Y2 ’ 2(p|+Eo+mD+|€)
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where E, is the binding energy. From Eqgé7) and (9) it
follows that x5,(p) satisfies the following equation:

U XBm(P)=XBm(P). (10) Pz P Py v
The propagator of the light axial vector diquark has the form

g/,w_ pZ,upZV/sz

Spur(P2) = —i : (13)
Dur P2 ps—m3+ie
In the limit mg—o we havep,=—mpv +p and hence we
have
SD,U.V(pZ) My a
2 FIG. 1. The vertex of two axial vector diquarks and a gluon.
= g;LV_v;LUV_ p;LpV/mD+ (vp,pv—’_vvp,u,)/mD
pi—Wi+ie ' Consideringp“=uv - pv*+p¥, and using the constraint
LRMA A . )
(12) v#B,(v)=0, it will be convenient to define

whereW,=/pZ+m3. The corrections to Eqg9) and (12) A=A, C=A,+v-pA;, D=A;,
are fromO(1/mg) terms. which results in the following expression for the BS wave

Now we discuss the form of the BS wave function ¢, tion:
Xbm(P). In the heavy quark limit, as a result of t1$dJ(2),
XSU(2); symmetry, the internal dynamics of the heavy Xbm=ABi(v)+ Cv#py,Br(v)+Dpép,Bm(v). (17)
baryon,wg‘), is determined by the light degrees of freedom
and the flavor and spin direction of the heavy qudk,is
irrelevant. Consequently we hay&0,12

A,C andD in Eq. (17) are functions ofp, andp?. Their
behavior is controlled by nonperturbative QCD. Our aim is
to obtain explicit forms for them with some QCD-motivated

xp(p)=ug(v)7,{*"(v,p) (13)  model for the form of the BS kernel.
Motivated by the success of the potential mgdel], sca-
and lar confinement and one-gluon-exchange terms were used in
(0|A,Jlight, 1) = 7,{*"(v,p). (14)  the kernel when studying q in Ref.[9]. This form was also

used in the heavy meson case in Réf5]. In the present
Sincev - »=0 [10], the tenso*”(v,p) can be expanded work we will also adopt this form of the kernel
as iGP'=g""1®IV;+v,#"V,, (18)
(v, p) =A19""+ Au#pr+ Azptp”, (15

whereI'#?” is the vertex of a gluon with two axial vector
where A;(i=1,2,3) are Lorentz scalar functions. After ex- diquarks. This vertex should reflect the internal structure of
pressinguq 7, in Eq. (13) in terms ofBJ(v)(m=1,2), we  the diquark. In this work, we use the model proposed in Ref.
have the following form for the BS wave function: [16] where this vertex has the following forfsee Fig. 1

a

_ v v A
Xpm=A1B(v) +A*p,Br(v)+Azp“p,Br(v). —j ?gSFILPVFV(QZ)l (19)

(16)

Therefore, we have three components in the BS wavavith
function, x&£.(p), and they correspond to three scalar BS wpv_ INIA PP (PP o ! P Y
functionsAT(ni]=1,2,3). This is consistent with our diquark r (P2+P2)"g™ = (p20""+p2"g"™).
picture for wg‘). In the heavy quark limit, the dynamics In Eqg.(19), g is the strong interaction coupling constant and
inside the heavy baryon is controlled by the configuration ofF(Q?) is introduced to describe the internal structure of the
the light degrees of freedom. Since the light diquark is'a 1 axial vector diquark. The form factoF,(Q?), depends on
object, it has three different configurations. Consequentiynonperturbative QCD interactions and will be determined
there are three components in the BS wave function whictphenomenologically, by comparison with experiment.
describe the dynamics in the heavy baryog) . As discussed in Ref9], when we consider the vertex of

In fact, we can derive the form ofZ (p) in another way. two heavy quarks with a gluon, the momenta of the two
We may first write out all the possible terms which have theheavy quarks argy=Xim, v +p andp;=X\;m, v+q re-
same behavior agf,(p) under Lorentz transformations. spectively, whergp and g are relative momenta and of the
Then by applying the condition, E¢10), and ensuring the order Aqcp. In the heavy quark limit the heavy quark is
proper behavior under the heavy quark spin transformatiorgalmost on-shell and moves with constant velocity. It can be
Eq. (4), we obtain the same result as given in ELp). shown thatp,=q, at this vertex when the heavy quark is

116007-3



X.-H. GUO, A. W. THOMAS, AND A. G. WILLIAMS PHYSICAL REVIEW D 59 116007

exactly on-shell. This is the so-called covariant instantaneous —i

approximatior{9,15]. With this approximationy; andV, in XBm(p)= . —Mf, (21
G*"(P,p,q) are replaced by " (pi+Eg+tmp+ie)(pf—Wi+ie)
where
Vi=Vil—q  (i=1,2). 20
i=Vilp=q ( ) (20) _ ) (0,9, Pu0,) PP,
mu=H Gup~Vuly mp m2
D
14

Ill. COUPLED INTEGRAL EQUATIONS FOR THREE BS q v

SCALAR WAVE FUNCTIONS XJ (277)4[Gp (P ) xpml(@]lp=qp (22

In this section we will derive explicitly three coupled in- and we have made explicit use of the covariant instantaneous
tegral equations for the BS scalar wave functions. Substitutapproximation.
ing Eqs.(9) and(12) into Eq.(7) and considering the form of Substituting Eqgs(17), (18) and (19) into Eq. (22) and
the kernel in Eq(18) and the property in Eq10), we obtain  again using the covariant instantaneous approximation we
the following form for the BS equation have

4

d'q
(2m)*

d*q
(2m)*

~ ~ 1 ~ ~ ~
M$=B‘nﬁ(v)j A(V1+2p Vo) + m—DU”J {Pe- Bm(v)A(V1+2p Vo) +(pr+mp)[ —Ap- Bry(v) Vo

+0y Bn(v)(CVy = Dpy- GV2) 1+ P Gl Brn(v)[ — CVo+ D (V4 +2p, V) 1}

1 d*q - - - - -
- _zp”f (Zw)4{pt'Bm(U)A(V1+ 2p Vo) + pil —Ap- B(v)Va+ G- Bn(v)(CV1—Dpy-qiV2)]

A

: 2:)4qf‘qt- Bra(v)[ — CVy+ D(Vy +2p V) . 23

We notice that in Eq(23) there are terms of the forff{ d*q/(27)*]g/f and[[d*q/(27)*]g/q, f, wheref is some function
of p?,g% andp-q. On the grounds of Lorentz invariance, in general we have

+ Py Gl Bn(v)[ = CVo+D(Vy+2pVy) I} + f

d*q
f(zﬂ)4q{‘f=f1v“+fzp€‘ (24
and
d4q 14 v 14 14
f —(277)4q€‘qtf=glg" + Qv 0"+ gv”py +gav P+ gsPEPy - (25

From Eq.(24) only the f, term can contribute, while from Ed25) only the g;,g; and gs terms can contribute, since
v,Bp(v)=0. It can be easily shown that

. _f d'q p-ay
- PGt
(2m)* pf

2

f d‘q  (p-a0)2—pg?
0.=

fy

(2m)* 2p?
03=0,
d‘q 3(p;-a)?—pZa?
(27r) 2p;

With the aid of Eqs(24), (25) and(26) we can expresM £ in Eq. (23) in terms of B/ (v), v#p.,Bi(v) andpfp;,Bm(v).
Let us define

~ d ~ d ~ d
AD= [ oeacmpf), D)= [ gaconpd), Bd= [ 5eDe.6)). @)
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whereA, C andD are functions ofp? only. Then one obtains the expression

2.
[A(V1+2p|vz) (P g2 : p; qtvﬁb(pt Q02— (V1+2p|V2)

2py 2pt

M#&=BE

P A, (Pt G %
(P2—m3)—5 "V +p———V,
t t

1 d3q, - - ) o o
+FU P B (2m)° —AlpVit+(pr+mp)Va]—C

+~(pt Qt)

t

AV1+p V)

[piV1+(pj +mD)V2]] m — bi'pB

+Clp

7 Vit
pt ZP?

Pt G %(3(pt-qt)2—p?qtz)+2p?(pt-qt)2v l
2

m2(3(p.-a.)2— p2g2) + 202(p: - 0% _ B 3
_ b(3(Pt- o) “—pidr) +2p; (P~ dy) (V1+2p|V2)+p|(pt qp)? Pedg,

+
2 p? pt

@)

] (28

In Eqg. (21) there are poles ip, at W,—ie, —W,+ie and —E,—mp—ie. By choosing the appropriate contour, we
integrate ovemp, on both sides of Eq(21) and obtain the following three coupled integral equations&p€ andD:

-1 (pt'Qt)Z_ptZQtz~
A(p?)= f A —2W, V)~ C(D)——————V
(pt) 2W (EO+mD p) (2 [ (Qt)( 2) ( ) 2p,[2 2
42 n2n2
" 5<q$>(mqg—2ptqt<\71— 2wpvz>} , (29
t
Ep?) -1 | U ()W, [ (o mo) W+ Vo)
= m m
P MW, (Egrmo—W) ) (2m)3 | LTl bl
2
+B(0D)] = P (Bt mo)Wo— mE IV, + W, (ptpq‘) v,
t t
(p q)
+D(g)) 5 {~ W V1 +[(Eg+ Mp) W, + m3 TV} (30)
t
- 1 B | ~ - -
D(p?) = f A(g)(V,—W.,V
(pY) 2m2DWp(EO+mD_Wp) (2m)3 (a) (V1 nV2)
+ () pt'Qth . ma[3(pe- ) *— Prd; ]+ 2pF(py- )’ v
- 1 2
t pt2 P Zpt
- m3[3(p;- qp)%— +2
_ (Qtz) ol3(pt-ay) ZtPQt] pt(pt Qt) (V _ow V2)+(ptht) WpV2 (31)
t t

If one knows the form for the kerne¥}; andV,, thenA(p?), C(p?) andD(p?) can be obtained from Eq29), (30) and
(31). Consequently from Eqg17), (21) and (28) we find the following expressions fa@(p, ,p?), C(p,,p?) andD(p,,p?):

—i o |~ L, - o~ (pa)?—piai.
A(p,,p?) = A(a®)(V,+2pV,) —C(gP)————V
(P1.P) (p|+E0+mD+ie)(p|2—W§+ie)f(277)3 (@)W 2p¥) i) P
~ (p¢-ay)
+B(q )%(Vﬁzplvz)} (32)
t
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—i d®q,
C(p,,p?) = f —A Vi+(pP+md)V
(py,PY) m%(p|+E0+mD+ie)(p|2—W,2)+ie) (2m)? (@A)[p\V1+ (p2+m3)V,]
~ Pt q (P A0 | = L (Pra)?
~C(@d)| (p?-md)— Wﬁﬁ|t&tVz+DM) IVt (pE+m) Va1 (33)
t t t
D(p.p?)= | f T | % (02 Vot pi¥)
o (b Eo+ mo+ i) (= Wetie)) (2m)3 | T P2
_ . _ m2 3 . 2_ 242 ) 2 . 2~
LB Py th 01+ ol 3(p¢-ay) ptt}] Pr(Pt- Ao v,
Pt 2py
- ma[3(p;- +2 -
+D(qt2) _ ol 3(p; Qt thQt] pt Pt- Qt) (V1+2 |V2)+(ptpqt) oV, (34)
t t

A model kernel, specified in terms b, andV,, for the BS equation in the scalar light diquark case was given in[8Efin
the present axial vector diquark case, a model vertex for a gluon with twdiquarks is given in Eq(19), whereF(Q?)
describes the internal structure of the light diquark. Following RE8] we take the form folF(Q?) as

(eff) 2
2y _ A Ql
Fv(Q9) —QZ"‘Q? (35

where Qi is a parameter which freezds,(Q?) when Q? is very small. In the high energy region the form factor is
proportional to 102, which is consistent with perturbative QCD calculatigig]. By analyzing the electromagnetic form
factor for the proton it was found that selecti@j=3.2 GeV can lead to results consistent with the experimental degh
Note that in Eq(35) we do not consider the difference between longitudinal and transverse polarization states. The reason is
that we are considering the bound state with a blndmg energy of drges; so this difference should be smidkee Ref[16],
where this difference is a facthl(Qer Qz) with Q2 approximately 15 Ge¥ so this factor is close to 1 in our discussjon

Based on the above discussion, the kernel for the BS equation in the baryon case is taken to have the following form:

- 87k
Vi=—————————(2m3%(p—qp)
T lpe gt oo PCa

Xf d3k 8k
(2m)® (K+ u?)?’

V.o 16w a'#M2Q? .
23 [(p g0+ p2l(p— a2+ Q2

where x and ageff) are coupling parameters related to scalar confinement and the one-gluon-exchange diagram respectively.
The second term o¥, in Eq. (36) is the counter-term which removes the infra-red divergence arising from the linear
confinement in the integral equation. The parametds introduced to avoid the infra-red divergence in numerical calcula-
tions. The limitu—0 is taken in the end. Beadé}f there are two parameters,and a(eﬁ) in the kernel. However, they
should be related to each other when we solve the coupled integral equ@&n&30) and (31). This will be discussed in
detail in Sec. V.

Since we now have an explicit form f&; andV, in Eq. (36), we can reduce Eq$29), (30) and(31) to one dimensional
integral equations. With the aid of the formulas given in the Appendix we obtain the following equations frof2#g&0)
and (31):
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8 (1o ) + P e (ol i) — Fallpdlad Qo))
TKE1([Ptf, ]G 3(Q7— u?) 20IPtl: 1l 2UIPtl5 1G], Q1

A(q?

A(p?) = -1 thdqt
P oW, (Egtmo—W,) ) 472

- 1 gidg, 8B
—OTK l(lpt| |qt| pt) _2Wp(EO+mD_Wp) 471_2 3(Qi—

2) [ il —Fa(|pd.lad ) +Fa(lpd.lad . Qo)1

aZF1(pd.]ad)

= F P o)~ Fallpd . Q01 () + - fqtdqt“
o2l 4 Pels[Gels p) = Fal[Pil, 1], Qe A 2Wp(Eo+tmp—Wp) ) 472 e

t

(odilad) |+ =P | c2telod.ladow) — Fallpd lad Qo)1+ —s[Fa(lpd o)
: 5UIPtl+ 1At 3(Q7— 2 QeLF2(Pel: el m 2UIP4:10¢, Q1 2p2 a(IPt)y Qs
—Fa(lpd.lad . Q1)1 ]B(q?), (37)
C(p?)= -1 || o WPl + —21E (lpd lad )~ Falpdlad Qo TL(E
Pt _2m2DWp(EO+mD_Wp) 42 TKWpF (P10t 3(Q7— 1?) 20 Pt Gl pt 2([Pel+ 1G], Q1 0

A(q2) — 87 kW,F (| pil,|a)A(p2)

+Mmp)W,+m3]

%—(Eo+mo>wp+ 16783

8mkF3(|pi.lal) 5

E(pd o )
Pt 3(Q§_M2)[ alpdlad, m

_ 1 Qt Qt
2m3 W, (Eg+mp—W,)

—Fa(lpd.lad,Qu)] p; C<q?>—8mF1(|pt|,|qt|>[m%—<Eo+mo>wp]6<p$>]

t

6w
8mkFs(|py, |Qt|)__ [Fa(lpd.la, m)

pt 3(Q1 )

. 1 qt G {
2m3W,(Eq+mp—W,)

(Eg+mp)W,+m3
~F.(pd. 9. Q0] > :

t

D(qf) — 8mkp?W,F1(|pd.|a)D(p?) ] (39

67 BW,
3(Q1_

[ oo lad, ) —Fo(lpd,ad, Q1)1 [Aa?)

8mkF(|pd.|ai) +

1 gy dd
(pt)_ 2 2
2mDWp(E0+ mD_Wp) 4

1

2m3W,(Eq+mp—W,)
2p?+3m3

8 F(lpllql)w" omp [Fa(|pdslad, ) = Fallpd,lad, Qo)1
—OTK y - e e— e E—
3Pt t pt2 3(Q1 ) 4\ Pt th M 4| Pt t 1 2pt

—8mF1(|pt|.|qt|>7A(p$)] +
afmp

q?da,
472
=28 e pd )~ Falpd 6 Q)]
S(QE_)Zttﬂ 2tt1pt2

2
oh

E<q$>+8m<wpa(|ptl,lqd)é(pf)]

2pZ+3m3 qu%
8mkFs(|py, |Qt|)—_87TKF1(|Pt| lal) ——
Zpt Zp

_ 1 Qt qt
2m3W,(Eg+mp—W,)

B W, (p{+3m3) 1678
TN F 1 i) _F ) 1 ] - F 1 1
3(Q§_,U~2)[ a(lpdslad, w)—Fa(lpd,lad,Qp)] o 3(Qi_/1«2)[ 2(lpd.lal, )

2 2

mq

t

—Fy(Ipd.]ai,Q1)] D(a?)— 8wk (pZ+m3)Fy(|py, Ith)D(pt)] (39
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where|p| = \/Bf The functiong=;(i=1,...,5),appearing in Eq937), (38) and(39), are defined in the Appendix. From these

three coupled integral equations we can solve numericall{@?), C(p?) andD(p?). This will be done in Sec. V. In the
next section, we will first discuss the normalization of the BS wave function.

IV. NORMALIZATION FOR THE BS WAVE FUNCTION

It can be seen that the overall normalizationAgp?), C(p?) andD(p?) cannot be determined from Eq&7), (38) and
(39). With the help of heavy quark symmetry, the normalization constant can be obtained from the fact that the Isgur-Wise
function is normalized to 1 at the zero-recoil point. In the limig—c the weak transition matrix element induced by the

currentcT'b for o{*)— »{*) has the following form from HQET:
(0 (v")]elblwp(0)) =By, (v )T B[ £(w)g,,+ {(@)v,0,], (40)

wherew=v-v' is the velocity transferm,m’ could be 1 or 2, and is an arbitrary Dirac matrix. At the zero-recoil point,
v=v’, only theé(w)g,, term contributes and we must have

w=1)=1. (42)

On the other hand, the transition matrix elementdgf’— »{*) is related to the BS wave functions of*) and w{*) by
the following equation:

_ d*o _
(0 (v")|cIblwg (v)) = f (277‘))4x’.;,m,(p')Fx;m(msaixpz), (42)

whereP (P’) is the momentum ob{*) (o)) andx”, . (p’) is the wave function of the final state{*)(v"), which satisfies
the constraint

XE (P =xE, L (p'). (43)

At the zero-recoil pointp’ = p, since the light diquark sees no change in the heavy quark part, it does not change its relative
momentum.

The scalar BS functions of the final state BS wave function obey the same BS equation d29g&80) and (31).
Substituting Eq(7) into Eq.(42) and using Eq(40) we have
d d*

P i — q ,
S BB T O | 5GP Rl (@)

£(1)Bpy u(0)TBE(v) = f

Now we substitute the expression for the kernel, @§), and Eq.(i?) into Eq. (44). Using the same technique as used for
Egs. (24), (25 and (26), we find that there is only the structui,(v)I'Bp,,(v) on the right hand side of Eq44).

Substituting the explicit expressions fg; andV, into Eq.(36), and using the integration formulas in the Appendix, we arrive
at the following expression fof(1) after some tedious calculations:

ptzdpt
472 Eotmp—W,

§1)=

~ 1, 1 - 1
AO)ha([pd) = 3PEC(P) o) — 3PED (P s(p) + — p?hzdptl)m(lptl)].
6mg
(45

whereh;(|p)(i=1,2,3,4) are given by the equations
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g7dg - 1 16
hl(lpt|)=J i 377KF1(||ot|,|qt|)[A(q?)—§qu(qt2 +quz)[Fz(lptl,lqt )= Fa(lpd.[al.Qu)]
~ 1 2 ~ ~ 1 -
X | 2WoA(gf) - 3a7C(aP) — gwpq?D(qb}—smFl(lpt : ml){A(p?)— 3 p?D(pE)H, (46)
g2dq 1678 - 1.
ha([pi)) = é‘tﬂ'zt{S(Q{iﬂz) [F2(|pt|a|Qt|aM)_F2(|pt|a|Qt|le)]A(Qtz)+87TKF3(|pt|v|Qt|)p—tZC(Qtz)
2B 1 pd o)~ Fallpd Jad Qo)1 — Blad)—8 F<|p||q|>?:<p2>] (47
o, ) — Jaqd, — — 8Tk ) )
3(Q5_M2) 4l Pl 1Gels M 4l Pl 1Uel» ptz t 21U Pt 1Yt t
g7dq ~ 327 W, -
hs(lpt|>=f ;W;|8wa1(|pt|.|qt|>A(q$>+ﬁ[a(lptl,lqtl,m—Fz(lptl.lqtl,Qﬂ]A(q?)

—8mF5<|pt|.|qt|>12 D(af)+ mz—ﬁﬁz[adptl.mtm—F4<|pt|,|qt|,Q1)] iz[t‘:(qfwzwpﬁ(q?)]
Pt 3(QT—u*) Pt

—8mkF y(|pi.|ad)[ —Ap) +pfD(pD)] |, (48)

grda, [ —16 ~ 1
ha(lpd) = iwztis@z—wfz) [Fz(lptl,lqtl,m—Fz<|ptl,lqtl,Qn]A(qf)+8WKF3<|pt|,lqt|>E C(ap)
1 t

C B e p )~ Fal P, Qo) 1B ()~ 8P Ipy [ E(0D) @9

3(Q1_M2) Pt

The BS scalar function&(p;), C(p;) andD(pf) should Substituting Eqst51) and(52) into Eq.(50) we obtain the
be normalized such that they satisfy E45). eigenvalue equation foA,

V. NUMERICAL SOLUTIONS FOR THE BS WAVE HA=A, (53

FUNCTION ) )
_ . . whereH is annXn matrix:
In this section we solve the three coupled integral equa-

tions (37), (38) and(39) numerically. The method is to dis- H=2Z,+Z,(T5T,— Ry 'Ry) "L(R3 'R, — T3 1T)
cretize the integration region into pieces(with n suffi-
ciently large. In this way, the integral equations become +Z3(T; ' T3~ R 'Ry) MRy 'Ry —T5'Ty). (59

matrix equations and the BS scalar functigh@?), C(p?)

andf)(ptz) becomen dimensional vectors. The matrix equa-
tions obtained in this way can be written in the following

The eigenvalue equatiofb3) is solved by the so-called in-
verse iteration methoff18]. In this way, we first construct
the operator

form:
- - - - 1
A=7,A+2,C+75D, (50) K=o (55)
R,A+R,C+R;D=0, (51)  where\ is some parameter which is chosen to be near to
eigenvalue 1 in Eq53). In order to solve for the eigenvector
T,A+T,C+T3D=0, (520 A, we start with an arbitrary vector and operatek on Y

sufficiently many times so that the eigenvector correspond-
whereZ; ,R;,T;(i=1,2,3) arenxn matrices and are given ing to th~e eigenvalue 1 dominates. In this way, the scalar
by Egs.(37), (38) and (39). function A is obtained.
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TABLE 1. Values of x anda{®" for &) with three sets ofnp .

PHYSICAL REVIEW D 59 116007

TABLE II. Values of x and o™ for 2§ with three sets of

mD.
mp (GeV) 0.90

mp (Ge 1.10
k (GeVB) 0.02 0.04 0.06 0.08 0.10 o (GeV)

k (GeVP) 0.02 0.04 0.06 0.08 0.10
ale 0.5190 0.5593 0.5842 0.6061 0.6149

ale™ 0.5047 0.5402 0.5643 0.5826 0.5974
mp (GeV) 0.95

mp (Ge 1.15
k (GeVB) 0.02 0.04 0.06 0.08 0.10 o (GeV)

k (GeVP) 0.02 0.04 0.06 0.08 0.10
ale™ 0.5889 0.6123 0.6285 0.6406 0.6502

ale 0.5785 0.5995 0.6155 0.6283 0.6391
mp (GeV) 1.0

mp (GeV) 1.20
k (GeVB) 0.02 0.04 0.06 0.08 0.10 °

k (GeVP) 0.02 0.04 0.06 0.08 0.10
ale™ 0.6414 0.6560 0.6669 0.6757 0.6828

ale 0.6341 0.6478 0.6588 0.6682 0.6763

In our model we have several parameter€” , «, Q?, "
mp andE,. The paramete®? has been described in Sec. 11l, G€V t0 1.2 GeV for=4”, and from 1.15 C;f?v t0 1.25 GeV
with Q?=3.2 Ge\? from the data of the electromagnetic for Q. Then we obtain the pqrameteé ) for different _
form factor of the proton. It is noted that this value corre-Values ofmp and «. The numerical results are shown in
sponds to thedq') axial vector diquarkg,q’ =u ord),i.e., ~ Tables |, Il.and Ill fOVES): ES) and0§), respectively.
for 28)_ In the cases OES‘) or Qg) this value might be With the parameters in Tables I, Il and Il we obtain the
somewhat different because &U(3) flavor symmetry numerical solution for the BS scalar functidnas the eigen-
breaking. However, we do not have data to ext@étfor ~ vector of Eq.(53). Consequently, we get the numerical solu-
E$) and 0§ at present. In this work, we simply use the tions forC andD from Egs.(51) and (52). These solutions
same value foQ? based on the approxima®U(3) flavor ~ depend on the parametarg, and . In Figs. 2, 3 and 4 we
symmetry. On the other hand, the binding energy shouldhow the shapes d, C andD for 337, £&) and 0%
satisfy the following relation: respectively. Figures(d), 3(a) and 4a) show the depen-
dence ork for a typicalmp, while Figs. Zb), 3(b) and 4b)
show the dependence om, for a typical «. It can be seen
from these figures that for different heavy baryons the shapes
where we have omitted corrections@{1/mg), since we are  of the BS scalar functions are rather similar. This arises from
working in the heavy quark limit. Note thaty+ Eq is inde-  the approximateSU(3) flavor symmetry and is to be ex-
pendent of the flavor of the heavy quark, because of th@ected. All the scalar functions decrease to zero Wigns
SU(2)¢ X SU(2)s symmetry. From the BS equation solutions larger than about 1.5 GeV, because of the confinement inter-
in the meson case, it has been found that the vaiogs action. Furthermore, since we are discussing the ground
=5.02 GeV andn,=1.58 GeV give predictions which are StateSa)gk)’ there are no nodes in the functions.
in good agreement with experimenf45]. Hence in the
baryon case we expect

©)=Mg+Mp+
m,@)=Mg+Mmp Eo, (56)

TABLE III. Values of x and a{*" for Q& with three sets of

mD .
mp+Eq=0.88 GeV (for2g)), 1.07 GeV (forEY),
mp(GeV) 1.15
1.12 GeV (for 0. (57  « (Ge) 002 004 006 008 0.10
The parametemp cannot be determined, although there a{*" 0.4975 0.5325 05565 0.5748 0.5897
are suggestions from the analysis of valence structure fune
tions that it should be around 0.9 GeV for non-strange dimp(GeV) 1.20
qguarks[19]. Hence we let it vary within some reasonable B 5 4 1
range. When we solve the eigenvalue equati8), the con- « (GeV) 0.0 0.0 0.06 0.08 0.10
dition that the eigenvalue be 1 provides a relation betweemn ™ 0.5729 0.5935 0.6093 0.6222 0.6331
ags andk. As discussed in Ref9] « is related tox’ (k' is
the confinement parameter in the heavy meson case and rig,(GeV) 1.25
about 0.2 Ge¥ [14,15)), wherex~ Aqcpk’. Therefore, in v 5 ., 1
our numerical calculations we let vary in the region be- K(GeV) 0.0 0.0 0.06 0.08 0.10
tween 0.02 GeV¥and 0.1 GeV. The diquark massnp, is ale™ 0.6296 0.6430 0.6539 0.6633 0.6714

chosen to vary from 0.9 GeV to 1 GeV fary’, from 1.1
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25

20 N

15 1

0 0.5 1 1.5 2 2.5 3
(@) Ipel(GeV)
25 T T T T T
_15 | 1 1 1 1
¢ 0.5 1 1.5 2 2.5 3
(b) Ipdl(GeV)

FIG. 2. The BS scalar wave functions fﬁlg'). The units are
GeV 2 for A(p?), GeV 2 for C(p?) and GeV * for D(p?). (a) For
mp=0.95 GeV, we show the dependence |pg for two values
of «. In the upper plane, the uppdtower] solid line is for

A(pH)[C(p?)] with k=0.02 Ge\?; the uppeflower] dotted line is
for A(p?)[C(p?)] with k=0.10 Ge\’. In the lower plane, the
solid line is forD(p?) with k=0.02 GeV and the dotted line is

for D(p?) with k=0.10 Ge\?. (b) For k=0.06 Ge\?, we show
the dependence dp,| for two values ofmy . In the upper plane,

the upper [lower] solid line is for A(p?)[C(p?)] with mp
=0.90 GeV; the uppeflower] dotted line is forA(p)[C(p?)]
with mp=1.00 GeV. In the lower plane, the solid line is B p?

with mp;=0.90 GeV and the dotted line is fdd(p?) with mp
=1.00 GeV.

VI. APPLICATION TO THE NONLEPTONIC DECAYS
Q,—QFP(V)

In this section we will apply the numerical solutions of

the BS equation to the nonleptonic dec&ys—Q{*) and a
pseudoscalar or vector meson. In fa&f*) and={*) decay

strongly and their weak decays are hard to observe. How-

ever, (), decays only weakly. We will first calculate the
Isgur-Wise functions(w) and{(w) for Q8 — Q) in Eq.

(40) and then apply them to the nonleptonic weak decays of

Q.

A. Isgur-Wise functions for Q*)—Q )

The Isgur-Wise functiong(w) and {(w) are related to

the overlap integrals of the BS wave functions of the initial

PHYSICAL REVIEW B9 116007

25 T T T T T

0 0.5 1 1.5 2 2.5 3
(@ Ipel(GeV)
25 T T T T T
20 + T
-10 |- b
_15 1 1 1 1 1
0 0.5 1 15 2 2.5 3
(b) |pel(GeV)

FIG. 3. The BS scalar wave functions fErg). The units are
GeV 2 for A(p?), GeV 2 for C(p?) and GeV * for D(p?). (a) For
mp=1.15 GeV, we show the dependence |pq for two values
of k. In the upper plane, the uppétower] solid line is for

A(p?)[C(p?)] with k=0.02 GeV?; the uppeflower] dotted line is
for A(p?)[C(p?)] with k=0.10 Ge\?. In the lower plane, the
solid line is forD(p?) with k=0.02 GeV and the dotted line is

for D(p?) with k=0.10 Ge\?. (b) For k=0.06 Ge\?, we show
the dependence dp,| for two values ofmp . In the upper plane,

the upper [lower] solid line is for A(p2)[C(p?)] with mp
=1.10 GeV; the uppeflower] dotted line is forA(p?)[C(p?)]
with mp=1.20 GeV. In the lower plane, the solid line is fb(pf

with mp=1.10 GeV and the dotted line is f@(pf) with mp
=1.20 GeV.

(Q,) and final (Q(C*)) states. The concrete expression for

them can be obtained by comparing the structure

BX,(v)I'Bp,(v) andv- By (v')Tv’-By(v) on both sides
of Eq. (40). Similarly to Eq. (44), we have the following
equation after substituting E¢) into Eq.(42) and using Eq.
(40):

By (v )TBA(0)[ ()G, + {(w)v,v)]

f d*p i _
— b
(277-)4 p|+E0+ mD+|E Pm

(p")T

d4
x f 8 G, (PP XE(D). (59)

(2m)*
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% ' ; T T ' the g*” and v*v’” terms contribute when contracted
20 . with By, (v')I'By,(v), leading to the structures

g B/ (v')TBp,(v) andv-Bn/ (v')['v’-By(v), respectively.
The coefficients of these two terms can be obtained directly.
In this way, we have the following replacement rule:

15

10 L

Pt B (v)Iv"-B(v)

-5 -1 1 .
210 + . Hl_wzv'ptv'Bm’(v )FU 'Bm(U),
e | " 15 > 25 3
0 05 ‘ : T o
(@) lpel(GeV) VB (v)I'py-By(v)
25 T T T T T ’ =y ’ ’
— 5V P -Bp(v")T'v'-By(v),
20 - 7 l1-w
| P{ B (0")Tpy Bry(v)
N 1 ' w roor gﬂ "T'B
- 2pt.pt 2(&)2—1)0.th 'pt m’(v ) mM(U)
i N w - w’+2 .
-10 . — > PPttt ——Zu-Pv-Pp
' 200?—1) " 2(w2-1)2 T4
_15 1 ] 1 1 1
0 05 1 15 2 25 3 —
() lpel(GeV) Xv B (v")Tv"-Br(v),
FIG. 4. The BS scalar wave functions f&". The units are Py By (v ) TPy Br(v)
GeV 2 for A(p?), GeV 2 for C(p?) and GeV * for D(p?). (a) For
mp=1.20 GeV, we show the dependence |pg for two values 1, 1 RS =T
of k. In the upper plane, the uppétower] solid line is for - _Ept+ 2(w2—1)(v PO By () Bpy,(v)
A(p)[C(p?)] with k=0.02 GeV?, the uppeflower] dotted line is
for A(p?)[C(p?)] with k=0.10 Ge\’. In the lower plane, the o , 3w
solid line is forD(p?) with x=0.02 GeV? and the dotted line is + 2(w’—1) Pt~ 2 2_1)2(U"pt)2
for D(p?) with k=0.10 Ge\?. (b) For k=0.06 GeV?, we show @ @
the dependence dp,| for two values ofmp . In the upper plane, XD ~§mr(v’)Fv’~Bm(v),

the upper [lower] solid line is for A(p?)[C(p?)] with mp
=1.15 GeV; the uppeflower] dotted line is forA(p?)[C(p?)]
with mp=1.25 GeV. In the lower plane, the solid line is f)l(pf)
with mp=1.15 GeV and the dotted line is fdi(pf) with mp

p{ B (v )Tp{ - Bp(v)

=1.25 GeV. 1, =
TP gy P BB )

Substituting Egs. (170 and (18 into Eq. (58 o 3w

and using Egs.(24), (25 and (26), we find that on + 5 p;2— . z(v‘pt,)z

the right hand side of Eq(58) there are the following 2(0°—1) 2(0°—1)

structures; By (/)10 Bn(0), v- B (v )I'Pr-Brn(v), Xv By (0" )T0" Bpn(v). (59)
Pt Bm (0 )p-Bm(v),  PrBm(v')I'pe-Br(v),  and
p; B (v )I'p{-By(v). However, all of them
can be expressed in terms o/, (v')['Bp,(v)
and v-B,(v)Tv’-By(v), after integration over
p, on the grounds of Lorentz invariance. Take p'=p+mp(v’'—v), (60)

P Bm (v )I'Pi-Br,(v) as an example. In general, the \here we have omitted the(1/mg) corrections. From Eq.

integral [[d*q/(2m)*]p;“p;f, where f is some Lorentz (60) we have the following relations straightforwardly:
scalar function, can be expressed in terms of

— 2
gt?, v*v®, v'*v'?, v'*v¥ and v*v’'’. However, only P/ =pjw—p;Vw —1cosb,

Since in the weak transition the diquark acts as a specta-
tor, its momentum in the initial and final baryons should be
the samep,=p;. Then we can show that
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Py %= pi+p(w?—1)co 0+ pi(w?— 1) — 2p,piw\w’— 1cosy,
v’ p=—pJw?—1cosb,
v-p{ =(1— w?)p;+ wpw?—1coso,
P Py = —pi— pi(w?—1)coS 0+ w\w?—1pp, oS, (61)
where 6 is the angle betweep, andv, .
With the aid of the relations betweex(p),C(p),D(p) andA(p?),C(p?),D(p?) [Egs.(32)—(34)] and using Eqs(59), (61)

and the integration formulas in the Appendix we have the explicit expressiond é9r and {(w) after integrating thep,
component by selecting the proper contour,

d -1
§(w)=fp Py

2
t .

singdo ——
47T2 fo 2Wp(E0+mD_Wp)(E0+mD_0)Wp_pt w _10050)

~ 3
X | —2Wp(Eo+mp—W,)Fa(py ,cos)A(pY) — 7 (1= coS' @) hy(|pi|) —ha(|pi]) IF a(pf , cost)

1 3
- zwptz(l—cosze)FC(ptz ,cosf)hy(|py|)+ 2Pe —1(1—cog)cosel hy(|p,|) —hs(|p) IF c(p? ,C0S0) + W, (1
~ 1
—coS'6)(Eq+mp— W) pA(PY) Fo(p7 ,c0s8) — 5 p(1—cog f)[ (w?— 1)W,

3
+ wpro?—1coshh,(|py|)Fo(p? ,cosh) + 7(1- cog0)[ pf + p{(w?—1)cog 0+ w\w?— IW,p JF p(p{,cosh)

(o) a1, )
and
{(w)zf p?dptfﬂsinﬁ ] -1 ! P.COSOHF o(pZ,cosh)hy(|py))
472 Jo 2W,(Eg+mMp—W,)(Eg+Mp— oW, — pryw?—1,c0s6) | JoZ—1 A A
b2 (13 co20)[hy(|pd)— hal| ) IFA(P2 COSE) +| Wy + ——2 o
s e— —o CO — ,COS —F— =P;C0S
4((1)2_1) 1([ Py 30| Pt APt p mpt

X F (P2, C0860) 2W,( Eg+mp —W,)A(p2) + ﬁ[wp?— 30 coL0p2— 2W,p;w?— 1cosf]
e

3
2 [ 2
><I:C(pt ,COSH)h2(|pt|)— 4m[wpt_3w COSzapt—ZWp w _1COSH]C050[h1(|pt|)_h3(|pt|)]

2w? w(20w’+1)

———=W,p;Cosf—
\/m ppt

~ 1
X[ —2W,(Eg+mp—W,) IFp(p?,cos®)A(pd) + 5 - [wp?—3w coS Op? — 2W,p\/w?— 1cosd]

/w2

3
X (VaZ—1W,+ wP;Cosh)Fp(p?,cosd)h,(|p) — m[mpt— 3w cogOp,— 2W,\w?—1cosf]
02—

w
XFc(pf,cos) +| — W5 — pZcos 6+ Z—pfl

2(w?—1) 2(w°—1)

><[pt+pt(w2—1)
X o€ 0+ w\w?— IW,cos0]F p(p{,cosd)[hy(|pd) —ha(|pd)]}, (63

whereh;(|p)(i=1,2,3,4) are given in Eq$46)—(49) andF »(p?,cos#),Fc(p?,cose) and Fp(p?,cose) have the following
expressions:

116007-13



X.-H. GUO, A. W. THOMAS, AND A. G. WILLIAMS PHYSICAL REVIEW D 59 116007

6B

M[F2(|pt|v|qt|yﬂ)

2
9; day , ~ 1 - -
FA<p$,cosa>=f ;wz [smFl<|pt|,|qtl>[A(q$>—§q$D<q$>—A<pt2 %

~ 1 .- 1 .
—Fa(lpi].|a.Qu)] 2<wwp+thwz—lcos(a)(A(qf)—quD(qf )—quqqfﬂ

1 1678

207 m[—ﬂ(lp;l,lqtl,wF4<|p{|,lqtl,Q1)][é<q$>+2<wwp+wwz—lcosm”fxq?)]

1 ~
+ ,287TKF5(|pt’|7|qt|)D(qt2)}1 (64)
2p;
1 qqu , ~ Kot 128/~
Fc<pf,cos9>=¥ f ;T;[8m<F1<|pt|,|qt|>{<wwp+mwz—1cose>[A<q$>—A<pt2>+pr(pf)]
D
2 2_ 218’2 16mp ) ,
+[(wWp+ piyo®—1cosh)*—mp]C(p; )} + W[Fz(lpt|-|qt|:/-L)_F2(|pt|!|qt|le)]
1

~ 1
X[ (@W,+ pryw?—1cos)?+m3 A7) — FS’JTKF::,(“D{ | la)[(@W,+ piyw?—1cosd)?—m3]

t

- 1 16w -
xC(d) ——; Z—BZ[— Fa(lpi | lad, ) +Fallp{]lad . Qo H{(@W, + pr/w?— 1cosd) C(qf)
Py 3(QT— 1)

- 1 .
+[(wwp+thwZ—lcosa>2+mé]D<qf>}—FSWKF5<|p(|.|qt|>(wwp+wwz—lcost(q?) ,

t

(65)

2
D

~ m ~ ~
A(G9) +=—50a¢D(a7) —A(p; %)
2p|

1 [ gZdg, ,
| . 8mkF(|p;].lai)
4

Fo(p?,cos)=— —
Mp

2 | 2(|IO |’|qt|!/u’)

A(gd)+ p—,thZB(q?)
t

+(@Wy+ pryw’—1cos0)C(p; 2) + (p; 2+m2)D(p; ?)

2
m5 o~
+ ——q7C(af)
2'[

_F2(|pt,|v|Qt|-Q1)][(pr+ pVw?— 1cosf)

1 , ~ 1 67p ,
— —8wkF3(|p;||a]) (@W,+ pVw?—1cosh) C(q7) — [—Fa(lpi].lad p)

o pi? 3(Qi—u?)
3m3+2p;

™ [C(g2)+2(wW,+ prw?—1cosd)D(g?)]

+F4(|p{|v|Qt|aQ1)][

3m3+2p; 2 -
_%BW"FSUDHJQJ)D(Q?)J- (66)

t

— (@W,+ pyyw?—1coss)D(g?)

In Sec. V we obtained the numerical results for —Q®*) we show the Isgur-Wise functions with typical value
A(p?),C(p?) andD(p?). Substituting these results into Egs. mp=1.20 GeV in Fig. §a) (x=0.02 Ge\?) and Fig. 5b)
(62) and(63) we have the numerical solutions féfw) and (k=0.10 Ge\?) respectively. The dependence of the Isgur-
{(w) depending on the parameters in our model. E(éf) Wise functions onmp is shown in Fig. %) (mp
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FIG. 5. (a)—(d) Numerical solutions fo&(w) and¢(w) for Q)= Q) The upper solid line ig(w) and the lower solid line ig(w).
The dotted line is— £(w)/(w+1). The parameters arap=1.20 GeV andk=0.02 GeV in (a), mp=1.20 GeV andk=0.10 GeV in
(b), k=0.06 GeV andmp=1.15 GeV in(c), k=0.06 GeV andmp=1.25 GeV in(d).

=1.15 GeV) and Fig. @) (mp=1.25 GeV) for «  with O;=(DU)(cb) and O,=(cU)(Db), whereU and D
=0.06 Ge\’. It can be seen from these plots thigto) and  are the fields for light quarks involved in the decay, and
{(w) have opp_osite signs anf{w) changes more rapidly (alqz)zalyu(l_%)qz is understood. The parameteas
than{(w) asw increases. . andaj are treated as free parameters since they involve had-
It is interesting to study the relation betweg€(w) and  ronization effects. Sinc€,, decays are energetic, the factor-
{(w). Based on the picture that in the larbe limit heavy jzation assumption is applied so that one of the currents in
baryons are viewed as the bound states of chiral solitons ange Hamiltonian(68) is factorized out and generates a meson
heavy meson$20], Chow has shown thag(w) and {(»)  [22,23. Thus the decay amplitude of the two body nonlep-
obey the following relatiof21]: tonic decay becomes the product of two matrix elements; one
_ is related to the decay constant of the factorized megoar(
§(w)=—(1+w){(v). 67) V) and the other is the weak transition matrix element be-

The deviation from this relation is caused bNi/correc-  tweenQ, andQ{*),
tions. From Figs. &)—(d) we can see that, in the range of the
parameters in our model, E7) is generally satisfied. For
some sets of parameters this relation holds well.

Ge
V2

B. Nonleptonic decaysQ,— Q*)P(V) X(QX ()] I Q). (69)

In this section we will discuss the Cabibbo-allowed two
body nonleptonic decays ab—@g*)P(V)(P andV stand
for pseudoscalar and vector mesons respectivelhe
Hamiltonian describing such decays reads

Mfa(Qy— Q& P(V) = —=VpVipa(P(V)|A(V,)]0)

HereJ, is the weak currentab) and(0|A,(V,)|P(V)) are
related to the decay constants of the pseudoscalar or vector
mesons by

(O|V, |V)=Tfymye,, (70

Ge

H.o=—
eff \/E

VepVip(a;01+a,0,), (68)
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whereq,, is the momentum of the emitted mes@rom the
W boson, €,

tonic weak decayﬂbﬂﬂé*)P(V) there is no contribution

from thea, term, since such a term corresponds to the tran-

sition of ,, to a light baryon instead d2{*). On the other
hand, the general form for the amplitudes d?,
—QFP(V) is

M(Qp—QP)=iuf(v)(A+Bys)ui(v),
M(Qp—QV)=Ug(v") e * A1y, ¥s+ APs, Vs
+B1y,+Baps,ui(v),
M(Qp— Q¥ P)=iq,ut(v')(C+Dys)ui(v),
M(Qp—QiV)=ul(v")e**[g,,(C1+D1vs)
+ pivyﬂ(CZ+ D275) + pivpf,u,(c3
+Dgys)]ui(v), (71

whereu; is the Dirac spinor of),, ,u{*) is the Dirac(Rarita-
Schwingey spinor of Q*), and p;s, is the momentum of
Q (Q(*))

From Egs.(69)—(71) and using Eq(40) we find

I 1
A= Evcbvuc,alfpg(mi —mp)[(w+2)&(w)
+Hw?=1){(w)],

G
B= —VeVipa,f

V2

+3(w0?=1)(w)],

1
Pg(mi+mf)[(3w—2)§(w)

Gr 1
A;=B;= \/EVCbVUDalfvas [wé(w)

+Ho?=1){(w)],

Ge 2(1 1
A= \/EV bVUDalfVmV3( I‘E)
X[é(w)+(ow+1){(w)],

Gr 1 1
B> _\/EVcbVUDalfvmv3 i+ﬁ
X[é(w)+(0—1){(w)],
GF 1 mg
c=—ﬁvcvaDalfp\/g(1+Hi

X[é(w)+(o—1){(w)],

is the polarization vector of the vector meson
and the normalization for the decay constants is chosen so
thatf =132 MeV. It is noted that in the two body nonlep-
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Gk . 1 my
D:_EvcbVUDalfPﬁHl_a)f(w)
Mg
+ w—l—(w+3)ﬁ {(w)],
Ge
C,=D;= \/EVCbVUDalfVmV\/—g(w)
Ge. . 11
Co=- EVCbVUDalfVmVﬁ m
X[é(w)+(0+1){(w)],
D —%V V¥ sagfym —i
2_\/5 cbVupel'v V\/§mi
X[é(w)+(0—1){(w)],
Gr .
C3:D3:EVCbVUDa1fVmV\/—mm {(w),

(72

wherem;(my) is the mass of),(Q{*)).

With Egs.(71) and(72) we can calculate the decay widths
and polarization parameters f6r,—Q*)P(V). The kine-
matic formulas which have been derived using both partial
wave and helicity methods can be found in Rdf4,25.
These two methods are equivalent. For instance, in the he-
licity method[25], the decay width is expressed in terms of
the helicity amplitudes,

(73

2 h N Ap ))\|2

167rm X

wherep, is the c.m. momentum of the decay products and
the helicity amplitudes are defined as

M rpy iy = CE ) POV () [ Herl 2p(N0))

(N=Npvy=Ni). (749
The “up-down” asymmetry is given by
2 (I gy 2= 0 gy -2d?)
a=— (75)

2
xEx [P xpry ]

The relations between the helicity amplitudes and the ampli-
tudes given in Eq(71), which we will not list here, can be
found in[25,26. Then from Eqs(72)—(75), we obtain the
numerical results for the decay widths and asymmetry pa-
rameters. In Table IV we list the results fomp
=1.20 GeV. The numbers withoutwvith) brackets corre-
spond tok=0.02 GeW}(k=0.10 Ge\?). The results fo
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TABLE IV. Predictions for decay widths and asymmetry pa- our model are smaller than those in the quark model. For the

rameters for),— QO P(V) for mp=1.20 GeV. asymmetry parameters, the difference is even larger. Except
— for the processe®, —Q%* 7~ andQ, —Q%*D_ in Tables

Process I' (107 s a IV and V, even the signs of in these two models are op-

Q-0 0.0522 (0.1542)  —0.67 (-0.70)  Posite.

Qp =Dy 02617 (0.592;)  —0.56 (—0.58) VIl. SUMMARY AND DISCUSSION

Q, =02 0.07%F (0.2073) —-0.68 (-0.71) Since in the heavy quark limit the light degrees of free-

dom in a heavy baryon have good spin and isospin quantum
numbers and since the internal structure is blind to the flavor
Q= Q07 0.0462 (0.13%3) —-0.61 (—0.58) and spin direction of the heavy quark, we assume that a
heavy baryonw{’, is composed of a heavy quark and a

0, -0 0.11%3 (0.24%2) —-0.73 (-0.74)

- *0 — 2 2 _ a
0y 0D 0.16%; (0.37(ay) 054 (-0.52) light axial vector diquark. Based on this picture, we establish
0; —0*%" 0.1342 (0.3542) 0.59 (0.59) the BS equation for the heavy baryar}’. We discuss the

— o 2 2 form of the BS wave function and find that in the heavy
0, — Q7D 0.4621 (0.96(1) 0.31 (0.31) quark limit there are three BS scalar functions to describe the

dynamics inside a heavy barycmg). This is consistent
with our physical picture. In order to solve the BS equation,
we assume a kernel containing a scalar confinement term and
a one-gluon-exchange term, as in thg case. In the heavy
quark limit, the heavy quark is almost on massshell inside a

=0.06 GeV in the rangemp=1.15 GeV (without brack-
ety andmp=1.25 GeV(with bracket$ are shown in Table
V. In the calculations we have takeme=6.14 GeV and

the following decay constants: heavy baryon and it is appropriate to apply the covariant

instantaneous approximation in the kernel. Then we derive

f,=132 MeV, fp =241 MeV [27], f,=216 MeV, explicitly three coupled integral equations for the three BS
scalar functionsA,C andD. These equations are solved nu-

st= fD:. merically and we give the model predictions for these func-

tions. The results appear reasonable. It is shown that the

It can be seen from Tables IV and V that the predictions forshapes of these functions are similar TF.)E}‘) ,Eg) and

the decay widths show a strong dependence on the pararmg‘), with differences arising frons U(3) flavor symmetry
etersk andmp in our model. The experimental data in the breaking effects.
future will be used to fix these parameters and test our Although the BS equation is formally the exact equation
model. However, the dependence of the up-down asymmee describe the bound state, there is much difficulty in apply-
tries on these parameters is slight. ing it to the real physical state. The most difficult point is
The decay widths and asymmetry parameters have aldghat we must take a phenomenologically inspired form for
been calculated in the nonrelativistic quark model approacihe kernel. Furthermore, we have used the quark and diquark
[26], where the form factors are calculated at the zero-recoipropagators with their free form, which leads to some uncer-
point and then extrapolated to othervalues under the as- tainties. In our approach, there are several parameters such as
sumption of a dipole behavior. By comparing the predictionsx, mp and «*™ , subject to the condition that the observed
in the BS and quark models we find that the decay widths irmasses o»$” be reproduced. In our numerical solutions we
let these parameters vary in some reasonable range. Another
TABLE V. Predictions for decay widths and asymmetry param-parameter i5Q2, which arises from the internal structure of
eters for(2,—Q{*)P(V) for x=0.06 GeV. diquark. Its value for thedq’) diquark (@,q’'=u or d) is
extracted from the data of the electromagnetic form factor of

0 o1

Process I (10°s7 @ the proton. When there is a strange quark in the diquark, we
Q, - 0% 0.07%% (0.14%2) —-0.64 (—0.72) do not have a means to determine its exact value at present.

— . ; In the future, the experimental data fo’ should help to
Q, — QD 0.35&; (0.562;)  —0.54 (-0.59) fix the parameters in our model.
Q; 0% 0.1022 (0.1522) ~0.65 (~0.70) As phenomenological applicatioqs, this model has been

used to calculate the the Isgur-Wise functiofsv) and

0, - QD% 0.14%F (0.232)  —0.71 (-0.75) {(w) for Q) —0*) | and consequently, has provided the-
0; Q0 0.067%2 (0.1232) —0.64 (~0.56) oretical predictions for the Cabibbo-allowed two body non-

leptonic decay rates and up-down asymmetries for the physi-
Q, —»0r°D; 0.227% (0.34%%)  —0.56 (—0.50) cal processe$),—Q*)P(V). It has been shown that the

- 20 2 > relation betweert(w) and {(w) in our model is generally
Q=0 p 0.20(; (0.314) 0.59 (0.59) consistent with that in the soliton model in the lafgglimit.

Q, — Q%D 0.6162 (0.888&2) 0.31 (0.31) We have also compared our model predictions with those in
the nonrelativistic quark model. Our model yields decay
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widths which are much smaller and for the asymmetry pawith
rameters the difference is even bigger. All these predictions

will be tested in future experiments.
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APPENDIX: INTEGRATION FORMULAS

In this appendix we give the formulas which are used to
reduce the three dimensional integration to the one dimen-

sional integration. In the following formula$(qt2) is some
arbitrary function oqu. The relevant results needed are

. f da. ba)
) emR p- gyt p?

q dq
: ‘¢<qt>Fl<|ptl lad), (A1)
with
(Ipd.a) = 2 (A2)
P e 2 27— ap?e?
- f o, ¢<q$>
2 ) (2m)3 (pi— )2+ &
i q‘¢><q )Eo(lpd Jal.s (A3)
with
_ (|pt|+|Qt|)2+52
F2(|pt|1|qt|-5) 2|p||q| (Iptl—lqt|)2+52 (A4)
| :f dth pt'Qt¢(CI12)
) 2m? [(p— a2 p?
g7dq
=f 2 p(qDFs(Ipdd ad),  (AS)
41

(Ipd =l aeh)?+ u?
(Ipd + )2+ p?

1
Fa(|p.lad) = Apiq] {In

4 pylael (P +af +u?) |
(p2+ G2+ u2)2— 4p??)

; (A6)

:j dch (py- Qt) ¢(Q)
) 2m?® (p-qp?+ 82

2
q; da;

=— | = ¢(@)Fa(lpil.lal.9),
4

(A7)

with

pe+af + 6
4 pyl|ayl

2 2 2
pr+a;+ o
Fallpd.lad. 9= =

—lag.)2+ 82
><|n(|pt| |ael)

; (A8)
(|pd +|ae))?+ 6

:f dSQt (pt'Qt)2¢(Qt2)
* ) @mB3 [(p—ap?+ p??

g7dq
:_f = B(@DFs(pd.lad),  (A9)
i¥ry

with

pi+ai+u?
2|pyl|ay

(|pd = a2+ u?
n 2 2
(Ipel +ae)*+
(p?+af+u?)?
(pZ+af+u?)?—4apia?|

F5(|pt|!|qt|):§ 1

(A10)
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