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Lattice approach to diquark condensation in dense matter
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We present results of a Monte Carlo simulation of a three dimensional Gross-Neveu model with SU(2)
®SU(2) chiral symmetry at a nonzero baryon chemical potentiakorresponding to a nonzero baryon
density. Foru sufficiently large there is a sharp transition between a phase where the chiral symmetry is
broken by a condensal(eTq) and one where a scalar diquark condenséye)|#0. Global U1) baryon
number symmetry may remain unbroken, however, due to the absence of long range order in the {@gse of
There is also tentative evidence for the formation of a weaker pseudoscalar diquark condensate in the high
density phase, which violates pariff50556-282199)01611-2

PACS numbgs): 11.30.Fs, 11.10.Kk, 11.15.Ha, 21.65.

I. INTRODUCTION star cores, resulting in slower cooling ra{@s6].
So far calculations have relied on model approximations

The properties and behavior of baryonic matter at highto the QCD interaction, witlad hocform factors introduced,
density have recently enjoyed renewed interest with the obfor instance, to model the effect of asymptotic freedom,
servation that the ground state even at densities sufficientlwhich should suppress the condensate at large Fermi mo-
high for chiral symmetry to be restored may be far frommentum, and hence large. Many assumptions about the
trivial [1-3]. In brief, it is speculated that there is a regime of nature and origin of theq interaction are necessary. This is
temperature and density for which the quarks have a larga natural area, therefore, for numerical simulations of lattice
Fermi surface; kinetic considerations then suggest that iQCD to make an impact. Recent simulations of QCD in a
there is any attraction at all between quarks, then the freefixed gauge have found evidence for weak diquark binding at
particle vacuum is unstable with respect to condensation ofero density[7]. Unfortunately, withu#0, the Euclidean
diquark pairs from antipodal points on the surface, creating @CD path integral measure ddt(«), whereM is the fer-
gap between the Fermi energy and that of the lowest exciteghion kinetic operator, is complex, making standard Monte
states. This is precisely a relativistic incarnation of the BCSCarlo simulation impossible. The most promising approach
instability in superconductors, with the diquarks playing theis to locate the zeros of the QCD grand canonical partition
role of Cooper pairs. function in the complex fugacity plane avoiding the problem

The condensation phenomenon can be modelled by asf the complex action by generating the statistical ensemble
suming the interaction between quarks is due to one-gluonsing deM (u=0)e Se (whereSg is the gauge actiorand
exchangd 1], or using effective four-fermion vertices result- reweighting with the factor défl (w+0)/detM(x=0) to
ing from the presence of instantons in the QCD vacuumgpchieve an overlap with the corrept#0 ensemble. This
[2,3]. A recent calculation using a phenomenologically in-method, though exact in principle, appears extremely slow to
spired Nambu—Jona-LasinitNJL) model is given in[4].  converge in practice, and the results, though promising, are
Estimates of the gap energy are of order 100 MeV, compafar from definitive[8]. To date the lattice approach has only
rable with the chiral condensate at zero density and temperguccessfully been applied at nonzero density to toy field
ture. It is intrinsically interesting in a field theoretic sensetheories[9-11]. In this paper we present the first lattice
because the diquark condensate may not be invariant undstudy of diquark condensation in one such model, the Gross-
global U1) rotations associated with baryon number, andNeveu (GN) model with SU(2RSU(2) chiral symmetry
hence its formation be an example of spontaneous breakingrmulated ind=2+ 1 spacetime dimensions.
of a vectorlike symmetry. The condensate is also a gauge Which features of the GN model make it worth studying?
nonsinglet, hence promoting a dynamical Higgs effect, andn brief [12,13; for sufficiently strong coupling the model
making someor perhaps all5]) of the gluons massive, lead- exhibits dynamical chiral symmetry breaking at zero tem-
ing to “color superconductivity.” The pattern of symmetry perature and density, the spectrum of excitations contains
breaking is predicted to be critically sensitive to the numbemoth baryongthe elementary fermiojsand mesongcom-
of light quark flavors preserb]. Finally there may be inter- posite fermion—antifermion stateswhich include a Gold-
esting dynamical effects associated with the competition bestone mode, for 2 d<4 the model has an interacting con-
tween chiralqq) and diquark(gqq) condensates as the cur- tinuum limit, and when formulated on a lattice, the model
rent quark massn and baryon chemical potentiat are  has a real Euclidean action even for chemical potential
varied. Phenomenologically, diquark condensation and its*0, and hence can be simulated by standard Monte Carlo
generalizations could have implications for the distributiontechniques.
of strangeness observed in heavy ion collisifls and per- Therefore the model displays much of the essential phys-
haps in the suppression of neutrino emission from neutroics except for color confinement. Even such a simple theory
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may be useful in addressing some of the issues raised abowgraightforward to integrate over the auxiliary fieldsand =
including the behavior of competing condensates, and thg recover an action which contains fermions which self-
full phase diagram in they(,T) plane once temperatuf® interact via a four point interactiorrg?, more details are
>0. Simulations af =0 [10,11] have revealed a first order given for the corresponding four-dimensional mode|18].
chiral symmetry restoring transition af.=m;, wherem is In the limit m—0, the model is invariant under a global
the physical(i.e., constituentfermion mass a.=0; thisis  symmetry akin to the SU(R SU(2); of the continuum

in marked contrast to the pathological behavior observed ilNJL model. Defining projection operators onto even and odd
approximations to QCD when the measure is held real, sucypjatticesp,,, by

as the quenched approximation, where~m_/2 [14].
In the next section we will describe the lattice model in 1
detail, and identify which diquark operators we have studied Pero(X)= 5(1i8(X)), (4)
using both lattice and continuum notation. Our simulations
and results are described in Sec. Ill, and a short discussione have
given in Sec. IV. o
X=>(PU+PN)x;  x—=>x(PNT+PoUT)
Il. THE LATTICE MODEL - ; R
A. Action and symmetries §=(PV AP (Pl 4PV ®)
The lattice model we have simulated has the following d=(gl+im r)—>VoUT
Euclidean path integral:
) with U,V e SU(2). Now for T=x=0, a mean field treat-
Z= | DeD#de(MM[ o, 7 exp( iy ) ment(which for'a model withN flavors O_fX e}ndg is equiva-
J oD det Lovm]) gZ(U ™) lent to the leading order of an expansion itN}l/shows that
(1)  this SU(2)2SU(2) symmetry is spontaneously broken to
. 3 _ _ SU(2)isospin by the generation of a condensalgy= (o)
whereo ar\d~the tripletr ar-e real-auxmary flelds defllned oN _(2/g2)(yy) and physical fermion mags;=3, the sym-
the dual sitex of a three dimensional Euclidean lattice. The metry being broken for coupling®>g2=1.0. Hence3,, de-

determinant factor can be viewed as having been obtained lhes a physical scale in cutoff units: a continuum limit exists
integrating over Grassmann variablesy,{,¢ with the fol-  as g?>—g? from either phase. Quantum corrections to this
lowing action: picture can be calculated as higher order terms in tine 1/
. . o _ expansion, which is renormalizable abayt= g§ [12,13.
Ster=xM[o, m]x+{M*[a, 7] (20 The numerical results in this paper have been obtained for
N=1 and a valug?®=2.0, corresponding to a zero density
with theory deep in the broken phase, wikh=0.706(1) in units
of inverse lattice spacing, i.e., rather far from the continuum
limit.
We can also identify two other symmetries of E(dS,(3),
both of which hold even fom+0. First, there is the global
U(1) of baryon number:

N 1
Mg?[()', m|= E &P (eﬂéyx-#f)_ e_#gyx—f))

+ :Elz 7(X) (Syxs 3= Syxi) +2M8yy
) X.(—~€%.8 x.{—~e L. (6)
+§5Xyz

& The chemical potentiale couples to the conserved charge

associated with this symmetry. Next, there is a discrete parity
) symmetry appropriate to-21 dimensions:

(o(X) P9+ ie(x) 7(X) - 7P9).
)

The parameters are the bare fermion masshe chemical X= (X, X1,X2)—X' = (X, 1= X1,X2)

potential » and the couplingg®. The 7 are Pauli matrices

with indicesp,q=1,2. The symbols;,(x) denote the p~hases x,g(x)H(—l)Xi+X§X,§(x’);
(—1)%" " TX-1 g(x) the phase € 1)*"*17%2 and(x,x)

the set of 8 dual lattice sites neighborirgin this form we L0 (— 1)1 %oy 2(x) @

see thaty and ¢ can be identified with isodoublet staggered
lattice fermion fields defined on the sitgsThe integration
measure in Eq(1) is manifestly real; note thaty and¢ have
opposite-signed couplings to the fields, and m5. It is

o(x)=a(x'); a(X)—>—m(x'),

whence the identification ofr as scalar andr as pseudo-
scalar.

For T,u#0 a mean field solution is also knovyh7,10,
!Note also that de¥l =detr,M* 7, is real[15]. in which 2 (u,T) is expressed in terms &,. At zero tem-
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perature the basic feature is tiatremains constant gs is To gain further insight it is useful to transform to a basis
increased up to a critical valye.= 2.y, whereupon, falls  in which continuumlike spinor indices are shown. The recipe
sharply to zerd(in the chiral limif, signalling a first order for staggered fermions in three dimensions is well known
chiral symmetry restoring transition. Monte Carlo simula-[21]. First we make a unitary transformation to fieldandd
tions [10] support this picture, even when massless Golddefined on a lattice of twice the spacing of the original, with
stone excitationgwith the quantum numbers of the field) site labelsy:
are present, anhl takes the minimal valudl=1 [11].

The reality of the measure in E{l) is an artifact of our
introducing conjugate flavorg and{. It is worth discussing
how the Monte Carlo simulation manages to reproduce the
main features of the expected behavior of the model once 1
p+#0, while similar simulations of QCD with quarks and d*(y)=7>5 ; BA'X(ALY). ©)
conjugate quarks fail dramaticall\t4,1§. In brief, it is be- '
cause interactions betwegnand { are negligible so that a The indicesa,a each run from 1 to 2. Herd is a lattice
light bound x{ state, which would carry baryon number, yector with entries either 0 or 1, so that each siten the
does not form. The strongest interactions are in the singledriginal lattice corresponds to a unique combinatiory ahd
channelsyy and (¢, which are dominated by disconnected A. The 2x2 matricesl’ andB are defined by
“bubble” diagrams in the IN expansion, and it is in these
channels that Goldstone poles forf9]. Similarly, one Cp= rforﬁerz; Ba=(— 71)"0(— 1)1 — 75)"2.
might wonder how a diquark condensate, which is not invari- (10
ant under the vectorlike (@) global symmetry of baryon . o
number, could ever form in a model with a real measureNow, with the definition
since such a breaking is usually forbidden by the Vafa- o a
Witten theoren{20]. The resolution is that the theorem does qea(y) = ( u (y)) (11)
not hold for models with Yukawa couplings to scalar degrees d*(y)/ '

of freedom, such as the coupling ¢oin Eqg. (3). ] )
we see thaty may be interpreted as a four-component spinor
operated on by Dirac matrices defined by

1
u(y) = 75 2 TR (AY);

B. Constructing diquarks

Next we discuss the operators used to form diquark pairs. [ TivL (i=0,1,2); - -
We begin by expressing the operators in terms of the lattice ! —Tii1 = 3Ty '
fields y (we did not perform measurements in thiesector,
but the results here are identigdh this study we have used ( 1[)

Ys5= 1 ’

four different local diquark operators: (12

NSS xP00x"(0), NSP. e(x)x"(x)x"(x) with two flavors counted by the latin index; this extra
flavor degree of freedom is due to the species doubling in-
SS XP(X)BWUx), SP e(x)xP(x) 5% %(x). herent in the lattice approach. It is now possible to recast the
(8  fermion matrix(3) including the Yukawa interactions in con-
tinuumlike notation[21,13. Here we will content ouselves

OperatorsNSSandNSP are symmetric in both spatial and mtt?]:/ ;ttl)r;%ig.o wn expressions for the diquark operat(s

isospin indices, and so would only form a nonzero conden-
sate if extra flavors are intro_duced,_ |N>1 In th_is case the NSS —iq"(Cys® ,®1)g, NSP —iqT(C® e 1)q
operator could be written, with the indice$ running from 1

to N, _%Xisijxj- For N=1 this vanishes identically, but as SS —iqT(Cys®7®7)q, SP. —iqT(C® 1,8 75)q.
described below, the diagram which would contribute Nor (13)

=2 can also be measured on an ensemble generated with

N=1 in a generalization of the quenched approximation; weHere the first matrix in the direct product acts on the 4-spinor
will refer to such operators asonspectral diquarksOpera- indices, the second on the implicit flavor space indexed,by
tors SSand SP, on the other hand, are symmetric in spaceand the third on the explicit isospin degree of freedom in-
but antisymmetric in isospin, and hence can form even fodexed byp,q. The matrixC is the antiunitary charge conju-
N=1; we will refer to these aspectral diquarksStatedNSS  gation matrix defined bﬂyMCﬂ: - y; ; in our explicit ba-
andSSare even under parity7), and so will be calledca-  sis (12) C=vyy7y,. Denoting a symmetric state kyand an

lar, while NSP and SP are odd, and hencpseudoscalar antisymmetric bya, we see operatollSS NSP area®a
Note thatNSSand NSP are not invariant under the chiral ®s=s, andSSandSP aza®a=a, corroborating our iden-
rotations(5), or indeed under the remnant isospin symmetrytification of spectral and nonspectral operators made earlier.
in the chirally broken phase, and all four diquark operators We can also rewrite the symmetries in thebasis. The
not invariant under the (1) of baryon numbex6). SU(2)® SU(2) chiral symmetry5) becomes

116002-3



SIMON HANDS AND SUSAN E. MORRISON PHYSICAL REVIEW 39 116002

' 1 0.10 T T T T T
qLHUqL ; QRHVQR with qL/RZE(li ( 75®l® JL))qv ® 11=0.6 spectral scalar
1 4) ® 1=0.0 spectral scalar
( 0.08 -
the U1) of baryon numbek6)
g—explia(lelel))q; g—gexp(—ia(l®lol)), 0.06 |
(15 G(t)
while the parity transformatio(i7) is now 0.04 |
A00=(7175@181)A(x);  q(X)=>a(x ) (y57,8101).
(16) 002 |
The parity assignments of the diquark operatd® can be
checked by observing that; ys is a symmetric matrix. L
0'000 2 4 6 8 0 12 14 16 18 20 22 24
IIl. SIMULATIONS TIMESLICE ()
We have performed simulations of the mod#),(3) on FIG. 1. Spectral scalar correlators for two valueswoin the

L2x L, lattices with bare mass=0.01 at a coupling g7 ~ Proken phase on ¥6c24 lattices.

=0.5, withL¢ varying between 8 and 24, ahg between 24

and 40. The chemical potential was varied between 0 and constantC(L;) is not determined priori. Naively one ex-
1.2, with a critical value for chiral symmetry restoratipn =~ pectsC=L, and hence the plateau height to be an extensive
=0.65. The simulation method is a standard hybrid Monteguantity.

Carlo algorithm. The data presented here typically result We found by measuring the chiral condensate that chiral
from 100 measurements drawn from runs spanf{@80)  symmetry is restored for chemical potential greater tpan
units of simulation time. We monitored the chiral condensate=0.65. The lattice virtually saturates with twoquarks per
{xx), and the baryon density defined by site atu=1.5 corresponding to a number dengity: 2.

The spectral scalar propagators in the broken phase
<u. are shown in Fig. 1. Fop=0.0 the spectral scalar
condensate signal is vanishing while far=0.6 it is very
small but nonvanishing. We found no signal for the spectral

n= %&p(x)eﬂxpm6>+?p<x>e*#xp(x—6>>

=(q(yo®121)q) (170 pseudoscalar in the broken phase. The symmetric phase
] ) ) propagators and their fits are shown in Fig. 2. Noting the
using stochastic estimators. change in scale on th&(t) axis and comparing with Fig. 1

To estimate diquark condensates we chose an indire¢e see that in the chirally symmetric phase a strong signal
method: the two point functiofq(0)qq(x)) was measured develops for the spectral scalar which increases with chemi-
as the expectation of the product of two fermion propagators
as in QCD baryon spectroscopy, and the condensate ex- o5

( ) : _ —————————— T
tracted by assuming clustering at large spacetime separation LR * 1=0.7 spectral pseudoscalar /4
ie \ \ ® u=0.9 spectral pseudoscalar v !
.e., VooV 4 p=0.7 spectral scalar // / N
o o - 0.4 | \\ \\ v u=0.9 spectral scalar ¥ |
(9a(0)qq(x))=(qq(0)qq(x))c+{(ag){qa), (18 NN ,/ A
\ ; /
the latter term on the right being proportional|{gg)|2. A 0al " \\\ AN , [
nonzero condensate signal therefore shows up as a plateau i Lo '\w v A/
the timeslice correlato(t) at large time separation, and G® A A AT g P
may be extracted by a fit of the form 02 RN . S
2 r o AN Vs e b
_ A, N a* P
G(H)= 2 (qq(0)qq(t,xy,Xz)) AN
X1,X2 01+ '- . .- |
—Aexp(—M.t)+Bexp(—M_(L—1)) LTt
2 2 DS S R
+C (LS)|<qq>| ' (19) 0'00 2 4 6 8 10 12 14 16 18 20 22 24
TIMESLICE (1)

with M .. the masses of forward and backward propagating

diquark states, respectively. To perform the fit we used a FIG. 2. Spectral scalar and pseudoscalar correlators and their fits
least squares method taking account of correlations betweésr two u values in the chirally symmetric phase on’¥&®4 lat-
different timeslices in the calculation qf. The value of the tices.
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0.5 : — 5y 1.0 ‘ . . .
A L=24 free - = chiral condensate
u L=32 free ¢ —en/2
v v L=A40 free o 4 spectral scalar C l<qg>!
04r Ve AL=24int v 1 08 | ¥ spectral pseudoscalar C l<qq>| 4
o, oL=32int Au -
v A v L=40 int +*
.'A’: - v = s - e
03 - v 1
\4 A 9 A
06
G v \a A A% o7
[ ] A N a
AV e A a A qu o
(4 A
0.2+ Ve , Wﬁgﬁ#ﬁgﬁwﬂ . o
ve ot s wy 04 |
Vvl - A A 4 a4 A - [ ] VV
v ® L] v
01 + A I T
'vv'Vvvvva'vv
02
0.0 ‘ . ‘ . -
0.0 0.2 04 06 0.8 1.0 -
FIG. 3. Spectral scalar correlators measured crx1§ lattices 0-00 o 0=2 or
at u=0.8, together with the corresponding results for free fermions. chemical potential (1)

Note that thet axis has been rescaled.
FIG. 4. Overview of the observabléyy), n andSSandSP
lgit'quark condensate signa®(qag)| as functions ofu, obtained on

cal potential. The spectral pseudoscalar signal is weaker b i _ ) _
a 16X 24 lattice, showing the onset of diquark condensation at

distinctly nonzero and again increases withThe nonspec- ) . )
tral propagators are not shown here although both the scal =0.65. As discussed in the text, the signal for 88condensate

A < i i
and pseudoscalar closely follow the behavior of the spectranf)nritg vo/rljrﬁ:r;?ti;gitssp condensate at high density, are probably
pseudoscalar. '

The bulk of our results are from 18 24 lattices. How-  pecame distorted and we were unable to achieve satisfactory
ever, to assess possible systematic effects arising from fittingg_
the diquark propagators on Igttices of finite temporal lattice The existence of a nonzetqq) condensate in the broken
extentl we repeated simulations at=0.4 on 16x32, and  phase could in principle convey physical information about
©=0.8 on 16x32 and 16x40 lattices. The results at  the onset of a nucleon liquid type phase. A nonzero conden-
=0.8 are shown in Fig. 3, together with results obtained forsate implies that there is a Fermi surface and therefore non-
diquark propagators constructed from free fermidne.,  zero number density. However, from the study with varying
with g>=0) on the same lattices with the same chemical_ discussed above, it is clear that further study is required to
potential (note that since the diquark is a boson, the oscillagetermine whether there is any nonzero signal associated
tions normally expected of a free fermion propagator do notyith the onset of a nucleon liquid phase.
appea). The time axis has been normalized by to aid The spectral pseudoscal@f(qq)| signal was consistent
comparison. Note that the plateau height in the middle of thgyith zero for u<ue and no fits to the propagators were
lattice is almost constant ds; increases, consistent with possible but foru> u. this condensate is non-zero and in-
|{(a@)|#0, whereas in the free case the signal falls monocreases withs. It is considerably smaller in magnitude than
tonically. We found that the fits to the spectral scalar corthe spectral scalar. This pseudoscalar condensaparisy
relator in the symmetric phaseu(0.8) were very stable, violating, and therefore it would be remarkable if the signal
yielding estimates forC|[(qq|) of 0.4281) for Ly=24, in the chirally symmetric phase were to remain nonzero in
0.4241) for L,=32, and 0.43@l) for L;=40. This is strong the large volume limit.
evidence for a nonvanishing condensate. The smaller parity To determine the behavior with spatial volume we next
violating signal, on the other hand, decreased by about 25%erformed a series of runs &3 x 24 lattices aj=0.8, with
from 0.1971) atL,=24, via 0.1671) atL,=32, to 0.15%1) | _varying from 8 to 24. To our surprise we found very little
at L,=40. In the broken phaseu(=0.4) the spectral scalar change a4 , increased, the fitted value f|(qq)| more or
Cl{aq)| was 0.0681) for L= 24 but consistent with zero on |ess saturating fot = 16. Results fot. ;= 8,16,24 are shown
the L;=32 lattice suggesting that théqq)|+#0 resultin the  in Fig. 5, together with the fit fok ;= 24. For comparison we
broken phase is at least in part due to finite lattice size.  also plot the equivalent correlators for free fermionsuat

The trend in the diquark condensates as we pass from. g g: it is striking that for this case the trendlasincreases
broken to symmetric phase is clear from Fig. 4. There is 3s in the opposite direction. We conclude that the cons@ant
critical value,u.=0.65, at which the chiralqq) condensate is roughly independent di; this puzzling behavior will be
falls sharply and the number density begins to rise from zerdfurther discussed in the final section.
The spectral scala€|(qq)| condensate rises slowly from The diquark massdd , andM _ obtained from the fits to
zero for 0.4 u<pu., jumps upwards discontinuously close the spectral scalarq propagator are plotted as a function of
to u¢, and continues to rise steadily. F@er>1.0 as the num- u in Fig. 6. We found that the forward propagating .
ber density approached saturation the scqlppropagators states were more difficult to extract from the fits than the

116002-5



SIMON HANDS AND SUSAN E. MORRISON

PHYSICAL REVIEW [»9 116002

0.5 0.3 T T T
A spectral pseudoscalar Py
< nonspectral scalar
04 g O nonspectral pseudoscalar é %
0.2 Fa g E
03 J a
G() C lcqg>! g 2
S A
2 4
0 2
0.1 B
0.1 B
0.0 1 1 ]
0-0 1 Il Il 1
6 12 18 2 0.6 0.7 0.8 0.9 10
t m

FIG. 5. Spectral scalar diquark correlatorat 0.8 for both free

and interacting quarks o|n§>< 24 lattices.

backward propagatiniyl _ states, as reflected in the size of
the error bars. The trend in the data is clear with smal
masses in the symmetric phase and large masses in the bt
ken phase. The approximate linear decreas# of with w
reflects a similar trend observed in the physical fermion mas
my in previous simulation§11]. Notice thatM _ is approxi-
mately constant forw>pu.. The observedjq states have
masses around 0.3 which is light in comparison to the zer
density fermion masms;=3,,=0.7, which defines the ratio

of physical to cutoff scales.

The spectral pseudoscalar and both nonspe€tjéedq)|
condensates are plotted as a functionuwoin Fig. 7. The

FIG. 7. The three weaker diquark condensaté&q)| plotted
in the high density phase as a functionof

pbserved no evidence for spontaneous violation of isospin on
B_spection of the fermion propagators.

To determine the effect of the bare quark mass on the
gq q) condensates we performed simulations oAX\84 lat-
tices form=0.02,0.05,0.08,0.1 at=0.8. The values of the
condensates were consistent within errors withrthe0.01
6esuItC|<qq>|=0.424(7) form=0.02,0.05 but the signal
decreased by around 20% to 0.84®@ for m=0.08 and by a
further 20% to 0.27@) for m=0.1. In fact all of the diquark
condensates decreased as we moved further from the chiral
limit.

signal for these three condensates is much weaker than the
signal for the spectral scalar condensate. The parity-violating
spectral pseudoscalar and the two nonspectral condensates

IV. SUMMARY AND OUTLOOK

are almost identical in magnitude and have remarkably simi-
lar behavior as a function qf. We also remark that we have

0.80 T T T
2
0.60 K3 |
g - i
s 040 | b
E EE
Eﬁ = I -
o Ll
0.20 - ]
® M, spectral scalar qq
® M spectral scalar qq
0.00 L L L
0.30 0.50 0.70 0.90

FIG. 6. Masses of forward and backward moving staesand

chemical potential (1)

We have simulated the 3D GN model with SU(2)
®SU(2) chiral symmetry at nonzero chemical potential and
found evidence suggestive of a diquark condensation,
namely that the two-point correlation function exhibits clus-
tering at large temporal separation. In order to quantify the
measurement, however, it will be necessary to have a nu-
merical estimate for the consta@tin Eq. (19). We have up

to now ignored the possible manifestations of fluctuations in
the phase of the condensate. The spontaneous breaking of the
U(1) symmetry(6) usually implies the existence of a Gold-
stone mode associated with long wavelength fluctuations in
the phase of théqq) condensate; this is not accessible by
the methods presented here, sitgg) is real. However, in
the absence of an explicit diquark soun@nalogous to a

bare mass for the case ¢fq)), one would expect large

finite volume effects, generically proportional kg (4" =2),
whered’ is the dimension of the effective field theory de-
scribing the fluctuations of the order paramefgg]. We
therefore speculate that the effective field theory describing
the spatial correlations of the diquark correlator las-d
—1=2, and that there is no long range order in the spatial
directions[23]. A similar distinction between temporal and

M _ obtained from fits to the spectral scalar propagators ona 16spatial correlations has been observed in instanton liquid
X 24 lattice plotted as a function qf. models[3]. This would account for the volume independence
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of C. Strictly speaking, therefore, we have not observed aty doubling in the spectrum of spin-1 states. In a parity-
true condensation. This interpretation of our results can beymmetric vacuum we expect odd and even parity spin-1
tested by simulations of the equivalent-3 dimensional states to be degener&t&@his can be observed in the spec-
model[16], where we would expect long range order. troscopy of the 3D Thirring modgPR4].

In a BCS condensation, only quark pairs with momenta  The two-point method used here to measure(thg con-
= p close to the Fermi surface contribute to the condensatejensates requires the diquark operat8jsto belocal in the
Therefore we expect thaE?, which must depend on the y fields; this excludes potentially interesting operators in this
number of participating|q states, will be proportional to the and related models. The introduction of an explicit diquark
area of the Fermi surface, i.€2x %2, Note that the spec- source to study the one-point function directly is thus desir-
tral scalar data in our work is well fitted b|(qq)|=yu for  able, both to calibrate our indirect two point function mea-
0.75=u=<9; fits over a wider range of:, obtained from surements, and to extend our study to other diquark operators
simulations closer to the continuum limit, would help to con-and theT+#0 regime.
firm this behavior. If we assume th&=0(yu), we can
claim to have detected a strong signal for a spectral scalar
[{qqg)| condensate in the chirally symmetric phase which is ACKNOWLEDGMENTS

of the same order of magnitude as the chQ@_qzq) condensate _ . o
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detected a weak signal for a parity violatingg)| conden- Ing d|scpSS|ons V.V'th Mark Alford, lan Barbour, Warren per-
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