PHYSICAL REVIEW D, VOLUME 59, 114024

Pseudoscalar and scalar meson masses at finite temperature
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The composite operator formalism is applied to QCD at finite temperature to calculate the masses of scalar
and pseudoscalar mesons. In particular the ratio of the sigma mass to the pion mass is an interesting measure
of the degree of chiral symmetry breaking at different temperatures. We calculate the tempErativehich
M,(T)<2M ,(T), above which the sigma partial width into two pions vanishes. WeTihe 0.95T . (where
T. is the critical temperature for the chiral phase transjtiovithin the full effective potential given by the
formalism. We find that an expansiaria Landau of the effective potential around the critical point in the limit
of small quark mass provides for a very good determinatiof*af[ S0556-282(99)05411-9

PACS numbsgs): 12.38.Aw, 11.10.Wx, 11.30.Rd, 12.38.Mh

I. INTRODUCTION We shall deal here with the chiral transition, concentrat-
ing on the thermally averaged quark bilinears at finite tem-
The concept of chiral symmetry breaking in strong inter-peratures as order parameters for chirality. For light massive
actions goes back to the pioneering work of Narmiblyand  quarks, such as andd, rigorously, chiral symmetry is al-
it has been widely explored and discussed since that timeeady broken in the Lagrangian, but we can still retain the
Restoration of chiral symmetry at high densities was pronotion of phase transition, by looking at the region of
posed by Lee and Wick2] already in 1974. Theoretical where the condensate has a rapid variation. The current
procedures for studying chiral symmetry restoration at higlguark mass plays a role analogous to that of an external
temperatures were proposed in the same year by Dolan amdagnetic field in the ferromagnetic transition, as it explicitly
Jackiw[3] and by Weinberd4]. violates the chiral symmetry whose restoration characterizes
QCD at finite temperature and density has attracted mucthe phase transition.
interest. For the latest studies of the QCD phase diagram see The analysis will be based on a composite operator for-
for instancd 5]. The physical applications are to high energy malism at finite temperature. The formalism makes use of an
heavy ion collisiong6] and to the physics of the early uni- effective action for composite operat¢d®,2q. Actually the
verse[7]. A review of lattice calculations can be found for effective potential admits of a Landau expansion around the
instance in Ref[8]. The Nambu—Jona-Lasinio model has critical point and thus the behavior of the condensate is well
been used under different approximations to obtain indicareconstructed by knowing the coefficieritghich are infra-
tions on the chiral transitiofsee for instancg9—14)). red safe¢ and the critical exponents. We shall compare with
A number of peculiar features may emerge due to thehe results following from a Landau expansion and show the
chiral phase transition and recently much attention has beegeneral agreement.
attracted by the possibility of disoriented chiral condensate Within the composite operator formalism we had already
formation (see for instancgl5-17). discussed thel dependence of .(T) [21], in the whole
It is strongly suspected that a single transition occurgange of temperatures up ¥ . We shall here mainly deal
rather than separate transitions for deconfinement and chiralith the ratio of the scalar to pseudoscalar mitss/M . at
symmetry. We had suggested a heuristic argument indicatingarying temperature. This ratio has a peculiar theoretical in-
that, at least for zero density, the critical temperature fotterest as a sensible indicator of the degree of chiral symmetry
chiral transition, T, coincides with that for deconfinement, breaking.
T4 [18]. The order parameters usually considered cover ex- Let us for the moment neglect the smalland d quark
treme and opposite ranges. The thermally averaged Polyakawasses. When chiral symmetry is restored the two mesons
loop is suitable in the limit of infinite quark masses to de-are degenerate in mass. The ratio is then equal to unity. At
scribe the transition from the confined to the nonconfinedzero temperature instead in the broken chiral phase the pion
phase. The other extreme is the limit of vanishing quarkis a goldstone and has vanishing mass, while the sigma has a
masses, where the thermally averaged quark-antiquark bilirfinite mass from the chiral condensation. Thus one expects
ears are the typical order parameters for chiral symmetrghe mass ratio to decrease fremto one at the chiral tran-

transition. sition. Quark masses will change this picture quantitatively
leading to a decrease from a finite value to a value close to

one.
*On leave from Dipartimento di Fisica, Universiti Firenze, Beyond some temperature, before approaching the critical
I-50125 Firenze, Italy. value for the transition, the sigma will not have phase space
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left to decay into two pions. Its instability will decrease when r 872N d4k
increasing the temperature, and the channel into two pions 0~ 36, W”[ESD kst 2p ]

will finally be suppressed at some temperature in the vicinity
but lower than the critical temperature. The decay channel
into two photons will still be available and become the domi-
nant channef13,22. whereC, is the quadratic Casimir of the fermion represen-
It is too early to say whether a possible experimental sigtation [for SU(3), C,=4/3]. Furthermore 3
nature for the transition may be inferred from such behavior=) s f(k)/\2, 2,=\,p.f(k)/\V2, m=x,m, /2 («
An accurate determination of the mass ratio versus tempera=, ... 8, \,=2/3, A= Gell-Mann matrices, i
ture is in itself of theoretical interest as it constitutes a sig-—1 . 8),gis the gauge coupling constant afiis the
nificant parameter for the degree of chiral symmetry breaktqyr-dimensional volume. In Eq4) 8Z has a divergent part
ing at finite temperature. This we shall do in this paper in th&q compensate the leading divergence proportional tangy(
composite operator formalism by making use of parametef, the |ogarithmic term. We remark that both the current
values obtained from fits to zero temperature QCD. massm and the self-energ® are, in general, matrices in
In Sec. Il we shall summarize the main results of thefgyor space. However, as discussed in REES,2( if we
application of the composite operator formalism in QCD. INpeglect the mixing between different flavors originating, for
Sec. lll we deter_mme the relevant QCD parameters and d'ﬁhstance, from terms such as the 't Hooft determirjasi, it
cuss the hadronic masses at nonzero temperature. The tefgjiows that only the flavor diagonal elements of the fermion
perature dependence of the observables is dlscusseq in S%%if-energy and mass can be different from zero at the mini-
IV, where we also calculate the temperature at which thenym_ with vanishing off-diagonal terms, the effective po-
sigma can no longer decay via strong interaction. tential decomposes into the sum mf contributions (s =
number of flavorg one for each flavor. Therefore, to study
the minima of the effective potential, it is formally sufficient
to consider a single contribution. Of course, the choice of a
given flavor number will reflect in the particular parameters
assumed. In the present paper, as in REJ], we will take
n{=3 and a number of coldk=3. The value of the param-
eters will be specified later on.

—NTrin[ik—(m+32¢) —i 52,1+ 6Z tr(ms), (4)

Il. EFFECTIVE ACTION FOR QCD COMPOSITE

OPERATORS

Following Ref.[19] the zero temperature Euclidean effec-
tive action for anSU(N) QCD-like gauge theory is

['(2)=-Trin 551+ &} —THES]-T'x(9) As far as the choice for the functic_fr@k) is concerned_, in
6S QCD, the operator product expansion suggéstglecting
+ counterterms (1) logarithmic correctionsto take forf (k) a momentum behav-

ior as 1k? for large k?. We have chosen as a variational

whereS, *=(ip—m), m is the bare quark mass matrix and ansatz24]

I',(9) is the sum of all the two-particle irreducible vacuum
diagrams with fermionic propagat&and= — 6I',/5S. At
two-loop levell',=3 Tr(SAS), whereA is the gauge boson
propagator, so that=—AS, Tr{SéT',/5S]=2T", and one
can rewrite Eq(1) in terms of3:

3

f(k)= ®)

k2+ M2’

whereM is a momentum scale which is expected to be of the
order of Agcp.-

To extend the zero-temperature theory to finite tempera-
ture we can still work with continuous energies by substitut-
ing for the sum over discrete energies,=(2n+1)w/B
(where3=1/T) a sum of integrals over continuous energies
by means of the Poisson’s formula5]

['(3)=—Trin[S;*—2]+T'y(2) + counterterms

1
—Trin[Sy -3+ ETr(EA ~13) + counterterms.

2
- . . d*k 1"Z” ¢ d%k
Here the variable plays the role of a dynamical vari- f 4f(k)—>— 2 f—sf(a)n,k)

able. At the minimum of the functional action, that is when (2m) Bn===J (2m)
the Schwinger-Dyson equation is satisfi&djs nothing but n=+w 4
the fermion self-energy. A parametrization B employed => () d’k f(k)e"Bo (6
. (-) Zf(k)enfo (6)
in [19] was n=—e (2m)

2=(stiysp)f(K)=2s+iysZp )

This substitution corresponds to the imaginary-time for-
malism after using the Poisson’s formula and allows for an

with a suitable ansatz fdi(k), and withs andp scalar and

equivalent version af the Dolan-Jackiw finite temperature

pseudoscalar constant fields, respectively, to be taken as tir@ynman rule$3,4].

variational parameters.
The effective potential one obtains from E8) (see Ref.
[19) is

To explicitly evaluate the effective potential we have to
choose how to parametrize the self-enelyat T#0. Un-
fortunately the finite-temperature Schwinger-Dyson equa-
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tions for the self-energy are very hard to treat and one may M2(T)f2(T)= _2m<$¢>T. (11)
need to include a vector component too into its decomposi- ” H
tion. We therefore limit ourselves to generalize the ansatz

done afT=0 [see Eqs(3), (5)], and so the final form for the ll. HADRONIC MASSES AT T#0
effective potential, for a quark of mass is (see Ref[24]) AND DETERMINATION OF THE PARAMETERS
I 872N 4k To compute the masses of the scalar and pseudoscalar
V= —=— . 22+ 303 ] mesons ¢ and , respectively one has to take the second
Q  3Ce%(T)J (2m) derivative of the effective potentidl7) with respect to the
n=+o 4K scalar fields and the pseudoscalar fief evaluated at the
—2N E (_)nf IN[K2+ (M+3.¢)2+3.2] minimum [for the sake of simplicity we are assuming that
n=—o 4 P the up and down quarks are degenerate in mass nand
=(my+my)/2 in Eq.(7)].
+o0Zms () The actual values of the masses will be obtained by mul-

_ _ tiplying the second derivative by the appropriate faettat
where2;=sf(k) andX,=pf(k). . relates the physical fieldg,. (¢,) to p (s) according top,.
Let us now comment on the choice for the gauge couplmg:ap,%:as_ This factor can be obtained in terms of the

constant.i A.S suggested 'by asymptotlc freedom angiecay constant,. through standard arguments of current al-
renormalization-group considerations, we expect the Strongebra[lg] One gets

forces to weaken at high temperatj26]. We shall then
assume that in the UV region the coupling constg€t)

depends logarithmically on the temperatteWe take into a=-— —
account this assumption by writing V2s
gz(T) _ 1 _ 1 _ 1 M2 &ZV 1 (92V
2 ¢(T) cotcy(T) m? T2\’ o= 2| TaZ g2
2 (T otcy(T) CO‘*’Fln(l"’gW) dp2 - a“c Js min
(8) 252 2V
=— 1
whereb=247?/(1IN—2n;) and we will discuss the param- f2 ds i
eterscy, M, and¢ later on.
At T+#0 the effective potential does not acquire any extra 2V 1 92V
divergence with respect to the=0 case. The renormaliza- |\/|§T=—2 ——
tion atT=0 can be performed by adding a counterterm and T IP" | i
requiring that the derivative of the effective potential with _
respect to the term which breaks explicitly the chiral sym- _252 Y 12
metry, evaluated at the minimum, satisfies for each flavor the _f_z (9_‘)2 ' (12
™ min

renormalization conditio19]

where s is the extremum of the effective potential in the
im ———| =1. (9)  presence of a bare mass.
m—0 S(M(i)o) min To derive a more physically transparent expression for the
masses of the mesons as expressed by(E2).through the
The fermion condensatéyy); is related to the minimum second derivative of the effective potential, we will use the
S(T) of the effective potential, renormalized at the sale 9P €quation and the generalization at fiflitef the normal-

through the relatiorisee Ref[19]) ization condition(9). The extremum condition is
_ 3M3_ N_o N 2de4k§kD§k
<¢(/I>TIQZ(T)S(T) (10) (93_ - ; C( ) (27T)4 s( ) k s( )

_ _ 4 S S
and (yo=(Ur—o. 43 (o [ o LD o
At finite T we do not have any additional divergence with n (2m)7 [K2+ (m+34(k)?]

respect to th& =0 case; nevertheless, in order to satisfy the L MSZ=0 (13

generalization of the normalization conditi¢®) at finite T T

we have to add a finite counterterm to that determined@ at

_=0_[27]. Finally we r_ecaII that with the_appropriate nor_mal- _V: OHH=0, (14)

ization for the pion field(see next section Eq. (9) and its ap

generalization at finitel is also equivalent to the Adler- - .

Dashen formula where3, 4(k)=sf (k).

114024-3



A. BARDUCCI et al.

As far as the normalization condition is concerned, by

using the relation10) between the scalar field at the mini-
mum and the scalar condensate we shall write in general

M3 4
S2eM+ 2 (7)"

So n
J|

with 34(k) =s¢f(k) and wheres; is the minimum of the
effective potential in the massless case.

Now, by using the gap equatiori$3), (14) and the nor-
malization condition15) in the explicit expressiongl2) for
the meson masses, we can elimindeandc(T) to finally
obtain, for a quark of mass:

0Z=N

d*k (k)

inBko
(2m)* k2+2§(k)e

(19

m — 8Nm
Mi=—2f—2<ww>T+ = ; (-)"
Xf d*k 25 _ _i 20 in,Bko,
(2m)* | K2+ (Mm+39? So k?+33
(16)
16N
M%.:Mﬂzﬁf—g; (="
4 < \2% 2
XJ d*k (m+25)_25 gnso n
(2m)* [K2+(m+3¢)?)?

We notice that Eq(16) reproduces, in the small mass

limit, the Adler-Dashen formuld11) and differs from this
formula only by terms of ordem?.

In order to fix the values of the parametexsand so(T
=0) we follow the same procedure of REL9]. In the mas-

sive case the effective potential is UV divergent and from the

normalization condition(in the small-mass limjtand gap

equation one is able to fix, through a self-consistency rela-

PHYSICAL REVIEW D 59 114024

M=280 MeV,
m,=8 MeV,

my=11 MeV,
ms=181 MeV,

my+my
2

—9.5 MeV. (18)

Finally, the paramete¢, which appears in the expressi(8)

for the running coupling constant, has to be determined on
phenomenological grounds. If we compare our model in the
low-T regime with the results of Ref[29] we find ¢
=0.44(nf2—1)/nf for n; flavors, which gives¢é=1 for n;

=3 [21].

With these values for the relevant parameters it is easy to
determine the masses of the pseudoscalar and scalar mesons
at T=0 (we are using the valué,=93 MeV for the pion
decay constant

M,=135 MeV, M, =630 MeV (19
and (again atT=0) the fermionic condensates &t for
massless and massive quarks

(20

(ph)o=(—197 MeV)® (massless quarks

(Yih)o=(—200 MeV)® 21)
The value we have obtained for the mass of the scalar meson,
M_,=630 MeV, accords very well with those obtained by
other authors within different approaches to the study of dy-
namical chiral symmetry breaking in QCJ23,14.

(massive quarks

IV. THE SCALAR-PSEUDOSCALAR M ,(T)/M .(T)
MASS RATIO

It is well known that as the temperatufeincreases we

tion, the values,=0.554. By inserting this value in the gap €XPect some changes in the hadronic properties of matter as
equation for massless quarks, one finds that chiral symmetr§ consequence of a possible phase transition.

is spontaneously brokefat T=0) via a minimum ofV lo-
cated atsy(T=0)=—4.06 and the poinsy(T=0)=0 is a
local maximum. To determine the mass scMeand the

For instance, a physical quantity B T) will decrease as
T increase$21]. This means that the pion tends to decouple
from matter(quarks and leptonsasT increases. As far as the

quark masses from the experimental data, one has to deriffion mass is concerned)l (T) has a weak dependence on
the explicit expressions for the masses and for the decalzgg temperature. In fact the value idf,(T) is dominated by
constants of the pseudoscalar octet mesons which are tff@e current quark mass for temperatures below the critical
pseudo-Goldstone bosons of chiral symmetry breakingvalue, whereas it becomes independentroét the critical
These expressions constitute a system of coupled equatiof@mperature or above it. This should be expected because, for
which we have solved by an approximation method. Thel =T, the pion becomes an ordinary resonance and its mass
experimental inputs are the decay constant and mass of tt@dominated byA ocp and not bym. This is a clear sign that
charged pion, the charged kaon mass and the electromagnetft€ pion loses its Goldstone nature once the approximate
mass difference between the neutral and the charged kaoffliral symmetry is restoref®0].

The outputs of the numerical fit for the octet meson masses The scalar meson mass,,(T) will decrease in associa-
(agreement within 3%are the masses of the’ d, ands tion with partial chiral Symmetry reStorationE hot matter. In
guarks and the mass parameaterThe values we get are the fact the scalar meson can be described ag@quasibound
following [19,20,28: state and its mass is about twice the constituent quark mass
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[13,19,3Q. Thus theo-mass will decrease substantially with emerge as a clear, narrow state at nonzero temperature. In
increasing temperature and this behavior is mainly deterfact, since forT>T* the decay width ofr by strong inter-
mined by theT-dependence of the constituent quark massaction vanishes, only the electromagnetic width coming from
The decreasing of the-mass is expected from the restora- o— 2y is left [13,22.

tion of chiral symmetry aff=T;. In fact M,—0 for m Within our model we are able to make some rough esti-
=0 at T=T.. As a consequencé (T) will become mate of the temperaturE* at which this phenomenon takes
smaller than 1 (T) at some temperatur* <T. and the place by simply studying the behavior of the meson masses
o-meson, which has a large width B0 due to the decay (16), (17) as a function of the temperature. However, since
o— 2, would appear as a sharp resonance at high temperae are, as already said, mainly interested in determining the
ture since the amplitude far— 27 would vanish abovd@™* temperatureT* at which M (T)<2M (T), instead of
(near the critical point of the chiral phase transijiomhus evaluating separateM ,(T) andM _(T) it will be sufficient

one can expect to have a better chance of seeing#meson to study the ratidV (ZT/M fr:

?elnﬁko

>

d*k m+3)2
- f (m+3y)

M2 n 4 2 S \272°°s
Mo _, 24 (2m)* [K*+ (m+39)]" ~ ‘ 22
" m<_ 122 (—>”f o S
Vil n (2m)*| K2+ (m+39? Sok?+32,

By straightforward calculations at the leading orderdn 4y 1 _
=m/M we obtain a4(T)=41722 (_)nJ Ty — 2emBMyO_
n (2m)" [y“(y*+1)"+sgp]
M2 s3(T) M (27)
Mo 1eme D

M2 c(T) E; (="

m

It is easy to check that E¢25) is nothing but Eq(23).
. . Just to have a rough idea of the value of the temperature
d%y e'"AMYo 29 T* we can push our approximation further by evaluating
(2m)* [yz(y2+1)2+sg]2' a4(T) andb4(T) gt_Tc and using foisy(T) the expression for
the massless minimum aroufid [20]

Furthermore, as we expect that the temperafufewill be
not far from the critical temperature of the chiral phase tran- _
. ) L . So(T)=a4(Te)
sition, we can start our investigation by performing a mean-
field expansiora la Landau of the effective potential in the

small quark-mass limit around the critical point. Following in Eq. (25).
Ref.[20] we have The numerical values for the coefficients relevant for the

evaluation of the mass ratio are

1/2
1_T_c) . T<T, (28)

4
V= jlz[az(T)(,D2+a4(T)<p4+ by(T)as+---], (24 a,(T.)=0.0033, by(T,)=1.25 ayT,)=—7.28
™ (29

where ?=s?+ pZ. andT,=103 MeV[20].
If we now compute the masses of the scalar and pseudo- By now imposing the conditioM ,/2M . <1 we have a
scalar mesons from the expressi@4) of the effective po-  constraint on the temperature rafiéT,

tential we get

M, T
M2 M ay(T) W$1:>T_20'95 (30)
WZ:L_SEb (T)SO(T)+ . (25) . €

m ! and this constraint fixe$* =0.95T ;=98 MeV.

The approximations we have made up to ngve have
evaluateda,(T) andb,(T) at T, and we have chosen for
so(T) the behavior as given by E¢28)] allow us to study

by (T)=2¢(T) (26) M, /M, only for T very close toT .. To study the mass ratio

M./M . as a function ofT for all the values of the tempera-

and that the coefficiersi4(T) is given by the expressioigee ture fromT=0 up toT very close toT . we have to go back
Ref.[21]) to Eq.(23) which is valid for anyT at the leading order in the

By noticing that the generalization at finifeof the normal-
ization condition(9) on the effective potential reads now
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5 ——— —— ——T——T—T—T— 5 — —— — — T

PR N T T T R T S S AN TN SO T NN SO YR T OSSN I TS S N Y SN RO SO R I S

0 25 50 75 100 0 25 50 75 100

T (MeV) T (MeV)
FIG. 1. Plot ofM /M, versusT at the leading order im, for FIG. 2. Plot of M,/M, versusT at all orders inm, for m
m=9.5 MeV. =9.5 MeV.

lated the masses of the scalar and pseudoscalar mesons. The
relevant QCD parameters have been derived from the expres-
sions for the masses and decay constants of the pseudoscalar

ultiplet, by inserting as inputs the mass and decay constant
of the pion, the charged kaon mass and the electromagnetic
mass difference between neutral and charged kaon.

quark massm. To evaluateM2/M?2 we can perform the in-
tegration iny, by using the Cauchy theorem and summing
up the series; then, through a numerical calculation we ca
finally perform the integration left. In Fig. 1 we plot the mass
ratio M, /M. as a function of T for a massm=(m,

+my)/2=9.5 MeV; from the numerical analysis we can A main purpose of the calculation was to determine the
evaluate again the temperature temperatureT* at whichM ,(T)<2M _(T). Such tempera-
M T ture will be reached before the critical point, since the scalar
7 <1=—=0.93 (3D meson mas# (T) is expected to decrease along with par-
2M Te tial chiral symmetry restoration in hot matter, and at the
same time the pion will lose its Goldstone nature. The tem-
peratureT* is also expected not to lie far from the critical
. X . . temperature of the chiral transition. In principle theneson
ment with that previously derived by studying the I“’J‘nolauwould appear as a narrow state at high enough temperature.

e?(pansipn of the effective potential f_EFrver)_/ close toT. For T>T* its partial width by strong interaction has to van-
Finally, if one wants to study /M . including all the or- ish

ders in the quark mags and for any temperature it is nec-
essary to go back to the general form(@2). In Fig. 2 it is
plotted the behavior of the mass ratio as a functiom afs
derived by the explicit evaluation of E(R2). In this case the
temperatureT* we are looking for is determined again by
the condition

and this constraint now fixeb* =0.93T.=95 MeV.
We remark that this result fof* is in complete agree-

The result of our calculation give$* =0.95T., in an
approximation including current quark masses and with the
full effective potential given by the formalism. We find that
this result almost coincides with a much simpler treatment
using a mean-field expansion of the effective poterdit
Landau around the critical point in the limit of small quark
M T mass.

7 <1=—=0.95 (32 It is perhaps premature to discuss whether a possible ex-
2M, Te perimental signature for the QCD phase transition may be
inferred from the behavior of the sigma width. The mass

_ . _ . . i
\;vchtllshcgi(nisiges_vxcl)i.tailr—]gggt:t?r?;j. t%%f;ﬁ lt};éhll_sa:]?jiudtei);an[aﬂo itself is in any case a significant parameter to describe
sion and the evaluation of the coefficierts(T), by(T) at the degree of chiral symmetry breaking at different tempera-

; ; tures and therefore it has to be considered as a quantity of
T. and by putting forsy the expressiofi28) as suggested by intrinsic theoretical interest q y
the mean-field theory. '
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