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QCD at u;p
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Taking into account the terms;m2 in the effective chiral Lagrangian, we show that, atu5p, the theory
with two light quarks of equal mass involves two degenerate vacuum states separated by a barrier. ForNf

53, the energy barrier between two vacua appears already in the leading order in mass. This corresponds to
the first order phase transition atu5p. The surface energy density of the domain wall separating two different
vacua is calculated. In the immediate vicinity of the pointu5p, two minima of the potential still exist, but one
of them becomes metastable. The probability of the false vacuum decay is estimated.
@S0556-2821~99!00711-0#
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I. INTRODUCTION

It is very well known that in QCD withNf massless
quarks, chiral symmetrySUL(Nf) ^ SUR(Nf) is spontane-
ously broken down toSUV(Nf). ~This is an experimenta
fact for Nf52,3. Probably, no spontaneous chiral symme
breaking occurs for a large enough number of flavorsNf
;8210 @1# which will be of no concern for us here.! Spon-
taneous symmetry breaking means that the order param

^q̄R
i qL

j & ( i , j are flavor indices! can acquire an arbitrary di
rection in flavor space. Massless Goldstone particles app
If the free quark masses are not zero, the axial chiral s
metry is broken explicitly and the minimum of the ener
functional corresponds to a particular flavor orientation
the condensate. Goldstone bosons acquire small masse
the real world with mu'4 MeV, md'7 MeV, ms
'150 MeV, andu50, the vacuum state is unique.

It is interesting to study also other variants of the theo
with different values of masses andu. It has been known for
a long time@2,3# that in the theory with equal light quar
masses andu5p, there are two degenerate vacuum sta
This is best seen in the framework of the effective chi
Lagrangian describing only the light pseudo-Goldstone
grees of freedom. In the leading order in mass, the effec
potential is

V52S Re@Tr$Meiu/NfU†%# ~1!

where U5exp$2ifata/Fp%(fa are pseudo-Goldstone fields!,
M is the quark mass matrix, andS is the absolute value o
the quark condensate.

SupposeNf53, M5m1̂, andu50. The minimum of the
energy is achieved atU51̂. For u5p, there are two differ-
ent minima withU51̂ and U5e2p i /31̂. They are separate
by the energy barrier. The appearance of two vacuum st
corresponds to spontaneous breaking of theCP symmetry by
the Dashen mechanism@4#.

*Present address: University of Nantes, 2 rue de la Houssin`re,
BP 92208, Nantes, F-44322, France. Permanent address: ITE
Cheremushkinskaya 25, Moscow 117218, Russia.
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The situation is, however, more confusing forNf52. The
trace of aSU(2) matrix is always real which means that,
M5m1̂ andu5p, the potential~1! does not depend onU at
all. That would mean that the explicit breaking of the chir
symmetry is absent, pions are massless at this point and
phase transition would be of the second rather than of
first order. We understand, however, that the chiral symm
try of the original QCD Lagrangianis broken explicitly by
the quark mass term for all values ofu including u5p, and
the situation looks paradoxical.

This question was left undiscussed in the original pap
@2,3#, and only comparatively recently was it shown how t
paradox is resolved@5#. To this end, one should take int
account the terms of order;m2 in the effective chiral La-
grangian. If doing so, the continuous vacuum degenerac
u5p is lifted, and we obtain again only two vacuum stat
separated by a barrier.1

In what follows, we confirm this finding. The main aim o
the paper is to bring the analysis of Ref.@5# into contact with
standard chiral theory notations and wisdom and to perfo
some quantitative estimates both forNf53 andNf52 for
the height of the energy barrier, the surface energy densit
the domain walls interpolating between two degener
vacua atu5p, and for the decay rate of metastable vacuu
states at the vicinity of the phase transition point.

II. THREE FLAVORS

Let us discuss first in some details the caseNf53 where
no complications due to higher-order terms arise. By a c
jugation U→VUV†, any unitary matrixU can be brought
into the diagonal formU5diag(eia,eib,e2 i (a1b)). When

B.

1One could, of course, anticipate it. Foru50 and in the leading
order in quark mass, the mass of pions is given by the Gell-Man
Oakes–Renner relationFp

2 Mp
2 5(mu1md)S. A theory with mu

5md and u5p is equivalent to the theory withmu52md and u
50 @only uphys5u1arg(detM) is relevant!. In that case, the pions
seem to stay massless. However, the Gell-Mann–Oakes–Re
relation is true only in the leading order inmq . Higher order cor-
rections bring about a nonzero mass to pions.
©1999 The American Physical Society21-1
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A. V. SMILGA PHYSICAL REVIEW D 59 114021
M5m1̂, a conjugation does not change the potential~1!.
For diagonalU, the latter acquires the form

U~a,b!52mSFcosS a2
u

3D
1cosS b2

u

3D1cosS a1b1
u

3D G . ~2!

The functionU has six stationary points:

I: a5b50, II: a5b52
2p

3
, III: a5b5

2p

3
,

IV: a5b52
2u

3
1p, IVa: a52a2b52

2u

3
1p,

IVb: b52a2b52
2u

3
1p. ~3!

The points IVa and IVb are obtained from from IV by We
permutations and their physical properties are the same.
tually, we have here not three distinct stationary points,
the whole four-dimensional manifoldSU(3)/@SU(2)
^ U(1)# of the physically equivalent stationary points r
lated to each other by conjugation. The values of the po
tial at the stationary points are

EI523mS cos
u

3
, EII523mS cos

u12p

3
,

EIII 523mS cos
u22p

3
, EIV5mS cosu. ~4!

Studying expressions~4! and the matrix of the second de
rivatives of the potential atu5p, one can readily see that~i!
the points I and III are the degenerate minima;~ii ! the point
II is the maximum, and~iii ! the points IV are saddle points
Whenu is slighly less thanp, I is a global minimum while
III is still a minimum, but of a local variety. The latter coa
lesces with the saddle points atu5p/2. At this point the
eigenvalues of the second derivative matrix pass zero an
still lower values ofu, a metastable minimum does not exi
When we instead makeu larger thanp, the picture is sym-
metric, only the minima I and III change their roles. Atu
50, the picture is exactly reversed compared to what we
at u5p: there is one global minimum I, two degenera
maxima II and III, and a surface of saddle points IV.

Figure 1 illustrates how the stationary points of the pot
tial are moved when the vacuum angle is changed. One
show that metastable vacua are absent atu50 also with
physical values of masses. A metastable vacuum appea
u.p/2 and, asu grows, becomes more and more deep.
u5p, it is not metastable anymore, its energy is the sam
the energy of the ‘‘old’’ vacuum. Whenu becomes still
larger, the new vacuum becomes stable while the old
becomes metastable. The latter disappears atu53p/2. This
picture corresponds physically to the phase transition of
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first order atu5p where the expectation value of the mes
field corresponding to the true vacuum undergoes an ab
change.

Two degenerate vacua atu5p are separated by the do
main wall.2 To find the profile of this wall, we have to re
store the kinetic term (Fp

2 /4)Tr$]mU]mU†% in the effective
Lagrangian and seek for the field configurations depend
only on one spatial coordinatex with the boundary condi-
tions U(2`)51,U(`)5e2ip/3 and realizing the minimum
of the energy functional

E5As5AE
2`

`

dxS Fp
2

4
Tr$]xU]xU

†%

2mS Re@eiu/3Tr$U†%# D ~5!

(A is the total area factor!. In our case, it suffices to seek fo
the solutions in the classU5diag(eia(x),eia(x),e22ia(x)). In-
troducing g5a2p/3, subtracting the vacuum energy an
using the Gell-Mann–Oakes–Renner relation, the expres
~5! is rewritten as

s53Fp
2 E

2`

`

dxF1

2
g 821

Mp
2

3 S cosg2
1

2D 2G . ~6!

The corresponding equations of motion with the bound
conditions g(6`)56p/3 can be readily integrated. Th
first integral is

g85MpA2/3S cosg2
1

2D .

Integrating it further, we obtain the solution

2The appearance of domain walls between degenerate vacua
rather universal phenomenon. In particular such walls appear als
the supersymmetric version of QCD@6#. There are nontrivial con-
nections between this purely field theory issue and the brane
namics@7#.

FIG. 1. Stationary point ofE(a,b) for different u. Solid lines
are the minima, dotted lines are the maxima, and dashed line ar
saddle points.
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QCD AT u;p PHYSICAL REVIEW D 59 114021
cosg5
E214E11

2~E21E11!
~7!

where E5exp$Mpx/A2%. The solution ~7! is centered
at x50 where it passes through the saddle pointIV .
There are, of course, other solutions obtained fr
Eq. ~7! by a shift of x. Also we could have cho-
sen the Ansätze U5diag(eia(x),e22ia(x),eia(x)) or U
5diag(e22ia(x),eia(x),eia(x)) and obtain two other wall so
lutions ~with the same properties! passing through the sadd
points IVa and IVb. The wall surface tension is

s5
9

A2
Fp

2 MpE
0

` EdE

~E21E11!2
53A2S 12

p

3A3
D MpFp

2 .

~8!

Suppose now thatu5p1f with 0,ufu!1. The ener-
gies of the vacua are not degenerate anymore but are sp
apart by the value

DE'mSA3ufu. ~9!

A metastable vacuum should decay with the formation
bubbles of the stable phase. The quasiclassical formula
the decay rate per unit time per unit volume was derived
Ref. @8#:

G}expH 2
27

2
p2

s4

~DE!3J , ~10!

wheres is the surface tension the bubble. Substituting h
Eqs.~8!, ~9! @Strictly speaking, atuÞp, the bubble surface
tension does not coincide with Eq.~8! but is somewhat less
going to zero atu5p/2 or u53p/2; But at smallufu, the
expression~8! is correct#, we obtain3

G}expH 2
CFp

2

Mp
2 ufu3J ~11!

with

C524335A3p2F12
p

3A3
G 4

.

Note that the numerical factorC in the exponent is tremen
dously large, i.e., lifetime of metastable states would be
mendously large~much larger than the lifetime of the Un

3Note the difference with the rough estimate lnG;2Fp
2/(Mp

2ufu2)
for the same quantity in Witten’s paper@3#. First, one hasufu3

rather thanufu2 in the denominator and, second, a huge numer
factor pops up.
11402
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verse! for almost all u in the interval ~p/2, 3p/2! not too
close to its boundaries~where metastable states disappear!. It
is a real pity that such a beautiful possibility is not realized
Nature.4

III. TWO FLAVORS

As was mentioned before, we have to take into acco
here the terms of higher order in mass in the effective pot
tial. For Nf52, it is convenient to make benefit of the fa
that SU(2)^ SU(2)[O(4) and to use the four–vector no
tations so thatU5Umsm5U01 iU is i ,Um

2 51. The 232
complex mass matrix involves eight real parameters whic
convenient to ‘‘organize’’ in two different isotopic
four-vectors5

xm5
S

Fp
2 ~Re Tr$Meiu/2%,Im Tr$Meiu/2s i%!,

x̃m5
S

Fp
2 ~ Im Tr$Meiu/2%,2Re Tr$Meiu/2s i%!.

~12!

In the second order inx,x̃, the most general form of the
potential is@10#

V~Um!52Fp
2 ~xmUm!2 l 3~xmUm!22 l 7~ x̃mUm!2,

~13!

where l 3,7 are some dimensionless coefficients~the coeffi-
cients l 1,2,4,5,6 multiply the structures involving the deriva
tives of the fieldU in the effective Lagrangian!. The term
}(xmUm)(x̃mUm) is not allowed because it would lead t
CP breaking even atu50.

The term;(xmUm)2 can always be neglected compar
to the leading one for small masses and is not interesting
the contrary, the term involvingl 7 has a differentu depen-
dence and, forM5m1̂ and u;p when the leading term
vanishes, determines the whole dynamics.

Before proceeding further, let us try to extract an info
mation on the numerical value of the constantl 7. The fol-
lowing relation belonging to the same class as the w
known Weinberg sum rule and derived in Ref.@10# is very
useful:

28S S

Fp
2 D 2

l 7d ik5E d4x@^Si~x!Sk~0!&2d ik^P0~x!P0~0!&#,

~14!

4Recently, Halperin and Zhitnitsky argued the existence of me
stable states in the real QCD atu50 @9#. However, their arguments
were based on a particular model form of the effective poten
incorporating also glueball degrees of freedom and involving c
tain cusps. The status of this potential is not quite clear yet.

5We use the notations of Ref.@10#.
l
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A. V. SMILGA PHYSICAL REVIEW D 59 114021
whereSi5q̄s iq and P05 i q̄g5q. Let us calculate the right
hand side of Eq.~14! as an Euclidean functional integral. Le
us first calculate the correlators in aparticular gauge field
background. Only the connected quark diagram depicted
Fig. 2~a! contributes to the correlator of the scalar isovec
densities. The pseudoscalar correlator receives also a co
bution from the disconnected graph in Fig. 2~b!. The solid
lines in Fig. 2 stand for the quark Green’s functions in
particular gauge field background for which we use the sp
tral decomposition

GA~x,y!5(
n

cn~x!cn
†~y!

m2 iln
, ~15!

where ln are the eigenvalues of themasslessEuclidean
Dirac operator in an external gauge field andcn(x) are its
eigenfunctions. All non-zero eigenvalues are paired: for a
eigenfunctioncn(x) with non-zero eigenvalueln , c̃n(x)
5g5cn(x) is also an eigenfunction withl̃n52ln . There
are also zero modes. For each flavor, their number coinc
with the topological chargen5(1/32p2)*d4xGmn

a G̃mn
a of the

gauge field configuration.
Now, for large Euclidean volumesmVS@1, the zero

mode contribution is irrelevant for theconnectedgraphs~see
the discussion in Ref.@11#!. On the other hand, theonly
contribution in the disconnected graph for the pseudosc
correlator is due to zero modes. This contribution is ve
large }n2/m2 and is of paramount importance. Plugging
the Green’s functions~15! in the correlators in Eq.~14!, pair-
ing together positive and negativel, and integrating over
gauge fields, we obtain for large volumes

2S S

Fp
2 D 2

l 75
1

V F K (
n

8
m22ln

2

~m21ln
2!2L

1K (
n

8
1

m21ln
2L 2

^n2&

m2 G , ~16!

where (n8 means the summation over positive eigenvalu
only and^•••& stands for the gauge field averaging. The fi
term on the right-hand-side comes from the scalar isove
correlator, the second term is the contribution of the c
nected graph to the pseudoscalar correlator, and the last
is due to the disconnected graph.

FIG. 2. Connected and disconnected contributions to the qu
current correlators.
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Introducing the spectral density

r~l!5K (
n

d~l2ln!L , ~17!

the relation~16! is rewritten as

l 75
Fp

4

S2 Fm2E
0

` r~l!dl

~l21m2!2
2

^n2&

2m2V
G . ~18!

This relation belongs to the same class as the famous B
and Casher relation for the fermion condensate

S52mE
0

`r~l!dl

l21m2
5pr~0!1O~m!. ~19!

For some more examples, see Refs.@12,13#.
Both terms in Eq.~18! are singular}1/m in the chiral

limit. The singularity cancels out, however. Indeed, the le
ing infrared contribution in the first term in square bracke
is pr(0)/(4m);S/(4m) which is the same as for the se
ond term due to the known result for the topological succ
tibility in a theory with light quarks of the same mass@14#

1

V
^n2&5

mS

Nf
1O~m2!. ~20!

The absense of singularity in the isoscalar pseudoscalar
relator means that the corresponding meson is massive:U(1)
problem is resolved by the ’t Hooft mechanism due to f
mion zero modes in topologically nontrivial gauge bac
grounds. l 7 is given thereby by a constant term;O(1)
which is left out after the cancellation of singular terms. Th
constant is completely determined by the term}m2 in ^n2&.
Indeed, for Nf52, the spectral density is analytic atl
50: r(l)5r(0)1ml21 . . . @12#. The extra infrared con-
tribution is of orderO(m) and can be neglected.6 We finally
obtain

l 75 lim
m→0

Fp
4

4S2 FS22^n2&/~mV!

m G . ~21!

What can be said about them dependence of the topologica
succeptibility in the next-to-leading order in mass? Let
first see what happens in a theory with two light quarks e
bedded in the theory involving also the third quark which
much more massive but still light enough~as is the case in
the real world!. The topological succeptibility in the theor
with three light quarksmu5md[m!ms,mhadr is given by
the expression@2,3#

6Note also that the spectral integral in Eq.~18! involves a loga-
rithmic ultraviolet singularity at largel where the spectral densit
is the same as for free fermionsr(l);l3. It is multiplied, how-
ever, bym2 and can be dropped out for that reason.

rk
1-4
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QCD AT u;p PHYSICAL REVIEW D 59 114021
^n2&
V

5
mmsS

m12ms
5

mS

2
2

m2S

4ms
1O~m3!, ~22!

i.e., the second term isnegative7 which means thatl 7 as
given by Eq.~21! is positive. We obtain

l 75
Fp

4

8msS
[

Fp
2

6Mh
2

'531023. ~23!

The same result could be obtained in a more direct wa
saturating the pseudoscalar correlator in Eq.~14! by theh -
meson pole@10#.

The estimate~23! is quite good for the real QCD. Wha
we are interested in here, however, is a hypothetical the
with u;p and just two light flavors. Remarkably, an an
lytic result for l 7 can be obtained also in this case if th
number of colorsNc is assumed to be large. For largeNc ,
the axial U(1) symmetry is almost not affected by th
anomaly which means that theh8 meson is relatively light:
Mh8

2 ;mhadr
2 /Nc . We can saturate now the pseudoscalar c

relator by theh8 pole to obtain

l 75
Fp

2

2Mh8
2 . ~24!

The same result can be obtained via the relation~21!. For
largeNc andNf52, the topological succeptibility is known
to be @15,3#

1

V
^n2&5

mtS

2t1mS
5

mS

2
2

m2S2

4t
1O~m3!, ~25!

where t is the topoligical succeptibility in the pure Yang
Mills theory. Again, the term;m2 in ^n2&/V is negative
which leads to the positivel 7 which coincides with Eq.~24!
due to the relation

Fp
2 Mh8

2
54t ~26!

which holds in the limitm→0. We assume thatl 7 is positive
also for small number of colors down toNc52. Indeed, in
the limit m→`, the topological succeptibility should coin
cide witht. It is natural that the series inm for small masses
@the analogue of Eq.~25!# should have alternating signs. W
cannot, unfortunately, formulate this statement~the positive-
ness ofl 7) as an exact theorem though oursuspicionis that
such a theorem can somehow be proven.

We are ready now to discuss the vacua dynamics in
regionu;p. AssumeU5diag(eia,e2 ia). The potential~13!
~with l 350) is

7That is quite natural, of course. The presence of an extra l
quark brings about the suppression of largen due to the extra factor
ms

n in the fermion determinant.
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V~a!222mS cos
u

2
cosa24l 7m2 sin2

u

2 S S

Fp
2 D 2

cos2a.

~27!

Defining f5u2p, it can be rewritten for smallufu as

V~a!5mSf cosa24l 7m2S S

Fp
2 D 2

cos2 a. ~28!

If

ufu,f* 5
8l 7mS

Fp
4

, ~29!

the function~28! has four stationary points:

I a50 with EI5mSf24l 7m2S S

Fp
2 D 2

,

II a5p with EII 52mSf24l 7m2S S

Fp
2 D 2

,

III, IIIa a56arccos
fFp

4

8l 7mS
with EIII 5

Fp
4 f2

16l 7
.

~30!

Again, the points III, IIIa are related to each other by We
symmetry and we have actually the whole surfa
SU(2)/U(1)[S2 of the equivalent stationary points. Stud
ing the second derivatives]2V/]a2 for the branches~30!,
one readily sees that, in the region~29!, the points I and II
present local minima~for f,0 or u,p the absolute mini-
mum is I while II is a metastable state; foru.p, it is the
other way round!. The points III are degenerate maxima. T
picture is depicted in Fig. 3. Physically, it is exactly the sam
as in the caseNf53 and we have a first order phase tran

ht

FIG. 3. Stationary point ofE(a) for Nf52 in the region of
small ufu5uu2pu. Solid lines are minima and dotted lines a
maxima.
1-5
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A. V. SMILGA PHYSICAL REVIEW D 59 114021
tion. Only the width of the region inu where two local
minima coexist is much more narrow than in the caseNf
53 and goes to zero in the chiral limitm→0.

Note that with negativel 7, the picture would be reverse
compared to that in Fig. 3 so that we would have in t
region ~29! a surface of degenerateminimaat the points III.
That corresponds to spontaneous breaking of flavor sym
try SUV(2) @5# ~whenuÞ0, the contributions to the partition
function coming from topologically nontrivial sectors are n
positively defined, and the Vafa-Witten theorem@16# which
prohibits spontaneous breaking of vector flavor symmetry
u50 does not apply!. In addition, atuÞp we would have
the maxima of inequal height at the points I and II. Instead
one first order phase transition atu5p we would have two
consequent second order phase transitions atu5p6f* .
We find this picture rather unnatural and consider it as
additional argument whyl 7 should be always positive.

It is not difficult now to perform the same program as f
Nf53 and to find the surface energy density of the dom
wall at u5p and the decay rate of metastable vacua at
vicinity of u5p. The wall configuration and the energy de
sity at u5p are obtained by minimizing the functional

s5E
2`

` FFp
2

2
~]xa!222l 7m2S S

Fp
2 D 2

~cos 2a21!Gdx

~31!

with the boundary conditionsa(2`)50, a(`)5p. The
equations of motion have a simple solution

a~z!52 arctanFexpH A8l 7

mS

Fp
3

xJ G . ~32!

The surface energy density is

s5
mS

Fp
A32l 7. ~33!

It is much lower numerically than in the caseNf53 and goes
to zero in the chiral limit. The rate of metastable vacuu
decay atufu!f* is estimated as

G}expH 2123p2l 7
2 mS

Fp
4 ufu3J . ~34!

IV. SCHWINGER MODEL

It is very instructive to compare the situation in QCD4
with what happens in QED2 ~the Schwinger model! with two
light fermions of equal mass. The model was extensiv
analyzed in Ref.@17#. For zero mass, it is exactly solvabl
When the massm is not zero, but much less than the gau
coupling constantg ~which carries the dimension of mass
two dimensions!, a systematic expansion in the small para
eter m/g ~typically, in some fractional powers thereof! can
be built up.

The model is exactly equivalent to the following
bosonized model:
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L bos5
1

2
~]mf1!21

1

2
~]mf2!22

g2

p S f12
u

A8p
D 2

1C cosA2pf1 cosA2pf2 , ~35!

wheref1 is the heavy field andf2 describes light degree
of freedom. Assuming the ‘‘conformal’’ normalization fo
the Euclidean correlator

^:cosbf2~x!::cosbf2~0!:&C505
1

2 S 1

uxub
2/2p

1uxub
2/2pD

~36!

and also

^:cosbf1~x!:&C5u5051, ~37!

the constantC was calculated to be8 @18#

C5
mg1/2eg/223/4

p5/4
, ~38!

where g is the Euler constant. Whenm50, alsoC50 so
that light and heavy degrees of freedom decouple and
have just free massive Schwinger boson with the mass

m25
2g2

p
~39!

and a sterile massless particle. WhenmÞ0, light ‘‘quasi-
Goldstone’’ degrees of freedom acquire mass and star
interact with the heavy ones. One can write the effect
Lagrangian for the light degrees of freedom which h
largely the same status as the effective chiral Lagrangia
QCD. To lowest order, we can just freezef15u/A8p, and
the Lagrangian reads

Leff
0 5

1

2
~]mf2!21C cos

u

2
:cosA2pf2 :. ~40!

It is nothing else as the sine-Gordon model. It is exac
solved which allows one to find the vacuum energy, the f
mion condensate of the original theory, and the mass sp
trum. Not surprisingly, the lowest states form an isotop
triplet. A characteric mass scale of these ‘‘pions’’9 is
;(C cosu/2)2/3;(m2g cos2 u/2)1/3. See Ref.@18# for the ex-
act calculation.

When u;p, the leading term in the effective potentia
vanishes, however, and we are in a position to take i
account higher order corrections in the Born-Oppenheim

8We have changed the convention forC compared to Ref.@18# by
a factor of 2.

9The only essential difference with the pions of QCD are that th
are not true Goldstone bosons and decouple in the chiral limit. T
is related to the Merman-Wigner-Coleman theorem@19# forbidding
the existence of massless interacting particles and, thereby, a s
taneous breaking of a continuous symmetry in two dimensions
1-6
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parameterm/g. It is convenient to rewrite the Lagrangia
~35! in terms ofx5f12u/A8p:

L5
1

2
~]mx!22

m2

2
x21

1

2
~]mf2!2

1CFcos
u

2
cosA2px2sin

u

2
sinA2px G :cosA2pf2 :.

~41!

The correction;C2}m2 in the effective potential is given
by the expression

DV~x!52
C2

2
:cosA8pf2~x!:

Fcos2
u

2E d2yuyu^ cosA2px~y!cosA2px~0!&C50

1sin2
u

2E d2yuyu^sinA2px~y!sinA2px~0!&C50G .
~42!

This formula has the same meaning as Eq.~6.30! in the paper
by Coleman@17#. We only used accurately the conform
fusion rules

:eibf(x):3:eibf(0):5uxub
2/2p:e2ibf(0):1•••, ~43!

neglected the operators of higher dimension in Eq.~43! ~they
bring about the corrections of still higher order inm), omit-
ted an irrelevant additive constant, and took into accountall
loops of the heavy fieldx(x) drawn in Fig. 4.~Coleman only
took the first graph which is much similar to the graph w
the h8 exchange which saturates the pseudoscalar corre
and gives the leading contribution inl 7 in QCD4 in the large
Nc limit. It is good enough for a qualitative estimate, and,
we will soon see, the account of other graphs only brin
about a certain numerical factor which is very close to!
Expanding the integrand inx(x) andx(0), disregarding the
‘‘tadpole’’ contributions involving the correlators in coincid
ing points@they vanish due to the convention~37!#, and sub-
stituting the free massive boson Green’s function

^x~x!x~0!&5E eik•x

k21m2

d2k

4p2
5

1

2p
K0~mx!, ~44!

FIG. 4. Some graphs contributing in the effective lagrangian
second order. Crosses stand for the insertion of light ve
cos(A2pf2) and solid lines describe heavy Schwinger bosons. T
graphs with even number of the lines contribute ink0 and the
graphs with odd number ink1.
11402
tor

s
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we finally obtain

Leff5
1

2
~]mf2!21C cos

u

2
:cosA2pf2 :

1
p5/2C2

A8g3 Fk0 cos2
u

2
1k1 sin2

u

2G :
3cosA8pf2 :1O~C3!, ~45!

where

k05E
0

`

z2dz$cosh@K0~z!#21%50.163, . . . ,

k15E
0

`

z2dzsinh@K0~z!#51.604, . . . . ~46!

The constantk0 is an exact counterpart of the constantl 3 in
the effective potential~13! for QCD4. The constantk1 is an
exact counterpart ofl 7, the quantity of primary interest for u
here. We see thatk1 is positive~and that serves as an add
tional argument whyl 7 should be positive in QCD4). Note
that if plugging in justK0(z) instead of sinh@K0(z)# in the
integral ~46! for k1 ~that corresponds to taking into accoun
only the graph with one heavy particle exchange!, we would
obtaink15p/2 instead of 1.604. The effect of higher loop
increases the value ofk1 just by ;3%.

Even the analogue of the domain wall atu5p exists in
this nice model. In two dimensions, a domain wall is jus
particle. On the classical level, it is a sine-Gordon solit
corresponding to interpolating between the pointsf250
and f25Ap/2. Soliton and antisoliton form an isotopi
doublet.

It would be very interesting to analyze the quantum pro
lem and to find the mass spectrum and other characteri
of the model to the order;C2. Our impression is that it is
not so easy to do atu5p: the problem is thatb5A8p is
exactly a boundary value of the coupling. The Sine-Gord
theory withb.A8p is sick: the Hamiltonian does not hav
a ground state, etc. This displays itself in the fact that
factor multiplying :cosA8pf2 : in Eq. ~45! is dimensionless
and we do not have a mass parameter out of which the s
ton mass could be composed. Probably, atu5p, the Born-
Oppenheimer expansion breaks down in this case and
has to analyze the full Lagrangian~35! by approximate meth-
ods~see Ref.@20#!. The Lagrangian~45! may still be taken at
the face value at other values ofu and could allow to find
corrections in mass to the exact results of Ref.@18# at u50,
etc. But this is beyond the scope of the present paper.
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