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Taking into account the terms m? in the effective chiral Lagrangian, we show that,at 7, the theory
with two light quarks of equal mass involves two degenerate vacuum states separated by a barNer. For
=3, the energy barrier between two vacua appears already in the leading order in mass. This corresponds to
the first order phase transition @t . The surface energy density of the domain wall separating two different
vacua is calculated. In the immediate vicinity of the pdirt 7, two minima of the potential still exist, but one
of them becomes metastable. The probability of the false vacuum decay is estimated.
[S0556-282(199)00711-0

PACS numbes): 12.38-t, 11.30.Rd

[. INTRODUCTION The situation is, however, more confusing fy=2. The
trace of aSU(2) matrix is always real which means that, at

It is very well known that in QCD withN; massless Af=m1 and6= =, the potential1) does not depend dd at
quarks, chiral symmetnBU, (Ny) ©® SUr(Ny) is spontane- all. That would mean that the explicit breaking of the chiral
ously broken down t&SU,(Ny). (This is an experimental symmetry is absent, pions are massless at this point and the
fact for Ny=2,3. Probably, no spontaneous chiral symmetryphase transition would be of the second rather than of the
breaking occurs for a large enough number of flailks  first order. We understand, however, that the chiral symme-
~8—10[1] which will be of no concern for us hejeSpon-  try of the original QCD Lagrangiais broken explicitly by
taneous symmetry breaking means that the order parametgfe quark mass term for all values éfincluding 6=, and
(gral) (i,j are flavor indicescan acquire an arbitrary di- the situation looks paradoxical.
rection in flavor space. Massless Goldstone particles appear. This question was left undiscussed in the original papers
If the free quark masses are not zero, the axial chiral symi2,3], and only comparatively recently was it shown how the
metry is broken explicitly and the minimum of the energy paradox is resolvedi5]. To this end, one should take into
functional corresponds to a particular flavor orientation ofaccount the terms of orderm? in the effective chiral La-
the condensate. Goldstone bosons acquire small masses.grangian. If doing so, the continuous vacuum degeneracy at
the real world with my=4 MeV, my=7 MeV, m, 0= is lifted, and we obtain again only two vacuum states
~150 MeV, andf=0, the vacuum state is unique. separated by a barriér.

It is interesting to study also other variants of the theory In what follows, we confirm this finding. The main aim of
with different values of masses amd It has been known for the paper is to bring the analysis of RE5] into contact with
a long time[2,3] that in the theory with equal light quark Standard chiral theory notations and wisdom and to perform
masses and= , there are two degenerate vacuum statessome quantitative estimates both fdf=3 andN;=2 for
This is best seen in the framework of the effective chiralthe height of the energy barrier, the surface energy density of
Lagrangian describing only the light pseudo-Goldstone dethe domain walls interpolating between two degenerate
grees of freedom. In the leading order in mass, the effectiv&¥acua atd=, and for the decay rate of metastable vacuum
potential is states at the vicinity of the phase transition point.

V=—3 R Tr{Me'"NUT}] (1)

Il. THREE FLAVORS

where U = exp{2i *¥/F }(¢? are pseudo-Goldstone fields

M is the quark mass matrix, arkl is the absolute value of
the quark condensate.

SupposéN;=3, M=m1, andd=0. The minimum of the
energy is achieved af = 1. For 6=, there are two differ-
ent minima withU=1 andU=e?""31. They are separated
by the energy barrier. The appearance of two vacuum StateaOne could, of course, anticipate it. F&=0 and in the leading
corresponds to spontaneous breaking ofGResymmetry by
the Dashen mechanisp].

Let us discuss first in some details the chge=3 where
no complications due to higher-order terms arise. By a con-
jugation U—VUV', any unitary matrixU can be brought
into the diagonal formU=diag(e'®,e'?,e”'(**A). When

order in quark mass, the mass of pions is given by the Gell-Mann—

Oakes—Renner relatioR2M?2=(m,+mg)3. A theory with m,

=my and #= 7 is equivalent to the theory witm,=—my and ¢

. =0 [only 6,,,s= 0+ arg(detM) is relevant. In that case, the pions
*Present address: University of Nantes, 2 rue de la Houssinie seem to stay massless. However, the Gell-Mann—Oakes—Renner

BP 92208, Nantes, F-44322, France. Permanent address: ITEP, Elation is true only in the leading order im,. Higher order cor-

Cheremushkinskaya 25, Moscow 117218, Russia. rections bring about a nonzero mass to pions.
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M=mi, a conjugation does not change the potential E
For diagonall, the latter acquires the form
0
U(a,B)=—m|cos a— 3
“ Y . ~ ST
4 0 ~ S e
+cog B— 5| tcog at B+ ]| 2 N
3 3
The functionU has six stationary points:
2 2
I a=,8=0, Il a’:ﬁz—?, 1l: CY:,BI?,
FIG. 1. Stationary point oE(«,B) for different 6. Solid lines
20 20 - ) : ;
V: a=B8=——+m, Vaa a=—-a—B=——+m, are the minima, dotted lines are the maxima, and dashed line are the
3 3 saddle points.
20 ' = i
Vb: B=—a—f=— =+ 3) first order atf= 7 where the expectation value of the meson
3 field corresponding to the true vacuum undergoes an abrupt

change.
The points IVa and IVb are obtained from from IV by Weyl ~ Two degenerate vacua at= 7 are separated by the do-
permutations and their physical properties are the same. Agnain wall? To find the profile of this wall, we have to re-
tually, we have here not three distinct stationary points, bugtore the kinetic term F(727/4)Tr{(9MU 3,V L in the effective
the whole four-dimensional manifoldSU(3)/[SU(2)  Lagrangian and seek for the field configurations depending

®U(1)] of the physically equivalent stationary points re- only on one spatial coordinate with the boundary condi-
lated to each other by conjugation. The values of the potentions U(—)=1,U(x)=e?"3 and realizing the minimum

tial at the stationary points are of the energy functional
0 0+2m . |:§T
E/=—3m3 cos;, E,——3ms cos— E:Aa:Af_ o FTHaUAUT)
—om )
E;=-—3m3 co 3 E,y=mMm3 cosé. (4) —mX Rg € ‘”3Tr{UT}]> (5)

Studying expression&) and the matrix of the second de- (A is the total area factprin our case, it suffices to seek for

rivatives of the potential af= m, one can readily see thé)  the solutions in the cladd = diag(e'“®,e'*™,e~2«®) |n-

the points | and Il are the degenerate minirtig; the point  troducing y=a— /3, subtracting the vacuum energy and

Il is the maximum, andiii) the points IV are saddle points. using the Gell-Mann—Oakes—Renner relation, the expression

When 6 is slighly less thanw, | is a global minimum while  (5) is rewritten as

[l is still a minimum, but of a local variety. The latter coa-

lesces with the saddle points 4t 7/2. At this point the

eigenvalues of the second derivative matrix pass zero and, at

still lower values off, a metastable minimum does not exist.

When we instead make larger thans, the picture is sym- The corresponding equations of motion with the boundary

metric, only the minima | and lll change their roles. &t conditions y(=%)=*w/3 can be readily integrated. The

=0, the picture is exactly reversed compared to what we hafirst integral is

at = there is one global minimum |, two degenerate

maxima Il and Ill, and a surface of saddle points IV. Y =M_\213
Figure 1 illustrates how the stationary points of the poten- g

tial are moved when the vacuum angle is changed. One can

show that metastable vacua are absenpa) also with Integrating it further, we obtain the solution

physical values of masses. A metastable vacuum appears at

0> /2 and, ash grows, becomes more and more deep. At

6=, it is not metastable anymore, its energy is the same as2rhe appearance of domain walls between degenerate vacua is a
the energy of the “old” vacuum. Wher® becomes still  yather universal phenomenon. In particular such walls appear also in
larger, the new vacuum becomes stable while the old onge supersymmetric version of QOB]. There are nontrivial con-
becomes metastable. The latter disappead=ead/2. This  nections between this purely field theory issue and the brane dy-
picture corresponds physically to the phase transition of th@amics[7].

1, M2 1\2 .
E’y +? COS’)/—E . (6)

a=3F§,f dx

;
cosy— 5|
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E24+4E+1 versg for almost all 6 in the interval (w/2, 3%/2) not too
cosy= 5 (7)  close to its boundariesvhere metastable states disappelar
2(E°+E+1) is a real pity that such a beautiful possibility is not realized in
Nature:

where E=exp{Mﬂx/\/§}. The solution (7) is centered
at x=0 where it passes through the saddle poi¥it.
There are, of course, other solutions obtained from

Eg. (7) by a shift of x. Also we could have cho-  As was mentioned before, we have to take into account
sen the Ansaze U=diag(e'“™,e?*™,e*™) or U  here the terms of higher order in mass in the effective poten-
=diag(e”**®,e'*®,e'*() and obtain two other wall so- tjal. For N;=2, it is convenient to make benefit of the fact
lutions (with the same propertigpassing through the saddle that SU(2)®@ SU(2)=0(4) and to use the four—vector no-
points IVa and IVb. The wall surface tension is tations so thatU=U ,0,=Ug+iU;0; 'Ui: 1. The 2x?2
complex mass matrix involves eight real parameters which is
9 « EdE o convenient to “organize” in two different isotopic
oz—Fzwa —=3ﬁ(1——
T )o (E24+E+1)2 33

lll. TWO FLAVORS

M, F2. four-vectors

)

3 . :
X.= —5 (Re T{Me ¥} Im T{ Me' "0 }),
Suppose now thab= 7+ ¢ with 0<|¢|<1. The ener- Fa
gies of the vacua are not degenerate anymore but are splitted

t by the val ~ _= i '
apart by the value Y= F_z(lm Tr{Me 92, — Re T{Me "2},

w

AE~m3 34| (9) (12)

ofn the second order iry,y, the most general form of the

A metastable vacuum should decay with the formation o
d:}otennal is[10]

bubbles of the stable phase. The quasiclassical formula f
the decay rate per unit time per unit volume was derived in

Ref. [8]: V(U= —F2(x,U) —la(x,U )7 = 17(x,U 0%
(13
27 ot where |3 ; are some dimensionless coefficieritse coeffi-
IN'cexp, — 57 GER (10 cientsly , 456 Multiply the structures involving the deriva-

tives of the fieldU in the effective Lagrangign The term

. . _— «(x,.U,)(x.U,) is not allowed because it would lead to
whereo is the surface tension the bubble. Substituting hereCI(Dth)Lreg)kgr)](éi eCt)an ab=0

Egs. (8), (9) [Strictly speaking, ab+ =, the bubble surface The term~(XMUM)2 can always be neglected compared

tef?s'ort‘ does not;Eow;glde ;Vltg E/(f) gu: 'St som?lwhatﬂI]ess to the leading one for small masses and is not interesting. On
going to zero aty=/2 or 6=3/2; But at small|¢|, the contrary, the term involving, has a differenty depen-

expression(8) is correct, we obtair A .
P ®) 1 dence and, foM=ml and 6~ when the leading term
) vanishes, determines the whole dynamics.
CF; Before proceeding further, let us try to extract an infor-
Iocexpy — M2|¢|3 (1) mation on the numerical value of the constant The fol-

& lowing relation belonging to the same class as the well-
_ known Weinberg sum rule and derived in REEQ] is very
with useful:

4
1— —

3V3

Note that the numerical factd® in the exponent is tremen-
dously large, i.e., lifetime of metastable states would be tre-
mendously largégmuch larger than the lifetime of the Uni-

s\2 . _
C=24% 35372 —S(E) |75'k=f d*x[(S(x)S4(0))— 6*(P°(x)P°(0))],

(14

“4Recently, Halperin and Zhitnitsky argued the existence of meta-
stable states in the real QCD @ 0 [9]. However, their arguments
3Note the difference with the rough estimatd —F2/(M2|¢|?) were based on a particular model form of the effective potential
for the same quantity in Witten’s papg8]. First, one hag¢|® incorporating also glueball degrees of freedom and involving cer-
rather than ¢|? in the denominator and, second, a huge numericakain cusps. The status of this potential is not quite clear yet.
factor pops up. SWe use the notations of RgfL0].
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Introducing the spectral density

e | p<x>=<2 5<A—xn>>, (17)
D "
the relation(16) is rewritten as
F4 = p(N)d\ (v?)
l,=— | m? f - : 18
a) b) 52 m 0 (\2+m2)2  2m2V (18)

FIG. 2. Connected and disconnected contributions to the quark_ | .
current correlators. This relation belongs to the same class as the famous Banks

and Casher relation for the fermion condensate

whereS =qo'q and P°=iqy°q. Let us calculate the right-
hand side of Eq(14) as an Euclidean functional integral. Let 2ZZmJ"”PO\)O'?\
us first calculate the correlators inparticular gauge field

background Only the connected quark diagram depicted in

Fig. 2@ contributes to the correlator of the scalar isovectorFor some more examples, see R¢12,13.

densities. The psgudoscalar correlatqr repeives also a.contri— Both terms in Eq.(18) are singular<1/m in the chiral
bution from the disconnected graph in FigbP The solid  jimit. The singularity cancels out, however. Indeed, the lead-
lines in Fig. 2 stand for the quark Green's functions in ajng infrared contribution in the first term in square brackets
particular gauge field background for which we use the specy wp(0)/(4m)~3/(4m) which is the same as for the sec-
tral decomposition ond term due to the known result for the topological succep-
tibility in a theory with light quarks of the same masist]

. }\2+m2=77p(0)+0(m). (29

() g(Y)
GaXY)=2 — (15 L ms

n
—{(v¥)=—+0(m?). (20)
. . Y, N¢
where A, are the eigenvalues of thmasslessEuclidean
D_|rac operator in an external gauge field ayz,q(x)_ ar_e S The absense of singularity in the isoscalar pseudoscalar cor-
eigenfunctions. All non-zero eigenvalues are palnid. for anYq|ator means that the corresponding meson is masdiie)
eigenfunctiony;(x) with non-zero eigenvalug.,, ¥n(X)  problem is resolved by the 't Hooft mechanism due to fer-
=y°yn(x) is also an eigenfunction with,=—\,. There mion zero modes in topologically nontrivial gauge back-
are also zero modes. For each flavor, their number coincidegrounds.l; is given thereby by a constant termO(1)

with the topological charge= (1/327,-2)fd4x62v62v ofthe  Which is left out after the cancellation of singular terms. This

gauge field configuration. constant is completely determined by the term? in (»2).
Now, for large Euclidean volumemVs>1, the zero Indeed, forN¢=2, thg:- spectral density is analytic at
mode contribution is irrelevant for theonnectedyraphs(see  =0: p(X\)=p(0)+ A"+ ... [12]. The extra infrared con-

the discussion in Ref[11]). On the other hand, thenly  tribution is of orderO(m) and can be neglectédVe finally
contribution in the disconnected graph for the pseudoscalg@btain

correlator is due to zero modes. This contribution is very

large < »2/m? and is of paramount importance. Plugging in . F4
the Green'’s functionélb5) in the correlators in Eq14), pair- l7=lim —
ing together positive and negative and integrating over
gauge fields, we obtain for large volumes

sV
2§|7=v

m

2—2<V2>/(mv)}

o (21)

What can be said about tme dependence of the topological
m2—\2 succeptibility in the next-to-leading order in mass? Let us
n . : . .
. first see what happens in a theory with two light quarks em-
no(mP+ R§)2> bedded in the theory involving also the third quark which is
) much more massive but still light enougas is the case in
+ E, 1 _ ﬂ th_e real Wo_rld. The topological succeptibility _in the theory
= m2+)\ﬁ m2 with three Ilght quarksn,=my=m<<mg< upaq, IS given by
the expressiofn2,3]
where X means the summation over positive eigenvalues
only and(- - - ) stands for the gauge field averaging. The first
term on the right-hand-side comes from the scalar isovectorSnote also that the spectral integral in E48) involves a loga-
correlator, the second term is the contribution of the con+ithmic ultraviolet singularity at largex where the spectral density
nected graph to the pseudoscalar correlator, and the last terigithe same as for free fermiopg\)~\3. It is multiplied, how-
is due to the disconnected graph. ever, bym? and can be dropped out for that reason.

¥

, (16)
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2 2 E
G _mmE M2 ome, (@2

V  m+2m; 2 4m,

i.e., the second term isegativé which means that, as
given by Eq.(21) is positive We obtain

F4 = 2 ,,,,,,,,,,,,,,,,

lyj=e =" 5% 107, 2
Emy gmz 0 @3 ~0, 0, ¢

The same result could be obtained in a more direct way if
saturating the pseudoscalar correlator in 8¢) by the » -
meson pold10].

The estimatg23) is quite good for the real QCD. What
we are interested in here, however, is a hypothetical theory
with 6~ and just two light flavors. Remarkably, an ana-
lytic result for |, can be obtained also in this case if the
number of colordN, is assumed to be large. For larbe, FIG. 3. Stationary point oE(a) for Ny=2 in the region of
the axial U(1) symmetry is almost not affected by the small |¢|=|6—=|. Solid lines are minima and dotted lines are
anomaly which means that thg¢’ meson is relatively light: maxima.

Mf],~,uﬁad/NC. We can saturate now the pseudoscalar cor-
relator by then' pole to obtain

0 , L83’
V(a)— —2m3 cos: cosa—4l,m smzz = coga.

2
F2 (27)
l7= 7 (24)
2M7, Defining ¢= 6— r, it can be rewritten for small$| as

The same result can be obtained via the relat@b. For
large N, andN;=2, the topological succeptibility is known
to be[15,3

2
T

2 2
V(a)=m3 ¢ cosa— 4l 7m2( F_) co? a. (28)

mrS my may2

1
(V== —— +0(m®), (25 8l-m3
\Y 27+m3 2 4t lbl< b, = |7:4 ’ (29

w

where 7 is the topoligical succeptibility in the pure Yang-

Mills theory. Again, the term~m? in (¥?)/V is negative the function(28) has four stationary points:

which leads to the positivie, which coincides with Eq(24) 5 \2

due to the relation | =0 with E,=m2¢—4l7m2<—2) ,
F’TT

FZM? =47 (26)

2 2
_ H _ 2
which holds in the limitm— 0. We assume thaj is positive Il a=m with E,=-mX¢—4l;m (F_Z) ’

also for small number of colors down té.=2. Indeed, in

the limit m— o, the topological succeptibility should coin- = F4 2
cide with 7. It is natural that the series im for small masses . 1l =+ T with B =———o.
T ,llla « arccom with E, 16,

[the analogue of Eq25)] should have alternating signs. We

cannot, unfortunately, formulate this stateméhe positive- (30)
ness ofl ;) as an exact theorem though auspicionis that  again, the points Il llla are related to each other by Weyl
such a theorem can somehow be proven. symmetry and we have actually the whole surface

We are ready now to discuss the vacua dynamics in thgy(2)/u(1)=S? of the equivalent stationary points. Study-
region 6~ m. AssumeU = diag(e'*,e”'“). The potential13) g the second derivative&V/da? for the branche<30),
(with 13=0) is one readily sees that, in the regi(29), the points | and II

present local minimdfor ¢<0 or #< the absolute mini-

mum is | while Il is a metastable state; fée> 7, it is the
"That is quite natural, of course. The presence of an extra ligh@ther way roungl The points Ill are degenerate maxima. The
quark brings about the suppression of largaue to the extra factor  picture is depicted in Fig. 3. Physically, it is exactly the same
m¢ in the fermion determinant. as in the cas&l;=3 and we have a first order phase transi-

114021-5



A. V. SMILGA PHYSICAL REVIEW D 59 114021

tion. Only the width of the region i@ where two local 1 1 g2 g \?2
minima coexist is much more narrow than in the cége £b°S:§(0#¢+)2+ E(ﬁ#qs,)z—— ¢+——)
=3 and goes to zero in the chiral limi—0. m V8w

Note that with negativé,, the picture would be reversed 5= 5
compared to that in Fig. 3 so that we would have in the +Ccosy2me, cos2m, (35)
region(29) a surface of degenerateinimaat the points Ill. - \yhere, is the heavy field and_ describes light degrees

That corresponds to spontaneous breaking of flavor symmest freedom. Assuming the “conformal” normalization for
try SUy(2) [5] (when#+0, the contributions to the partition the Euclidean correlator

function coming from topologically nontrivial sectors are not

positively defined, and the Vafa-Witten theor¢i®] which 1 5
prohibits spontaneous breaking of vector flavor symmetry at({:cosB¢_(x): 5COSB¢—(0)3>co=§< — it |x|£72m
6=0 does not apply In addition, atd+ = we would have I

the maxima of inequal height at the points | and Il. Instead of (36)

one first order phase transition &= 7 we would have two
consequent second order phase transitiong=atr+ ¢, .
We find this picture rather unnatural and consider it as an (:€08Bd, (X))o p—0=1, (37)
additional argument whi;; should be always positive.

It is not difficult now to perform the same program as for the constanC was calculated to Be18]
N;=3 and to find the surface energy density of the domain
wall at == and the decay rate of metastable vacua at the _ mg%er?2%
vicinity of 6= 7. The wall configuration and the energy den- C= 5/ ' (38)
sity at #= 7 are obtained by minimizing the functional

and also

where y is the Euler constant. Whem=0, alsoC=0 so

= | F2 s\ that light and h d f freed d I d
. Fa 2 2| = _ ght and heavy degrees of freedom decouple and we
7= f,x 2 (9xe)"=2lzm <F2 (cos2z—1) dx have just free massive Schwinger boson with the mass
31
( ) 2:2_92 (39)
with the boundary conditiong(—)=0, a(*)=m. The # T

equations of motion have a simple solution _ _ _ _
and a sterile massless particle. Wher:0, light “quasi-

Goldstone” degrees of freedom acquire mass and start to
] : (32)  interact with the heavy ones. One can write the effective
Lagrangian for the light degrees of freedom which has
largely the same status as the effective chiral Lagrangian in
QCD. To lowest order, we can just freege. = 6//87, and
ms, the Lagrangian reads

o= 320, (33

2,
a(z)=2 arcta+ exp{ \/8T7 r;—gx

ks

The surface energy density is

1 0
£2ﬁ=§(aﬂ¢_)2+ccosz:cos\/Zmﬁ_ . (40)
It is much lower numerically than in the calle=3 and goes
to zero in the chiral limit. The rate of metastable vacuum

. . It is nothing else as the sine-Gordon model. It is exactl
decay af p|< ¢, is estimated as g y

solved which allows one to find the vacuum energy, the fer-

mion condensate of the original theory, and the mass spec-
Tcex _123772|2£ . (34) trum. Not surprisingly, the lowest states form an isotopic
7F‘,‘T|q§|3 triplet. A characteric mass scale of these “piofisis

~(C cosb2)?3~ (m?g cos 6I2)'". See Ref[18] for the ex-
act calculation.
When 6~ 1, the leading term in the effective potential
It is very instructive to compare the situation in QgD Vvanishes, however, and we are in a position to take into

with what happens in QED(the Schwinger modgWwith two ~ account higher order corrections in the Born-Oppenheimer
light fermions of equal mass. The model was extensively
analyzed in Ref[17]. For zero mass, it is exactly solvable.
When the massn is not zero, but much less than the gauge sye have changed the convention @compared to Ref18] by
coupling constang (which carries the dimension of mass in g tactor of 2.
two dimensionj a systematic expansion in the small param- 9The only essential difference with the pions of QCD are that they
eterm/g (typically, in some fractional powers thereafan  are not true Goldstone bosons and decouple in the chiral limit. This

IV. SCHWINGER MODEL

be built up. is related to the Merman-Wigner-Coleman theotd®] forbidding
The model is exactly equivalent to the following the existence of massless interacting particles and, thereby, a spon-
bosonized model: taneous breaking of a continuous symmetry in two dimensions.
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we finally obtain
1 0
- @ Lor=3(9ud-)"+ C cosy:cos2m:
752c2 9 P
Ko COSZE‘FK]_ Slnzz :

_|_ J—
V8g®
FIG. 4. Some graphs contributing in the effective lagrangian at
second order. Crosses stand for the insertion of light vertex X cos@d;, :+0(C3), (45)
cos(y2m¢_) and solid lines describe heavy Schwinger bosons. The
graphs with even number of the lines contribute kg and the ~ Where
graphs with odd number ir;.

KO:f z2dZ{cosiiKy(z)]—-1}=0.163 . . .,
. : . . 0

parametemm/g. It is convenient to rewrite the Lagrangian
(35) in terms ofy= ¢, — 6/ /8

K]_:f z2dzsin{Ky(2)]=1.604 . .. . (46)
1 2 % 2, 1 2 0
L=500)"= 5 X"+ 5(9,¢-) _

The constani is an exact counterpart of the consténin
0 P the effective potential13) for QCD,. The constanik, is an

+C| cosz cosy2my—sinzsiny2my |:cosy2md_ .. exact counterpart df;, the quantity of primary interest for us

2 2 : e ,

here. We see that, is positive(and that serves as an addi-
(41)  tional argument whyt; should be positive in QCE. Note
) . o ) S that if plugging in justKy(z) instead of sinfKy(2)] in the

The correction~C<om® in the effective potential is given integral (46) for «, (that corresponds to taking into account

by the expression only the graph with one heavy particle exchangee would
C2 obtain k;= /2 instead of 1.604. The effect of higher loops
AV(x)=— —5-:cosy8mé_(X): increases the value af; just by ~3%.

Even the analogue of the domain wall &t 7 exists in
of . this nice model. In two dimensions, a domain wall is just a
COSZEJ d%y|y[({ cosy2mx(y)cosv2mx(0))c=0  particle. On the classical level, it is a sine-Gordon soliton
corresponding to interpolating between the poigts=0
., 0 . . and ¢_=+/w/2. Soliton and antisoliton form an isotopic
+S|n2§f d?yly|(siny2mx(y)siny2mx(0))c—o]. doub(ll)et. P
It would be very interesting to analyze the quantum prob-
lem and to find the mass spectrum and other characteristics

This formula has the same meaning as B30 in the paper of the model to the order C2. Our impression is that it is
by Coleman[17]. We only used accurately the conformal NOt SO €asy to do &= the problem is thag= y8 is

(42

fusion rules exactly a boundary value of the coupling. The Sine-Gordon
theory with 8> 87 is sick: the Hamiltonian does not have
-l B X:ei,&/)(o)::|X|B2/2w:e2iﬁ¢(0):+ o (43) a ground state, etc. This displays itself in the fact that the

factor multiplying :cos/8m¢_ : in Eq. (45) is dimensionless
neglected the operators of higher dimension in@8) (they ~ and we do not have a mass parameter out of which the soli-
bring about the corrections of still higher orderriy), omit- ~ ton mass could be composed. Probablyfatm, the Born-
ted an irrelevant additive constant, and took into accalint Oppenheimer expansion breaks down in this case and one
loops of the heavy fielgt(x) drawn in Fig. 4(Coleman only ~ has to analyze the full LagrangiB5) by approximate meth-
took the first graph which is much similar to the graph with 0ds(see Ref[20]). The Lagrangiari45) may still be taken at
the ' exchange which saturates the pseudoscalar correlatéfe face value at other values 6fand could allow to find
and gives the leading contribution inin QCD, in the large ~ corrections in mass to the exact results of e8] at /=0,
N, limit. It is good enough for a qualitative estimate, and, asetc. But this is beyond the scope of the present paper.
we will soon see, the account of other graphs only brings
about a certain numerical factor which is very close tp 1. ACKNOWLEDGMENTS
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