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Pion and photon light-cone wave functions from the instanton vacuum
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The leading-twist wave functions of the pion and the photon at a low normalization point are calculated in
the effective low-energy theory derived from the instanton vacuum. The pion wave function is found to be
close to the asymptotic one, consistent with the recent CLEO measurements. The photon wave function is
nonzero at the end points. This different behavior is a consequence of the momentum dependence of the
dynamical quark mass suggested by the instanton vacuum. We comment on the relation of meson wave
functions and off-forward parton distributions in this model.@S0556-2821~99!09309-1#

PACS number~s!: 12.38.Lg, 13.60.Fz, 13.60.Le
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I. INTRODUCTION

Hadron light-cone wave functions1 parametrize the non
perturbative information entering in the amplitudes for e
clusive hard scattering processes in QCD@1–3#. The pion
wave function appears in the description of the pion elec
magnetic form factor and pion-meson transition form fact
~for a review see Ref.@4#!, and in the amplitudes for exclu
sive pion production in photon-photon@5–9# and photon-
nucleon processes@10#. The photon wave function enters, fo
instance, in the amplitudes for radiative hyperon decays@11#,
or in power-suppressed contributions tog* g processes such
as g* g→p0 @8# or deeply virtual Compton scatterin
@12,13#.

A calculation of the meson and photon wave functio
from first principles requires a theory of nonperturbative
fects giving rise to a hadron structure. Meson wave functi
have extensively been studied using QCD sum rules.
original suggestion by Chernyak and Zhitnitsky of
‘‘double-humped’’ wave function of the pion at a low scal
far from the asymptotic form, was based on an extraction
the first few moments from a standard QCD sum rule
proach@4#, which has been criticized and revised in Re
@14,15#. Additional arguments in favor of a form of the pio
wave functions close to the asymptotic one came from
analysis of the transition form factorgg*→p0 @8#. The re-
cent measurements of this form factor by the CLEO Colla

1In this article we use the term ‘‘light-cone wave function’’ t
denote functions describing matrix elements of QCD light-ray
erators between hadron~or photon! states and the vacuum, depen
ing only on longitudinal momentum fractions. These objects
frequently also referred to as ‘‘distribution amplitudes’’ in the l
erature. Note that some authors use the term ‘‘wave function’’
more elementary functions depending on longitudinal as well as
transverse momenta, from which the functions considered h
would be obtained by integration over transverse momenta.
0556-2821/99/59~11!/114018~8!/$15.00 59 1140
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ration are consistent with a near-asymptotic form of the wa
function @16#.

About the leading-twist wave function of the photon litt
is known at present from experiment. Its asymptotic form
fixed by the approximate conformal invariance of QCD f
large virtualities~see, e.g., Ref.@4#!. Balitsky et al. @11# at-
tempted to estimate corrections to the asymptotic form us
QCD sum rules and local duality relations but found that
this approach higher moments could not be estimated w
sufficient accuracy. The photon wave function has also b
discussed in the context of a constituent quark model
photon-meson transition form factors by Anisovichet al.
@17#.

In this paper we study the pion and photon wave functio
in the instanton vacuum. The picture of the QCD vacuum
a dilute medium of instantons explains the dynamical bre
ing of chiral symmetry, which is the nonperturbative ph
nomenon most important for hadron structure at low energ
@18#. Quarks interact with the fermionic zero modes of t
individual instantons in the medium, which leads to the fo
mation of a chiral condensate. One derives from the inst
ton vacuum an effective theory of quarks with a dynami
mass which drops to zero at Euclidean momenta of the o
of the inverse average instanton size,r̄21.600 MeV @19#.

The pion and photon wave functions can be extrac
from correlation functions of light-ray operators with the m
sonic viz. electromagnetic current, which can be compute
the effective low-energy theory. The normalization point
the wave functions obtained in this approach is of the or
of r̄21.600 MeV. The pion wave function has been com
puted in Ref.@20#; it was found to be close to the asymptot
one. Our intention here is twofold. First, we wish to expa
the investigation of the pion wave function, discuss its sc
dependence and compare with the recent CLEO meas
ments@16#. Second, we compute also the photon wave fu
tion. In particular, we shall be interested in comparing t
photon and the pion wave functions. As will be seen belo
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the two exhibit different behavior at the end points,u→0
and 1. This is a consequence of the momentum depend
of the dynamical quark mass implied by the instant
vacuum.

Additional motivation for studying the photon and pio
wave function comes from their importance for deeply v
tual Compton scattering and hard meson product
@10,12,13#. The factorization of the Compton amplitude
the deeply virtual domain involves the off-forward parto
distributions~OFPD’s! of the nucleon. Recently, Radyushk
has argued, on the basis of a ‘‘meson exchange’’ contri
tion to the so-called double distributions related to the O
PD’s @21#, that the OFPD’s may be discontinuous atx5
6j/2 (j is the longitudinal component of the momentu
transfer to the nucleon! if the meson wave function wer
nonzero at the end points. Such discontinuities had ind
been observed in a calculation of the isosinglet OFPD’s
the nucleon in the effective low-energy theory derived fro
the instanton vacuum, where the nucleon is described
chiral soliton@22#. It was seen there that nearx56j/2 the
behavior of the OFPD is governed by the momentum dep
dence of the dynamical quark mass, which turns
would-be discontinuity into a sharp but continuous cro
over. Here we shall see that the same physical mechanis
the momentum dependence of the dynamical quark mass
tained from the instanton vacuum—is responsible for the
point behavior of the meson wave function, showing that t
approach provides a consistent realization of Radyushk
general arguments.

II. PION AND PHOTON WAVE FUNCTION

The basic objects arising in the factorization of hard sc
tering amplitudes involving mesons or photons in the init
or final state are matrix elements of certain gauge-invar
nonlocal operators between the meson~photon! states and
the vacuum. Their classification in structures of differe
twist and their respective role in the asymptotic limit h
been discussed, e.g., in Ref.@4#. The twist-2 wave function
of the pion is defined through the matrix element

^0ud̄~z!gmg5@z,2z#u~2z!up1~P!&

5 iA2FpPmE
0

1

duei (2u21)P•zfp~u!. ~1!

Herez is a lightlike four-vector (z250), and

@z,2z#[P expF E
21

1

dtzmAm~ tz!G ~2!

denotes the path-ordered exponential of the gluon field,
quired by strong gauge invariance;2 the path here is define
to be along the lightlike directionz. Furthermore,P is the

2Here and in the following we have omitted the correspond
phase factors connected with electromagnetic gauge invaria
they are not important in the discussion here.
11401
ce

n

-
-

ed
f

a

n-
e
-
—
b-
d
s
’s

t-
l
nt

t

e-

pion four-momentum; we shall consider the chiral limitP2

50. Finally, in Eq. ~1! Fp denotes the usual weak pio
decay constant

^0ud̄~0!gmg5u~0!up1~P!&5 iA2FpPm ~3!

(Fp593 MeV), and the wave function is normalized a
cording to

E
0

1

dufp~u!51. ~4!

The matrix element in Eq.~1! involves a chiral-even operato
with Dirac matrix gmg5; the corresponding matrix elemen
with a chiral-odd operator (g5) is of higher twist.

The twist decomposition of the matrix elements for t
photon parallels that for the rho meson~see, e.g., Ref.@23#!,
the only difference—except isospin—being that the real p
ton has only two transverse polarization states. The twis
wave function of the photon is defined by the matrix elem
@11#

^0uū~z!smn@z,2z#u~2z!ug~P,l!&

5 i
2

3
f g'~e'm

(l)Pn2e'n
(l)Pm!

3E
0

1

duei (2u21)P•zfg'~u!1higher twists.

~5!

Here the photon state is characterized by the fo
momentum,P(P250), and polarization vectore'

(l) , where
e'

(l) is transverse with respect toz andP (z•PÞ0).
We have not written explicitly in Eq.~5! the terms with

tensor structures corresponding to contributions of twis
and 4. The matrix element of the chiral-odd operator w
smn represents the only possible twist-2 matrix element
the on-shell photon; a twist-2 structure with a chiral-ev
operator (gm) is possible only for a virtual photon or rh
meson with longitudinal polarization. In Eq.~5!, the normal-
ization constantf g' is defined through the matrix element o
the corresponding local operator (z50)

^0uū~0!smnu~0!ug~P,l!&5 i
2

3
f g'~e'm

(l)Pn2e'n
(l)Pm!,

~6!

so that the photon wave function is normalized analogou
Eq. ~4!.

III. EFFECTIVE LOW-ENERGY THEORY FROM
THE INSTANTON VACUUM

We now compute the matrix elements Eqs.~1! and~5! in
the effective low-energy theory which has been derived fr
the instanton vacuum in the largeNc limit. This effective
theory describes the interaction of a quark fieldc with a pion
field p by an effective action

g
e;
8-2
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PION AND PHOTON LIGHT-CONE WAVE FUNCTIONS . . . PHYSICAL REVIEW D 59 114018
Seff5E d4xc̄~x!@ igm]m2MUg5~x!#c~x!, ~7!

where

Ug5~x!5exp@ ig5tapa~x!#. ~8!

Note that the interaction is chirally invariant. Here,M de-
notes the dynamical quark mass, which appears due to
spontaneous breaking of chiral symmetry. On gene
grounds, this effective theory is valid up to some ultravio
cutoff. In the instanton vacuum this cutoff is implemented
the form of a specific momentum dependence of the dyna
cal quark mass, which leads to the following form of t
quark-pion coupling:

E d4xc̄~x!MUg5~x!c~x!

→ME d4k

~2p!4E d4l

~2p!4
c̄~k!F~k!

3Ug5~k2 l !F~ l !c~ l !. ~9!

HereF(k) is a form factor,F(0)51, related to the Fourie
transform of the instanton zero mode, which drops to z
for spacelike momenta larger than the inverse average ins
ton size3

F~k!→0 for 2k2@ r̄22. ~10!

We note that, when working with the effective theory, E
~7!, it is assumed that the dynamical quark mass is param
cally small compared to the ultraviolet cutoff; their ratio
proportional to the packing fraction of instantons in t
vacuum

~M r̄ !2}S r̄

R̄
D 4

. ~11!

In order to compute the photon wave function we need
couple an electromagnetic field to the quark fields of
effective Lagrangian, Eq.~7!. The interaction of the electro
magnetic field with the quarks is dominated by the pointl
interaction which derives from the kinetic term in the effe
tive Lagrangian. The nonpointlike coupling arising from t
momentum-dependent mass term, which would involve
rivatives of the form factorF(k), is parametrically sup-
pressed inM r̄ relative to the pointlike one. Thus, in leadin
order in M r̄ we shall work with the pointlike electromag
netic current (Q̂ is the quark charge matrix!

Jm
e.m.~x!5c̄~x!gmQ̂c~x!. ~12!

3Here and in the following, all momenta refer to the Minkowski
metric.
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One should note the different role of the form factors in t
coupling of the pion and the electromagnetic field to t
quarks. While in the pion-quark coupling, Eq.~9!, the form
factors act multiplicatively, suppressing the coupling fo
large quark virtualities, in the case of the photon the fo
factors inherent in Eq.~7! make only anadditive ~and para-
metrically small! contribution to the pointlike coupling. This
has important consequences for the behavior of the pion
photon wave functions, in particular at the end pointsu→0
and 1.

IV. COMPUTATION OF WAVE FUNCTIONS
IN THE EFFECTIVE LOW-ENERGY THEORY

To compute the photon wave function, Eq.~5!, we pro-
ceed in analogy to the calculation of the pion wave funct
in Ref. @20#. The matrix element between the one-phot
state and the vacuum is extracted from the correlation fu
tion of the light-ray operator with the electromagnetic cu
rent

i E d4xe2 iP•x^0uT $Jr
e.m.~x!,ū~z!smn@z,2z#u~2z!%u0&.

~13!

When computing this correlation function in the instant
vacuum we can drop the path-ordered exponential in
twist-2 operator, since its contribution is parametrically
order (r̄/R̄)4}(M r̄)2 ~see Refs.@24,25# for a discussion!.
The correlator can then be evaluated in the effective lo
energy theory given by Eq.~7!. In the large-Nc limit, Eq.
~13! is given by a simple quark loop, with the quark prop
gator subject to the momentum-dependent dynamical qu
mass, cf. Eq.~7!. Projecting on the twist-2 structure and co
tracting with the photon polarization vector, we obtain, f
the matrix element on the right-hand side~RHS! of Eq. ~5!,

zn^0uū~z!smnu~2z!ug~P,l!&

52
8

3
NcMe'm

(l)E d4k

~2p!4
e2 i (P22k)•zD~k!D~k2P!

3@z•~P2k!F2~k!1z•kF2~k2P!#, ~14!

where we have set

D~k!5
1

k22M2F4~k!1 i0
. ~15!

Note that we take into account here the form factors~i.e., the
momentum dependence of the dynamical quark mass! in the
denominators of the quark propagators.

To evaluate the integral in Eq.~14! it is convenient to
introduce lightlike vector components. Letn andñ be dimen-
sionless lightlike vectors parallel toz andP, with

n•ñ52. ~16!

Then we can decompose
8-3
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km5
k1

2
nm1

k2

2
ñm1km

' ,

k1[n•k,

k2[ñ•k. ~17!

Expressing the integral in Eq.~14! in terms of the lightlike
vector components, and inserting Eq.~14! in Eq. ~5!, we can
read off the expression for the photon wave function

fg'~u!5~2 i !
2NcM P1

f g'
E d2k'

~2p!2E dk2

2p E dk1

2p

3d~k12uP1!D~k!D~k2P!

3@~12u!F2~k!1uF2~k2P!#. ~18!

The normalization constant can be obtained by compu
the matrix element with the local operator, Eq.~6!. After
taking the limitP2→0 one finds

f g'5~2 i !4NcME d4k

~2p!4
D2~k!FF2~k!2

k2

2

dF2~k!

d~k2!
G .

~19!

Integrating Eq.~18! overu and using the fact that the integr
does not depend on the light-cone vectorn, one easily veri-
fies that Eq.~18! obeys the normalization condition, Eq.~4!.

Equation ~18! should be compared to the result for th
pion wave function, Eq.~1!, which was derived in Ref.@20#:

fp~u!5~2 i !
2NcM

2P1

Fp
2 E d2k'

~2p!2E dk2

2p E dk1

2p

3d~k12uP1!D~k!D~k2P!F~k!F~k2P!

3@~12u!F2~k!1uF2~k2P!#. ~20!

The expression for the normalization constant, the weak p
decay constantFp has been obtained in Ref.@18#. Note the
additional form factorsF(k)F(k2P) in the integrand in Eq.
~20!, as compared to the photon wave function, Eq.~18!.
These are the form factors originating from the pion-qu
coupling, Eq.~9!.

The evaluation of the integrals defining the photon a
pion wave functions, Eqs.~18! and~20!, proceeds as follows
First the integral overk1 is taken, using up the delta func
tion. Then the integral overk2 is performed by contour in-
tegration. A special property of the lightlike coordinates
that the denominators are linear ink2. As shown in Ref.
@20#, the condition that the poles lie on different sides of t
real axis ensures that Eqs.~18! and~20! are nonzero only for
0,u,1. In the last step the integral over transverse m
menta is computed, taking into account the form factors.

V. END POINT BEHAVIOR

In the expressions for the photon and pion wave functi
in the effective theory, Eqs.~18! and ~20!, the integral over
11401
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transverse momenta contains a logarithmic divergence w
is regularized by the form factors. Let us analyze the in
grands in order to see, for a given value ofu, which regions
of k' make the main contribution to the integrals. For th
we consider the virtualities of the quark propagators in
loop integrals in the vicinity of the two poles ink2. Taking
into account thatk15uP1 one easily sees that at the pole
k2 corresponding tok25M2 the virtuality of the quark with
momentumk2P is

~k2P!252
uk'u21M2

u
, ~21!

while at the pole ink2 corresponding to (k2P)25M2 the
virtuality of the other quark is

k252
uk'u21M2

12u
. ~22!

We see that the kinematical boundariesu→0 andu→1 cor-
respond to the situation that one of the quarks has a la
spacelike momentum. In these limits the form factors in
integrand play a crucial role, since they suppress the con
butions of large spacelike momenta. More precisely, for v
ues ofu parametrically of the order

u;~M r̄ !2 or 12u;~M r̄ !2 ~23!

one of the quarks has a virtuality of the orderr̄22 and the
integral is cut by the form factors already at transverse m
menta of orderuk'u;M . For values ofu not close to the
boundaries the integral over transverse momenta extend
to r̄21, leading to the usual logarithmic dependence of
integral on the ultraviolet cutoffr̄21.

In light of the above it is clear that the photon and t
pion wave functions, Eqs.~18! and ~20!, behave differently
at the end points. In the case of the pion, due to the fo
factorsF(k)F(k2P) introduced by the coupling of the pio
field to the quarks, Eq.~9!, the contribution from large vir-
tualities are suppressed, leading to the vanishing of the w
function at the end pointsu→0 and 1. In the case of the
photon, on the other hand, the multiplicative factors are
sent, and the integral is not suppressed foru→0 and 1. The
remaining form factors in Eq.~18!, which originate from the
momentum dependence of the dynamical mass in the q
propagators, do not suffice to make the integral go to zer
u→0 and 1. Hence there is no reason for the photon w
function to go to zero at the boundaries.

VI. NUMERICAL ESTIMATES

To perform a numerical estimate of the pion and pho
wave functions we need to put in the specific form of t
form factorF(k). This function has been derived for Euclid
ean~i.e., spacelike! momenta as the Fourier transform of th
instanton zero mode@18#. One possibility would be to com
pute moments of the wave functions, which can be expres
as integrals over Euclidean momenta. However, we wo
like to compute the wave function directly, since, for i
8-4
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PION AND PHOTON LIGHT-CONE WAVE FUNCTIONS . . . PHYSICAL REVIEW D 59 114018
stance, very high moments would be needed in order to
store the end point behavior of the wave function. Thus
prefer to carry out the integrals Eqs.~18! and ~20! over
Minkowskian momenta. In principle one could continue t
exact Fourier transform of the instanton zero mode
Minkowskian momenta; the function exhibits a cut at po
tive Minkowskiank2.0. Since the numerical evaluation o
the integrals with this function is rather tedious, we sh
instead use a simple pole form

F~k!→
L2

L22k22 i0
~24!

(k2 is the Minkowskian momentum!. With L2;2.0r̄22 this
form gives a good overall approximation to the Fourier tra
form of the zero mode in the Euclidean domain (k2,0).
With the form factors approximated by Eq.~24!, the integrals
Eqs. ~18! and ~20! can be evaluated by contour integratio
overk2. We emphasize that the prescription for dealing w
the poles of the form factors, cf. Eq.~24!, follows unambigu-
ously from the requirement that the moments of the wa
function computed with Eq.~24! coincide with the corre-
sponding Euclidean integrals. Since we have seen above
the end point behavior of the wave function is governed
the form factor at large spacelike momenta, cf. Eqs.~21! and
~22!, where the pole form Eq.~24! is a good approximation
to the exact Fourier transform, we are confident that the
of Eq. ~24! is at least qualitatively correct.

Dorokhov has discussed the pion electromagnetic fo
factor in connection with the instanton vacuum using a d
persion relation approach@26#. He quotes an expression fo
the pion wave function which involves the zero mode fo
factor corresponding to the instanton in regular gauge, wh
is not consistent with the superposition of instantons~sum
ansatz! implied in the derivation of the instanton mediu
@18#. Furthermore, in the language of our approach, his re
apparently amounts to neglecting the contributions from
singularities of the form factorsF(k) in the Minkowskian
loop integral, and thus seems to have no clear relation
Euclidean calculation of moments of the wave function.

For the numerical estimates we use the standard pa
eters of the instanton vacuum (M5350 MeV,r̄
5600 MeV). The results for the pion and photon wave fun
tion are shown in Figs. 1 and 2. As can be seen from Fig
the pion wave function obtained from Eq.~20! vanishes at
the end points, in agreement with the general argument
sented above. The wave function at the low normalizat
point is only slightly flatter than the asymptotic one4 @1–3#

fp
asymp~u!56u~12u!, ~25!

4In the calculation of the pion wave function in Ref.@20# the form
factors inside the square bracket in Eq.~20! and in the denominators
of the quark propagators were put to unity, since they are not
sential for cutting off the integral. Here we take into account a
those factors in Eq.~20!. Our numerical results are neverthele
very close to those of Ref.@20#.
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and far from the form suggested by Chernyak and Zhitnits
@4# fp

CZ(u)530u(12u)(2u21)2.
In order to determine the scale dependence of the w

function one needs to expand it in eigenfunctions of the e
lution equations. To one loop accuracy, both for the pion@2#
and the photon@27# wave functions, Eqs.~1! and ~5!, the
eigenfunctions are Gegenbauer polynomials of index 3
The expansion coefficients are given by the moments

Bn5Nn
21E

0

1

duCn
3/2~2u21!fp~u!,

Nn5E
0

1

du@Cn
3/2~2u21!#2fp

asymp~u!. ~26!

Computing these coefficients for the pion wave function o
tained from the effective low-energy theory, Eq.~20!, we
find the expansion

fp~u!5fp
asymp~u!@110.062C2

3/2~2u21!

10.01C4
3/2~2u21!1•••#. ~27!

Our value for the second momentB250.062 is considerably
smaller than that of Chernyak and ZhitnitskyB250.66. One
notes that the coefficient of the fourth-order polynomial

s-
o

FIG. 1. The pion wave function,fp(u). Solid line: Wave func-
tion calculated in the low-energy effective theory, cf. Eq.~20!.
Dashed line: Asymptotic wave functionfp

asymp(u)56u(12u).

FIG. 2. The photon wave functionfg'(u) calculated in the
low-energy effective theory, cf. Eq.~18!. Solid line: real photon
(P250). Dashed line: the corresponding function for a spacel
virtual photon with P252(250 MeV)2. Dotted line: P25
2(500 MeV)2.
8-5
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already very small numerically. We remark that Eq.~27!
~with higher terms neglected! provides also a reasonable n
merical representation of the computed wave function.

The recent CLEO measurements@16# of the transition
form factor gg*→p0 provide a unique opportunity to ex
tract information about the pion wave function. In the sta
dard hard scattering approach with the tree-level coeffic
function the 1/Q2-asymptotic behavior of the transition form
factor is governed by the ‘‘inverse’’ moment of the pio
wave function@1,6#

I ~m2!5E
0

1

duu21fp~u,m2!, ~28!

wherem.Q. With the asymptotic wave function, Eq.~25!,
one obtains a value ofI asymp53, while the Chernyak-
Zhitnitsky wave function at the initial normalization poin
gives I CZ55 @4#. With the wave function computed in th
effective low-energy theory, Eq.~20!, we find a value ofI
53.21, which should be associated with a normalizat
point of the order ofm. r̄215600 MeV. In Table I we give
the values of the integral Eq.~28! obtained by leading-orde
evolution (LQCD5250 MeV, Nf53) of our wave function,
cf. Eq. ~27!, at a few values of experimentally releva
scales.~For details concerning the evolution see Ref.@4#.!
We note that the values are close to those obtained in a Q
sum rule approach with nonlocal condensates@28#.

It is known that the inclusion ofas corrections to the
coefficient function decreases the coefficient of t
1/Q2-asymptotic behavior of the transition form factor b
about 15–20 %, see Refs.@7,9#. Including these correction
our value for I is consistent with the CLEO results, whil
that of Chernyak and Zhitnitsky seems to be ruled out@16#.
Note also that our value is comparable with the one extrac
from a QCD sum rule for the form factorgg*→p0 @8#.

Finally, it is interesting to note that atu51/2, where the
quark and antiquark in the pion carry equal momentum fr
tion, we obtain a value of the wave function of

fp~1/2!51.4, ~29!

which is in good agreement with the bound obtained
Braun and Filyanov from QCD sum rules in exclusive kin
maticsfp(1/2)51.260.3 @15#.

The photon wave function calculated in the effective lo
energy theory, cf. Eq.~18!, is shown in Fig. 2. It does not go
to zero at the boundaries. Thus, the numerical results sup
the above general conclusions of different behavior of
photon and pion wave functions. We do not write a rep
sentation analogous to Eq.~27! for the photon wave function
Such an expansion would be meaningless—since the f

TABLE I. The leading-order scale dependence of the integ
I (m2), Eq. ~28!, computed with the pion wave function obtaine
from the effective low-energy theory~see Fig. 1!.

m2/GeV2 0.6 1 4 8 10 100

I (m2) 3.21 3.16 3.12 3.11 3.08 3.06
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tion does not vanish at the end points, the moments do
decrease rapidly, and a very large number of terms would
needed to represent the function even for values ofu not
close to the boundaries. In Ref.@11# an attempt was made t
estimate the deviation of the photon wave function from
asymptotic form using standard QCD sum rules and lo
duality relations. While it was observed that higher mome
could not be reliably estimated in that approach due to r
idly increasing mass scales in the coefficient functions,
authors of Ref.@11# expressed the belief that they are sma
and that the photon wave function at a normalization poin
m;1 GeV is close to the asymptotic one. Our results do
support this conjecture.

For the normalization constant of the photon wave fun
tion, Eq. ~19!, we obtain a value of

f g'50.036NcM.38 MeV ~30!

at the low normalization point. Due to the nonconservat
of the tensor currentf g' is actually scale dependent@27#.
This quantity is directly related to the so-called magne
susceptibility of the quark condensate,xq, introduced in
Refs. @29,30#, namely, f g'5^ūu&xu . One should compare
our result with the value obtained in Refs.@31,32# from a
QCD sum rule approach ,f g'568 MeV atm51 GeV @us-
ing a value of̂ ūu&52(250 MeV)3 at m51 GeV#. Assum-
ing a normalization point ofm. r̄215600 MeV for f g' cal-
culated in the effective theory the value given in Eq.~30!
should be reduced by a few percent atm51 GeV.

VII. OFF-SHELL BEHAVIOR OF THE PHOTON WAVE
FUNCTION

The photon wave function, Eq.~5!, is defined as the ma
trix element of a twist-2 operator between a physical pho
state (P250) and the vacuum. It is interesting to consid
the corresponding correlation function of the light-cone o
erators with the electromagnetic current also at spacelike
mentum transfers (P2,0). We define

E d4xe2 iP•x^0uT $Jr
e.m.~x!,ū~z!smn@z,2z#u~2z!%u0&

5 i
2

3
f g'~P2!~grmpn2grnpm!

3E
0

1

duei (2u21)p•zfg'~P2,u!1•••, ~31!

wherep is a lightlike vector defined in such a way that
coincides withP in the limit P2→0,

pm5Pm2
P2

2~z•P!
zm ,

p250, ~32!

and we have not written out terms with other tensor str
tures which correspond to higher twists. The functi
fg'(P2,u), which we define to be normalized according

l
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Eq. ~4! also forP2,0, reduces to the photon wave functio
fg'(u) in the limit P2→0. In the effective low-energy
theory it is given by the expression Eq.~18! with P2,0. The
numerical results for momentaP252(250 MeV)2 and P2

52(500 MeV)2 are shown in Fig. 2. One sees that the wa
function becomes larger at the boundaries for increas
spacelike photon momentum. The result for the normali
tion constant is for momenta 0,2P2,1 GeV2 well ap-
proximated by the form

f g'~P2!. f g'S 12
P2

2.2r̄22D 21

, ~33!

where f g' is given by Eq.~30!.

VIII. MESON WAVE FUNCTIONS AND OFF-FORWARD
PARTON DISTRIBUTIONS

The description of deeply virtual Compton scattering
hard meson production requires the so-called off-forw
parton distributions~OFPD’s! of the nucleon@12,13#. A
novel feature of these compared to the usual parton distr
tion functions is the dependence on the longitudinal com
nent of the momentum transfer,j ~see Ref.@13# for defini-
tions!. A convenient language to understand general asp
of the j dependence of the OFPD’s, according to Radyu
kin @21#, are the so-called double distributions. In particul
he discusses a ‘‘meson exchange’’ type contribution to
double distributions which contributes to the OFPD’s in t
kinematical region2j/2,x,j/2. This argument relates th
behavior of the meson wave function at the boundariesu
50,1, to that of the OFPD atx56j/2. In particular, if the
meson wave function atu50,1 were nonzero, the OFPD
would be discontinuous atx56j/2, which would spoil the
factorization of the amplitude.

Strong variations of the OFPD of the nucleon nearx5
6j/2 have been observed in a calculation in the effect
low-energy theory in the large-Nc limit, where the nucleon is
described as a chiral soliton@22#. It was seen there that nea
x56j/2 the behavior of the OFPD is governed by the m
mentum dependence of the dynamical quark mass, w
turns a would-be discontinuity into a sharp but continuo
crossover. This is consistent with the observation made
the above calculation of wave functions, namely that it is
momentum dependence of the dynamical quark mass
determines also the end point behavior of the meson w
function. One important difference between the wave fu
tions and the OFPD’s in this approach is due to the role
the formal parameterNc ~number of colors!: While in the
case of the meson wave function the parametric range
those values ofu close to the boundaries essentially affect
by the momentum-dependent dynamical quark mass is g
by Eq. ~23!, in the case of the OFPD the crossover region
x near6j/2 where the momentum-dependent mass is es
tial is parametrically of the order@22#
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. ~34!

The ‘‘crossover’’ region of the OFPD is parametrical
smaller than the ‘‘boundary’’ region of the wave functio
Nevertheless, the physical mechanism—the suppressio
large quark virtualities due to the momentum-depend
quark mass—is the same in both cases. Thus the effec
theory derived from the instanton vacuum, with the ensu
fully field-theoretic description of the nucleon as a chir
soliton, provide a consistent realization of the general re
tions noted in Ref.@21#.

IX. CONCLUSIONS AND OUTLOOK

In this paper we have computed the photon and pion w
function in the effective low-energy theory derived from th
instanton vacuum. We have exhibited the reason for the v
ishing of the pion wave function at the end points—the su
pression of large quark virtualities by the momentu
dependent dynamical quark mass—and seen that
corresponding mechanism is absent in the photon.5

As to the numerical reliability of the calculated wav
functions, we would like to take a very modest point of vie
There is an intrinsic uncertainty in the parameters of
effective low-energy theory, related to the approximatio
made in the instanton model of the QCD vacuum, which
based on the smallness of the packing fractionr̄/R̄.1/3.
Nevertheless, our qualitative conclusions concerning the
ferent behavior of the photon and pion wave functions sta
up, since they follow from the general structure of the d
namical quark mass and the quark-pion coupling in the
fective low-energy theory, which is unambiguous at least
leading order inr̄/R̄.

Our result for the pion wave function at the low norma
ization point is close to the asymptotic form and consist
with the CLEO measurements. The fact that we obtain
shape substantially different from the Chernyak-Zhitnits
one is due to a significantly smaller value of the seco
moment, and, more importantly, the taking into account
all moments of the wave function~which is to say, the avoid-
ance of working with explicit moments! by our approach. In
this sense our results support conclusions reached previo
in Refs.@14,15#.

We have pointed out that the physical mechanism de
mining the end point behavior of the meson wave funct
and the behavior of the off-forward parton distribution at t
transition pointsx56j/2 are the same—the momentum d
pendence of the dynamical quark mass. The fact that
low-energy effective theory allows to calculate both quan
ties in a consistent framework makes it a particularly va

5Qualitative arguments in favor of an important role of th
momentum-dependent quark mass in hadron wave functions
been presented in Ref.@34#.
8-7
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able tool for investigating the unknown off-forward distrib
tions.

The effective chiral theory, Eq.~7!, allows us to compute
also the light-cone wave functions of many-pion states.
cently the two-pion wave function has been studied in t
approach, which is needed to describe exclusive pion p
duction in processes such asg* g→pp or g* p→p
12p,3p etc. @33#.

The approach outlined in this paper can be extended
study also the higher-twist components of the meson
photon wave functions. In this case, however, one has to
into account also explicit contributions from the path-orde
exponentials of the gauge field, Eq.~2!. This can be done
using the method of effective gluon operators in the inst
ton vacuum developed in Ref.@35#.
.
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