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The leading-twist wave functions of the pion and the photon at a low normalization point are calculated in
the effective low-energy theory derived from the instanton vacuum. The pion wave function is found to be
close to the asymptotic one, consistent with the recent CLEO measurements. The photon wave function is
nonzero at the end points. This different behavior is a consequence of the momentum dependence of the
dynamical quark mass suggested by the instanton vacuum. We comment on the relation of meson wave
functions and off-forward parton distributions in this mod&0556-282199)09309-1

PACS numbdss): 12.38.Lg, 13.60.Fz, 13.60.Le

[. INTRODUCTION ration are consistent with a near-asymptotic form of the wave
function[16].
Hadron light-cone wave functiohparametrize the non- About the leading-twist wave function of the photon little

perturbative information entering in the amplitudes for ex-is known at present from experiment. Its asymptotic form is
clusive hard scattering processes in QCD-3]. The pion fixed by the approximate conformal invariance of QCD for
wave function appears in the description of the pion electrofarge virtualities(see, e.g., Ref4]). Balitsky et al. [11] at-
magnetic form factor and pion-meson transition form factorsempted to estimate corrections to the asymptotic form using
(for a review see Ref4]), and in the amplitudes for exclu- QCD sum rules and local duality relations but found that in
sive pion production in photon-photdi®—9] and photon-  this approach higher moments could not be estimated with
nucleon process¢40]. The photon wave function enters, for sufficient accuracy. The photon wave function has also been
instance, in the amplitudes for radiative hyperon de¢ag$$  discussed in the context of a constituent quark model for
or in power-suppressed contributionsby processes such photon-meson transition form factors by Anisoviet al.
as y*y—x® [8] or deeply virtual Compton scattering [17].
[12,13. , . In this paper we study the pion and photon wave functions
A calculation of the meson and photon wave functions, e jnstanton vacuum. The picture of the QCD vacuum as

from ﬁFSF prir)ciples requires a theory of nonperturbative_ef-a dilute medium of instantons explains the dynamical break-
fects giving rise to a hadron structure. Meson wave functlong,ng of chiral symmetry, which is the nonperturbative phe-

have extensively been studied using QCD sum rules. The ; .
o . - nomenon most important for hadron structure at low energies
original suggestion by Chernyak and Zhitnitsky of a

“double-humped” wave function of the pion at a low scale [18]. Quarks interact with the fermionic zero modes of the

far from the asymptotic form, was based on an extraction Ojfndividual instantons in the medium, which leads to the for-

the first few moments from a standard QCD sum rule ap_mauon of a chiral condensate. One derives from the instan-

proach[4], which has been criticized and revised in Refs.ton vacuum an effective theory of quarks with a dynamical
[14,15. Additional arguments in favor of a form of the pion mass which drops to zero at Euclidean momenta of the order

wave functions close to the asymptotic one came from théf the inverse average instanton sie,!=600 MeV [19].
analysis of the transition form factary* — #° [8]. The re- The pion and photon wave functions can be extracted

cent measurements of this form factor by the CLEO Collabofrom correlation functions of light-ray operators with the me-
sonic viz. electromagnetic current, which can be computed in

the effective low-energy theory. The normalization point of
1 _ _ _ _ the wave functions obtained in this approach is of the order
In this article we use the term “light-cone wave function” to —

denote functions describing matrix elements of QCD light-ray op-Of P 1,: 600 MeV. The pion wave function has been com-
erators between hadrdor photon states and the vacuum, depend- Puted in Ref[20]; it was found to be close to the asymptotic
ing only on longitudinal momentum fractions. These objects arePN€. Our intention here is twofold. First, we wish to expand
frequently also referred to as “distribution amplitudes” in the lit- the investigation of the pion wave function, discuss its scale
erature. Note that some authors use the term “wave function” fordependence and compare with the recent CLEO measure-
more elementary functions depending on longitudinal as well as ofinents[16]. Second, we compute also the photon wave func-
transverse momenta, from which the functions considered heréion. In particular, we shall be interested in comparing the
would be obtained by integration over transverse momenta. photon and the pion wave functions. As will be seen below,
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the two exhibit different behavior at the end points;- 0 pion four-momentum; we shall consider the chiral lirRit
and 1. This is a consequence of the momentum dependenee0. Finally, in Eq. (1) F, denotes the usual weak pion
of the dynamical quark mass implied by the instantondecay constant
vacuum. o

Additional motivation for studying the photon and pion (0|d(0)yﬂy5u(0)|77+(P)>=i\/EF,,PM 3
wave function comes from their importance for deeply vir-
tual Compton scattering and hard meson productio{F =93 MeV), and the wave function is normalized ac-
[10,12,13. The factorization of the Compton amplitude in cording to
the deeply virtual domain involves the off-forward parton
distributions(OFPD’s of the nucleon. Recently, Radyushkin fldu¢ (=1 (4)
has argued, on the basis of a “meson exchange” contribu- 0 ’T '
tion to the so-called double distributions related to the OF-
PD’s [21], that the OFPD’s may be discontinuous at The matrix element in Eq1) involves a chiral-even operator
+¢/2 (¢ is the longitudinal component of the momentum with Dirac matrix y, ys; the corresponding matrix element
transfer to the nuclegnif the meson wave function were with a chiral-odd operators) is of higher twist.
nonzero at the end points. Such discontinuities had indeed The twist decomposition of the matrix elements for the
been observed in a calculation of the isosinglet OFPD’s ophoton parallels that for the rho mes(see, e.g., Ref23]),
the nucleon in the effective low-energy theory derived fromthe only difference—except isospin—being that the real pho-
the instanton vacuum, where the nucleon is described astan has only two transverse polarization states. The twist-2
chiral soliton[22]. It was seen there that nea= = ¢/2 the  wave function of the photon is defined by the matrix element
behavior of the OFPD is governed by the momentum deper-11]
dence of the dynamical quark mass, which turns the

would-be discontinuity into a sharp but continuous cross- <O|U(z)ow[z,—z]u(—z)|y(P,)\))
over. Here we shall see that the same physical mechanism—
the momentum dependence of the dynamical quark mass ob- =i zf (e(”P —eMp )
. . s . 3 yL\®1Lut v Ly’ u
tained from the instanton vacuum—is responsible for the end
point behavior of the meson wave function, showing that this 1
approach provides a consistent realization of Radyushkin’s xf dud@-1P-zg  (u)+ higher twists.
general arguments. 0 7

5

The basic obi ising in the f L ¢ hard Here the photon state is characterized by the four-
e basic objects arising in the factorization of har Scat'momentum,P(P2=0), and polarization vectce™ , where

tering amplitudes involving mesons or photons in the initial () . .
! . . r ._ el is transverse with respect wandP (z- P#0).
or final state are matrix elements of certain gauge invariant We have not written explicitly in Eq(5) the terms with

nonlocal operators between the megphoton states and tensor structures corresponding to contributions of twist 3
the vacuum. Their classification in structures of different ) P 9 ) X
and 4. The matrix element of the chiral-odd operator with

twist and their respective role in the asymptotic limit has ) . .
been discussed, e.g., in RE4]. The twist-2 wave function 7~ represents the iny ppssmle twist-2 m.atrlx eIe.ment for
of the pion is defined through the matrix element the on-shell photon, a twist-2 structure with a chiral-even
operator ,) is possible only for a virtual photon or rho
- B . + meson with longitudinal polarization. In E¢p), the normal-
(0/d(z) VuYsl2, = Z]u( 2|7 (P)) ization constant ., is defined through the matrix element of
the corresponding local operatar=0)

II. PION AND PHOTON WAVE FUNCTION

=iﬁFwPJ:d“é‘z“*””zm(u). (1)

o 2t (eMp —eM
(O[U(0)7,, u(0) [ Y(PN)) =i 5, (eP)P,—€P)P,),

14

Herez is a lightlike four-vector ¢2=0), and

(6)
1
[z,—z]=P ex;{f dtz*A,(t2) (2 so that the photon wave function is normalized analogous to
-1 Eq. (4).
denotes the path-ordered exponential of the gluon field, re-
quired by strong gauge invarianééhe path here is defined Il EFFECTIVE LOW-ENERGY THEORY FROM
to be along the lightlike directiom. FurthermorepP is the THE INSTANTON VACUUM

We now compute the matrix elements E¢B. and (5) in
the effective low-energy theory which has been derived from
’Here and in the following we have omitted the correspondingthe instanton vacuum in the lardé; limit. This effective
phase factors connected with electromagnetic gauge invariancéieory describes the interaction of a quark figlavith a pion
they are not important in the discussion here. field 7 by an effective action
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_ One should note the different role of the form factors in the
Seff:J d*xg(x)[i y#,— MU7S(X) ]¢h(X), (1) coupling of the pion and the electromagnetic field to the
quarks. While in the pion-quark coupling, E®), the form
where factors actmultiplicatively suppressing the coupling for
large quark virtualities, in the case of the photon the form
U7s(x)=exdiysmm3(x)]. (8) factors inherent in Eq(7) make only amadditive (and para-
metrically smal) contribution to the pointlike coupling. This
Note that the interaction is chirally invariant. Hetd, de-  has important consequences for the behavior of the pion and
notes the dynamical quark mass, which appears due to thghoton wave functions, in particular at the end poiumts 0
spontaneous breaking of chiral symmetry. On generaénd 1.
grounds, this effective theory is valid up to some ultraviolet

cutoff. In the instanton vacuum this cutoff is implemented in IV. COMPUTATION OF WAVE FUNCTIONS
the form of a specific momentum dependence of the dynami- IN THE EEFECTIVE LOW-ENERGY THEORY
cal quark mass, which leads to the following form of the )
quark-pion coupling: To compute the photon wave function, E&), we pro-
ceed in analogy to the calculation of the pion wave function
_ in Ref. [20]. The matrix element between the one-photon
f d*xg(x) MU 5(x) (x) state and the vacuum is extracted from the correlation func-
tion of the light-ray operator with the electromagnetic cur-
d*k a4t — rent
_
Mj (277)4f (2w)4w(k)F(k)

[ atxe O[T (95700, U210, 02, 21u - 2)}[0).

X Us(k—)F() (). 9 (13

HereF (k) is a form factor,F(0)=1, related to the Fourier \yhen computing this correlation function in the instanton

transform_of the instanton zero mode_, which drops t0 ZerQ,5cuum we can drop the path-ordered exponential in the
for spacelike momenta larger than the inverse average instafisy > operator, since its contribution is parametrically of

ton sizé order (p/R)*<(Mp)? (see Refs[24,25 for a discussion

The correlator can then be evaluated in the effective low-
energy theory given by Eq7). In the largeN, limit, Eq.

(13) is given by a simple quark loop, with the quark propa-
ator subject to the momentum-dependent dynamical quark
ass, cf. Eq(7). Projecting on the twist-2 structure and con-
tracting with the photon polarization vector, we obtain, for
the matrix element on the right-hand siRHS) of Eq. (5),

F(k—0 for —kZ>p 2 (10)

We note that, when working with the effective theory, Eq.
(7), itis assumed that the dynamical quark mass is parametrf
cally small compared to the ultraviolet cutoff; their ratio is
proportional to the packing fraction of instantons in the

vacuum
t 2(0[u(2) o, u(—2)| ¥(P,)))
R —i(P—2k)-z
:—gNCMeﬂ{f (ZT)4€ (P=2K-2p(k)D(k—P)

In order to compute the photon wave function we need to
couple an electromagnetic field to the quark fields of the X[z-(P—K)F?(k)+z-kF*(k—P)], (14
effective Lagrangian, Eq7). The interaction of the electro-
magnetic field with the quarks is dominated by the pointlikeWhere we have set
interaction which derives from the kinetic term in the effec-
tive Lagrangian. The nonpointlike coupling arising from the D(k)=
momentum-dependent mass term, which would involve de- k2—M2F4(k)+i0
rivatives of the form factorF(k), is parametrically sup-

pressed iV p relative to the pointlike one. Thus, in leading Note that we take into account here the form factaes, the

order inMp we shall work with the pointlike electromag- Momentum dependence of the dynamical quark jniasthe

: A : denominators of the quark propagators.
netic current Q s the quark charge matjix To evaluate the integral in Eq14) it is convenient to

em 7 A introduce lightlike vector components. Lieandn be dimen-
T =900 7, QuAX). (12 sionless lightlike vectors parallel toand P, with

(15

n-n=2. (16)
SHere and in the following, all momenta refer to the Minkowskian
metric. Then we can decompose
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k' k-
kﬂ=7nﬂ+ 7nﬂ+ k,U«’
k*=n-Kk,

k™ =n-k. (17)

Expressing the integral in Eq14) in terms of the lightlike

vector components, and inserting Efi4) in Eq. (5), we can

read off the expression for the photon wave function
d2kt

|Gl %) %

X 8(kT—uP")D(k)D(k—P)
X[(1—u)F?(k)+uF?(k—P)].

2N.MP* dk*

fo

Gy (U)=(—1)

(18)
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transverse momenta contains a logarithmic divergence which
is regularized by the form factors. Let us analyze the inte-
grands in order to see, for a given valuewpfwhich regions

of k! make the main contribution to the integrals. For this
we consider the virtualities of the quark propagators in the
loop integrals in the vicinity of the two poles k. Taking

into account thak™ =uP™ one easily sees that at the pole in
k™ corresponding t&?=M? the virtuality of the quark with
momentumk— P is

[kH|2+ M2
(k—P)2= — ——,

J (21)

while at the pole irk~ corresponding toK— P)2=M? the
virtuality of the other quark is
[k [2+ M2

1-u (22

The normalization constant can be obtained by computing

the matrix element with the local operator, E®). After
taking the limitP2—0 one finds

, d*k k2 dF2(k)
fﬂ=(—|)4NCMJ(2W)4 (k)= "

D2(k)|F

(19

Integrating Eq(18) overu and using the fact that the integral
does not depend on the light-cone veatpione easily veri-
fies that Eq(18) obeys the normalization condition, E@).

We see that the kinematical boundarnies 0 andu—1 cor-
respond to the situation that one of the quarks has a large
spacelike momentum. In these limits the form factors in the
integrand play a crucial role, since they suppress the contri-
butions of large spacelike momenta. More precisely, for val-
ues ofu parametrically of the order

u~(Mp)? 1-u~(Mp)?

or (23

one of the quarks has a virtuality of the order and the

Equation(18) should be compared to the result for the integral is cut by the form factors already at transverse mo-

pion wave function, Eq(l), which was derived in Ref20]:
d?k*

|Gl %) %

X (kT —uP")D(k)D(k—P)F(k)F(k—P)
X[(1—u)F?(k)+uF?(k—P)].

2N M2P* dk*

FZ

¢a(u)=(-1)

(20

menta of ordertk, |[~M. For values ofu not close to the
boundaries the integral over transverse momenta extends up
to p~ %, leading to the usual logarithmic dependence of the
integral on the ultraviolet cutof 1.

In light of the above it is clear that the photon and the
pion wave functions, Eqg18) and (20), behave differently
at the end points. In the case of the pion, due to the form
factorsF (k) F(k— P) introduced by the coupling of the pion

The expression for the normalization constant, the weak piofield to the quarks, Eq9), the contribution from large vir-

decay constanf ;. has been obtained in RdfL8]. Note the
additional form factors-(k)F(k— P) in the integrand in Eq.
(20), as compared to the photon wave function, Eg).

tualities are suppressed, leading to the vanishing of the wave
function at the end pointsa—0 and 1. In the case of the
photon, on the other hand, the multiplicative factors are ab-

These are the form factors originating from the pion-quarksent, and the integral is not suppresseduer0 and 1. The

coupling, Eq.(9).

remaining form factors in Eq18), which originate from the

The evaluation of the integrals defining the photon andnomentum dependence of the dynamical mass in the quark

pion wave functions, Eq$18) and(20), proceeds as follows.
First the integral ovek™ is taken, using up the delta func-
tion. Then the integral ovek™ is performed by contour in-

tegration. A special property of the lightlike coordinates is

that the denominators are linear k1. As shown in Ref.

propagators, do not suffice to make the integral go to zero at
u—0 and 1. Hence there is no reason for the photon wave
function to go to zero at the boundaries.

VI. NUMERICAL ESTIMATES

[20], the condition that the poles lie on different sides of the

real axis ensures that Eq4.8) and(20) are nonzero only for

To perform a numerical estimate of the pion and photon

0<u<1. In the last step the integral over transverse moWave functions we need to put in the specific form of the

menta is computed, taking into account the form factors.

V. END POINT BEHAVIOR

form factorF (k). This function has been derived for Euclid-
ean(i.e., spacelikemomenta as the Fourier transform of the
instanton zero modEL8]. One possibility would be to com-
pute moments of the wave functions, which can be expressed

In the expressions for the photon and pion wave functionss integrals over Euclidean momenta. However, we would

in the effective theory, Eqg18) and (20), the integral over

like to compute the wave function directly, since, for in-

114018-4



PION AND PHOTON LIGHT-CONE WAVE FUNCTION . .. PHYSICAL REVIEW D 59114018

stance, very high moments would be needed in order to re- [ T
store the end point behavior of the wave function. Thus we L5
prefer to carry out the integrals Eq&l8) and (20) over Onw) [ Y/ N
Minkowskian momenta. In principle one could continue the [
exact Fourier transform of the instanton zero mode to r// \
Minkowskian momenta; the function exhibits a cut at posi- N/ \
tive Minkowskiank?>0. Since the numerical evaluation of os |/ \
the integrals with this function is rather tedious, we shall [ ]
instead use a simple pole form

) 0 0.5 1

RN (24)
A=k=i0 FIG. 1. The pion wave function.(u). Solid line: Wave func-
o tion calculated in the low-energy effective theory, cf. E80).
(k? is the Minkowskian momentumWith A2~2.0p 2 this  Dashed line: Asymptotic wave functiop®'™{u)=6u(1—u).
form gives a good overall approximation to the Fourier trans-
form of the zero mode in the Euclidean domak?<0). and far from the form suggested by Chernyak and Zhitnitsky
With the form factors approximated by E@4), the integrals  [4] $S%(u)=30u(1—u)(2u—1)>2.
Egs. (18) and (20) can be evaluated by contour integration In order to determine the scale dependence of the wave
overk™. We emphasize that the prescription for dealing withfunction one needs to expand it in eigenfunctions of the evo-
the poles of the form factors, cf. E(R4), follows unambigu- lution equations. To one loop accuracy, both for the ph
ously from the requirement that the moments of the waveand the photorj27] wave functions, Eqs(l) and (5), the
function computed with Eq(24) coincide with the corre- eigenfunctions are Gegenbauer polynomials of index 3/2.
sponding Euclidean integrals. Since we have seen above th@ihe expansion coefficients are given by the moments
the end point behavior of the wave function is governed by
the form factor at large spacelike momenta, cf. Eg4) and
(22), where the pole form Eq24) is a good approximation
to the exact Fourier transform, we are confident that the use
of Eq. (24) is at least qualitatively correct. 1
Dorokhov has discussed the pion electromagnetic form Nn:f du[CY%(2u—1)12¢2™u). (26)
factor in connection with the instanton vacuum using a dis- 0

persion relation approadl26]. He quotes an expression for Computing these coefficients for the pion wave function ob-

the pion wave function which involves the zero mode form, i\ trom the effective low-energy theory, EQ0), we
factor corresponding to the instanton in regular gauge, whict'ﬁnd the expansion ' '

is not consistent with the superposition of instantgsism

F(k)—

Bn=N;lflduc§’2<2u—1>¢w<u>,
0

ansaty implied in the derivation of the instanton medium b (U)= Y™ u)[1+0.063%2u—1)
[18]. Furthermore, in the language of our approach, his result i i
apparently amounts to neglecting the contributions from the +0.Olci’2(2u—l)+ <. (27)

singularities of the form factor§ (k) in the Minkowskian

loop integral, and thus seems to have no clear relation to ®ur value for the second momeB$=0.062 is considerably

Euclidean calculation of moments of the wave function.  smaller than that of Chernyak and ZhitnitsBy=0.66. One
For the numerical estimates we use the standard paranotes that the coefficient of the fourth-order polynomial is

eters of the instanton vacuum M= 350 Mevﬁ

=600 MeV). The results for the pion and photon wave func- 2 [ 7 T 7T

tion are shown in Figs. 1 and 2. As can be seen from Fig. 1, I ]
the pion wave function obtained from E(RO0) vanishes at Oy (w) B
the end points, in agreement with the general argument pre- b g
sented above. The wave function at the low normalization 1

point is only slightly flatter than the asymptotic 4rjd—3]

3™ u)=6u(1-u), (25)

“In the calculation of the pion wave function in RE20] the form
factors inside the square bracket in E20) and in the denominators FIG. 2. The photon wave functiog., (u) calculated in the
of the quark propagators were put to unity, since they are not edew-energy effective theory, cf. Eq18). Solid line: real photon
sential for cutting off the integral. Here we take into account also(P?=0). Dashed line: the corresponding function for a spacelike
those factors in Eq(20). Our numerical results are nevertheless virtual photon with P?=—(250 MeVY. Dotted line: P?=
very close to those of Ref20]. — (500 MeVY.
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TABLE I. The leading-order scale dependence of the integration does not vanish at the end points, the moments do not
I(?), Eq. (28), computed with the pion wave function obtained decrease rapidly, and a very large number of terms would be

from the effective low-energy theor(gee Fig. 1 needed to represent the function even for valuesi ofot
. close to the boundaries. In R¢fL1] an attempt was made to
n*GeV: 0.6 1 4 8 10 100  estimate the deviation of the photon wave function from its

(12 321 316 312 311 308 306 asymptotic form using standard QCD sum rules and local
duality relations. While it was observed that higher moments

could not be reliably estimated in that approach due to rap-

already very small numerically. We remark that Eg7) idly increasing mass scales in the coefficient functions, the

(with higher terms neglectggrovides also a reasonable nu- authors of Ref[11] expressed the belief that they are small,

merical representation of the computed wave function. and that the photon wave function at a normalization point of
The recent CLEO measuremerjtsg] of the transition x#~1 GeV is close to the asymptotic one. Our results do not

form factor yy* — #° provide a unique opportunity to ex- Support this conjecture.

tract information about the pion wave function. In the stan- For the normalization constant of the photon wave func-

dard hard scattering approach with the tree-level coefficienion, Ed.(19), we obtain a value of

function the 1Q?%-asymptotic behavior of the transition form

factor is governed by the “inverse” moment of the pion f5 =0.036N:M =38 MeV (30
wave function[1,6] at the low normalization point. Due to the nonconservation
1 of the tensor current,, is actually scale dependef27].
|(M2):j duu e, (u,u?), (29 This quantity is directly related to the so-called magnetic
0 susceptibility of the quark Eondensat;eq, introduced in

Refs.[29,30, namely,f,, =(uu)x,. One should compare

where .= Q. With the asymptotic wave function, E(25), our result with the value obtained in Ref81,32 from a

one obtains a value of®Y™=3 while the Chernyak- = -
Zhitnitsky wave function at the initial normalization point QCD sum rule approachf,,, =68 MeV atu=1 GeV[us-

gives ISZ=5 [4]. With the wave function computed in the NG a value ofuu)=—(250 Me_\/)3 atu=1 GeV]. Assum-
effective low-energy theory, Eq20), we find a value ol ing a normalization point of.=p~*=600 MeV forf,, cal-
=3.21, which should be associated with a normalizatiorculated in the effective theory the value given in Eg0)
point of the order ofu=p =600 MeV. In Table | we give Should be reduced by a few percentat 1 GeV.

the values of the integral E¢28) obtained by leading-order
evolution (/\QCD: 250 Mev, Nf:3) of our wave function, VII. OFF-SHELL BEHAVIOR OF THE PHOTON WAVE

cf. Eq. (27), at a few values of experimentally relevant FUNCTION
scales.(For details concerning the evolution see Réf].) The photon wave function, E@5), is defined as the ma-

We notle that the Vﬁluiﬁ are ?:Iosle to tzose obtained in @ QCP, element of a twist-2 operator between a physical photon
surlrt] ru ek appro;]c tvtvr; _nor|1 oca COE? ense[m?. to th state P2=0) and the vacuum. It is interesting to consider
IS known that the Inciusion otxs corrections 1o he — y,q corresponding correlation function of the light-cone op-

ij)eZﬂment functijonh Qecre?\sEs the . _coeffﬂmen;n of E)heerators with the electromagnetic current also at spacelike mo-
Q--asymptotic behavior of the transition form factor by mentum transfersR2<0). We define

about 15-20 %, see Ref&,9]. Including these corrections
our value forl is consistent with the CLEO results, while , —
that of Chernyak and Zhitnitsky seems to be ruled [di. d*xe™""X(0|T {35™(x),u(2) o, 2, — Z]u(—2)}|0)
Note also that our value is comparable with the one extracted
from a QCD sum rule for the form factoyy* — 7° [8]. 2 5

Finally, it is interesting to note that at=1/2, where the =l §fﬂ(P )(9puPy=9puPu)
quark and antiquark in the pion carry equal momentum frac- .
tion, we obtain a value of the wave function of XJ’ dué(zufl)p'%ﬂ(Pz,u)Jr . (31)

b (1/2)=1.4, (29 °

o ] ) wherep is a lightlike vector defined in such a way that it
which is in good agreement with the bqund obtglneq bYcoincides withP in the limit P20,
Braun and Filyanov from QCD sum rules in exclusive kine-

matics ¢, (1/2)=1.2+0.3[15]. p2
The photon wave function calculated in the effective low- Pu=P.— mz’“
energy theory, cf. Eq18), is shown in Fig. 2. It does not go
to zero at the boundaries. Thus, the numerical results support p?=0, (32

the above general conclusions of different behavior of the

photon and pion wave functions. We do not write a repre-and we have not written out terms with other tensor struc-
sentation analogous to E@7) for the photon wave function. tures which correspond to higher twists. The function
Such an expansion would be meaningless—since the funcz;%ﬂ(Pz,u), which we define to be normalized according to
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Eq. (4) also forP?<0, reduces to the photon wave function, (MF)zM (MK)Z

¢,.(u) in the limit P2—0. In the effective low-energy || — &2~ M ~N

theory it is given by the expression E48) with P?<0. The N ¢

numerical results for momenta?= — (250 MeV) and P2

= — (500 MeVY are shown in Fig. 2. One sees that the waveThe “crossover’ region of the OFPD is parametrically

function becomes larger at the boundaries for increasingmaller than the “boundary” region of the wave function.

spacelike photon momentum. The result for the normalizaNevertheless, the physical mechanism—the suppression of

tion constant is for momenta<0—P?<1 Ge\V* well ap- large quark virtualiies due to the momentum-dependent

proximated by the form quark mass—is the same in both cases. Thus the effective
theory derived from the instanton vacuum, with the ensuing
fully field-theoretic description of the nucleon as a chiral

p2 |1 soliton, provide a consistent realization of the general rela-
f'yl(Pz):fyL( 1— T_2> ' (33)  tions noted in Ref[21].

(39

wheref ., is given by Eq.(30). IX. CONCLUSIONS AND OUTLOOK

In this paper we have computed the photon and pion wave

function in the effective low-energy theory derived from the
VIIl. MESON WAVE FUNCTIONS AND OFF-FORWARD instanton vacuum. We have exhibited the reason for the van-
PARTON DISTRIBUTIONS ishing of the pion wave function at the end points—the sup-

pression of large quark virtualities by the momentum-

haerh?nggcs)ﬁnptrlgg gz.gfizly \.'r'g:a;lhgosrg?ggnezciﬁggg;rigependent dynamical quark mass—and seen that the
product qul W orresponding mechanism is absent in the phdton.

parton distributions(OFPD’3 of the nucleon[12,13. A . As to the numerical reliability of the calculated wave
r?o"e' fea’Fure c.’f these compared to the usual' parton d'smbUﬁJnctions, we would like to take a very modest point of view.
tion functions is the dependence on the longitudinal COMPOThere is an intrinsic uncertainty in the parameters of the

nent of the momentum transfef, (see Ref[13] for defini- effective low-energy theory, related to the approximations

tions). A convenient language to understand general aspeciige i : s
. th tant del of the QCD , which
of the ¢ dependence of the OFPD’s, according to Radyush- ade In the Instanton model of the QCD vacuum, which is

kin [21], are the so-called double distributions. In particular,based on the smallne_ss .Of the pac!<ing fractjﬂR: 13. .

he discusses a “meson exchange” type contribution to th evertheless, our qualitative conclu'S|ons concerning the dif-
double distributions which contributes to the OFPD’s in the'€"€Nt behavior of the photon and pion wave functions stand
kinematical region- é/2<x< ¢/2. This argument relates the UP: Since they follow from the general structure of the dy-
behavior of the meson wave function at the boundaties ”a“?'ca' quark mass and the .q“?”"p"’” c.ouplmg in the ef-
~0,1, to that of the OFPD at= = ¢/2. In particular, if the " fective low-energy theory, which is unambiguous at least to

meson wave function ai=0,1 were nonzero, the OFPD leading order inp/R.

would be discontinuous at= + /2, which would spoil the Our result for the pion wave function at the low normal-
factorization of the amplitude. ization point is close to the asymptotic form and consistent

Strong variations of the OFPD of the nucleon near with the CLEO measurements. The fact that we obtain a
+ ¢/2 have been observed in a calculation in the effectiveshape substantially different from the Chernyak-Zhitnitsky
low-energy theory in the larghk, limit, where the nucleon is  ©N€ IS due to a S|gmflcantly smaller vglue_ of the second
described as a chiral solitd22]. It was seen there that near Moment, and, more importantly, the taking into account of
x=* £/2 the behavior of the OFPD is governed by the mo-all moments Qf the_wave f_ur_lct|dmvh|ch is to say, the avoid-
mentum dependence of the dynamical quark mass, whicRnce of working with explicit momentdy our approach. In
turns a would-be discontinuity into a sharp but continuous_th's sense our results support conclusions reached previously
crossover. This is consistent with the observation made if? Refs.[14,15. _ ,
the above calculation of wave functions, namely that it is the W& have pointed out that the physical mechanism deter-
momentum dependence of the dynamical quark mass th&ining the end point behavior of the meson wave function
determines also the end point behavior of the meson wavand thg behe_mor of the off-forward parton distribution at the
function. One important difference between the wave func{ransition pointsc=*¢/2 are the same—the momentum de-
tions and the OFPD’s in this approach is due to the role oPendence of the dynamical quark mass. The fact that the
the formal parameteN, (number of colors While in the Ipw-gnergy effecnve theory allows to cfalculate_both quanti-
case of the meson wave function the parametric range dies in a consistent framework makes it a particularly valu-
those values ofl close to the boundaries essentially affected
by the momentum-dependent dynamical quark mass is given
by Eq.(23), in the case of the OFPD the crossover region in 5Qualitative arguments in favor of an important role of the
X near= ¢/2 where the momentum-dependent mass is essemomentum-dependent quark mass in hadron wave functions have
tial is parametrically of the orddR22] been presented in Rg34].
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