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Spin structure function of the virtual photon beyond the leading order in QCD
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Polarized photon structure can be studied in the future polakZed colliding-beam experiments. We
investigate the spin-dependent structure function of the virtual phgttx Q?,P?), in perturbative QCD for
A?<P%2<Q?, where— Q?(— P?) is the mass squared of the protterge} photon. The analysis is performed
to next-to-leading order in QCD. We particularly emphasize the renormalization scheme independence of the
result. The nonleading corrections significantly modify the leading log result, in particular, aklasgeell as
at smallx. We also discuss the nonvanishing first moment sum rulg]aof where O(«;) corrections are
computed[S0556-282(199)08309-5

PACS numbgs): 12.38.Bx, 13.60.Hb, 13.88e

[. INTRODUCTION leading order(LO) [11] and in the NLO[12,13. And the
parton contents of virtual photon were studied in Refs.
In recent years there has been growing interest in thgl4,15 and the target mass effect of unpolarized and polar-
study of a polarized photon structure function. The informa-ized virtual photon structure in LO was discussed in Ref.
tion on the spin structure of the photon would be provided by[16].
the resolved photon process in polarized electron and proton The advantage to study the virtual photon target is that we
collision in the polarized version of the DES&p collider  can calculate the whole structure function entirely up to NLO
HERA [1,2]. More directly, the spin-dependent structure by the perturbative method. On the other hand, for the real
function of photong] can be measured by the polarized photon target[17,18 we can calculate the perturbative
e*e” collision in the future linear collider&Fig. 1). pieces, but not the nonperturbative contributions which may
From the theoretical viewpoint, the first moment of a pho-be estimated, for example, by vector-dominance mpti@
ton structure functiory} has recently attracted attention in The perturbative pieces for the real photon target can be
the literature[3—7] in connection with its relevance for the reproduced from the result for the virtual photon case.
axial anomaly, which has also played an important role in the [N the next section we discuss the polarized photon struc-
QCD analysis of the spin structure of the nucleon. Our ainfure functions. Next we present the two theoretical frame-
here is to carry out the QCD computation of the photon’sworks based on OPESec. II) and on DGLAP parton model
polarized structure function at the same level of the unpolar@Pproach(Sec. V). In Sec. V, the sum rule for the first
ized case. Here we note that the two-loop splitting func-moment ofg will be evaluated up to the order ofs. The
tionsof Dokshitzer-Gribov-Lipatov-Altarelli-ParigDGLAP)  numerical analysis of{ will be given in Sec. VI. The final
equation or equivalently the two-loop anomalous dimensionsection is devoted to the conclusion and discussion.
have recently been calculat¢8,9], and we can perform the
next-to-leading order QCD analysis for the polarized photon
structure function. Actually there has already been an analysis
of spin-dependent structure functigy for the real photon
target by Stratmann and Vogelsafif].
In this paper we shall investigate the polarized virtual
photon structure functioy}(x,Q2P?) to the next-leading
order(NLO) in QCD, in the kinematical region:

A?<P?<Q?, (1.1

where — Q?(— P?) is the mass squared of the proftargel
photon, and\A is the QCD scale parameter. We can base our
arguments either on DGLAP-typg@? evolution equation for
the parton distributions or on the framework of operator
product expansiofOPE and the renormalization group
(RG) method. The unpolarized virtual photon structure func-
tions FJ(x,Q?,P?) and F}(x,Q% P?) were studied in the

FIG. 1. Deep inelastic scattering on a polarized virtual photon in
polarizede*e™ collision,e*e”—e*e™ + hadrongquarks and glu-
ons. The arrows indicate the polarizations of #ig, e~ and virtual
*Email address: sasaki@ed.ynu.ac.jp photons. The mass squared of the “probgtarget”) photon is
TEmail address: uematsu@phys.h.kyoto-u.ac.jp —Q%(—P?)(A%<P?<Q?).
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torsR,, relevant for the spin-dependent structure function
equivalently two-loop parton splitting functioneere calcu-
lated independently by two groups, by Mertig-van Neerven
" [8] and by Vogelsang9].
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p Ill. THEORETICAL FRAMEWORK BASED ON OPE

%

In our previous papdr24], we based our argument on the
QCD improved parton model approach. Here we start with
theoretical framework based on the OPE and RG method.
Applying OPE for the product of two electromagnetic cur-

FIG. 2. Forward scattering of a virtual photon with momeniym
rents we get

and another virtual photon with momentymThe Lorentz indices
are denoted by, v,p, 7.

i J d*xe€9*T(J,,(x)J,(0))"
Il. POLARIZED PHOTON STRUCTURE FUNCTIONS

Let us consider the forward virtual photon scattering am- _ N 2\"
plitude (Fig. 2), =—ieumod 2 o) G G

g

. 4y, 4y, 4o 4G XAaip- (Y—2) ; o
T,U.Vpr(plq)_lJ' d Xd yd Zéq Xelp o le Cll‘an"iul qp’"fl_i(sﬂp)\gqup

X(0|T(3,(x)3,(0)3,(y)I(2))]0). (2.2) oo 0u0 — 02 yre)
vphoHu MVNO

Its absorptive part is related to the structure tensor

n
W,,..(p,q) for the photon with mass squargef=— P? x S 2
iy 2 2. 2] Qe Ouy s
probed by the photon with“=—Q<: n=odd | Q n
1 i Nowuq---q .
W,quT(p!q):;lmT,qu'r(plq)' (22) XEi ClzvnRZ,i e (31)
The antisymmetric parwﬁw, which is antisymmetric un- For polarized deep inelastic scattering, the twist-2 and
der the interchange qi and v, can be decomposed as twist-3 operatorsR},R; contribute to the structure functions
1 in the scaling limit. Forg] only twist-2 operators are rel-
VV;Apr: Ewquepfaﬁpﬁpfgﬁ éwqu(p, qepTUBpB evant. Now we can write down the moment sum rulegdr
1
dxx""1g7(x,Q?%,P?)
_ Brog® Y f T
€orapP™PC ) gZ’ (23) 0
orep (p-)?
— i 27,2 7,2
which gives two spin-dependent structure functions, _i:ngNSy Ch(Q/u?,g(p?), @)
07(x,Q? P?) and g}(x,Q? P?). For a real photong] is .
identically zero, and there exists only one spin struture func- X(¥(p)IRy(#2)|¥(p)), 3.2

tion, g7(x,Q?). On the other hand, for the off-shell or virtual . '
photon (P?+0) target, we have two spin-dependent struc-whereR}, andC;, are the twist-2 operators and their coeffi-
ture functionsg] andg3. A more detailed argument on the cient functionghereafter we suppress the index 1 for twist-2
structure functions is given in the Appendix D. Thg is  operatory with w being the renormalization point and
related to the structure functiow], which was discussed =€°/4m, the QED coupling constani, G, NSand y stand
some years ago in[20,21, such that gI(X,QZ) for singlet quark, gluon, nonsinglet quark and photon, re-
=2W}(x,Q?). Here we note that the LO QCD correction spectively. The rglevant twist-2  operatorsR|[i
was first studied by one of the authors[22] and later in = ¥(S),G,NSy] are given by[22]
[23,3. _

First we note that the same framework used in the analy-RZH'“’L”’l=in*ll//7{”D“1' --D#n-1byg 14— trace terms,
sis of the nucleon spin structure functions can be applied in 3.3
our case. We can either base our argument on the OPE
supplementd by the renormalization gro{i|gG) method, or 1
on the DGLAP type parton evolution equations. It should be Rg'* "= Zin_le{(raﬁyGaMIDﬂz' --D#n-1 GAY
noted the next-to-leading order analysis is now possible
since the two-loop anomalous dimensions of twist-2 opera- —trace terms, (3.9
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R"\"fgl"'ﬂnflzin—lay{oDm. Dy (QZ— 1) where

—trace terms, (3.5 .

_ a(pP2

L Mn(QZ/P%g(PZ)):Tex;{ f_g( O ag 9|

RO#L k-1 Zin-1 e papggua. .. gen-1tEBY 9@» ~ B(9)
Y 4 afy
—trace terms, (3.6 . TP Ko(a.a
Xa(Q%P?,g(P?),a)= ﬁ“ dg n(9.)
where{} means complete symmetrization over the Lorentz 9(Q9) B(9)

an nyXn; unit matrix andQ§h is the square of tha;xn; ﬁg dg’Lg)l
quark-charge matrix, witm; being the number of flavors. 9@ ~ B(g")
Here we note that the essential feature in the above equation (3.12
is the appearance of photon operatBfSin addition to the

hadronic operators.

For —p?=P?>A?, we can calculate the photon matrix with y, and K, the hadronic anomalous dimension matrix
elements of the hadronic operators perturbatively. Choosingnd the off-diagonal element representing the mixing be-
w? to be close tcP?, we get, to the lowest order, tween the photon and hadron operat@se Appendix A

Thus we get

indicesou,- - - un—1, D* denotes covariant derivative, 1 is F{
XTex

2

1 0, P i
_EKn In—2+An

(VPR ) ¥(p)) = 5=

M 1
dxxX""1g7(x,Q?, P?
i=¢(S),G,NS, 3.7 Jo 91(x.Q%P%)
whereK %' = (K% are one-loop anomalous dimension matrix = A M (0P a(PYC.(10(O2
elements between the photon and hadronic operators. On the 4 " n(@Q 9(PHIC(LAQ)
other hand, in the leading order of the QED coupling con- 9102 = o2 — »
stant,«, we have for the photon operatBy : +Xn(Q%/P%,g(P%),a)- Cr(19(Q%))+Cy
(3.13
(y(P)RI(w)|v(p))=1. (3.8
It should be noted that the finite terAj, depends on the Wwith
renormalization scheme for the operatd®s. Putting u?
=—p2=P?, we have
P o= (AL ,AS ANS). (3.14

. o .
Y(P) R ¥(P))] p2=p2=7—An, (3.9
< " Nuzr 4 " The coefficient functions are given ligee Appendix €

and thenth moment with this choice.?=P? in Eq. (3.2)

becomes 52
8yl 1+ —Bj,
1 by 167
f dxx1g7(x,Q2,P?) cl(1g) i
0 — — g
Ci(19)=| CR(lg) | = 5‘”PB%
. _ T
= 2 (vPIRy#*=P)|¥(p)) Ch(19) -
i,j=¢4,G,NS,y 5 1+ g n
o(P?) . ¥n(Q) L= BT E
X | Tex J_ dg Cl(19,a).
9@  B(9) ’
3.1 — o
(319 C(lg,0)= ypm 5,B% (3.19

The evolution factor in the last equation is found to[&b&]

Tex fg(P2>dg7’n(g) M, | 0 with 8, = (e?) = I e/n;,dys = 1.8, = 3nge?
9@  B(9)

= , 3.1
(xn|1) .13 =33 e

We then derive the following formula for the moments:
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2\ \ M280+1
IO P {1—(%@2)) ]
i=+,—,NS 1+)\i/2,80 OZS(Q ) as(P )

24\ A28 2\ \ M280+1
aS(Q)) ]+ > B{‘[l—(aS(Q)> ]+C”+O(as)

as(Pz) i=+,—.NS as(PZ)

a

4772_[30

1
f dxx"1g7(x,Q% P?) =
0

+ > A{‘l 1-

i=+,—,NS

(3.16
Here a(Q?) =g2(Q?)/4 is the QCD running coupling constant. In E§.16), we have defined

Pr=KIPIC,(1,0/(i=+,—,N9), 3.17)

whereP}"s are projection operators given in the Appendix A. The coefficietfs B]' andC" are computed from the NLO
perturbative calculation, and are given by

phyLpn 1 B 1-\/28, 1
AP=—KO L1 (1,0 —KOZ=PM'C(1,0————— +KP'C, (1,00 ——— —28,A,P"C,,(1,0),
i n; 230"’)\?_)\? n( }7\in/zﬁo n,BO i n( )\{1/2'80 n'i n( ))\?/2,80 :80 n' i n( 23 18)
8By
pn(Lpn 1 n 1 N2
Br=KkeY — "¢ (1,0————+K%p| Bc —n—KS&P{‘Cn(l,O)'—n'BO,
T 2Bo+tA—\] 1+\/28, SyeBls | 1HN2B0 Bo 1+\128, (3.19
C"=2p4(8,B]+A,- Cy(1,0), (3.20

where \['(i=+,—,NS) are eigenvalues of the 1-loop where the explicit form foR} , is given in Eqs(9)—(12) of
anomalous dimension matrj{®) and are given in Appendix Ref.[31] (see alsq12]) and
A. By and theB, are the one- and two-loog functions, and
Bo=11-2n;/3 and B;=102—38n;/3. 1

All the quantities necessary to evalu&p, A", B!, and Li'= inm (3.22
C" are now known and will be presented in Appendixes i/2Bo
A—C. Two-loop results[8,9] have been calculated in the
modified minimal subtractionMS) scheme[25]. Actually ~ Which is the coefficient of the leading-log term. The scheme
the expressions of Eq63.16 and(3.17—(3.20 are the same independence 0B} follows from these two equations.
in form as the ones obtained before by one of the authors and RegardingC", we first consider the photon matrix ele-
Walsh for the case of the virtual photon structure funcign ~ments of the renormalized quark and gluon operators. The
[12]. The explicit expressions of the one-loop and two-loopfinite matrix elements\, and the tree-level coefficient func-
anomalous dimensiorf8,9] as well as one-loop coefficient tions Cy(1,0) are given by
functions[26—-30,8,9 are given in Appendixes B and C.

Equation(3.16) is our main result of the present paper. A,=6((e?),0{e%) —(e?)2)A%, (3.23
The first term is the LO result, and the remaining terms are
the NLO QCD corrections.

Now let us examine the renormalization scheme indepen- (€%

dence of the coefficientsd', B{' andC". As in the unpo- C.(1,0)= 0 (3.24
larized case,B{' can be written in terms of a scheme- me 1 '
independent combination of 2-loop anomalous dimensions
and 1-loop coefficient functions in the hadronic sector. Using
the scheme-independent coefficierlﬂ‘g‘gn [31-33, we can Hence, we have
write

BM=L'R,, (i=+,—,NS), (3.2 A,-C(1,0=6(eHAls. (3.25

114011-4
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Noting that
2
Bf;zn—f &, 8,=3nye). (3.26
we findC" equal to be
C"=12B,(e*)(Bg+Alo). (3.27)

Since the combinatioBglz\,‘fG is scheme independef&5],
so isC". In fact, in theMS schemg8], the gluon matrix
elements of quark operators={ #/,NS) read

(p,s|R7# =1 12)|p,s)

=Ai(p?,u?,9)[{s7py - - pr-1} —traced (i=y,NS),

2 1 2

& (L0002 g,
p,

1672

Al//: 2 YyG ) (3-28)

where the finite matrix elemer”
language a$8]

is given in the parton

~ 1
A= fodxx” tad)y(x), (3.29
where
ng(x) T{(4-8x){Inx+In(1-x)}] (3.30
with T;=n¢/2. Thus, we get
5 o n—1 S (ma 4 1 1
=M e MV e n)
(3.3)
Therefore, from Eq(3.27) we finally arrive at
C"=24B,f(e*) ————£+— (3.32
n+1 n2 (n+1)°2

which is consistent with the Box diagram calculation.

On the other hand, in the RG scheme adopted by Kodaira
[28] which is the momentum subtraction scheme, we have,

for n=3,
AYs=0 (3.33
with the coefficient function given by
n_o 2 4 2 . 4 33
¢=2M N T 1| (3.39

Forn=1, because of the Adler-Bell-Jackiw anomaly

(3.39

Al_16=—2n

and

BY =0, (3.36

dAG”(x,Q? P?

PHYSICAL REVIEW D 59114011

by definition, since we have no gauge-invariant gluon opera-

tor for n=1. Combining this with the result foA’;, we
arrive at the same result far".

The scheme-independence of the remaining coefficients
A follows from the above arguments d#f' andC" and the
physically measurable moments given in E8.16).

IV. QCD IMPROVED PARTON MODEL APPROACH

We now turn to the analysis based on the QCD improved
parton mode[34] using the DGLAP parton evolution equa-
tions.

Let g.(x,Q%P?), GX(x,Q%P?), T'%(x,Q%P? be
quark withi-flavor, gluon, and photon distribution functions
with = helicities of the longitudinally polarized virtual pho-
ton with mass— P? [24]. Then the spin-dependent parton
distributions are defined as

Ag'=q,+q\—q_—q._, (4.9)

AG"=G1—-GY, AI’=I7-T7.

4.2

In the leading order of the electromagnetic coupling con-
stant,a=e?/47, AT'” does not evolute witl? and is set to
be AT'?(x,Q? P?) = &(1—x). The quark and gluon distribu-
tionsAq' andAG?” satisfy the following evolution equations:

dAqg'(x,Q%P?)  [idy Py -(X 2) i(y 02 p2
T(gz— JX7|$ Aquq] y,Q Aq (ny YP )

+Af’qe<§,Q2)AG%y,Q2,P2>]

+APG,(x,Q%,P?), 4.3

1d
)=f y[ PGq( QZ)E Ad'(y,Q%P?)

dInQ2 x Y

+A"¢GG(§,Q2)AGY<y.Q2,P2>}

+APg,(x,Q%,P?), (4.9
whereATDAB is a polarized splitting function dB-parton to
A‘parton, deﬂned as AﬁABE PA+B+_PAfB+(: PA757
—Pa, g, due to parity conservation in QCD and QED

For later convenience we use, insteadAaf', the flavor
singlet and nonsinglet combinations defined as follows:

ngZ Aq, (4.5

Agg
AQNS—AQ - n_f

(4.6

114011-5
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so thatS;Aq\s=0 andn; is the number of relevant active we obtain

quark flavors. The quark-quark splitting functi(zifﬁqiqj is
made up of two pieces, the one representing the case that

j-quark splits intoi-quark without through gluon, and the idy X
other one through gluon, and may be expressed as 07(x,Q% P?)= Y Agd(y,Q%P?CS )—/,Qz
ABgiq= 8;ABgqt —ABS 4 +AGY(y.Q? "’Z)CG(i Q2>
qigi = 9ij qt1+n_f qq’ (4.7 T y’

where the second term is representing the splitting through y 2 02 NS({ 2
gluon, andAPg, and AP, are both independent of quark ANy, Q% PIC y'Q
flavor, i andj. It is noted that by constructioﬁf’ﬁq is rel- (4.13
evant for the evolution of flavor-sigleétqZ and first appears
in the order ofa?.

In the QCD improved parton model, which is based onywhere we have defined
the factorization theorem, the polarized virtual photon struc-
ture functiong(x,Q?,P?) is expressed as

+C7(x,Q),

ay(Q?)
1d _ X S 2y /a2 — )4 =S _
g%(x,QZ,P2)=f Vy{E Aq'(y,Qz,P2>c'(§,Q2) ClzQ)=(e >[5(1 2" BS(Z)]’ (419
X I
X
ﬂLAGV(y,QZ,F’Z)CG(—,Q2 ]+C7(X,Q2), 2
y CVz,Q%)=6(1-2)+ iQ e
(4.8 (4.15
where C', C®, and C” are the coefficient functions of
i-quark, gluon, and photon, respectively, and are independent
of target photon mas®2. Up to one-loop level they are 2 i
given by AqNSEEi e Adys, (4.1
Ci(z,Q)=¢e [5(1 )+ ——= S(Q ) q(z)], (4.9
and Bg(z)=Byng(2)=By(2). From Egs. (4.39—(4.7) and
ag(Q?) (4.16), the evolution equations faxql, AG?, andAqg s are
©(z,Q%)=(e?{ 0+ 5471_ BG(Z)]u now given by > "
(4.10
C¥(2,Q%) = —3n(e")B.(2), @.11) dAgix,Q%P?) rudy([ .~ (X
477. Y —_—— = AP 1Q
dinQ? x Y Ay

where (e?)=3e/n; and (e*)=3,e}/n;. It is noted that

q(z) in Eq (4.9 is independent of the quark flavorSince =s (X o y 5 oo
>,Aq'C' is rewritten as +APgq y,Q Agd(y,Q%,P?)

2 Agci=2, (AqNsﬂL# c' +anf>qG(§,Q2)AGV(y,QZ,PZ)]
=Aq%(y,Q2,P2)<e2>[ 6( 1- 5) +2 AP, (x,Q), (4.17
y i
+0[s(Q2) B (_)} , ,
am Ay dAG”(x,Q%P?) [idy
d In Q2 = J;( y [APGQ< ’Q2>Aqg(y1Q21P2)
+2 e?Aqhs(y.Qz.Pz){5<1—f) g
| Y +APGG()—,,Q2)AGV(y,Q2.P2))
ig) q(y)}’ (4.12 +AP6,(x,Q%), (4.18

114011-6
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dAQR(x.Q*P?) _ ridy o ( 2) 2 p2
TQZ f Q7| AGRY, Q% P9)

+2i ei2|A|3qi,(x,Q2)

1 -
o ; qujy(x,Q2)] . (4.19

Introducing a row vectorAq”=(Aq,AG?Aqfg, the

above evolution equations, Eqg.17)—(4.19 are expressed
in a compact matrix form

dAg’(x,Q% P?)

= Ak(x,0Q?
dInQ? (x,Q%)
X
f—Aqy(y Q%P 2)AP()—/,QZ),
(4.20
where the elements of a row vectorAk
=(AKg,AKg,AKyg) are
AKs=> APg,, AKg=APg,,
|
o~ 1 -
AKNSEzi ei qui},_n—f; quiy
(4.21

SmceAP , is proportional toeI , it is easily seen thahKg
andAKNS have factors(e?) andn;((e*)—(e?)?), respec-
tively. The 3x3 matrix AP(z,Q?) is written as

AP(z,Q%)
AP5,(z.Q%) AP 2 0
qq(Z,Q ) Gq(Z!Q )
AP.(2,Q%) APge(z,Q?) 0
0 0 APS(2,Q?)
(4.22
where
APS=AP,+APS,, AP c=niAPy,
APg=APgq, APge=APgs, APN=AP,.
423

Once we get the information on the coefficient functions
in Egs. (4.9—-(4.12) and parton splitting functions in Egs.

(4.21)—(4.23, we can predict the behavior of(x,Q?,P?)

PHYSICAL REVIEW D 59114011

solve numericallyAq”(x,Q?,P?) in Eq. (4.20 by iteration,
starting from the initial quark and gluon distributions of the
virtual photon atQ?=P2. The interesting point of studying
the virtual photon with mass- P2 is that whenP?> A2, the
initial parton distributions of the photon are completely
known up to the one-loop level in QCD. Then inserting the
solvedAq?(x,Q?,P?) into Eq.(4.13, and together with the
known one-loop coefficient functions we can predict
97(x,Q?,P?) in NLO.

The other method, which is more common than the
former, is by making use of the inverse Mellin transforma-
tion. From now on we follow the latter method. First we take
the Mellin moments of Eq(4.13),

1
[Cane-gjx02 P
0

=Aq’(n,Q%P?)-C(n,Q%)+C"(n,Q%,  (4.24

where we have defined the moments of an arbitrary function
f(x) as

f(n)= foldxxnflf(x). (4.25

Comparing Eq.(4.24 with Egs.(3.10 and (3.195, we can
easily see the correspondence between the quantities in the

QCD improved parton model and those in the framework of
OPE as follows:

[A(nQAPOL=_ 2 (HPIR(*=P)| ()
— 2
X Tex;{ jgg(((;))dg%s)) )“
(i=S,G,N9), (4.26
C(n,Q%)=Cy(19), (4.27)
CY(n,Q%)=C}(1g,a). (4.28

Henceforce we omit the obviousdependence for sim-
plicity. We expand the splitting function&k(Q?) and
AP(Q?) in powers of the QCD and QED coupling constants
as

Ak(Q? )— Ak EE8x ) was(Q°) AKV+... | (4.29
217)?2
as(Q?) ag(Q?)]?
AP(Qz)ZTAPm)‘l‘ ?} AP(1)+' Tty
(4.30

in QCD. The NLO analysis is now possible since the spin- . . 2 . .
dependent one-loop coefficient functions and two-loop par@nd introducd instead ofQ” as the evolution variablE5],

ton splitting functions are availablg8,9]. There are two
methods to obtaig](x,Q? P?) in NLO. In one method, we

use the parton splitting functions up to two-loop level and we

ag( Pz)

t .
aS(QZ)

3In (4.3)
Bo ’

114011-7
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Then, taking the Mellin moments of the both sides in Eq.

(4.20, we find thatAq?(t)(=Aqg”(n,Q? P?)) satisfies the
following inhomogenious differential equati¢86,37:

dAg(t) 2w ) B
T —E(Q—SAk(O‘F[Ak( —7Ak +O(as)]
+AQ” © B
q’(t)] AP + AP Z_BOAP
+0( ag)] : (4.32

where we have used the fact that the QCD effective coupling

constantag(Q?) satisfies

as(Q%)°

da’s(QZ) _
' (4m)?

agQ)?
din@z  °

+...
4

(4.33

with Bo=11—2n,/3 and3,=102—38n,/3. Note that theP?
dependence oAqg” solely comes from the initial condition
(or boundary conditionas we will see below.

We look for the solutioAqg”(t) in the following form:

(4.39

where the first(second term represents the solution in the
LO (NLO). First we discuss about the initial conditions of
Ag.

In Sec. I, we have observed that ferp?=P?>A? the
photon matrix elements of the hadronic operat®y i

Ag'(t)=Ag"?(t) +Ag" (1),

=y(S),G,NS] can be calculated perturbatively. Choosing

the square of the renormalization pojut to be close tdP?,
we obtain, to the lowest order

(y(P)IRL()| ¥(p

“ ( LoinP A
R [R— ! n_
411' 2 N MZ n
i=(S),G.NS 4.35

The K%-terms andA!-terms represent the operator mixing

between the hadronic operators and photon operators in the
LO and NLO, respectively. The operator mixing implies that

PHYSICAL REVIEW D59 114011

With these initial conditions, we obtain for the solution
Aq'(t) of Eq. (4.32,

A ag(t) 1-2aP0yg,
Ag"O(t)= a{l— — } . (@43
g”™(t) () 2(0) (4.39
(1) = — t (AP(O)_B 12) 7
Ag"H(t)=—-2a dre 0
0
x| AP — —— P AP |- AP@7 AP
2pBo
_ (O)/B
ag(t) 2AP 0]
+bj1-
ag(0)
| s ~28Pg
+Ag7H(0 : 4.3
( )[ 0] (4.39
where
am % g0t (4.40
2w 2APO" :
Bo
a B1
= (1Hy_ 7=
" [277[ Ak 2Bq AKE }
+23 AP 2L AP (4.49
280 AP

It is noted that the parton distributiodsq”(t) do depend on
the initial conditionsAg?(0)=(a/4m)A,, but we have seen
in Sec. lll that the structure functiog](x,Q? P?) itself is
independent oAg”(0) in NLO in QCD.

The moments of the splitting functions are related to the
anomalous dimensions of operators as follows:

there exists quark distribution in the photon. When we renor-

malize the photon matrix elements of the hadronic operators

at u?>=P?, we obtain

VPIRYP) zopr=g AL (430

which shows that, g?= P2, quark distribution exists in the
photon, not in the LO but in the NLO. Thus we have

AGO(0)=0, AGY(0)= ;A (437

Explicit expressions of\, in the MS scheme are given in
Sec. Ill.

1.
AP©=—2370, APW=—23Y, (4.42
1 1
AKO=ZK5,  AKY=2KG (4.43

The evaluation oA q”((t) andAq*™)(t) in Egs.(4.38 and
(4.39 can be easily done by introducing the projection op-
eratorsP]' such as

1. 1 )
AP(O)__Z%:_Zi:JrE—NS)\inPin' i=+,—,NS
(4.44
0 i#j,
PIPI=1 on i=j " 2. PI=1, (@49
I
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where\[' are the eigenvalues of the matr%og. Then the solutiomq”(t) of Eq. (4.32 in the NLO is written as

a ag(t) 1+1[128,
Ag(t = ’1— >
a1 )/ 87Bo as(t) ”E 1 ag(0)
2/30
1 1
+1 K> P! Pro —
| ”Z 'xi“/z,eo Bo " Z ( )\{‘IZBO>
PPYUPE 1 [ ag(t) M"’Zﬂo]
—Kj —2B0AnY, PP 11— =
”; 2Bo+N'— N NV28, Fo ”Ei ' ag(0)
Pn (1)Pn 1 B]_ )\nlzﬁo | @ (t) l+)\:1/2ﬁ’0
+] K2 — KO P — = +2BoAn.
n'EJ 2Bo+ N\ —\] 1+>\_i“ “Z '1+>\_{‘ as(0) Fon
2Bo 2Bo
(4.46
|
Now inserting the above solution akq”(t) into Eg. In the coefficients
(4.24 and together with the information on the coefficient
functions in Eq.(3.15, we reproduce the same formula for ~n 1 n _—
the moments 0§(x,Q?,P?) given in Eqs(3.16—(3.20, as Pi 1+ N'128, Al B (i=+,-,N§ (53
I

for the case of the OPE approach in the NLO.
the special point$5.2) would develop the singularities at

V. SUM RULE FOR THE FIRST MOMENT OF g7(x,Q2,P?) =1, since in those coefficients there exist the factors
The polarized structure functiog] of the real photon 1 1 1
satisfies a remarkable sum ry@-7 —, T (5.4
ue-7l AL 1" 1260
1
JO 97(x,Q%)dx=0. (5.1)  Now if we take the limit ofn going to 1, we have

Now we can ask what happens to the first moment of the ﬁi“—n—>o (i=+,-,NS),
virtual photon structure functiog(x,Q?,P?). This can be 1+\i/2Bg
studied by taking th@— 1 limit of Eq. (3.16. Note that we N n n e
have the following eigenvalues of the one-loop anomalous A —finite, AZ—0, Ays—finite,

; ; a0
dimension matrixy,_;: B0, B" —finite, B0, 5.5

ATi=0, \"T1=—-28,, Aist=0. 5.2
- Po: Mns 32 However, A" , A\s, andB” are multiplied by the following

vanishing factors:
Physically speaking, the zero eigenvalue® '=\{g" g

=0 correspond to the cons_ervatlon of the axial- vector cur- 2 (Q?) A" 1284 ay(Q?) ARg2B0
rent at one-loop order, which has the counterpart for the 1 s s
unpolarized structure functidn,; the conservation of energy ag(P?) ag(P?)

momentum tenson."~?=0. The other eigenvalug"~'=
—28p, Which is negative, is rather an artifact of continuation [ ay(Q?) N 12Bg+1
of the anomalous dimension of the gluon operatoradl, —( S ) ,
since there is no twist-2 gluon operator exists ifer 1, in

the RG scheme in which only gauge-invariant operators are

allowed. Butn=1 gluon operator exists in the so-called respectively, and thus the terms proportionaPfa A{', and
Adler-Bardeen schemg38,39. In fact, in the QCD im- B[ in Eq.(3.16 all vanish in then=1 limit. Note that these
proved parton model approach, there is no reason why theanishing factors are specific to the case of the virtual photon
n=1 moment of the polarized gluon distribution should nottarget, and that such factors do not appear when the target is
be considered4Q]. real photon.

5.6
a'S(PZ) 59

114011-9
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Thus, the first three terms in the 1st moment vanish irremixing problem becomes much simpler. The coefficient
spective of the RG scheme. So we get functions can be given by

CY(Q%P%g(P?),a) )
2 2 —_ = on=1 _
f ng (X Q ) A 2,[), C +O(as)- (57) CTS(QZ/PZ,g(PZ)’a,)
— N ' b1 (02
Now let us conside€"=*, which is given by _T eXpJg(Pz)dg’h(g ) Cl(lvg_(Q ), @) ) |
9>~ B(g") | CY19(Q?),a)
=12B0(e*) (BE+Alg)[n=1- (5.9 (5.13

o n L R , whereﬁxl(g) is a 2x 2 diagonal matrix:
As we have seen, the combinationBd+A};) is

renormalization-scheme independg®]. The results in the R Yo Q)
MS schemd8,9,29 are y1(9)= 0 )] (5.19
BY-1=0, AY_,o=—2n;. (5.9 Here .anomalous dimensions are expanded in powers of the
coupling constant:
The same results have been obtained by Kod&i&in the g2 g2 2
framework of OPE and RG method. He 8 *=0, observ- (@)= o2t P o2 +0(g°%, (5.19
ing that there is no gauge-invariant twist-2 gluon operator for &
n=1 and obtamedAn 1= —2n; from the Adler-Bell-  where
Jackiw anomaly. In the end, we have for the sum rule of the o o
virtual photon structure functiog?, J’E/,JF Y(N%=O,
N2—-1 n
1 3a M W) —24C. T, =24 ——. ' —16n (1)_0,
f dxg(x,Q%P%) =~ — 3 ef+O(as), (510 Yo ST TN T T S
0 T i=1 (5.16
where and the coefficient functions are
y , S<Q2>
Q%PZm? A2, i=1,... (5.1 C(19(Q%),@)=(e?) 1——CF
with m; the mass ofth flavor quark, and the number of =(e 2)(1_ as(Q )),
active flavors.
Now it should be pointed out that we can further pursue 2
the QCD corrections of ordets to the first moment o7 . CNS(1.9(Q?), a)=1— _CF as(Q) i as(Q )’
In the above equation for the first moment, the leading order ™ ™
is O(1) not of order 1k(Q?), which is the case for the (5.17
general moments. So we now go to the ordgrQCD cor- _ -, ~ 1)
rection. T ex f9<P2>d 719 1 vy Y (P2
First we take the renormalization scheme of Kodz@l. 9> B(g) 1672 2Bo g
We write down the first moment af](x,Q?,P?): o
—g%(QA)1. (5.18
fldng(x,Qz,Pz) Here we have the f_inite matrix element of the quark op-
erators between the virtual photon states:
=CY(Q?P2,g(P?),a)y(p)|RY¥(1?=P?)| y(p)) (Y(P)IRy-1(12=P?)|¥(p)) =7 A'n o (519
+ CTS(QZ/PZaE( Pz)-a) where
X RYS(u?=P? : 5.1 ~
<7(p)| 1 (lbl’ )|7(p)> ( 2) An:6(<e2>,0,<e4>_<e2>2)Arl</G. (520

Here it should be emphasized that because of the absencedbdw we recall Kodaira’s statement that the bare Green's
the gauge-invariannh=1 gluon and photon operators, the function for then=1 case does not receive divergent correc-
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tions, but the finite correction connected with Adler-Bell- model approach where the first moments of the gluon and

Jackiw anomaly: photon distributions are as well defined as the other distribu-
~ tions.
Al-1c=—4T(R)=—2n;. (5.2 Including the gluon and photon operators, let us start with

; 2 p2y in S
Putting all these equations together, we finally obtain thészgﬁ (3.13 for the first moment ofgi(x,Q%P?) in MS

O(as) QCD correction: eme:

1
ei“(_']_— a’s(Qz)) fo ngZ(X,QZ,PZ)

w

| Caxgix.02p2-- sa)

ko

_ 3( > e?) 2( adP?) as@z)) = 1A My(QTP2G(P?)-CL(1(Q%)

Bo\i=1 w w _ _
) +X1(Q%P?,g(P?),a)-C1(1,9(Q?)+CY.
+0(ad). (5.22 5.23
This result is perfectly in agreement with the one obtained by
Narison, Shore and Veneziano in RES], apart from the ~We expandA; in powers ofg(P?) as
overall sign for the definition ofj; . _
Now we show that we obtain the same result for the first A~ A0 g% PZ)A(1)+ (5.2
moment ofg](x,Q?,P?) in the MS scheme. Although there 1 21 o :

exist no gauge-invariant twist-2 gluon- and photon-operators
for n=1, theMS calculation of the anomalous dimensions whereA(”) is given in Eq.(3.23. Using theMS results for

gives nonzero results forygs" and )/n '. Thus, the then=1 anomalous dimensions, we obtain up to the order
MS-scheme results rather correspond to the QCD partod(g?)

_ 12(DP2) _ n2( 02 .. 0
28, 16772[g(P) g7(Q%) X 24Ck Ty, ,
M= , (5.295
0,
0, 1
|
where the second column is irrelevant sirgg=0 in MS _ a g2
G1 - 2 - Cl(1g,@)=-—2¢, B4 =—_pgbn=ly .
scheme and thu87(1,9) starts inO(ag). Now it is easy to 1438, A7 " "y 1672 7 '
see that the first term of Eq5.23), to be more specific, (5.27
[(/4m)AlPM;C1(1,9(Q?))] gives the same result as in Eq.
(5.22. whereB(®):n=1= =B!~" in Eq. (3.15. We already know that

Let us now consider the contributions of other terms. If o) n= 12
Y

A“’(l) and ANS‘” in the second term in Eq(5.24 remain 0 in MS scheme On the other hand, the two-loop

nonzero, then they give thé(g?) contribution. ButA/(}) E)O(QS))l COTmC:m LL:%CUOT] for tge ?T)Ianzedd gluon has
=ANSD =0 due to the nonrenormalization theor¢i] for een caluculated In 1S scheme by Zjistra and van Neer-
1 X Jeredtr ) ven [30]. It is made up of two terms, one proportional to
the triangle anomaly, so its contribution is at mosti(asy). factor CcT¢n; and the other proportional to fact@,T;n;.
The contribution of the second term in E$.23 is also i The first moments of both terms turn out to vanish. It can be
O(a?), sinceK?=K{Y=0 and we expect shown that the two-loop@(aas)) coefficient function for
the polarized photonB'Y, is obtained from the two-loop
gluon coefficient function, by picking up the term with the
KPM ==K =0, (5.26  CgTn; factor and by modifying the group factors. Thus we
conclude that the first moment Bf" is zero. In the endC}
does not gived(1) nor O(«g) contributions to the first mo-
for the three-loop mixing anomalous dimensions which arement ofg(x,Q?,P?). This means that we arrive at the same
implied from the fact that the three-loogZd"~'=0 [40]. result for the 1st moment @f} given in Eq.(5.22 in theMS
Finally we expand the third term of E¢.23, C?, as scheme.
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VI. NUMERICAL ANALYSIS

We now perform the inverse Mellin transform of Eq.
(3.16 to getg] as a function ofx. The n-th moment is
denoted as

M(n,QZ,PZ)zfolx”’lgf(x,Qz,PZ)dx. (6.1

Then by inverting the moment$.1) we get

C+iow

97(x,Q%,P?)=

2 p2yy—n
o C7imM(n,Q ,P9)x "dn. (6.2

In order to have better convergence of the numerical inte
gration, we change the contour in the compiteglane from
the vertical line connecting@—i« with C+iw (C is an ap-
propriate positive constantintroducing a small positive
constante, to

n=C—eg|y|+iy,—o<y<wo, (6.3

Hence we have

1 o
Gl(x.Q%P?) = 5[ M(C-ey+iy.0%P?

X e (CmeyFiy)log)(j — g)dy

! fo M(C iy,Q% P2
3 (CHey+iy,Q%,P9)
Xef(C+sy+iy)Iog(x)(i +8)dy

1 ©
;J’O [RQ{M (Z,QZ, PZ)e—z Iog(x)}

—&Im{M(z,Q?,P?)e 2199 ]dy

z=C—gy+iy. (6.4

In Fig. 3 we have plotted, as an illustration, the result for
ni=3, Q?°=30 Ge\? and P?=1 Ge\? for the QCD scale
parameterA =0.2 GeV. The vertical axis corresponds to

Q2
- 6.5

01(x,Q%P?) / e

Here we have shown four cases; the Boee diagram con-
tribution,

2

gI<B°X>(x,Q2,P2>=(2x—1)37anf<e“>ln 6.6

P_,

114011
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e

- Q% 30Gev?
PE 1 GeV?

In Q%/P?

o

(x, @°, P?)/3n; <e* >

b

Y

1

FIG. 3. Polarized virtual photon structure functig{(x,Q2,P?)
flo the nextto-leading order (NLO) in units of
(3angeM/7)In(Q¥P?) for Q?=30 Ge\?, andP?=1Ge\? and the
QCD scale parametey=0.2 GeV withn;=3 (solid line). We also
plot the leading ordefLO) result(long-dashed ling the Box(tree
diagram(dash-dotted lineand the Box including non-leading con-
tribution, Box (NL) (short-dashed line

the Box diagram contribution including nonleading correc-
tion ignoring quark mass

gI(Box,non—Ieading(X, Qz, PZ)

3a 4 Q?
=7nf<e> (2x—1)|n§—2(2x—1)(lnx+1) ,

(6.7)

the leading-orderlLO) QCD correction and the next-to-
leading order(NLO) QCD correction. We observe that the
NLO QCD correction is significant at largeas well as at
low x. We have also studied other examples with different
Q? and P2. In Fig. 4 we have plotted the case f@?
=100 GeV¥ with P?=1 Ge\?. Another case forQ?
=30 Ge\? with P?=3 Ge\? is shown in Fig. 5. We have
not seen any sizable change for the normalized structure
function (6.5) for these different values d? and P?. We
examined then;=4 case as well. It is observed that the
normalized structure function is insensitive to the number of

[y

T Q%= 100 Gev?
1 GeV®

P2

InQf/ P

o
T

—1F

(x, Q%, P?/3n, <e*>

¥

1

=2

FIG. 4. Virtual photon structure functiog](x,Q?,P?) for Q2
=100 GeV?, andP?=1 Ge\? with A=0.2 GeV,n;=3.
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@ 4 5 2 ] limit of the real photon structure function is in order. In the
5 l?i 330 (G}CVZ st case of the unpolarized structure functie} we have a sin-
c = 3 Gev ~ gularity of A" atn=2 due to the vanishing of" atn=2
ST =3 which leads to the negative structure functid@]. As dis-

cussed in Refd42-44 we have to introduce some regular-
ization prescription to recover positive structure function.
For the polarized case we do not have such complication at
n=1 as we have seen in Sec. V.

(x, Q% P?)3n, <e*
|

Y
9,
b

VII. CONCLUSION

Here in the present paper, we have investigated virtual
photon’s spin structure functiog](x,Q? P?) for the kine-
matical regionA?<P2<Q?, in the next-to-leading order in
QCD. We presented our arguments both in the framework of
OPE supplemented by RG method and in the DGLAP equa-

active flavors. Here we have not directly taken into accountion approach. The results are shown to be independent of
the heavy quark mass dependence, but rather confined oufe renormalization scheme.

selves to the above kinematical region. It turns out from the  The first moment ofy] for the virtual photon is nonvan-
numerical analyis as well as from theoretical arguments thaﬁshing in contrast to the vanishing first moment for the real

as P? increases, the NLO QCD result approaches the Boyoton case. We can go a step further to the otdewhich
contribution including the nonleading correction, as in they a5 ymed out to reproduce the previous result of Narison,
unpolarized structurg functidi1,12. Shore, and Venezianfb], and the result is RG scheme-
Now let us consider the real photon caBé=0. The independent.

structure function can be decomposed as The numerial evaluation ofj] by the inverse Mellin

Y 2y _ 7, 2 y 2 transform was performed. The result shows that the NLO

9103, Q%) =010, Q)pen + 91X, Q) nan per: - (68 QCD corrections are significant at largand also at smak.
The second term can only be computed by some nonpertu;[he numerical analysis can also be applied_ to the pointlik_e
bative method like lattice QCD, or estimated by vector me-cOmponent of the_real ph(_)ton structure function. _The resultis
son dominancéVMD) model. The first term, the pointlike qualitatively consistent with the previous analysis.
piece, can be calculated in a perturbative method. Actually, it Although we have neglected in our kinematical region,
can formally be recovered in our analysis by setting  We should also consider the power corrections of the form
— A2 in Eq. (3.16. In Fig. 6, we have plotted the pointlike (P#Q?)*(k=1,2,...), which are arising from the target
piece ofg] of the real photon. The LO QCD result coincides mass effects as well as from higher-twist effects.
with the previous result obtained by Sasakj22]. The NLO In the present paper we only presented the result for the
result is qualitatively consistent with the analysis by Strat-polarized photon structure functi@j itself. In the course of
mann and VogelsanglO]. Finally, a comment on tha=1 the parton model analysis, we also obtain the polarized par-
ton distributions[2,45] of the longitudinally polarized pho-

0 1

FIG. 5. Virtual photon structure functiog](x,Q?,P?) for Q?
=30 GeV?, andP?=3 Ge\? with A=0.2 GeV,n;=3.

N 1 Q%=30Gev?  Real Photon ] ton, for the case of virtual photon, which will be discussed
< elsewhere.
NCCJ = i - As a future subject, it would be intriguing to study an-
Sle == = ) other spin structure functiog which only exists for off-
< ° s \ shell photon. In the OPE language, the twist-2 as well as
v twist-3 operators contribute to the QCD effects fg},
i which are now under investigation.
No e A Box
=y
=) ,’ ————— LO ACKNOWLEDGMENTS
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APPENDIX A: NOTATION
FOR ANOMALOUS DIMENSIONS

To the lowest order imv, the anomalous dimension matrix
has the form

7n(g!a): Kn(gz,a) 0 (Al)

Yn(9?) 0)

where&n(gz) is the usual X 3 anomalous dimension matrix
in the hadronic sector

'yzup(g) ’)’?sz(g) 0
:yn(g): 'y?ﬂG(g) ng(g) 0 (A2)
0 0 Yns(9)
andK,(g,«) is the three-component row vector

representing the mixing between photon and three hadronic

operators. The anomalous dimensions are expanded as

2 4

9 30 9~ ogb
e? e?g?
Kn(g, @)=~ ——Ki— KV +0(e?g).
n(g a) 16772 n (16772)2 n ( g )
(AS5)

The one-loop anomalous dimension matsi§ can be ex-

pressed in terms of its eigenvalug¥i=+,—,NS) as
W= > AP, (AB)
i=+,—,NS
where
:_{YW,"‘ YeLE [(7’ ?’GG)Z+470¢/8 grl}/]l/z}
(A7)
As= YNs’ (A8)

PHYSICAL REVIEW D59 114011

and P} are the corresponding projection operators,

i S o)
P — ! yoe  YEe—AD . (A9)
COAIAT L 0 0
0 0O
pre=| 0 00 (A10)
0 0 1
APPENDIX B: EXPLICIT EXPRESSIONS
FOR ANOMALOUS DIMENSIONS
1. One-loop order
You= vne=2Ck 3—m+451(n) , (BD)
on_ g, 1 (B2)
Yue™ fn(n+1)’
on— —4c, 12 B3)
Yoy~ Fn(n+1)’ (
am=2C - ———+4S Lo
Ycc™ A ? n(n+ 1) l(n) § f
(B4
where
T
Sum=2 - (B5)
i=1]
and
4
CA:31 CF:§! Tf:TRnf:nf/Z (B6)
with n; being the number of flavors
KO=(K%",0K%D), (B7)
K9"=24n <e2>L (B8)
v " n+1)’
KR$=24n¢((e*) —(e?)?) (BY)

n+1)

2. Two-loop order [8,9]

a. Non-singlet sector

"=8C2ANs+8CACEBRst+8CETDLs, (B10)
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with (0 1+(=D"_(n| 1-(-1)"_(n-1
S2/7 72 52 2 2
3 5 5 3 2 1
A= — 4 (B16)
N8 n n+l n2 (n+1)2 n?
b. Singlet sector
— 3 (—1)" _A_l i 3 D) vyy:
(n+1)3 n n+l p2
L2 2, 2 } +5,(m) 2 Y "= W& ¥Ry (B17)
—_— n —_—
+12 nd (n+1)3) 2 (n+1)?
(n+1)® n> (n+1) n® (n+1) with
2 2 n\ /2
+S,(n) 3—ﬁ+n+1+481(n) SZ E ﬁ
—m—481(n))—855+88(n), (B1D) n® (n+1)
+4+ 4 ] (B18)
a3 3"
g _ 17 1871 187 1 171 5 1 " (n+1)
NSTT 247 18n 180+l 62 6(nil)?
2 vyo:
1 ( )n{z 1
T s n il g2
. (n+1) : YR"=8CT(D 6+ 8CAT(Eyq, (B19)
1 1 1
BT R i [T g S i
(n+1)2 n® (n+1) 9 with
2 _us
+S(N)| — 5+ o pg 4S5 o 4 s 4
11 e S R R )
n n ~
+$ §)<_ﬁ+n+1+281(n) 283<§)—4S(n), 8 4\ 22 27
(B12) +Sin) n n+tl Q2 T Tl
9 8 2
L1 221 21 21 2 1 20 —;—(n+1)2+¥+(n+1)3, (B20)
PN~ 5 9 n onil 3n2 3nrpz 92"
4
+3S(n), (B13) e 24 22 2 24 4
where 7 n T+l (n+1)? n?
o 1 o 1 : —m(——i— 8)
sz(n):glj—z, Sg(n)=]§1j—3, (n+1)3 n n+l (nt1)?
o (Z1) —Si(n)( - sz(m(——i
S(n=2 ——Si(j) (B14) n n+l n n+l
=
n\(2 4 2
e ~Sil3) {7 A DT
n\ 1+(—-1" (n\ 1-(-1)" (n-1
2=z T ) - ~25,(n)+S}| 5 +g(2) (B2D)
(B15) n+1
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() vey: (n\(2 1
+Sy 5|l o= g | L (D)
=8CZAZ,+8CACeBY,+8C:T;DY,, (B22 n-n
with X(ﬁ—m 2S,(n) - Sz() §(2) (B24)
L1714 2 1 1 2
7~ 2n n+l n2 2(n+1)2 nd
. 161 4 1 4 1
1 (n)z 1 2 79 n 9n+l 3 (nt+1)?
(n+1)% " \n N+l (nta)
1 1 s 81 4.1 B25
+S§(n)(ﬁ—m Sz(n)(ﬁ—m (M 35" 301" 829
(B23)
4) vge:
) 411 35 1 4 38 1 4
&= 9N 9ntl 2 2 3 (n+1)2 nd
6 - E)_Jr_ 1 +i GLN=8CLT(DLs+8CATEL+8CaFLs, (B26)
n+1)°% 3 3n+l q
@ 1 1
—Si(n) n n+1 ~S(n) n n+l with
o _1+1o 10 10 2 4 4 5
7T n ntl n2 (n+1)?2 n® (n+1)° (827
e 4,761 76 1 41 4 1 20S 528
=3 9 n " 9n 1l 3 3mene 92V (B28)
) 8 971,97 1 291 67 1 8 67 8 8
Fee=™~ 37 18n 8nr1 32 3 2 3 35| g+ 2
3 18n 18n+l 3 n2 3 (n+1)2 n® (n+1) 9 n? (n+1)
Lg(n 48 25 2l's 2 1 1)"]|8 ! -2
28l o]+ asm 28 o[ sum -+ 2o e (- | - | 28y
J(n 2 1 ,/n ~ 4
—4Sy (M SN +285| 5 || Sun) =+ |+ 5 85| 5| =48 +(2)| 28y — -+ ] L3 .
(B29)
[
(1)
c. K]l\-l’g:_3nf(<e4>_<e2>2)CF8DrzLG (B33
B
(K“‘, K&", K,h'g), (B30)
with d. Anomalous dimensions at # 1(% scheme)
KL= —3ny(€?)Cr8D');, (B31) WE =95 71=0, (B34)
K&"=—3ni(e?)Ce8(Dgs—1), (B32) Y& =0, (B35)
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Y&, t=-6Cg, (B36)
on=1 22 8
Yée =~ 3 Cat3Ti=-2p, (B37)
KOn 1_ KOn 1_ O, (B38)
yg" =0, (B39)
Yy =24Ce Ty, (B40)
Y& t=0, (B41)
_ 142 8
Y(Gll)pml:lml% TCACF+§CFTf1
(B42)
40 68
768" 1=8CeT(+ 5 CaTi— 5 CA=—21,
(B43)
K==k t=K e =0. (B44)

APPENDIX C: COEFFICIENT FUNCTIONS

C.(C)) is the coefficient function of the hadron{pho-
ton) operatord 17]:

94(Q?)
5, 1+ ———B"
AT ‘”)
52 2
_ 9°(Q“)
Ca(10(Q?)= o 62 | ©
g4(Q?) _,
5N5<1+FBNS)
2
Cr(L9(QH) )= 0,87, (€2
and
B"=(2/n;)BL. (C3)
1. MS scheme[8,9]
. 2 2
Bn,//: NS:CF +m+3 Sl(n_l)
n—-1 1 6 }
+4Z s1 —4S(n=1)+ — -9 (C4)
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- 1
n__ JRE—
Bg=4T; —n(n+1)(51(n)+1)
+—2 C5
n(n+1)| (C5)
2. Momentum subtraction [27,2§
noon 8 4
By=Bns=Crl ~2- 0+ 517 2
- +35;(n)—8S,(n) |, C6
oy 3Sim -8y >l (C6)
BL=8T ! 2 1+ 2
= —— -— =
¢ 7 ntl n2" (nt1)? ’
B '=0. (C7)

APPENDIX D: TENSOR DECOMPOSITION
OF VIRTUAL PHOTON-PHOTON AMPLITUDE

After using parity invariance, time-reversal invariance,
and gauge invariance, Brown and Muzin{@®] have shown
that there are eight independent tensors, in other words,
eight-invariant amplitudes for virtual photon-photon scatter-
ing. Those eight independent tensors, which are free from
kinematic singularities and kinematic zeros, are given in Egs.
(A3)—(A10) of Ref.[20].

Using these tensordj,,,,, the absorptive part of the
forward virtual photon-photon scattering amplitidg, ,, - is
decomposed as

8
/.LVpT Z /.wpfAl(W tl 2) (Dl)

where theA; are the invariant amplitudes and

w=p-q, t,=0°=-Q% t=p’=—P% (D2

In order to implement crossing symmetry under — g and
p—v, we form the even combinationk,, 1,+13, 4, 15,
I,+1g, and the odd combination$;— 13, 1;—1g, l§=2l¢g
—3wl;—wlg+ (t1to/w)(I,—13). It is noted that the combi-
nationsl,— I3 andl,—Ig are antisymmetric under the inter-
change ofu«< v and p<— 7, while the rest of the combina-
tions are symmetric. In terms of these crossing-even and
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-odd combinations, the amplitude&v=38_,1;A; is rear- Now using an identity
ranged as follows:

g,uveaﬁyéz gyaevﬁy5+ gyﬁeavy5+ g,u.yeaﬁv5+ g,u,éeaB%/IHS
1 D
Zl A= 11A1+ 5 (1F13) (AgtAg) +14A,
. we get

1 e,uv)urq)\(p'qeproﬁpﬂ_ Epraﬂpﬁpgqa)
Fl5As+ 5 (17+ 1 5) (Ar+Agt2wAg)

== [ Gua}\aqvqa_ Gva)\aquqa

1 1 a
+ =1 éA6+ §(| >—13) - Ep.v)\o'qz] €pr ﬁpﬁp}\- (D9)

2

tyt
A,—Ay— %AG)

1 Hence we have from Ed2.3)
+§(|7_|8)(A7_A8+WA6)- (D3)

1
W,quT:—Z[(I 7),u1/p7'g]y_ (J- )/u/prg ] (DlO)
Now g}=2W] is written in terms of invariant amplitudes as (p-a)

gl*a—ay- 111 (D4) Finally it is interesting to see the relation betwgen the
polarized photon structure functiog$ andg} and polarized
) 2 nucleon structure functiong; and g,. By introducing the
=w (Az_As_ WAG) —tito(A7—Ag+WAg) polarization vectorse*? and €” for the target photon just
(D5) like those for the gluon target discussed by Gabrieli and

Ridolfi [46], we have
which is obtained from Eq.Al4) of Ref. [20]. Here

ajqr1 (a1-11-1) represents the-channel helicity amplitude iWA =e*PW,, =W, —(ePe"— e* "€
for (+1)y+(*1)y—(+1)y+(*1)y. It is noted that ree K2
[A,—As—(t1to/wW)Ag] is the invariant amplitude associated i
with (1,—13), while (A7 Agt+WwAg) is associated withl{ — _ ™05 s D11
—|8) In the limit t,=p?=0 or in the case thav=p-q,t; KT 24 PySaf: (b1
=g%>t,=p?, the second terryt,(A;— Ag+WAg) does not
contribute tog? . wheres is the longitudinal spin vector for the target photon.
In fact we observe that the tensdp {-13)=I_ is associ-  After using the relatiorp-s=0, we get
att1ed togg while (1;—1g)=J_ is associated tgJ. It can be o7 ol
shown that 1 Wf/iv: p-q euv)\aq)\sggz_*— e}LV)\O'q}\(p. qSU_Q'SpU)ﬁ}
E,U,V)\U'q)\epfo-ﬁpﬁ_ﬁl — (DG) (Dlz)
and in the limit of—q2,p- g — p? which, apart from the factor/|p?|, has exactly the same
’ form as Eq.(2.4) of Kodaira et al. [27] which defines the
[€ano®0%— €1anol, 0%~ €uinol€p PPgP = . polarized nucleon structure functiogs andg,, and also as

(D7) Eqg. (9) in Ref.[46].
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