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Spin structure function of the virtual photon beyond the leading order in QCD
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Polarized photon structure can be studied in the future polarizede1e2 colliding-beam experiments. We
investigate the spin-dependent structure function of the virtual photong1

g(x,Q2,P2), in perturbative QCD for
L2!P2!Q2, where2Q2(2P2) is the mass squared of the probe~target! photon. The analysis is performed
to next-to-leading order in QCD. We particularly emphasize the renormalization scheme independence of the
result. The nonleading corrections significantly modify the leading log result, in particular, at largex as well as
at small x. We also discuss the nonvanishing first moment sum rule ofg1

g , whereO(as) corrections are
computed.@S0556-2821~99!08309-5#

PACS number~s!: 12.38.Bx, 13.60.Hb, 13.88.1e
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I. INTRODUCTION

In recent years there has been growing interest in
study of a polarized photon structure function. The inform
tion on the spin structure of the photon would be provided
the resolved photon process in polarized electron and pr
collision in the polarized version of the DESYep collider
HERA @1,2#. More directly, the spin-dependent structu
function of photong1

g can be measured by the polarize
e1e2 collision in the future linear colliders~Fig. 1!.

From the theoretical viewpoint, the first moment of a ph
ton structure functiong1

g has recently attracted attention
the literature@3–7# in connection with its relevance for th
axial anomaly, which has also played an important role in
QCD analysis of the spin structure of the nucleon. Our a
here is to carry out the QCD computation of the photo
polarized structure function at the same level of the unpo
ized case. Here we note that the two-loop splitting fun
tionsof Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP!
equation or equivalently the two-loop anomalous dimensi
have recently been calculated@8,9#, and we can perform the
next-to-leading order QCD analysis for the polarized pho
structure function. Actually there has already been an anal
of spin-dependent structure functiong1

g for the real photon
target by Stratmann and Vogelsang@10#.

In this paper we shall investigate the polarized virtu
photon structure functiong1

g(x,Q2,P2) to the next-leading
order ~NLO! in QCD, in the kinematical region:

L2!P2!Q2, ~1.1!

where2Q2(2P2) is the mass squared of the probe~target!
photon, andL is the QCD scale parameter. We can base
arguments either on DGLAP-typeQ2 evolution equation for
the parton distributions or on the framework of opera
product expansion~OPE! and the renormalization grou
~RG! method. The unpolarized virtual photon structure fun
tions F2

g(x,Q2,P2) and FL
g(x,Q2,P2) were studied in the
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leading order~LO! @11# and in the NLO@12,13#. And the
parton contents of virtual photon were studied in Re
@14,15# and the target mass effect of unpolarized and po
ized virtual photon structure in LO was discussed in R
@16#.

The advantage to study the virtual photon target is that
can calculate the whole structure function entirely up to NL
by the perturbative method. On the other hand, for the r
photon target@17,18# we can calculate the perturbativ
pieces, but not the nonperturbative contributions which m
be estimated, for example, by vector-dominance model@19#.
The perturbative pieces for the real photon target can
reproduced from the result for the virtual photon case.

In the next section we discuss the polarized photon str
ture functions. Next we present the two theoretical fram
works based on OPE~Sec. III! and on DGLAP parton mode
approach~Sec. IV!. In Sec. V, the sum rule for the firs
moment ofg1

g will be evaluated up to the order ofas . The
numerical analysis ofg1

g will be given in Sec. VI. The final
section is devoted to the conclusion and discussion.

FIG. 1. Deep inelastic scattering on a polarized virtual photon
polarizede1e2 collision,e1e2→e1e21 hadrons~quarks and glu-
ons!. The arrows indicate the polarizations of thee1, e2 and virtual
photons. The mass squared of the ‘‘probe’’~‘‘target’’ ! photon is
2Q2(2P2)(L2!P2!Q2).
©1999 The American Physical Society11-1
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II. POLARIZED PHOTON STRUCTURE FUNCTIONS

Let us consider the forward virtual photon scattering a
plitude ~Fig. 2!,

Tmnrt~p,q!5 i E d4xd4yd4zeiq•xeip•~y2z!

3^0uT„Jm~x!Jn~0!Jr~y!Jt~z!…u0&. ~2.1!

Its absorptive part is related to the structure ten
Wmnrt(p,q) for the photon with mass squaredp252P2

probed by the photon withq252Q2:

Wmnrt~p,q!5
1

p
Im Tmnrt~p,q!. ~2.2!

The antisymmetric part,Wmnrt
A , which is antisymmetric un-

der the interchange ofm andn, can be decomposed as

Wmnrt
A 5emnlsqlert

sbpb

1

p•q
g1

g1emnlsql~p•qert
sbpb

2ertabpbpsqa!
1

~p•q!2
g2

g , ~2.3!

which gives two spin-dependent structure functio
g1

g(x,Q2,P2) and g2
g(x,Q2,P2). For a real photon,g2

g is
identically zero, and there exists only one spin struture fu
tion, g1

g(x,Q2). On the other hand, for the off-shell or virtua
photon (P2Þ0) target, we have two spin-dependent stru
ture functionsg1

g andg2
g . A more detailed argument on th

structure functions is given in the Appendix D. Theg1
g is

related to the structure functionW4
g , which was discussed

some years ago in @20,21#, such that g1
g(x,Q2)

[2W4
g(x,Q2). Here we note that the LO QCD correctio

was first studied by one of the authors in@22# and later in
@23,3#.

First we note that the same framework used in the an
sis of the nucleon spin structure functions can be applie
our case. We can either base our argument on the O
supplementd by the renormalization group~RG! method, or
on the DGLAP type parton evolution equations. It should
noted the next-to-leading order analysis is now poss
since the two-loop anomalous dimensions of twist-2 ope

FIG. 2. Forward scattering of a virtual photon with momentumq
and another virtual photon with momentump. The Lorentz indices
are denoted bym,n,r,t.
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torsRn
i relevant for the spin-dependent structure function~or

equivalently two-loop parton splitting functions! were calcu-
lated independently by two groups, by Mertig-van Neerv
@8# and by Vogelsang@9#.

III. THEORETICAL FRAMEWORK BASED ON OPE

In our previous paper@24#, we based our argument on th
QCD improved parton model approach. Here we start w
theoretical framework based on the OPE and RG meth
Applying OPE for the product of two electromagnetic cu
rents we get

i E d4xeiq•xT„Jm~x!Jn~0!…A

52 i«mnlsql (
n5odd

S 2

Q2D n

qm1
•••qmn21

3(
i

C1,n
i R

1,i

sm1•••qmn212 i ~«mrlsqnqr

2«nrlsqmqr2q2«mnls!

3 (
n5odd

S 2

Q2D n

qm1
•••qmn22

3(
i

C2,n
i R

2,i

lsm1•••qmn22 . ~3.1!

For polarized deep inelastic scattering, the twist-2 a
twist-3 operators:R1

n ,R2
n contribute to the structure function

in the scaling limit. Forg1
g only twist-2 operators are rel

evant. Now we can write down the moment sum rule forg1
g :

E
0

1

dxxn21g1
g~x,Q2,P2!

5 (
i 5c,G,NS,g

Cn
i
„Q2/m2,ḡ~m2!,a…

3^g~p!uRn
i ~m2!ug~p!&, ~3.2!

whereRn
i and Cn

i are the twist-2 operators and their coef
cient functions~hereafter we suppress the index 1 for twist
operators!, with m being the renormalization point anda
5e2/4p, the QED coupling constant.c, G, NS andg stand
for singlet quark, gluon, nonsinglet quark and photon,
spectively. The relevant twist-2 operatorsRn

i @ i
5c(S),G,NS,g# are given by@22#

Rc
sm1•••mn215 i n21c̄g$sDm1

•••Dmn21} g51c2trace terms,
~3.3!

RG
sm1•••mn215

1

4
i n21e$s

abgGam1Dm2
•••Dmn21} Gbg

2trace terms, ~3.4!
1-2
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RNS
sm1•••mn215 i n21c̄g$sDm1

•••Dmn21} g5~Qch
2 21!c

2trace terms, ~3.5!

Rg
sm1•••mn215

1

4
i n21e$s

abgFam1]m2
•••]mn21%Fbg

2trace terms, ~3.6!

where$ % means complete symmetrization over the Lore
indicessm1•••mn21 , Dm denotes covariant derivative, 1
an nf3nf unit matrix andQch

2 is the square of thenf3nf

quark-charge matrix, withnf being the number of flavors
Here we note that the essential feature in the above equa
is the appearance of photon operatorsRn

g in addition to the
hadronic operators.

For 2p25P2@L2, we can calculate the photon matr
elements of the hadronic operators perturbatively. Choos
m2 to be close toP2, we get, to the lowest order,

^g~p!uRn
i ~m!ug~p!&5

a

4p S 2
1

2
Kn

0,i ln
P2

m2
1An

i D ,

i 5c~S!,G,NS, ~3.7!

whereKn
0,i5(Kn

0) i are one-loop anomalous dimension mat
elements between the photon and hadronic operators. O
other hand, in the leading order of the QED coupling co
stant,a, we have for the photon operatorRn

g :

^g~p!uRn
g~m!ug~p!&51. ~3.8!

It should be noted that the finite termAn
i depends on the

renormalization scheme for the operatorsRn
i . Putting m2

52p25P2, we have

^g~p!uRn
i ~m!ug~p!&um25P25

a

4p
An

i , ~3.9!

and thenth moment with this choicem25P2 in Eq. ~3.2!
becomes

E
0

1

dxxn21g1
g~x,Q2,P2!

5 (
i , j 5c,G,NS,g

^g~p!uRn
i ~m25P2!ug~p!&

3S T expF E
ḡ~Q2!

ḡ~P2!
dg

gn~g!

b~g! G D
i j

Cn
j ~1,ḡ,a!.

~3.10!

The evolution factor in the last equation is found to be@17#

T expF E
ḡ~Q2!

ḡ~P2!
dg

gn~g!

b~g! G5S Mn 0

Xn 1D , ~3.11!
11401
z
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where

Mn„Q
2/P2,ḡ~P2!…5T expF E

ḡ~Q2!

ḡ~P2!
dg

ĝn~g!

b~g! G ,

Xn„Q
2/P2,ḡ~P2!,a…5E

ḡ~Q2!

ḡ~P2!
dg

Kn~g,a!

b~g!

3T expF E
ḡ~Q2!

g

dg8
ĝn~g8!

b~g8!
G
~3.12!

with ĝn and Kn the hadronic anomalous dimension matr
and the off-diagonal element representing the mixing
tween the photon and hadron operators~see Appendix A!.
Thus we get

E
0

1

dxxn21g1
g~x,Q2,P2!

5
a

4p
An•Mn„Q

2/P2,ḡ~P2!…Cn„1,ḡ~Q2!…

1Xn„Q
2/P2,ḡ~P2!,a…•Cn„1,ḡ~Q2!…1Cn

g

~3.13!

with

An5~An
c ,An

G ,An
NS!. ~3.14!

The coefficient functions are given by~see Appendix C!

Cn~1,ḡ!5S Cn
c~1,ḡ!

Cn
G~1,ḡ!

Cn
NS~1,ḡ!

D 5S dcS 11
ḡ2

16p2
Bc

n D
dc

ḡ2

16p2
BG

n

dNSS 11
ḡ2

16p2
BNS

n D D
Cn

g~1,ḡ,a!5
a

4p
dgBg

n ~3.15!

with dc 5 ^e2& 5 ( i 51
nf ei

2/nf ,dNS 5 1,dg 5 3nf^e
4&

53( i 51
nf ei

4 .
We then derive the following formula for the moments
1-3
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E
0

1

dxxn21g1
g~x,Q2,P2!5

a

4p

1

2b0
F (

i 51,2,NS
P̃i

n 1

11l i
n/2b0

4p

as~Q2!
H 12S as~Q2!

as~P2!
D l i

n/2b011J
1 (

i 51,2,NS
A i

nH 12S as~Q2!

as~P2!
D l i

n/2b0J 1 (
i 51,2,NS

B i
nH 12S as~Q2!

as~P2!
D l i

n/2b011J 1C n1O~as!G .

~3.16!

Hereas(Q
2)5ḡ2(Q2)/4p is the QCD running coupling constant. In Eq.~3.16!, we have defined

P̃i
n5Kn

0Pi
nCn~1,0!~ i 51,2,NS!, ~3.17!

wherePi
n’s are projection operators given in the Appendix A. The coefficientsA i

n , B i
n andC n are computed from the NLO

perturbative calculation, and are given by

A i
n52Kn

0(
j

Pj
nĝn

~1!Pi
n

2b01l j
n2l i

n
Cn~1,0!

1

l i
n/2b0

2Kn
0 b1

b0
Pi

nCn~1,0!
12l i

n/2b0

l i
n/2b0

1Kn
1Pi

nCn~1,0!
1

l i
n/2b0

22b0AnPi
nCn~1,0!,

~3.18!

B i
n5Kn

0(
j

Pi
nĝn

~1!Pj
n

2b01l i
n2l j

n
Cn~1,0!

1

11l i
n/2b0

1Kn
0Pi

nS dcBc
n

dcBG
n

dNSBNS
n D 1

11l i
n/2b0

2Kn
0 b1

b0
Pi

nCn~1,0!
l i

n/2b0

11l i
n/2b0

,
~3.19!

C n52b0„dgBg
n1An•Cn~1,0!…, ~3.20!
p

e
e
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where l i
n( i 51,2,NS) are eigenvalues of the 1-loo

anomalous dimension matrixĝn
(0) and are given in Appendix

A. b0 and theb1 are the one- and two-loopb functions, and
b051122nf /3 andb15102238nf /3.

All the quantities necessary to evaluateP̃i
n , A i

n , B i
n , and

C n are now known and will be presented in Appendix
A–C. Two-loop results@8,9# have been calculated in th
modified minimal subtraction (MS) scheme@25#. Actually
the expressions of Eqs.~3.16! and~3.17!–~3.20! are the same
in form as the ones obtained before by one of the authors
Walsh for the case of the virtual photon structure functionF2

g

@12#. The explicit expressions of the one-loop and two-lo
anomalous dimensions@8,9# as well as one-loop coefficien
functions@26–30,8,9# are given in Appendixes B and C.

Equation~3.16! is our main result of the present pape
The first term is the LO result, and the remaining terms
the NLO QCD corrections.

Now let us examine the renormalization scheme indep
dence of the coefficients;A i

n , B i
n andC n. As in the unpo-

larized case,B i
n can be written in terms of a schem

independent combination of 2-loop anomalous dimensi
and 1-loop coefficient functions in the hadronic sector. Us
the scheme-independent coefficientsR2,n

i @31–33#, we can
write

B i
n5Li

nR2,n
i ~ i 51,2,NS!, ~3.21!
11401
s

nd

e

n-

s
g

where the explicit form forR2,n
i is given in Eqs.~9!–~12! of

Ref. @31# ~see also@12#! and

Li
n5 P̃i

n 1

11l i
n/2b0

~3.22!

which is the coefficient of the leading-log term. The sche
independence ofB i

n follows from these two equations.
RegardingC n, we first consider the photon matrix ele

ments of the renormalized quark and gluon operators.
finite matrix elementsAn and the tree-level coefficient func
tions Cn(1,0) are given by

An56~^e2&,0,̂ e4&2^e2&2!ÃnG
c , ~3.23!

Cn~1,0!5S ^e2&

0

1
D . ~3.24!

Hence, we have

An•Cn~1,0!56^e4&ÃnG
c . ~3.25!
1-4
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Noting that

Bg
n5

2

nf
BG

n , dg53nf^e
4&. ~3.26!

we find C n equal to be

C n512b0^e
4&~BG

n 1ÃnG
c !. ~3.27!

Since the combinationBG
n 1ÃnG

c is scheme independent@25#,
so is C n. In fact, in theMS scheme@8#, the gluon matrix
elements of quark operators (i 5c,NS) read

^p,suRi
sm1•••mn21~m2!up,s&

5Ai~p2,m2,g!@$ssp1
m
•••pmn21%2traces# ~ i 5c,NS!,

Ac5
g2

16p2 S 1

2
gcG

~0!,n ln
2p2

m2
1ÃnG

c D , ~3.28!

where the finite matrix elementÃnG
c is given in the parton

language as@8#

ÃnG
c 5E

0

1

dx xn21aS,qg
~1! ~x!, ~3.29!

where

aS,qg
~1! ~x!5Tf@~428x!$ ln x1 ln~12x!%# ~3.30!

with Tf5nf /2. Thus, we get

ÃnG
c 52nfF n21

n~n11!
S1~n!1

4

~n11!2
2

1

n2
2

1

nG .

~3.31!

Therefore, from Eq.~3.27! we finally arrive at

C n524b0f ^e4&F2

n
2

4

n11
2

2

n2
1

4

~n11!2G ~3.32!

which is consistent with the Box diagram calculation.
On the other hand, in the RG scheme adopted by Kod

@28# which is the momentum subtraction scheme, we ha
for n>3,

ÃnG
c 50 ~3.33!

with the coefficient function given by

BG
n 52nfF2

n
2

4

n11
2

2

n2
1

4

~n11!2G . ~3.34!

For n51, because of the Adler-Bell-Jackiw anomaly

Ãn51G
c 522nf ~3.35!

and

BG
n5150, ~3.36!
11401
ra
e,

by definition, since we have no gauge-invariant gluon ope
tor for n51. Combining this with the result forÃnG

c , we
arrive at the same result forC n.

The scheme-independence of the remaining coefficie
A i

n follows from the above arguments onB i
n andC n and the

physically measurable moments given in Eq.~3.16!.

IV. QCD IMPROVED PARTON MODEL APPROACH

We now turn to the analysis based on the QCD improv
parton model@34# using the DGLAP parton evolution equa
tions.

Let q6
i (x,Q2,P2), G6

g (x,Q2,P2), G6
g (x,Q2,P2) be

quark with i-flavor, gluon, and photon distribution function
with 6 helicities of the longitudinally polarized virtual pho
ton with mass2P2 @24#. Then the spin-dependent parto
distributions are defined as

Dqi[q1
i 1q̄1

i 2q2
i 2q̄2

i , ~4.1!

DGg[G1
g 2G2

g , DGg[G1
g 2G2

g .
~4.2!

In the leading order of the electromagnetic coupling co
stant,a5e2/4p, DGg does not evolute withQ2 and is set to
be DGg(x,Q2,P2)5d(12x). The quark and gluon distribu
tionsDqi andDGg satisfy the following evolution equations

dDqi~x,Q2,P2!

d ln Q2
5E

x

1dy

y H(
j

D P̃qiqj S x

y
,Q2DDqj~y,Q2,P2!

1D P̃qGS x

y
,Q2DDGg~y,Q2,P2!J

1D P̃qig~x,Q2,P2!, ~4.3!

dDGg~x,Q2,P2!

d ln Q2
5E

x

1dy

y H D P̃GqS x

y
,Q2D(

i
Dqi~y,Q2,P2!

1D P̃GGS x

y
,Q2DDGg~y,Q2,P2!J

1D P̃Gg~x,Q2,P2!, ~4.4!

whereD P̃AB is a polarized splitting function ofB-parton to
A-parton, defined as D P̃AB[PA1B1

2PA2B1
(5PA2B2

2PA1B2
, due to parity conservation in QCD and QED!.

For later convenience we use, instead ofDqi , the flavor
singlet and nonsinglet combinations defined as follows:

DqS
g[(

i
Dqi , ~4.5!

DqNS
i [Dqi2

DqS
g

nf
, ~4.6!
1-5
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so that( iDqNS
i 50 andnf is the number of relevant activ

quark flavors. The quark-quark splitting functionD P̃qiqj is
made up of two pieces, the one representing the case
j-quark splits intoi-quark without through gluon, and th
other one through gluon, and may be expressed as

D P̃qiqj5d i j D P̃qq1
1

nf
D P̃qq

S , ~4.7!

where the second term is representing the splitting thro
gluon, andD P̃qq and D P̃qq

S are both independent of quar
flavor, i and j. It is noted that by constructionD P̃qq

S is rel-
evant for the evolution of flavor-sigletDqS

g and first appears
in the order ofas

2 .
In the QCD improved parton model, which is based

the factorization theorem, the polarized virtual photon str
ture functiong1

g(x,Q2,P2) is expressed as

g1
g~x,Q2,P2!5E

x

1dy

y H(
i

Dqi~y,Q2,P2!Ci S x

y
,Q2D

1DGg~y,Q2,P2!CGS x

y
,Q2D J 1Cg~x,Q2!,

~4.8!

where Ci , CG, and Cg are the coefficient functions o
i-quark, gluon, and photon, respectively, and are indepen
of target photon massP2. Up to one-loop level they are
given by

Ci~z,Q2!5ei
2H d~12z!1

as~Q2!

4p
Bq~z!J , ~4.9!

CG~z,Q2!5^e2&H 01
as~Q2!

4p
BG~z!J ,

~4.10!

Cg~z,Q2!5
a

4p
3nf^e

4&Bg~z!, ~4.11!

where ^e2&5( iei
2/nf and ^e4&5( iei

4/nf . It is noted that
Bq(z) in Eq. ~4.9! is independent of the quark flavori. Since
( iDqiCi is rewritten as

(
i

DqiCi5(
i

H DqNS
i 1

DqS
g

nf
J Ci

5DqS
g~y,Q2,P2!^e2&H dS 12

x

yD
1

as~Q2!

4p
BqS x

yD J
1(

i
ei

2DqNS
i ~y,Q2,P2!H dS 12

x

yD
1

as~Q2!

4p
BqS x

yD J , ~4.12!
11401
at

h

-

nt

we obtain

g1
g~x,Q2,P2!5E

x

1dy

y H DqS
g~y,Q2,P2!CSS x

y
,Q2D

1DGg~y,Q2,P2!CGS x

y
,Q2D

1DqNS
g ~y,Q2,P2!CNSS x

y
,Q2D J 1Cg~x,Q2!,

~4.13!

where we have defined

CS~z,Q2![^e2&H d~12z!1
as~Q2!

4p
BS~z!J , ~4.14!

CNS~z,Q2![d~12z!1
as~Q2!

4p
BNS~z!,

~4.15!

DqNS
g [(

i
ei

2DqNS
i , ~4.16!

and BS(z)5BNS(z)5Bq(z). From Eqs. ~4.3!–~4.7! and
~4.16!, the evolution equations forDqS

g , DGg, andDqNS
g are

now given by

dDqS
g~x,Q2,P2!

d ln Q2
5E

x

1dy

y H FD P̃qqS x

y
,Q2D

1D P̃qq
S S x

y
,Q2D GDqS

g~y,Q2,P2!

1nfD P̃qGS x

y
,Q2DDGg~y,Q2,P2!J

1(
i

D P̃qig~x,Q2!, ~4.17!

dDGg~x,Q2,P2!

d ln Q2
5E

x

1dy

y H D P̃GqS x

y
,Q2DDqS

g~y,Q2,P2!

1D P̃GGS x

y
,Q2DDGg~y,Q2,P2!J

1D P̃Gg~x,Q2!, ~4.18!
1-6
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dDqNS
g ~x,Q2,P2!

d ln Q2
5E

x

1dy

y
D P̃qqS x

y
,Q2DDqNS

g ~y,Q2,P2!

1(
i

ei
2H D P̃qig~x,Q2!

2
1

nf
(

j
D P̃qjg~x,Q2!J . ~4.19!

Introducing a row vectorDqg5(DqS
g ,DGg,DqNS

g ), the
above evolution equations, Eqs.~4.17!–~4.19! are expressed
in a compact matrix form

dDqg~x,Q2,P2!

d ln Q2
5Dk~x,Q2!

1E
x

1dy

y
Dqg~y,Q2,P2!DPS x

y
,Q2D ,

~4.20!

where the elements of a row vector Dk
5(DKS ,DKG ,DKNS) are

DKS[(
i

D P̃qig , DKG[D P̃Gg ,

DKNS[(
i

ei
2H D P̃qig2

1

nf
(

j
D P̃qjgJ .

~4.21!

SinceD P̃qig is proportional toei
2 , it is easily seen thatDKS

andDKNS have factorsnf^e
2& andnf(^e

4&2^e2&2), respec-
tively. The 333 matrix DP(z,Q2) is written as

DP~z,Q2!

5S DPqq
S ~z,Q2! DPGq~z,Q2! 0

DPqG~z,Q2! DPGG~z,Q2! 0

0 0 DPqq
NS~z,Q2!

D ,

~4.22!

where

DPqq
S [D P̃qq1D P̃qq

S , DPqG[nfD P̃qG ,

DPGq[D P̃Gq , DPGG[D P̃GG , DPqq
NS[D P̃qq .

~4.23!

Once we get the information on the coefficient functio
in Eqs. ~4.9!–~4.11! and parton splitting functions in Eqs
~4.21!–~4.23!, we can predict the behavior ofg1

g(x,Q2,P2)
in QCD. The NLO analysis is now possible since the sp
dependent one-loop coefficient functions and two-loop p
ton splitting functions are available@8,9#. There are two
methods to obtaing1

g(x,Q2,P2) in NLO. In one method, we
use the parton splitting functions up to two-loop level and
11401
-
r-

e

solve numericallyDqg(x,Q2,P2) in Eq. ~4.20! by iteration,
starting from the initial quark and gluon distributions of th
virtual photon atQ25P2. The interesting point of studying
the virtual photon with mass2P2 is that whenP2@L2, the
initial parton distributions of the photon are complete
known up to the one-loop level in QCD. Then inserting t
solvedDqg(x,Q2,P2) into Eq. ~4.13!, and together with the
known one-loop coefficient functions we can pred
g1

g(x,Q2,P2) in NLO.
The other method, which is more common than t

former, is by making use of the inverse Mellin transform
tion. From now on we follow the latter method. First we ta
the Mellin moments of Eq.~4.13!,

E
0

1

dxxn21g1
g~x,Q2,P2!

5Dqg~n,Q2,P2!•C~n,Q2!1Cg~n,Q2!, ~4.24!

where we have defined the moments of an arbitrary func
f (x) as

f ~n![E
0

1

dxxn21f ~x!. ~4.25!

Comparing Eq.~4.24! with Eqs. ~3.10! and ~3.15!, we can
easily see the correspondence between the quantities in
QCD improved parton model and those in the framework
OPE as follows:

@Dqg~n,Q2,P2!# i5 (
j 5S,G,NS,g

^g~p!uRn
j ~m25P2!ug~p!&

3S T expF E
ḡ~Q2!

ḡ~P2!
dg

gn~g!

b~g! G D
j i

~ i 5S,G,NS!, ~4.26!

C~n,Q2!5Cn~1,ḡ!, ~4.27!

Cg~n,Q2!5Cn
g~1,ḡ,a!. ~4.28!

Henceforce we omit the obviousn-dependence for sim
plicity. We expand the splitting functionsDk(Q2) and
DP(Q2) in powers of the QCD and QED coupling constan
as

Dk~Q2!5
a

2p
Dk~0!1

aas~Q2!

~2p!2
Dk~1!1••• , ~4.29!

DP~Q2!5
as~Q2!

2p
DP~0!1Fas~Q2!

2p G2

DP~1!1•••,

~4.30!

and introducet instead ofQ2 as the evolution variable@35#,

t[
2

b0
ln

as~P2!

as~Q2!
. ~4.31!
1-7
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Then, taking the Mellin moments of the both sides in E
~4.20!, we find thatDqg(t)„5Dqg(n,Q2,P2)… satisfies the
following inhomogenious differential equation@36,37#:

dDqg~ t !

dt
5

a

2p H 2p

as
Dk~0!1FDk~1!2

b1

2b0
Dk~0!G1O~as!J

1Dqg~ t !H DP~0!1
as

2p FDP~1!2
b1

2b0
DP~0!G

1O~as
2!J , ~4.32!

where we have used the fact that the QCD effective coup
constantas(Q

2) satisfies

das~Q2!

d ln Q2
52b0

as~Q2!2

4p
2b1

as~Q2!3

~4p!2
1••• ~4.33!

with b051122nf /3 andb15102238nf /3. Note that theP2

dependence ofDqg solely comes from the initial condition
~or boundary condition! as we will see below.

We look for the solutionDqg(t) in the following form:

Dqg~ t !5Dqg~0!~ t !1Dqg~1!~ t !, ~4.34!

where the first~second! term represents the solution in th
LO ~NLO!. First we discuss about the initial conditions
Dqg.

In Sec. III, we have observed that for2p25P2@L2 the
photon matrix elements of the hadronic operatorsRn

i @ i
5c(S),G,NS# can be calculated perturbatively. Choosi
the square of the renormalization pointm2 to be close toP2,
we obtain, to the lowest order

^g~p!uRn
i ~m!ug~p!&5

a

4p S 2
1

2
Kn

0,i ln
P2

m2
1An

i D ,

i 5c~S!,G,NS. ~4.35!

The Kn
0,i-terms andAn

i -terms represent the operator mixin
between the hadronic operators and photon operators in
LO and NLO, respectively. The operator mixing implies th
there exists quark distribution in the photon. When we ren
malize the photon matrix elements of the hadronic opera
at m25P2, we obtain

^g~p!uRn
i ~m!ug~p!&um25P25

a

4p
An

i ~4.36!

which shows that, atm25P2, quark distribution exists in the
photon, not in the LO but in the NLO. Thus we have

Dqg~0!~0!50, Dqg~1!~0!5
a

4p
An . ~4.37!

Explicit expressions ofAn in the MS scheme are given in
Sec. III.
11401
.
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With these initial conditions, we obtain for the solutio
Dqg(t) of Eq. ~4.32!,

Dqg~0!~ t !5
4p

as~ t !
aH 12F as~ t !

as~0!G
122DP~0!/b0J , ~4.38!

Dqg~1!~ t !522aH E
0

t

dte~DP~0!2b0/2!t

3FDP~1!2
b1

2b0
DP~0!Ge2DP~0!tJ eDP~0!t

1bH 12F as~ t !

as~0!G
22DP~0!/b0J

1Dqg~1!~0!F as~ t !

as~0!G
22DP~0!/b0

, ~4.39!

where

a5
a

2pb0
Dk~0!

1

12
2DP~0!

b0

, ~4.40!

b5H a

2p FDk~1!2
b1

2b0
Dk~0!G

12aFDP~1!2
b1

2b0
DP~0!G J 21

DP~0!
. ~4.41!

It is noted that the parton distributionsDqg(t) do depend on
the initial conditionsDqg(0)5(a/4p)An , but we have seen
in Sec. III that the structure functiong1

g(x,Q2,P2) itself is
independent ofDqg(0) in NLO in QCD.

The moments of the splitting functions are related to
anomalous dimensions of operators as follows:

DP~0!52
1

4
ĝn

0 , DP~1!52
1

8
ĝn

~1!, ~4.42!

Dk~0!5
1

4
Kn

0 , Dk~1!5
1

8
Kn

1 . ~4.43!

The evaluation ofDqg(0)(t) andDqg(1)(t) in Eqs.~4.38! and
~4.39! can be easily done by introducing the projection o
eratorsPi

n such as

DP~0!52
1

4
ĝn

052
1

4 (
i 51,2,NS

l i
nPi

n , i 51,2,NS,

~4.44!

Pi
nPj

n5H 0 iÞ j ,

Pi
n i 5 j

, (
i

Pi
n51, ~4.45!
1-8
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wherel i
n are the eigenvalues of the matrixĝn

0 . Then the solutionDqg(t) of Eq. ~4.32! in the NLO is written as

Dqg~ t !Y F a

8pb0
G5

4p

as~ t !
Kn

0(
i

Pi
n 1

11
l i

n

2b0

H 12F as~ t !

as~0!G
11l i

n/2b0J
1H Kn

1(
i

Pi
n 1

l i
n/2b0

1
b1

b0
Kn

0(
i

Pi
nS 12

1

l i
n/2b0

D
2Kn

0(
j ,i

Pj
nĝn

~1!Pi
n

2b01l j
n2l i

n

1

l i
n/2b0

22b0An(
i

Pi
nJ H 12F as~ t !

as~0!G
l i

n/2b0J
1H Kn

0(
i , j

Pi
nĝn

~1!Pj
n

2b01l i
n2l j

n

1

11
l i

n

2b0

2
b1

b0
Kn

0(
i

Pi
n

l i
n/2b0

11
l i

n

2b0

J H 12F as~ t !

as~0!G
11l i

n/2b0J 12b0An.

~4.46!
nt
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Now inserting the above solution ofDqg(t) into Eq.
~4.24! and together with the information on the coefficie
functions in Eq.~3.15!, we reproduce the same formula fo
the moments ofg1

g(x,Q2,P2) given in Eqs.~3.16!–~3.20!, as
for the case of the OPE approach in the NLO.

V. SUM RULE FOR THE FIRST MOMENT OF g1
g
„x,Q2,P2

…

The polarized structure functiong1
g of the real photon

satisfies a remarkable sum rule@3–7#

E
0

1

g1
g~x,Q2!dx50. ~5.1!

Now we can ask what happens to the first moment of
virtual photon structure functiong1

g(x,Q2,P2). This can be
studied by taking then→1 limit of Eq. ~3.16!. Note that we
have the following eigenvalues of the one-loop anomal
dimension matrixĝn51

0 :

l1
n5150, l2

n51522b0 , lNS
n5150. ~5.2!

Physically speaking, the zero eigenvaluesl1
n515lNS

n51

50 correspond to the conservation of the axial-vector c
rent at one-loop order, which has the counterpart for
unpolarized structure functionF2; the conservation of energ
momentum tensor,l2

n5250. The other eigenvaluel2
n515

22b0, which is negative, is rather an artifact of continuati
of the anomalous dimension of the gluon operators ton51,
since there is no twist-2 gluon operator exists forn51, in
the RG scheme in which only gauge-invariant operators
allowed. But n51 gluon operator exists in the so-calle
Adler-Bardeen scheme@38,39#. In fact, in the QCD im-
proved parton model approach, there is no reason why
n51 moment of the polarized gluon distribution should n
be considered@40#.
11401
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In the coefficients

P̃i
n 1

11l i
n/2b0

, A i
n , B i

n ~ i 51,2,NS! ~5.3!

the special points~5.2! would develop the singularities atn
51, since in those coefficients there exist the factors

1

l1
n

,
1

lNS
n

,
1

11l2
n /2b0

. ~5.4!

Now if we take the limit ofn going to 1, we have

P̃i
n 1

11l i
n/2b0

→0 ~ i 51,2,NS!,

A1
n→finite, A2

n→0, ANS
n →finite,

B1
n→0, B2

n→finite, BNS
n →0. ~5.5!

However,A1
n , ANS

n , andB2
n are multiplied by the following

vanishing factors:

H 12S as~Q2!

as~P2!
D l1

n /2b0J , H 12S as~Q2!

as~P2!
D lNS

n /2b0J ,

H 12S as~Q2!

as~P2!
D l2

n /2b011J , ~5.6!

respectively, and thus the terms proportional toP̃i
n , A i

n , and
B i

n in Eq. ~3.16! all vanish in then51 limit. Note that these
vanishing factors are specific to the case of the virtual pho
target, and that such factors do not appear when the targ
real photon.
1-9
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Thus, the first three terms in the 1st moment vanish ir
spective of the RG scheme. So we get

E
0

1

dxg1
g~x,Q2,P2!5

a

4p

1

2b0
C n511O~as!. ~5.7!

Now let us considerC n51, which is given by

C n51512b0^e
4&~BG

n 1ÃnG
c !un51 . ~5.8!

As we have seen, the combination (BG
n 1ÃnG

c ) is
renormalization-scheme independent@25#. The results in the
MS scheme@8,9,29# are

BG
n5150, Ãn51G

c 522nf . ~5.9!

The same results have been obtained by Kodaira@28# in the
framework of OPE and RG method. He setBG

n5150, observ-
ing that there is no gauge-invariant twist-2 gluon operator
n51 and obtainedÃn51G

c 522nf from the Adler-Bell-
Jackiw anomaly. In the end, we have for the sum rule of
virtual photon structure functiong1

g ,

E
0

1

dxg1
g~x,Q2,P2!52

3a

p (
i 51

nf

ei
41O~as!, ~5.10!

where

Q2@P2@mi
2 ,L2, i 51, . . . ,nf ~5.11!

with mi the mass ofi th flavor quark, andnf the number of
active flavors.

Now it should be pointed out that we can further purs
the QCD corrections of orderas to the first moment ofg1

g .
In the above equation for the first moment, the leading or
is O(1) not of order 1/as(Q

2), which is the case for the
general moments. So we now go to the orderas QCD cor-
rection.

First we take the renormalization scheme of Kodaira@28#.
We write down the first moment ofg1

g(x,Q2,P2):

E
0

1

dxg1
g~x,Q2,P2!

5C1
c
„Q2/P2,ḡ~P2!,a…^g~p!uR1

c~m25P2!ug~p!&

1C1
NS
„Q2/P2,ḡ~P2!,a…

3^g~p!uR1
NS~m25P2!ug~p!&. ~5.12!

Here it should be emphasized that because of the absen
the gauge-invariantn51 gluon and photon operators, th
11401
-

r

e

e

r

of

mixing problem becomes much simpler. The coefficie
functions can be given by

S C1
c
„Q2/P2,ḡ~P2!,a…

C1
NS
„Q2/P2,ḡ~P2!,a…

D
5T expE

ḡ~Q2!

ḡ~P2!
dg8

ĝ1~g8!

b~g8!
S C1

c
„1,ḡ~Q2!,a…

C1
NS
„1,ḡ~Q2!,a…

D ,

~5.13!

whereĝ1(g) is a 232 diagonal matrix:

ĝ1~g!5S gcc~g! 0

0 gNS~g!
D . ~5.14!

Here anomalous dimensions are expanded in powers of
coupling constant:

g~g!5g~0!
g2

16p2
1g~1!S g2

16p2D 2

1O~g6!, ~5.15!

where

gcc
~0!5gNS

~0!50,

gcc
~1!524CFTf524•

Nc
221

2Nc
•

nf

2
516nf , gNS

~1!50,

~5.16!

and the coefficient functions are

C1
c
„1,ḡ~Q2!,a…5^e2&S 12

3

4
CF

as~Q2!

p D
5^e2&S 12

as~Q2!

p D ,

C1
NS
„1,ḡ~Q2!,a…512

3

4
CF

as~Q2!

p
512

as~Q2!

p
,

~5.17!

T expE
ḡ~Q2!

ḡ~P2!
dg8

ĝ1~g8!

b~g8!
512

1

16p2

ĝ~1!

2b0
@ ḡ2~P2!

2ḡ2~Q2!#. ~5.18!

Here we have the finite matrix element of the quark o
erators between the virtual photon states:

^g~p!uRn51
i ~m25P2!ug~p!&5

a

4p
An51

i , ~5.19!

where

An56~^e2&,0,̂ e4&2^e2&2!ÃnG
c . ~5.20!

Now we recall Kodaira’s statement that the bare Gree
function for then51 case does not receive divergent corre
1-10
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tions, but the finite correction connected with Adler-Be
Jackiw anomaly:

Ãn51G
c 524T~R!522nf . ~5.21!

Putting all these equations together, we finally obtain
O(as) QCD correction:

E
0

1

dxg1
g~x,Q2,P2!52

3a

p F(
i 51

nf

ei
4S 12

as~Q2!

p D
2

2

b0
S (

i 51

nf

ei
2D 2S as~P2!

p
2

as~Q2!

p D G
1O~as

2!. ~5.22!

This result is perfectly in agreement with the one obtained
Narison, Shore and Veneziano in Ref.@5#, apart from the
overall sign for the definition ofg1

g .
Now we show that we obtain the same result for the fi

moment ofg1
g(x,Q2,P2) in the MS scheme. Although there

exist no gauge-invariant twist-2 gluon- and photon-opera
for n51, theMS calculation of the anomalous dimensio
gives nonzero results forgGG

n51 and gGc
n51 . Thus, the

MS-scheme results rather correspond to the QCD pa
,

q.

I

ar

11401
e

y
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rs

n

model approach where the first moments of the gluon
photon distributions are as well defined as the other distri
tions.

Including the gluon and photon operators, let us start w
Eq. ~3.13! for the first moment ofg1

g(x,Q2,P2) in MS
scheme:

E
0

1

dxg1
g~x,Q2,P2!

5
a

4p
A1•M1„Q

2/P2,ḡ~P2!)•C1„1,ḡ~Q2!…

1X1„Q
2/P2,ḡ~P2!,a…•C1„1,ḡ~Q2!…1C1

g .

~5.23!

We expandA1 in powers ofḡ2(P2) as

A15A1
~0!1

ḡ2~P2!

16p2
A1

~1!1••• , ~5.24!

whereA1
(0) is given in Eq.~3.23!. Using theMS results for

the n51 anomalous dimensions, we obtain up to the or
O(g2)
M15S 12
1

2b0

1

16p2
@ ḡ2~P2!2ḡ2~Q2!#324CFTf , •••, 0

0, •••, 0

0, •••, 1

D , ~5.25!
op
s

r-
to

be

e
e

e

where the second column is irrelevant sinceBG
1 50 in MS

scheme and thusC1
G(1,ḡ) starts inO(as

2). Now it is easy to
see that the first term of Eq.~5.23!, to be more specific

@(a/4p)A1
(0)M1C1„1,ḡ(Q2)…# gives the same result as in E

~5.22!.
Let us now consider the contributions of other terms.

A1
c(1) and A1

NS(1) in the second term in Eq.~5.24! remain
nonzero, then they give theO(g2) contribution. ButA1

c(1)

5A1
NS(1)50 due to the nonrenormalization theorem@41# for

the triangle anomaly, so its contribution is at most inO(as
2).

The contribution of the second term in Eq.~5.23! is also in
O(as

2), sinceK1
05K1

(1)50 and we expect

Kc
~2!,n515KNS

~2!,n5150, ~5.26!

for the three-loop mixing anomalous dimensions which
implied from the fact that the three-loopgcG

(2),n5150 @40#.
Finally we expand the third term of Eq.~5.23!, C1

g , as
f

e

C1
g~1,ḡ,a!5

a

4p
dgFBg

~0!,n511
ḡ2

16p2
Bg

~1!,n511•••G ,

~5.27!

whereBg
(0),n515Bg

n51 in Eq. ~3.15!. We already know that
Bg

(0),n5150 in MS scheme. On the other hand, the two-lo
(O(as

2)) coefficient function for the polarized gluon ha
been caluculated in theMS scheme by Zijlstra and van Nee
ven @30#. It is made up of two terms, one proportional
factor CFTfnf and the other proportional to factorCATfnf .
The first moments of both terms turn out to vanish. It can
shown that the two-loop (O(aas)) coefficient function for
the polarized photon,Bg

(1) , is obtained from the two-loop
gluon coefficient function, by picking up the term with th
CFTfnf factor and by modifying the group factors. Thus w
conclude that the first moment ofBg

(1) is zero. In the end,C1
g

does not giveO(1) norO(as) contributions to the first mo-
ment ofg1

g(x,Q2,P2). This means that we arrive at the sam
result for the 1st moment ofg1

g given in Eq.~5.22! in theMS
scheme.
1-11
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VI. NUMERICAL ANALYSIS

We now perform the inverse Mellin transform of E
~3.16! to get g1

g as a function ofx. The n-th moment is
denoted as

M ~n,Q2,P2!5E
0

1

xn21g1
g~x,Q2,P2!dx. ~6.1!

Then by inverting the moments~6.1! we get

g1
g~x,Q2,P2!5

1

2p i EC2 i`

C1 i`

M ~n,Q2,P2!x2ndn. ~6.2!

In order to have better convergence of the numerical in
gration, we change the contour in the complexn-plane from
the vertical line connectingC2 i` with C1 i` ~C is an ap-
propriate positive constant!, introducing a small positive
constant«, to

n5C2«uyu1 iy ,2`,y,`. ~6.3!

Hence we have

g1
g~x,Q2,P2!5

1

2p i E0

`

M ~C2«y1 iy ,Q2,P2!

3e2~C2«y1 iy !log~x!~ i 2«!dy

1
1

2p i E2`

0

M ~C1«y1 iy ,Q2,P2!

3e2~C1«y1 iy !log~x!~ i 1«!dy

5
1

pE0

`

@Re$M ~z,Q2,P2!e2z log~x!%

2« Im$M ~z,Q2,P2!e2z log~x!%#dy

z5C2«y1 iy . ~6.4!

In Fig. 3 we have plotted, as an illustration, the result
nf53, Q2530 GeV2 and P251 GeV2 for the QCD scale
parameterL50.2 GeV. The vertical axis corresponds to

g1
g~x,Q2,P2!Y 3a

p
nf^e

4& ln
Q2

P2
. ~6.5!

Here we have shown four cases; the Box~tree! diagram con-
tribution,

g1
g~Box!~x,Q2,P2!5~2x21!

3a

p
nf^e

4& ln
Q2

P2
, ~6.6!
11401
r-

r

the Box diagram contribution including nonleading corre
tion ignoring quark mass

g1
g~Box,non-leading!~x,Q2,P2!

5
3a

p
nf^e

4&F ~2x21!ln
Q2

P2
22~2x21!~ ln x11!G ,

~6.7!

the leading-order~LO! QCD correction and the next-to
leading order~NLO! QCD correction. We observe that th
NLO QCD correction is significant at largex as well as at
low x. We have also studied other examples with differe
Q2 and P2. In Fig. 4 we have plotted the case forQ2

5100 GeV2 with P251 GeV2. Another case for Q2

530 GeV2 with P253 GeV2 is shown in Fig. 5. We have
not seen any sizable change for the normalized struc
function ~6.5! for these different values ofQ2 and P2. We
examined thenf54 case as well. It is observed that th
normalized structure function is insensitive to the number

FIG. 3. Polarized virtual photon structure functiong1
g(x,Q2,P2)

to the next-to-leading order ~NLO! in units of
(3anf^e

4&/p)ln(Q2/P2) for Q2530 GeV2, andP251GeV2 and the
QCD scale parameterL50.2 GeV withnf53 ~solid line!. We also
plot the leading order~LO! result~long-dashed line!, the Box~tree!
diagram~dash-dotted line! and the Box including non-leading con
tribution, Box ~NL! ~short-dashed line!.

FIG. 4. Virtual photon structure functiong1
g(x,Q2,P2) for Q2

5100 GeV2, andP251 GeV2 with L50.2 GeV,nf53.
1-12



un
o

th
ha
o

he

rtu
e

y,

e
s

at

e

r-
n.

n at

ual

of
ua-
t of

-
al

on,
-

LO

like
lt is

n,
rm
t

the

ar-

ed

n-

as

.
us-

d
-

on
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active flavors. Here we have not directly taken into acco
the heavy quark mass dependence, but rather confined
selves to the above kinematical region. It turns out from
numerical analyis as well as from theoretical arguments t
as P2 increases, the NLO QCD result approaches the B
contribution including the nonleading correction, as in t
unpolarized structure function@11,12#.

Now let us consider the real photon caseP250. The
structure function can be decomposed as

g1
g~x,Q2!5g1

g~x,Q2!upert.1g1
g~x,Q2!unon-pert.. ~6.8!

The second term can only be computed by some nonpe
bative method like lattice QCD, or estimated by vector m
son dominance~VMD ! model. The first term, the pointlike
piece, can be calculated in a perturbative method. Actuall
can formally be recovered in our analysis by settingP2

5L2 in Eq. ~3.16!. In Fig. 6, we have plotted the pointlik
piece ofg1

g of the real photon. The LO QCD result coincide
with the previous result obtained by Sasaki in@22#. The NLO
result is qualitatively consistent with the analysis by Str
mann and Vogelsang@10#. Finally, a comment on then51

FIG. 5. Virtual photon structure functiong1
g(x,Q2,P2) for Q2

530 GeV2, andP253 GeV2 with L50.2 GeV,nf53.

FIG. 6. Pointlike piece of the real photon structure functi
g1

g(x,Q2) in NLO for Q2530 GeV2 with L50.2 GeV, nf53
~solid line!. Also plotted are the LO result~long-dashed line! and
the Box ~tree! diagram contribution~short-dashed line!.
11401
t
ur-
e
t,
x

r-
-

it

-

limit of the real photon structure function is in order. In th
case of the unpolarized structure functionF2

g we have a sin-
gularity ofA2

n at n52 due to the vanishing ofl2
n at n52

which leads to the negative structure function@18#. As dis-
cussed in Refs.@42–44# we have to introduce some regula
ization prescription to recover positive structure functio
For the polarized case we do not have such complicatio
n51 as we have seen in Sec. V.

VII. CONCLUSION

Here in the present paper, we have investigated virt
photon’s spin structure functiong1

g(x,Q2,P2) for the kine-
matical regionL2!P2!Q2, in the next-to-leading order in
QCD. We presented our arguments both in the framework
OPE supplemented by RG method and in the DGLAP eq
tion approach. The results are shown to be independen
the renormalization scheme.

The first moment ofg1
g for the virtual photon is nonvan

ishing in contrast to the vanishing first moment for the re
photon case. We can go a step further to the orderas which
has turned out to reproduce the previous result of Naris
Shore, and Veneziano@5#, and the result is RG scheme
independent.

The numerial evaluation ofg1
g by the inverse Mellin

transform was performed. The result shows that the N
QCD corrections are significant at largex and also at smallx.
The numerical analysis can also be applied to the point
component of the real photon structure function. The resu
qualitatively consistent with the previous analysis.

Although we have neglected in our kinematical regio
we should also consider the power corrections of the fo
(P2/Q2)k(k51,2, . . . ), which are arising from the targe
mass effects as well as from higher-twist effects.

In the present paper we only presented the result for
polarized photon structure functiong1

g itself. In the course of
the parton model analysis, we also obtain the polarized p
ton distributions@2,45# of the longitudinally polarized pho-
ton, for the case of virtual photon, which will be discuss
elsewhere.

As a future subject, it would be intriguing to study a
other spin structure functiong2

g which only exists for off-
shell photon. In the OPE language, the twist-2 as well
twist-3 operators contribute to the QCD effects forg2

g ,
which are now under investigation.
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APPENDIX A: NOTATION
FOR ANOMALOUS DIMENSIONS

To the lowest order ina, the anomalous dimension matr
has the form

gn~g,a!5S ĝn~g2! 0

Kn~g2,a! 0D , ~A1!

whereĝn(g2) is the usual 333 anomalous dimension matri
in the hadronic sector

ĝn~g!5S gcc
n ~g! gGc

n ~g! 0

gcG
n ~g! gGG

n ~g! 0

0 0 gNS
n ~g!

D , ~A2!

andKn(g,a) is the three-component row vector

Kn~g,a!5„Kc
n~g,a!,KG

n ~g,a!,KNS
n ~g,a!… ~A3!

representing the mixing between photon and three hadr
operators. The anomalous dimensions are expanded as

ĝn~g!5
g2

16p2
ĝn

01
g4

~16p2!2
ĝn

~1!1O~g6!, ~A4!

Kn~g,a!52
e2

16p2
Kn

02
e2g2

~16p2!2
Kn

~1!1O~e2g4!.

~A5!

The one-loop anomalous dimension matrixĝn
0 can be ex-

pressed in terms of its eigenvaluesl i
n( i 51,2,NS) as

ĝn
05 (

i 51,2,NS
l i

nPi
n , ~A6!

where

l6
n 5

1

2
$gcc

0,n1gGG
0,n 6@~gcc

0,n2gGG
0,n !214gcG

0,n gGc
0,n #1/2%,

~A7!

lNS
n 5gNS

0,n , ~A8!
11401
ic

andPi
n are the corresponding projection operators,

P6
n 5

1

l6
n 2l7

n S gcc
0,n2l7

n gGc
0,n 0

gcG
0,n gGG

0,n 2l7
n 0

0 0 0
D , ~A9!

PNS
n 5S 0 0 0

0 0 0

0 0 1
D . ~A10!

APPENDIX B: EXPLICIT EXPRESSIONS
FOR ANOMALOUS DIMENSIONS

1. One-loop order

gcc
0,n5gNS

0,n52CFF232
2

n~n11!
14S1~n!G , ~B1!

gcG
0,n 528Tf

n21

n~n11!
, ~B2!

gGc
0,n 524CF

n12

n~n11!
, ~B3!

gGG
0,n 52CAF2

11

3
2

8

n~n11!
14S1~n!G1

8

3
Tf ,

~B4!

where

S1~n!5(
j 51

n
1

j
~B5!

and

CA53, CF5
4

3
, Tf5TRnf5nf /2 ~B6!

with nf being the number of flavors

Kn
05~Kc

0,n,0,KNS
0,n!, ~B7!

Kc
0,n524nf^e

2&
n21

n~n11!
, ~B8!

KNS
0,n524nf~^e

4&2^e2&2!
n21

n~n11!
. ~B9!

2. Two-loop order †8,9‡

a. Non-singlet sector

gNS
~1!,n58CF

2ANS
n 18CACFBNS

n 18CFTfDNS
n , ~B10!
1-14
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with

ANS
n 52

3

8
1

5

n
2

5

n11
2

3

n2
2

2

~n11!2
1

1

n3

2
3

~n11!3
1~21!nH 2

4

n
1

4

n11
1

2

n2

1
2

~n11!2
2

2

n3
1

2

~n11!3J 1S1~n!S 2

n2
2

2

~n11!2D
1S2~n!S 32

2

n
1

2

n11
14S1~n! D1S28S n

2D S 2

n

2
2

n11
24S1~n! D2S38S n

2D18S̃~n!, ~B11!

BNS
n 52

17

24
2

187

18

1

n
1

187

18

1

n11
1

17

6

1

n2
2

5

6

1

~n11!2

2
1

n3
1

1

~n11!3
1~21!nH 2

n
2

2

n11
2

1

n2

2
1

~n11!2
1

1

n3
2

1

~n11!3J 1
67

9
S1~n!

1S2~n!S 2
11

3
1

2

n
2

2

n11
24S1~n! D

1S28S n

2D S 2
1

n
1

1

n11
12S1~n! D1

1

2
S38S n

2D24S̃~n!,

~B12!

DNS
n 5

1

6
1

22

9

1

n
2

22

9

1

n11
2

2

3

1

n2
1

2

3

1

~n11!2
2

20

9
S1~n!

1
4

3
S2~n!, ~B13!

where

S2~n!5(
j 51

n
1

j 2
, S3~n!5(

j 51

n
1

j 3
,

S̃~n!5(
j 51

n
~21! j

j 2
S1~ j !, ~B14!

and

S28S n

2D5
11~21!n

2
S2S n

2D1
12~21!n

2
S2S n21

2 D ,

~B15!
11401
S38S n

2D5
11~21!n

2
S3S n

2D1
12~21!n

2
S3S n21

2 D .

~B16!

b. Singlet sector

~1! gcc :

gcc
~1!,n5gNS

~1!,n1gPS,cc
~1!,n ~B17!

with

gPS,cc
~1!,n 58CFTf H 2

2

n
1

2

n11
2

2

n2
1

6

~n11!2

1
4

n3
1

4

~n11!3J . ~B18!

~2! gcG :

gcG
~1!,n58CFTfDcG18CATfEcG , ~B19!

with

DcG
n 5S1

2~n!S 2

n
2

4

n11D2S2~n!S 2

n
2

4

n11D
1S1~n!S 8

n
2

8

n11
2

4

n2D 1
22

n
2

27

n11

2
9

n2
2

8

~n11!2
1

2

n3
1

4

~n11!3
, ~B20!

EcG
n 52

24

n
1

22

n11
1

2

n2
1

24

~n11!2
1

4

n3

1
24

~n11!3
2S1~n!S 8

n
2

8

n11
2

8

~n11!2D
2S1

2~n!S 2

n
2

4

n11D1S2~n!S 2

n
2

4

n11D
2S28S n

2D S 2

n
2

4

n11D1@11~21!n#S 2

n

2
4

n11D S 22S2~n!1S28S n

2D1z~2! D . ~B21!
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~3! gGc :

gGc
~1!,n58CF

2AGc
n 18CACFBGc

n 18CFTfDGc
n , ~B22!

with

AGc
n 5

17

2

1

n
2

4

n11
2

2

n2
2

1

2

1

~n11!2
2

2

n3

2
1

~n11!3
2S1~n!S 2

n
1

1

n11
1

2

~n11!2D
1S1

2~n!S 2

n
2

1

n11D1S2~n!S 2

n
2

1

n11D ,

~B23!

BGc
n 52

41

9

1

n
2

35

9

1

n11
1

4

n2
2

38

3

1

~n11!2
2

4

n3

2
6

~n11!3
1S1~n!S 10

3

1

n
1

1

3

1

n11
1

4

n2D
2S1

2~n!S 2

n
2

1

n11D2S2~n!S 2

n
2

1

n11D
11401
1S28S n

2D S 2

n
2

1

n11D1@11~21!n#

3S 2

n
2

1

n11D S 2S2~n!2S28S n

2D2z~2! D , ~B24!

DGc
n 5

16

9

1

n
1

4

9

1

n11
1

4

3

1

~n11!2

2S1~n!S 8

3

1

n
2

4

3

1

n11D . ~B25!

~4! gGG :

gGG
~1!,n58CFTfDGG

n 18CATfEGG
n 18CA

2FGG
n , ~B26!

with
DGG
n 511

10

n
2

10

n11
2

10

n2
1

2

~n11!2
1

4

n3
1

4

~n11!3
, ~B27!

EGG
n 5

4

3
1

76

9

1

n
2

76

9

1

n11
2

4

3

1

n2
2

4

3

1

~n11!2
2

20

9
S1~n!, ~B28!

FGG
n 52

8

3
2

97

18

1

n
1

97

18

1

n11
1

29

3

1

n2
2

67

3

1

~n11!2
2

8

n3
2

24

~n11!3
1S1~n!S 67

9
1

8

n2
2

8

~n11!2D
2

1

2
S38S n

2D14S̃~n!22S28S n

2D S S1~n!2
2

n
1

2

n11D1@11~21!n#F8S2~n!S 1

n
2

1

n11D22S3~n!

24S1~n!S2~n!12S28S n

2D S S1~n!2
2

n
1

2

n11D1
1

2
S38S n

2D24S̃~n!1z~2!S 2S1~n!2
4

n
1

4

n11D2z~3!G .
~B29!
c. Kn
„1…

Kn
15~Kc

1,n , KG
1,n , KNS

1,n! , ~B30!

with

Kc
1,n523nf^e

2&CF8DcG
n , ~B31!

KG
1,n523nf^e

2&CF8~DGG
n 21!, ~B32!
KNS
1,n523nf~^e

4&2^e2&2!CF8DcG
n .

~B33!

d. Anomalous dimensions at n51„MS scheme)

gNS
0,n515gcc

0,n5150, ~B34!

gcG
0,n5150, ~B35!
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gGc
0,n51526CF , ~B36!

gGG
0,n5152

22

3
CA1

8

3
Tf522b0 , ~B37!

KNS
0,n515Kc

0,n5150, ~B38!

gNS
~1!,n5150, ~B39!

gcc
~1!,n51524CFTf , ~B40!

gcG
~1!,n5150, ~B41!

gGc
~1!,n51518CF

22
142

3
CACF1

8

3
CFTf ,

~B42!

gGG
~1!,n5158CFTf1

40

3
CATf2

68

3
CA

2522b1 ,

~B43!

Kc
~1!,n515KG

~1!,n515KNS
~1!,n5150. ~B44!

APPENDIX C: COEFFICIENT FUNCTIONS

Cn(Cn
g) is the coefficient function of the hadronic~pho-

ton! operators@17#:

Cn„1,ḡ~Q2!…51
dcS 11

ḡ2~Q2!

16p2
Bc

n D
dc

ḡ2~Q2!

16p2
BG

n

dNSS 11
ḡ2~Q2!

16p2
BNS

n D 2 , ~C1!

Cn„1,ḡ~Q2!,a…5
e2

16p2
dgBg

n , ~C2!

and

Bg
n5~2/nf !BG

n . ~C3!

1. MS scheme†8,9‡

Bc
n5BNS

n 5CFF S 2

n
1

2

n11
13DS1~n21!

14(
j 51

n21
1

j
S1~ j !24S2~n21!1

6

n
29G , ~C4!
11401
BG
n 54TfF2

n21

n~n11!
„S1~n!11…2

1

n2

1
2

n~n11!G . ~C5!

2. Momentum subtraction †27,28‡

Bc
n5BNS

n 5CFF222
3

n
1

8

n11
1

4

n2

2
4

~n11!2
13S1~n!28S2~n!G , ~C6!

BG
n 58TfF1

n
2

2

n11
2

1

n2
1

2

~n11!2G n>3,

BG
n5150. ~C7!

APPENDIX D: TENSOR DECOMPOSITION
OF VIRTUAL PHOTON-PHOTON AMPLITUDE

After using parity invariance, time-reversal invarianc
and gauge invariance, Brown and Muzinich@20# have shown
that there are eight independent tensors, in other wo
eight-invariant amplitudes for virtual photon-photon scatt
ing. Those eight independent tensors, which are free fr
kinematic singularities and kinematic zeros, are given in E
~A3!–~A10! of Ref. @20#.

Using these tensors (I i)mnrt , the absorptive part of the
forward virtual photon-photon scattering amplitudeWmnrt is
decomposed as

Wmnrt5(
i 51

8

~ I i !mnrtAi~w,t1 ,t2!, ~D1!

where theAi are the invariant amplitudes and

w5p•q, t15q252Q2, t25p252P2. ~D2!

In order to implement crossing symmetry underq→2q and
m↔n, we form the even combinations,I 1 , I 21I 3 , I 4 , I 5 ,
I 71I 8, and the odd combinations,I 22I 3 , I 72I 8 , I 6852I 6

23wI72wI81(t1t2 /w)(I 22I 3). It is noted that the combi-
nationsI 22I 3 and I 72I 8 are antisymmetric under the inte
change ofm↔n and r↔t, while the rest of the combina
tions are symmetric. In terms of these crossing-even
1-17
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-odd combinations, the amplitudeW5( i 51
8 I iAi is rear-

ranged as follows:

(
i 51

8

I iAi5I 1A11
1

2
~ I 21I 3!~A21A3!1I 4A4

1I 5A51
1

2
~ I 71I 8!~A71A812wA6!

1
1

2
I 68A61

1

2
~ I 22I 3!S A22A32

t1t2

w
A6D

1
1

2
~ I 72I 8!~A72A81wA6!. ~D3!

Now g1
g52W4

g is written in terms of invariant amplitudes a

g1
g}a11112a121121 ~D4!

5w2S A22A32
t1t2

w
A6D2t1t2~A72A81wA6!

~D5!

which is obtained from Eq.~A14! of Ref. @20#. Here
a1111 (a121121) represents thes-channel helicity amplitude
for (11)g1(61)g→(11)g1(61)g. It is noted that
@A22A32(t1t2 /w)A6# is the invariant amplitude associate
with (I 22I 3), while (A72A81wA6) is associated with (I 7
2I 8). In the limit t25p250 or in the case thatw5p•q,t1
5q2@t25p2, the second termt1t2(A72A81wA6) does not
contribute tog1

g .
In fact we observe that the tensor (I 22I 3)[I 2 is associ-

ated tog1
g while (I 72I 8)[J2 is associated tog2

g . It can be
shown that

emnlsqlert
sbpb5

1

p•q
I 2 , ~D6!

and in the limit of2q2,p•q@2p2

@emalsqnqa2enalsqmqa2emnls#ert
sbpbpl5J2 .

~D7!
the

A
s.
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Now using an identity

gmneabgd5gmaenbgd1gmbeangd1gmgeabnd1gmdeabgn ,
~D8!

we get
emnlsql~p•qert

sbpb2ertabpbpsqa!

52@emalsqnqa2enalsqmqa

2emnlsq2#ert
abpbpl. ~D9!

Hence we have from Eq.~2.3!

Wmnrt5
1

~p•q!2
@~ I 2!mnrtg1

g2~J2!mnrtg2
g#. ~D10!

Finally it is interesting to see the relation between t
polarized photon structure functionsg1

g andg2
g and polarized

nucleon structure functionsg1 and g2. By introducing the
polarization vectors,e* r and et for the target photon jus
like those for the gluon target discussed by Gabrieli a
Ridolfi @46#, we have

iWmn
A 5e* rWmnrte

t5Wmnrt

1

2
~e* ret2e* ter!

5WmnrtS 2
i

2Aup2u
ertgdpgsdD , ~D11!

wheres is the longitudinal spin vector for the target photo
After using the relationp•s50, we get

Wmn
A 5

Aup2u
p•q Femnlsqlssg1

g1emnlsql~p•qss2q•sps!
g2

g

p•qG
~D12!

which, apart from the factorAup2u, has exactly the same
form as Eq.~2.4! of Kodaira et al. @27# which defines the
polarized nucleon structure functionsg1 andg2, and also as
Eq. ~9! in Ref. @46#.
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