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b quark low-scale running mass fromY sum rules
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The b quark low-scale running massmkin is determined from an analysis of theY sum rules in the
next-to-next-to-leading order~NNLO!. It is demonstrated that using this mass one can significantly improve
the convergence of the perturbation series for the spectral density moments. We obtainmkin(1 GeV)54.56
60.06 GeV. Using this result we derive the value of the modified minimal subtraction scheme mass

m̄: m̄(m̄)54.260.1 GeV. Contrary to the low-scale running mass, the pole mass of theb quark cannot be
reliably determined from the sum rules. As a by-product of our study we find the NNLO analytical expression

for the cross sectione1e2→QQ̄ of the quark-antiquark pair production in the threshold region, as well as the

energy levels and the wave functions at the origin for the1S3 bound states ofQQ̄. @S0556-2821~99!08009-1#

PACS number~s!: 14.65.Fy, 11.55.Hx, 12.38.Bx, 12.38.Cy
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I. INTRODUCTION

The value of the bottom quark mass is an essential in
dient of the theoretical description ofb hadrons. Among
various applications, probably the most important one
present is the determination of the Cabibbo-Kobayas
Maskawa matrix elements fromB decays. The determinatio
of the b quark mass is based on the sum rules for theY
mesons, proposed about 20 years ago@1,2#. In the past sev-
eral years, the sum rule analysis has been undertaken se
times by different authors. In particular, in the paper@3# a
very high accuracy of theb quark pole mass was quoted. Th
next attempt to extract the precise value of theb quark pole
mass from the sum rules was undertaken by Jamin and
in Ref. @4#. Their result differed from that of Ref.@3#. The
origin of the discrepancy between these two results, as
as the flaws in both derivations, were pointed out by Ku¨hn
et al. @5#, who also determined theb quark mass. Two mos
recent papers on the subject@6,7# were devoted to an im
provement of the theoretical accuracy of the mass dete
nation and to a more realistic estimate of the theoretical
ror.

In parallel to these developments, it became more
more clear in the past years that the concept of the pole m
of a heavy quark is not a good one due to the intrinsic a
biguity of the order ofLQCD in its numerical value@9,10#. In
contrast to this observation, all previous analyses were ai
at determining the pole mass of theb quark from the sum
rules. We note in this respect thatpractical problems in at-
tempts to use the pole mass in heavy quark physics are
appreciated; one of the vivid examples is provided by
calculation of the inclusive semileptonic decay widths of t
B mesons~see Ref.@11# for a review!. In response to this
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problem, it was pointed out how the ‘‘proper’’ quark ma
relevant for nonrelativistic problems can be defined@12#. In
this paper we try to determine this properly defined m
from the sum rules.

For the theoretical analysis the moments of the pho
polarization operator are used. These moments can be c
puted analytically and compared to the experimental on
The moments of the photon vacuum polarization function
defined through the dispersion integral

Mn5
12p2M1

2n

n!

dn

dsn
P~s!us505

M1
2n

Qb
2 E0

`R~s!ds

sn11
, ~1!

whereR(s) is

R~s!5
s~e1e2→bb̄!

sp
, sp5

4paQED
2 ~mb!

3s
. ~2!

We defined the moments to be dimensionless by multiply
them by the massM1 of the firstY resonance in a suitabl
power. Also,Qb521/3 is the electric charge of theb quark
in units of the positron charge.

The momentsMn can be calculated using experiment
input for R(s). One gets

M n
exp5

M1
2n

Qb
2 S 9p

1.07aQED
2 (

k

6
Gk

Mk
2n11

1E
s0

`Rc~s!ds

sn11 D ,

~3!

where Mk and Gk are the masses and the electronic dec
widths of the first six Y resonances andaQED

2 (M1)
51.07aQED

2 is used. TheRc(s) describes the experimenta
spectral density, associated with the energy region above
openBB̄ threshold; it is rather poorly known. The necess
©1999 The American Physical Society09-1
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to suppress the contribution of this region is one of the r
sons for using as high values ofn as possible.

On the other hand, the same moments can be calcul
theoretically, using the operator product expansion~OPE! for
the photon polarization function. The first nonperturbat
correction to the moments is associated with the gluon c
densate@1,2#. It was shown that this contribution grows wit
n; however, forn<20, the nonperturbative contribution t
the moments was estimated to be less than 1%@2,3#. Given
exponential sensitivity of the moments to the value of thb
quark mass, the influence of the nonperturbative correct
is clearly minor and can be neglected. Therefore, the wh
analysis forn;10 reduces to a careful treatment of the p
turbative effects inR(s). However, the perturbative trea
ment is not simple, since for large values ofn the dominant
contribution to the perturbative moments comes from
threshold energy region. The relative velocity of thebb̄ sys-
tem there is of the order ofas . In this case, the theoretica
spectral density can be calculated in the framework of
nonrelativistic QCD, which means a simultaneous expans
of the spectral density inas and in the relative velocityb of
the quark antiquark pair. As is well known, the standa
perturbation theory is not adequate in the threshold reg
and the leading order approximation is the solution of
Coulomb problem, which resums all corrections of the fo
(as /b)k. Going to next-to-leading order~NLO! and next-to-
next-to-leading order~NNLO!, one calculates the spectr
density R(s) in the threshold region resumming a
O$(as /b)k3@1;as ,b;as

2 ,asb,b2#% terms. For this purpose
we use the so called direct matching procedure@13# which is
described, e.g., in Refs.@14,15,7#. We will not discuss all
necessary details of this approach here and will merely qu
the results of the calculations. On the other hand, a par
the NNLO corrections was treated numerically in R
@14,15#; for this reason, we present some additional theo
ical results, which provide the imaginary part of the pola
ization operator in the threshold region in completely a
lytical form to NNLO.

The theoretical expression for the spectral density e
ployed in this paper reads

R~s!5 lim
r→0

ImFNcQb
2 24p

s S 12
p2

3m2D G~r ,0!G , ~4!

where G(r ,0) is the Green function of the nonrelativist
Schrödinger equation

~H2E2 id!G~r ,r1!5d~3!~r2r1!, E5As22m. ~5!

Taken literally, Eq.~4! is ill defined due to improper treat
ment of the limitr→0 within the nonrelativistic approach. I
what follows, we circumvent this difficulty incorporating th
full QCD result and matching it with its nonrelativistic coun
terpart.

Integrating the theoretical expression for the spectral d
sity in Eq.~1! and equating the obtained result to the expe
mental moments Eq.~3! one obtains the sum rules of th
form
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M n
exp5M n

theor, ~6!

which give the numerical value for theb quark mass, poten
tially with a small uncertainty.

To summarize, the usual~and commonly used for the
analysis! statement about theoretical calculations of t
large-n moments can be formulated as follows:~1! for n
;10220 the OPE ensures that nonperturbative correcti
are small;~2! for suchn the perturbative calculation of th
moments requires the resummation of the Coulomb
hanced termsO(asAn). This is achieved by calculating th
spectral densityR(s) in the threshold region which require
a resummation of theO$(as /b)k)3@1;as ,b;as

2 ,asb,b2#%
terms for the NNLO accuracy. It is often assumed implicit
that this picture is correct independently of all other para
eters entering the sum rules analysis. We do not believe
this is the case. In particular, for the first point to be corre
it is crucial that one does not attempt to extract thepolemass
of the heavy quark from the sum rules.

When this paper was prepared for publication, two oth
papers on this subject appeared@6,7# where the NNLO analy-
sis of theY sum rules has been performed. The aim of bo
papers was to extract the pole mass of theb quark. In our
approach to the same problem we treat the so called l
energy running mass as a quantity which can be determ
within the sum rule analysis; the pole mass of theb quark is
used at the intermediate stages of the calculation only.

Let us present some heuristic arguments in favor of t
approach. It is known that the pole mass of the quark can
be defined when nonperturbative effects are addres
@9,10#. It is also believed that the bad behavior of the pert
bation series in the relation, say between the pole mass
the modified minimal subtraction scheme (MS) mass, signals
this. The consequence of these facts is that there is an
ducible ambiguity of the order ofLQCD in the numerical
value of the pole mass. If then the pole mass of the quar
used in the sum rules analysis, its infrared sensitivity lead
new infrared effects, which have no counterpart in the st
dard OPE@8#. In particular, they are not described by th
gluon condensate@11#.

On the other hand, one can realize, that this is an arti
of the adopted procedure and the easiest way out of
problem is to abandon determination of the pole mass fr
the sum rule analysis. Therefore, we use the pole mass
as a tool to write the expression for the nonrelativis
Hamiltonian; however, we do not treat the pole mass a
fixed number and recalculate it consistently, order by or
in perturbation theory.

Instead of the pole mass, one should determine so
‘‘proper’’ mass, which does not suffer from a numerical am
biguity due to contributions of the soft momenta regio
Such proper masses are known—one of the most familia
this respect is theMS mass. This will not be our choice
however.

Elementary physical considerations suggest that
threshold problems are the low-scale problems, in princip
The typical scale ism;m/An;122 GeV for n;10. A
useful and reliable mass should therefore be normalize
9-2
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b QUARK LOW-SCALE RUNNING MASS FROMY SUM RULES PHYSICAL REVIEW D 59 114009
such low scalem!m. On the other hand, in order to suppre
the contribution of the infrared region, the inequalityLQCD
!m should be respected. The use of such low-scale runn
masses in various aspects of heavy quark physics was re
edly advocated in the last years~for a detailed discussion an
further references see Ref.@11#!.

The low-scale running mass cannot be defined uniqu
because the only purpose of such definition is to remove
uncontrollable contribution of the soft momenta regi
which affects the pole mass. In this paper, we will work w
the so-called kinetic mass suggested in Ref.@12#.

The relation between the pole and the kinetic masse
known to second order inas @16#:

mpole5mkin~mQ!1@L~mQ!#pert1
1

2mkin~mQ!
@mp

2 ~mQ!#pert,

~7!

where

@L~m!#pert5
4

3
CFm

as~m1!

p H 11
as

p F S 4

3
2

1

2
ln

2m

m1
Db0

2CAS p2

6
2

13

12D G J ,

@mp
2 ~m!#pert5CFm2

as~m1!

p H 11
as

p F S 13

12
2

1

2
ln

2m

m1
Db0

2CAS p2

6
2

13

12D G J .

For the rest of this paper,as denotes the strong couplin
constant in theMS scheme. Also, we choosemQ to be equal
to 1 GeV, which seems to be a reasonable choice for
problem at hand. Then the ratiomQ /m is of the order ofas
and this gives the counting rule for the contributions to
mass which should be accounted for when one goes f
one order of perturbation theory to the other. For example
obtain the LO result we consider the pure Coulomb poten
without any corrections in the nonrelativistic Hamiltonian f
heavy quark antiquark pair. Correspondingly, the LO relat
between the pole and the kinetic masses is

mpole5mkin~mQ!1
4

3
CF

as

p
mQ .

The NLO and the NNLO corrections to this expression
added in accordance with the above counting rule. Also,
our treatment, we use the same normalization scalem1 for
the strong coupling constant in the expression for the m
as is used in the nonrelativistic Hamiltonian. This scale
calledmsoft in the rest of the paper.

We would like to note that, according to the above cou
ing rules, it would be necessary to know the termas

3mQ in
the relation between the pole mass and the kinetic mass.
term is not known at present. The Brodsky-Lepag
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Machenzie-~BLM- !type estimate@17# of this term is, how-
ever, available and can be extracted from Ref.@16#. Explic-
itly, the necessary term reads

d@L~m!#pert5
4

3
CFmS as~m1!

p D 3H b0
2

4 F ln2S m

m1eD11G
2S b1

8
1d1b0D lnS m

m1eD1d2J , ~8!

whereb0 andb1 are given in the next section andd1,2 read

d15
b0

2 S 5

3
2 ln 2D2CAS p2

6
2

13

12D ,

d25S b0

2 D 2F S 5

3
2 ln 2D 2

2S p2

6
2

31

36D G . ~9!

In the numerical analysis of the last section, we check
sensitivity of our results to the possible modification of t
d2 term due to additional terms which are not accounted
in the BLM approximation. We find, that our final result fo
the kinetic mass is rather insensitive to it.

As the result of our analysis, we find that the perturbat
theory for the pole mass is not applicable: typically, t
NNLO corrections to the pole mass exceed the NLO o
and the dependence of the result on the choice of the sca
the strong coupling constant is very strong. These unw
come features, therefore, do not permit a reliable determ
tion of the b quark pole mass from the sum rules, with
trustworthy estimate of the theoretical uncertainty.

On the contrary, the situation with the low-scale runni
mass looks more healthy: the perturbation series seem t
sign alternating and the dependence on the normaliza
scale for the coupling constant appears to be reduced
compared to the pole mass.

The rest of the paper is organized as follows. In the n
section we discuss the framework of the calculation. In S
III the corrections to the Green function due to corrections
the static quark antiquark potential are derived. In Sec.
the corrections to the Green function due to relativistic c
rections to the heavy quark Hamiltonian are obtained. In S
V we combine these results and present the NNLO exp
sion for the theoretical spectral densityR(s) in the threshold
region. In Sec. VI the results for the energy levels and
wave functions at the origin for the1S3 QQ̄ resonances are
derived. In Sec. VII we present our final analysis for the s
rules and determine the low-scale mass of theb quark. Fi-
nally we present our conclusions.

II. THE FRAMEWORK OF THE CALCULATION

We first discuss a framework of our calculations and
troduce all relevant notations. As we mentioned already
order to obtain the expression for the theoretical spec
density, we have to calculate the expression for the ima
nary part of the polarization operator in the threshold regi
9-3
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The threshold region is characterized by a small value of
quark velocityb:

b5A12
4m2

s
!1. ~10!

Here and belowm is the pole mass. The pole mass enters
usual perturbative expansion in quantum mechanics for
nonrelativistic quarks. Later we will extract the low-sca
running mass from the pole one.

Dynamics of slow moving quark antiquark pair is go
erned by the nonrelativistic Hamiltonian

H5H01V1~r !1U~p,r !,

H05
p2

m
2

CFas

r
,

V1~r !52
CFas

2

4pr H 2b0 ln~2m8r !1a11S as

4p D
3Fb0

2S 4 ln2~m8r !1
p2

3 D
12~b112b0a1!ln~m8r !1a2G J ,

U~p,r !52
p4

4m3
1

pCFas

m2
d3~r !2

CFas

2m2r
S p21

r ~rp !p

r 2 D
1

3CFas

2m2r 3
SL2

CFas

2m2 S S2

r 3
23

~Sr!2

r 5

2
4p

3
~2S223!d~r !D 2

CACFas
2

2mr2
. ~11!

In the above equations, the strong coupling constant is ev
ated at the scalemsoft:

as5as~msoft!. ~12!

The scalem8 equalsmegE.
The operatorU(p,r ) is the QCD generalization of th

standard Breit potential@18#. The last term in the expressio
for the operatorU(p,r ) is the non-Abelian contribution
originating from a correction to the Coulomb exchang
caused by a transverse gluon@19#. The potentialV1(r ) rep-
resents a deviation of the static QCD potential from the C
lomb one. It was calculated to orderas

2 in @20# and to order
as

3 in @21,22#.1 The coefficients there read, explicitly,

b05
11

3
CA2

4

3
NLTR ,

1The result of Ref.@21# was recently corrected in Ref.@22#.
11400
e

e
e

lu-

,

-

b15
34

3
CA

22
20

3
CATRNL24CFTRNL ,

a15
31

9
CA2

20

9
TRNL ,

a25S 4343

162
14p22

p4

4
1

22

3
z3DCA

2

2S 1798

81
1

56

3
z3DCATRNL2S 55

3
216z3DCFTRNL

1S 20

9
TRNLD 2

. ~13!

The SU(3) color factors are CA53, CF54/3, TR
51/2. NL54 is the number of quarks whose masses h
been neglected.

Given the HamiltonianH, one can find the Green functio
of the Schro¨dinger equation

~H2E2 id!G~r ,r1!5d~3!~r2r1!, E5As22m.
~14!

Once the Green function is found, the nonrelativistic cro
section for theQQ̄ pair production ine1e2 annihilation is
obtained using Eq.~4!.

Treating the corrections to the Green function in the p
turbation theory, one can consider the corrections due
V1(r ) and U(p,r ) separately. The corrections to the Gre
function due toU(p,r ) were recently calculated in Refs
@14,15#. These corrections are not simple conceptually,
cause they deliver divergent contributions to the Green fu
tion at the origin. The divergences are removed by match
the result of the calculations in quantum mechanics to
result of the full QCD calculation@23#. Technically, how-
ever, the calculation of the correction caused byU(p,r ) is
very simple and can be performed algebraically~see Ref.
@15#!. On the other hand, the corrections to the imagin
part of the Green function due to theV1(r ) perturbation can
be calculated within the quantum mechanics and for this r
son these corrections are rather simple conceptually. H
ever, they provide the most challenging part of the wh
calculation from the technical viewpoint. For this reason,
calculation of the corrections to the imaginary part of t
Green function due to theV1(r ) perturbation is discusse
below in some detail.

III. CORRECTIONS TO THE GREEN FUNCTION
DUE TO V1„r …

A. The Coulomb Green function

In this section we collect useful formulas for the Coulom
Green function. A convenient expression for theS-wave
Coulomb Green function can be found in Ref.@24#:
9-4
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G~r ,r 1!5
2 imeik~r 1r 1!

4pArr 1
E

0

` dt

At~ t11!
S 11t

t D in

3e2ik~r 1r 1!tJ1@4kArr 1At~ t11!#. ~15!

In the above expression,n5CFas /(2b) andk5mb.
Using this representation, one easily obtains the exp

sion for G(r ,0):

G~r ,0!5
2 imk

2p
eikrE

0

`

dtS 11t

t D in

e2ikrt . ~16!

From the expression for the cross section@cf. Eq.~4!#, it is
clear, that one is interested in the behavior of the Coulo
Green function for smallr. For smallr, the Green function
diverges as 1/r ; the principal divergence is related to th
behavior of the free (as50) Green function

G~0!~r ,0!5
m

4pr
eikr . ~17!

B. Generating function

To calculate corrections to the Coulomb Green function
the origin caused by theV1(r ) perturbation, it is convenien
to introduce a generating functiong(s):

g~s!5E d3rG2~r ,0!
~2mr !s

r
. ~18!

Once this function is found, one easily obtains a correction
the Green function at the origin caused by theV1(r ) term in
the potential. For further calculations, it will be convenient
separate the generating function into two terms

g~s!5gfree~s!1g1~s!, ~19!

where

gfree~s!5E d3rG0
2~r ,0!

~2mr !s

r
,

g1~s!5E d3r$G2~r ,0!2G0
2~r ,0!%

~2mr !s

r
. ~20!

In the above equations,G0(r ,0) is the free Green function
@cf. Eq. ~17!#.

It is an easy task to calculategfree. One gets

gfree5
m2

4p S im

k D s

G~s!. ~21!

We need furtherg1(s). For the Coulomb Green functio
we use the representation from Eq.~16!. Integrating then
over r in Eq. ~20!, one gets

g1~s!5
m2

4p S im

k D s

G~21s!E
0

`

dtdsF S 11t

t D inS 11s

s D in

21G
3~11t1s!222s. ~22!
11400
s-

b

t

o

To proceed further, it is convenient to introduce new integ
tion variables

t5
t

11t
, r5

s

11s
. ~23!

Then one gets

g1~s!5
m2

4p S im

k D s

G~21s!E
0

1

dtdr
t2 inr2 in21

~12t!2s~12r!2s

3~12rt!222s. ~24!

Substituting alsoh5rt we arrive at

g1~s!5
m2

4p S im

k D s

G~21s!E
0

1

dh
h2 in21

~12h!21s

3E
h

1dt

t
~12t!sS 12

h

t D s

. ~25!

Finally, changing the variablest→j with j5(12t)/(1
2h), we get

g1~s!5
m2

4p S im

k D s

G~21s!E
0

1

dh
h2 in21

~12h!12sE0

1

djjs

3~12j!s@12~12h!j#2s21. ~26!

The last integral is proportional toF21(11s,11s;2
12s;12h) and equals

E
0

1

dj
js~12j!s

@12~12h!j#s11
5 (

n50

`
~11s!n

2

~n! !2
@2c~n11!

22c~11n1s!2 ln h#hn,

~27!

where the series representation for the hypergeometric fu
tion was used. Here (z)n5G(z1n)/G(z) is the Pochhamme
symbol. Integrating overh, we obtain

g1~s!5
m2

4p S im

k D s

G~21s!G~s! (
n50

`
~11s!n

2

~n! !2
@2c~n11!

22c~n111s!2]n#H G~n112 in!

G~n112 in1s!

2
G~n11!

G~n111s!J , ~28!

which can be presented in a more compact form:2

2We thank O. Yakovlev for pointing this out to us.
9-5
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g1~s!52
m2

4p S im

k D s 11s

s (
n51

`

]n

3H G2~n1s!

G2~n!

G~n2 in!

G~n2 in1s!
2

G~n1s!

G~n! J .

~29!

In Eqs. ~28!,~29! ]n stands for the partial derivative wit
respect ton. Equations~19!,~21!,~29! provide a necessar
expression for the generating function.

C. Correction to the Green function due to lnn
„2µr…/r, n<2

perturbation

To evaluate these corrections we will use the represe
tion of the generating functiong(s) given in the previous
section. For the case of interest, the correction to the im
nary part of the Green function at the origin due to lnn(2mr)/r
perturbation is obtained as thenth derivative of the imagi-
nary part of the generating function with respect tos at s
→0. To obtain these derivatives, we first expand the gen
ating function up to the second order ins:

gfree~s!5
m2

4p H 1

s
1 ln

im

k
2gE1

s

2 F S ln
im

k
2gED 2

1
p2

6 G
1

s2

6 F S ln
im

k
2gED 3

1
p2

2 S ln
im

k
2gED22z3G

1•••J ~30!

and

g1~s!5
m2

4p S g1~0!1sg18~0!1
s2

2
g19~0!1••• D , ~31!

where

g1~0!52 (
n51

`

]n@c~n!2c~n2 in!#

52gE2] ininc~12 in!, ~32!

g18~0!5S ln
im

k
11Dg1~0!1

p2

6
1

1

2
] in

2 inc~12 in!

2
1

2 (
n51

`

]n$@c~n!2c~n2 in!#

3@3c~n!2c~n2 in!#%, ~33!

g19~0!52S ln
im

k
11Dg18~0!2H S ln

im

k
11D 2

11J g1~0!

2
1

3
] in

3 inc~12 in!2
1

3 (
n51

`

]nH 3

2
@3c2~n!

24c~n!c~n2 in!1c2~n2 in!#817c3~n!
11400
a-

i-

r-

212c2~n!c~n2 in!16c~n!c2~n2 in!

2c3~n2 in!J . ~34!

Using these expressions, we easily find the correction
the imaginary part of the Green function at the origin, caus
by lnn(2mr)/r perturbations. In the formulas below we disr
gard the 1/s pole which is present in the expression forgfree
since it does not contribute to the imaginary part. We obt
explicitly

dGL~m!52E d3rG~r ,0!2
ln~2mr !

r

5
2m2

4p H 1

2 F S ln
im

k
2gED 2

1
p2

6 G1g18~0!J .

~35!

In a similar manner one obtains the correction due
ln2(2mr)/r perturbation

dGL2~m!52E d3rG~r ,0!2
ln2~2mr !

r

5
2m2

4p H 1

3 F S ln
im

k
2gED 3

1
p2

2 S ln
im

k
2gED22z3G1g19~0!J . ~36!

D. The second iteration of the logarithmic perturbation

The leading term of the static potentialV1(r ) provides an
O(as) correction. Therefore, one should calculate the sec
order correction induced by the perturbation ln(2mr)/r. Such
calculation is described below.

Explicitly, we have to calculate

dG~2!~m!5E d3rd3r1G~r ,0!V~r !G~r ,r 1!V~r 1!G~r 1,0!,

V~r !5 ln~2mr !/r . ~37!

For this purpose we use the representation for the Gr
function G(r ,r 1), given in Eq.~15!. We define

G1~s,s1!5S im

k D s1s1 1

G~2s!G~2s1!

3E
0

` dtdt1

t11st1
11s1

F~t,t1!, ~38!

where

F~t,t1!5E d3rd3r1G~r ,0!
e2ikr t

r
G~r ,r 1!

e2ikr 1t1

r 1
G~r 1,0!.

~39!

Then
9-6
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dG~2!5
]2

]s]s1

G1~s,s1!us50,s150 . ~40!

Using Eqs.~15!,~16! for the Green functions, and pe
forming the integrations overr , r 1 and the variablet
which enters the integral representation of theG(r ,r 1) func-
tion, we arrive at the following result:

F~t,t1!5
im3

8pk~12 in!
F1~t,t1!, ~41!

F1~t,t1!5E
0

1dudv

D2D1
2 S 11u

u D inS 11v
v D in

3F21S 2,12 in;22 in;
~D21!~D121!

DD1
D ,

~42!

where

D511u1t, D1511v1t1 , ~43!

andF21(a,b;c;z) is the Gauss hypergeometric function.
The functionG1(s,s1) can be written as

G1~s,s1!5S im

k D s1s1 im3

8pk~12 in!
W~s,s1!, ~44!

where

W~s,s1!5
1

G~2s!G~2s1!
E

0

` dtdt1

t11st11s1
F1~t,t1!.

~45!

For further calculation, it is convenient to define new va
ables

u→u15u2t, v→v15v2t1

and integrate overt and t1. Performing another variable
transformation

u1→x5
u1

11u1
, v1→y5

v1

11v1
,

we finally get

W~s,s1!5
G~12 in!2

G~12 in2s!G~12 in2s1!

3E
0

1

dxdyS x

12xD 2sS y

12yD 2s1

~xy!2 in

3F21~2 in,2s;12 in2s;x!

3F21~2 in,2s1 ;12 in2s1 ;y!

3F21~2,12 in;22 in;xy!.
11400
-

One notes that if the last hypergeometric function in t
above equation is expanded in Taylor series inxy, integra-
tions overx and y factorize. These series would, howeve
diverge forxy51. Nevertheless, upon integration overx and
y, one gets a series which converges as 1/n2. We conclude
therefore, that this operation is legitimate. We wr
W(s,s1) in a factorized form:

W~s,s1!5
G~12 in!2~12 in!

G~12 in2s!G~12 in2s1!

3 (
n51

`
n

n2 in
T~n,s!T~n,s1!, ~46!

where

T~n,s!5E
0

1

dxxn212 inS x

x21D 2s

F21~2 in,2s;12 in

2s;x!. ~47!

According to Eq.~40!, one needs an expansion ofT(n,s)
in s up to the first power. This can be easily done by e
panding the hypergeometric function in Taylor series in E
~47!, evaluating resulting integrals, extracting the limits
→0, and then resumming the resulting series. We obtain

T~n,s!5
1

n2 in
2sT1~n!, ~48!

where

T1~n!5
2g

n2 in
1

c~12 in!

n
1

c~n2 in!~n1 in!

n~n2 in!

1
in

n~n2 in!2
. ~49!

With this result, we obtain the series representation for
functionW(s,s1) with the required accuracy ins,s1. Upon
differentiation overs and s1 at s5s150 we get the cor-
rection to the Green functiondG(2):

dG~2!~m!5
im3

8pk H (
n51

`
n

n2 in S ln~ im/k!1c~12 in!

n2 in

2T1~n! D 2J .

IV. CORRECTIONS TO THE GREEN FUNCTION
DUE TO THE U„p,r… PERTURBATION

We now briefly discuss corrections to the Green funct
at the origin caused by the operatorU(p,r ) from Eq. ~11!.
This correction is obtained as

dGU52E d3rG~r ,0!U~p,r !G~r ,0!. ~50!
9-7
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As long as we are interested in theQQ̄ pairs, produced in the
triplet S states, only the corresponding projection of the o
eratorU(p,r ) should be considered. SubstitutingS252 and
SL50 in Eq. ~11!, it is easy to get thatU(p,r ) can be pre-
sented in the following form:

U~p,r !52
p4

4m3
1

11pasCF

3m2
d~3!~r !2

CFas

2m2 H 1

r
,p2J

2
CACFas

2

2mr2
. ~51!

At this stage, it is advantageous to express this operato
terms of the zeroth order HamiltonianH0 in order to apply
the equation of motion for the Green functionG(r ,0):

~H02E!G~r ,0!5d~3!~r !. ~52!

This is most easily done using the following commutati
relations:

@H0 ,ipr #5
4pd~3!~r !

m
1

2L2

mr3
2

CFas

r 2
,2 , ~53!

H H0 ,
1

r J 5
2

r
H1

4pd~3!~r !

m
1

2

mr2
] r , ~54!

where pr52 i (] r11/r ) is the radial momentum operato
One finds that the operatorU(p,r ) from Eq. ~51! can be
written as

U~p,r !52
H0

2

4m
2

3CFas

4m H H0 ,
1

r J 1
11CFas

12m
@H0 ,ipr #

2
~2CF13CA!CFas

2

6mr2
. ~55!

Let us consider the first three terms of Eq.~55!. Inserting
them into Eq.~50! and using the equation of motion for th
Green function~52!, we find

2E d3rG~r 8,r !S 2
H0

2

4m
2

3CFas

4m H H0 ,
1

r J
1

11CFas

12m
@H0 ,ipr # DG~r ,r 9!

5F E

2m
1

3CFas

2mr GG~r ,0!1
11CFas

6m
iprG~r ,0!

1E d3rG~0,r !H E2

4m
1

3CFasE

2mr J G~r ,0!. ~56!
11400
-

in

All terms in the above equation which cannot contribute
the imaginary part of the Green function have been omitt

Also, it is easy to recognize that the terms in Eq.~56!,
which still have to be integrated overr , can be easily ob-
tained if one redefines the eigenvalue and the coupling c
stant of the lowest order HamiltonianH0:

H0→H5
p2

m
2

CFas

r S 11
3E

2mD ;

E→E5E1
E2

4m
5

p0
2

m
5

mb2

12b2
. ~57!

The new HamiltonianH is still of the Coulomb form and,
therefore, the solution for the Coulomb Green function p
sented in the previous section can be used.

Therefore, we conclude, that the only nontrivial calcu
tion required here is the correction to the Green function
the origin caused by the 1/r 2 perturbation, which is explicitly
given by the last term in Eq.~55!. We refer the reader to the
paper@15# where the details of the calculation are discuss

V. COMPLETE RESULT AND MATCHING

We now combine the results of the above calculations
write the final result in the form

R~s!5K~mhard,m fact!@R1~s!1R2~s!#, ~58!

R1~s!5
3

2
NcQb

2CFasImH H~CFas ,b!

3F11CFas
2S CF

3
1

CA

2 DH~CFas ,b!G J ,

R2~s!5
6pCF

m2
NcQb

2 ImH 22as
2

4p Fb01
as

4p
~b112b0a1!G

3dGLS ma

2 D2
4b0

2as
3

~4p!2
dGL2S m1

2 D
1

4b0
2CFas

4

~4p!2
dG~2!S mb

2 D J . ~59!

In the above expression,R2 is the contribution due to the
V1(r ) perturbation. The scalesm1 ,ma ,mb there read explic-
itly

m15msoftexp@gE#,

ma5m1 expF a11~as/4p!@~p2/3!b0
21a2#

2b01~as/4p!2~b112b0a1!
G ,

mb5m1 expF a1

2b0
G . ~60!
9-8
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The functionH(a,b) was first obtained in a similar con
text in Ref.@13# and is given by

H~a,b!5S 12
b2

3 D H ib

a
2~11b2!FgE1 lnS 2 ibm

m fact
D

1cS 12 ia
11b2

2b D G J . ~61!

We have absorbed all energy-independent divergent c
tributions to the factorK(mhard,m fact), which is determined
by matching the above result forR(s) to the result of the
perturbative calculations in full QCD@23# in the regionas
!b!1, where both results are supposed to be valid. O
gets

K~mhard,m fact!511C1CFS as~mhard!

p D1C2CFS as~mhard!

p D 2

,

~62!

C1524, C25CFC2
A1CAC2

NA1TRNLC2
L1THNHC2

H

2C1

b0

4
lnS m2

mhard
2 D , ~63!

and

C2
A5

39

4
2z31p2S 4

3
ln 22

35

18D1
p2

3
ln

m2

m fact
2

,

C2
NA52

151

36
2

13

2
z31p2S 179

72
2

8

3
ln 2D1

p2

2
ln

m2

m fact
2

,

C2
H5

44

9
2

4

9
p2,

C2
L5

11

9
. ~64!

VI. CORRECTIONS TO THE ENERGY LEVELS AND THE
WAVE FUNCTIONS

It is known, that the proper expression for the Green fu
tion which is valid in the whole threshold energy region
given by the expression

G~E1 i e;0,0!5(
n

uCnu2

En2E2 i e
1E

0

` dk

2p

uCku2

Ek2E2 i e
.

~65!

HereEn andCn are the energy levels and the wave functio
at the origin of the perturbative3S1 Q̄Q resonances, which
can be calculated order by order in perturbation theory.
the other hand, when a correction to the Green function
calculated as a power series over a perturbation, the en
denominators entering the exact expression~65! are also ex-
11400
n-

e

-

s

n
is
gy

panded in powers ofas . It is therefore possible to extract th
corrections to the energy levels and to the wave functions
the resonances by performing the Laurent expansion aro
E5En

(0) of the corrections to the Green function obtained
the previous sections. On one hand, these results are i
esting by itself, for applications to various problems that
volve perturbative calculations for bound states both in Q
and QCD. On the other hand, they are used below to c
struct the proper theoretical expression for the large-n mo-
ments.

In the formulas below we denote:

cz5c~z!,cz85
d

dz
c~z!, etc.

To present our results, it turns out to be useful to defin
function

Si~n!5 (
k51

n21
ck

ki
. ~66!

The energy levels and the wave functions at the low
order are given by

En
~0!52

m@CFas~m!#2

4n2
, uCn

~0!u25
@mCFas~m!#3

8pn3
.

~67!

First we present an expression for the energy levels v
up to ~relative! orderO(as

2):

En5En
~0!H 11

as

p S b01
as

4p
~b112b0a1! D @L~ma!1cn11#

1S asb0

2p D 2

2F @L~m1!1cn11#22cn118

22
cn111gE

n
1

p2

3 G1S asb0

2p D 2

3F @L~mb!1cn1121#22122cn8

2ncn91
2

n
~cn111gE!G2

~CFas!
2

n S 11

16n
2

2

3
2

CA

CF
D J ,

~68!

wherem5msoft,

L~m!5 lnS mn

CFasm
D ,

and the scalesm1 ,ma ,mb are defined in Eq.~60!. This result
is in agreement with the one obtained in Ref.@25#.

Using the same notations, we obtain the result for
square of the wave functions at the origin:
9-9
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uCnu25uCn
~0!u2K~mhard,m fact!X11S as

2p D S b01
as

4p
~b112b0a1! D $3@L~ma!1cn11#22~ncn81cn1gE!21%

1
3

2 S asb0

2p D 2

2F @L~m1!1cn11#22cn118 22
cn111gE

n
1

p2

3 G22S asb0

2p D 2FL~m1!~2ncn812cn12gE11!

12ncn8~cn2gE!1cnS 122gE2
2

nD12nS2~n11!22nz312z2~11gEn!1
1

n
22gE

2 G1S asb0

2p D 2F3L~mb!2

2
@4n2cn822ncn1n~514gE!26#L~mb!

n
1

n2cn-

6
1

ncn9~114gEn!

2
1cn8@n2cn812n~113gE!25#

2
cn~ncn13~n21!14gEn!

n
1

~625n1n212n3z32n4z4!

n2
1

2gE~2n3z32n2z223/21n!

n
14n2S3~n!

22nS2~n!G1~CFas!
2H 2

37

24n2
2S 2

3
1

CA

CF
D F lnS CFasm

2nm fact
D1cn1gE2

1

nG J C. ~69!
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In the above expression,K(mhard,m fact) stands for the NNLO
hard renormalization factor given explicitly in Eq.~62!.

VII. THEORETICAL MOMENTS AND NUMERICAL
ANALYSIS OF SUM RULES

The theoretical moments can be conveniently separ
into the contributions of the perturbative resonances and
the perturbative continuum:

Mn5Pn1Cn . ~70!

The resonance contribution reads

Pn56Ncp
2S M1

2mD 2n

(
k51

` uCku2

m3~11Ek/2m!2n11
, ~71!

and the continuum contribution is defined as the integra
the functionR(s)/sn11 overs @see Eq.~58!# taken above the
threshold.

We stress that the above expression for the moments
fers from the result one gets, merely integrating the corr
tions to the Green function. The difference is due to the fa
that in Eq.~71!, we calculate the corrections separately to
numerator and the denominator. Working in the limitAnas
;1, it is possible to expand the denominators in Eq.~71!
around their values for the exact Coulomb problem; t
would produce~parametrically! anO(as) corrections to the
moments. However, there is a serious numerical differe
between the expanded and not expanded denominators
origin of the problem is related to the large values ofb0 and
a1,2 entering the potential. This effectively translates into t
11400
ed
of

f

if-
c-
t,
e

s

e
he

e

large values of the corrections to the energy levels; for t
reason, the expansion of the denominators is not justifie
our opinion.3

In contrast to the contribution of the perturbative res
nances to the moments of the spectral function, the contr
tion of the continuous spectrum to the moments beha
nicely, as far as its perturbative expansion is concerned.
contribution of the perturbative continuum to the theoreti
moments is obtained by numerical integration.

For numerical analysis of the sum rules, we use the va
of the strong coupling constantas(MZ) equal to the world
average valueas(MZ)50.118. This value of the strong cou
pling constant is evolved down to a required scalem using
the two-loop renormalization group evolution equation. W
will later comment on the sensitivity of our results to th
value of the strong coupling constant at theZ resonance.

We also parametrize the unknown contribution of the e
perimental continuumRc(s) in Eq. ~3! by a constant, which
we vary between 0 and 2. The value ofs0 in Eq. ~3! equals
to (235.297 GeV)2, i.e., the continuum contribution start
at the threshold of the openBB̄ production. To suppress th
influence of this unknown contribution we have to go
rather high values ofn. We have chosenn equal to 14,16,18,
for our analysis. As the sum rules are written using the p
mass, we first determine its value for a given set of para
eters. The values of the kinetic mass atmQ51 GeV are
found using Eq.~7! treated with the necessary accurac
Clearly, the value of the pole mass as determined from
sum rules should be correlated with the values of the ha
soft and factorization scales. We note that hence Eq.~7! con-
tains the strong coupling constant evaluated atmsoft, the
abovementioned correlation in the kinetic mass should

3We note that such an ‘‘expanded’’ version of Eq.~71! was used
in all recent analyses of the sum rules@6,7#.
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TABLE I. The kinetic massmkin for mQ51 GeV as a function of the soft renormalization scale for t
momentsn514,16,18 and successive approximations forM14 evaluated for NNLOmkin .

14 16 18 PT forM14

Scales Order of PT mpole mkin mpole mkin mpole mkin for NNLO mkin

msoft54.5 GeV LO 4.69 4.57 4.7 4.57 4.7 4.575 1.08
mhard55 GeV NLO 4.74 4.49 4.75 4.50 4.76 4.51 0.68
m fact55 GeV NNLO 4.88 4.50 4.89 4.51 4.90 4.52 0.72
msoft53.5 GeV LO 4.73 4.59 4.73 4.59 4.73 4.595 1.1
mhard55 GeV NLO 4.77 4.50 4.78 4.511 4.79 4.52 0.64
m fact55 GeV NNLO 4.94 4.52 4.94 4.53 4.95 4.54 0.72
msoft52.5 GeV LO 4.79 4.63 4.79 4.63 4.79 4.63 1.07
mhard55 GeV NLO 4.82 4.505 4.83 4.517 4.84 4.525 0.51
m fact55 GeV NNLO 5.05 4.565 5.05 4.57 5.06 4.57 0.72
msoft52 GeV LO 4.84 4.67 4.84 4.666 4.84 4.66 0.97
mhard55 GeV NLO 4.84 4.49 4.85 4.505 4.86 4.514 0.33
m fact55 GeV NNLO 5.17 4.62 5.17 4.62 5.17 4.62 0.72
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smaller. A glance at Table I proves that this is indeed
case; the most impressive situation occurs at NLO.

We fix the values of the hard and factorization scales
5 GeV and examine the value of theb-quark mass as a func
tion of the soft scalemsoft. Our results are presented
Table I.

The last column in Table I demonstrates how the per
bation theory works for the theoretical momentM14 at LO,
NLO, and NNLO if the NNLO value of the kinetic mass
used as an input. For comparison we quote here also
values of theM14 moment for the pole mass, which corr
sponds to the formal limitmQ→0 in our approach. For
msoft53.5 GeV the NNLO pole mass equals 4.94 GeV. C
culating M14 with this mass we obtain M 14

LO

50.2, M 14
NLO50.27 andM 14

NNLO50.71.
From Table I one can see two things—the perturbat

theory for the pole mass behaves in a way that does not s
any sign of convergence and the NNLO corrections norm
exceed the NLO ones. Moreover, the pole mass strongly
pends on the soft renormalization scale. This picture is c
sistent with the expectation of the irreducible ambiguity
orderLQCD in the pole mass.

For the low-scale mass the situation is different in bo
respects. The first terms of the perturbation series are
alternating~if taken seriously, this feature signals that we a
on the right way!. Also, the low-scale running mass exhibi
only a moderate dependence onmsoft in a relatively wide
range of the soft renormalization scale. The width of t
range depends on the order of perturbation theory we c
sider; it also depends on the initial value ofas(Mz). The
most stable picture emerges at the NLO, while the inclus
of the NNLO effects makes the result less stable. This pa
loss of stability is the consequence of the very large value
the second order correctiona2 to the perturbative quark
antiquark potential.

If the sign alternating behavior of the perturbation ser
for mkin is taken seriously, one can try to perform som
transformation of the perturbation series to accelerate
convergence. One of numerous options is the Euler trans
11400
e

t

r-

he
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n
w

y
e-
n-
f

gn

s
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n
al
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s

e
r-

mation. It is interesting to observe that this transformat
indeed brings the values ofmkin obtained for various values
of msoft closer to each other.

The Euler transformation works in the following way
Imagine we have a seriesf (z)5((21)ncnzn. Then the
faster convergent approximation forf (z) is given by

f ~z!5
1

11z Fc02~c12c0!S z

11zD1~c222c11c0!S z

11zD
2

1••• G . ~72!

We restricted our consideration to two orders of perturbat
theory which we can use to determine the expression for
mass.

We then identifyz in the previous formula witha(msoft).
Then we use the results in Table I forn516 and msoft
54.5, 2.5, 2 GeV. For the sake of illustration, we prese
such calculation formsoft54.5 GeV:

m̃54.5720.0710.0154.57~120.07as10.045as
2!,

as5as~4.5!50.22. ~73!

We then use Eq.~72! and the above formula to obtain
faster convergent series:

mkin5
4.57

11as
S 110.93

as

11as
10.91

as
2

~11as!
2

1••• D
54.485 GeV. ~74!

The result does not change notably, as compared to the ‘
ive’’ summation of theas series, indicating that in this cas
the numerical value ofas is fairly small.
9-11
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In the same way, we obtain the new values of the kine
masses for themsoft52.5 and 2 GeV. The results are: fo
msoft52.5 GeV, we obtainmkin54.51 GeV and formsoft
52 GeV, mkin54.52 GeV.

Clearly, such transformation cannot be rigorously jus
fied; however, the fact that the numbers come closer to e
other looks gratifying. Moreover, both numbers appear
become closer to the value of the NNLO mass, which can
obtained by examining the region of the maximal stabil
msoft.3 GeV. However, in our final result, Eq.~75!, we
give a conservative estimate ofmkin using the results ob
tained for the soft scales down tomsoft52 GeV.

Let us also comment on how the choice of the value
as(MZ) is reflected on our result. The important point is th
this dependence is rather moderate, since the change i
initial value of as(MZ) is roughly equivalent to the chang
in msoft. As we always work in the region where the depe
dence ofmkin on the normalization scale of the couplin
constant is relatively weak, the same equally applies to
dependence on the initial value ofas at theZ resonance. The
dependence on the factorization scale is much weaker
on the soft renormalization scale and amounts to a varia
of at most 20 MeV in value of the kinetic mass.

We arrive finally at the following conservative estima
for the kinetic mass extracted from the QCD sum rules:

mkin~1 GeV!54.5660.06 GeV. ~75!

We stress, that the error in the above estimate is primaril
the theoretical origin. The experimental errors in the mas
and electronic decay widths of theY resonances, as well a
poor knowledge of the continuum part of the observa
spectrum, are minor effects as compared with, e.g., the
scale dependence of the kinetic mass. For the above estim
we use our results formsoft between 4.5 and 2 GeV. Fo
lower scales, the perturbation series for the moments d
not look reliable enough.

After the value of the kinetic mass is found, one can o
tain the estimate of theMS massm̄. To orderO(as

2) the
corresponding equation was given in Ref.@16#. One obtains

m̄~m̄!54.260.1 GeV. ~76!

Using Eq.~7!, one can derive the evolution equation wi
respect tomQ and calculate the kinetic mass at different no
malization scales. The only thing to be remembered is th
choice of the normalization scalemQ is limited by two in-
equalities:LQCD!mQ!m. From this point of view, the pole
mass, which formally corresponds to the limitmQ→0, is
seen to be a completely artificial notion, since it include
nonperturbative contribution treated in terms of the pertur
tion theory.

Our NNLO results may look incomplete since we u
relation ~7! between the pole and kinetic masses, which
valid to mQas

2 order, while formally one needs to know th
relation more accurately, tomQas

3 order. However, a carefu
examination based on the BLM estimate~8! of theO(mQas

3)
terms, shows that unknown corrections in that order in
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relation between the pole mass and the kinetic mass ca
drastically change our results for the kinetic mass in
NNLO approximation. In any case, working with the valu
of the msoft where perturbation theory seems to be reliab
we think we can provide a reasonable estimate for the va
of the low-scale running mass to NNLO.

VIII. CONCLUSIONS

In this paper, we have determined theb quark low-scale
running mass@12# from the analysis of the QCD sum rules
the next-to-next-to-leading order. We have shown that
use of this mass significantly improves the convergence
the perturbation series for the moments of the spectral d
sity. As the result of our analysis we obtain the value of t
kinetic mass normalized at 1 GeV,mkin(1 GeV)54.56
60.06 GeV, and the corresponding value of theMS mass

m̄, m̄(m̄)54.260.1 GeV. This result for theMS mass of

the b quark is in good agreement with the value ofm̄(m̄)
obtained in Ref.@7#.

Nevertheless, there are both technical and conceptual
ferences between our paper and the recent NNLO dete
nations of theb quark mass Refs.@7,6,26#. There are two
important technical differencies. First, the region of allow
scale parametersmhard,m fact,msoft which we were using in
this paper differs from similar regions in Refs.@7,6,26#. In
Ref. @7# larger region of allowed scale parameters was c
sidered, while in Refs.@6,26# all the scales were fixed to b
m5m. Our case is somewhat intermediate, since we cons
the region of parameteres smaller than in Ref.@7#, but larger
than in Refs.@6,26#. Second, as we already noted, for th
Green function in the threshold region we use Eq.~71!
whereas in Refs.@6,7,26# effectively its expanded version
was used. Formally these two approaches should be equ
lent to NNLO. However, Eq.~71! leads to larger NNLO
corrections for the pole mass than its expanded version.

Finally, an important conceptual difference of this pap
from Refs.@6,7,26# is that we did not try to determine th
pole mass of theb quark fromY sum rules, since we believ
that this procedure is rather ambiguous. We have shown
the NNLO corrections to the pole mass are typically larg
than the NLO ones. Also the value of the pole mass of thb
quark is very sensitive to the scale of the strong coupl
constant that is used in the analysis. We think that th
features are in accord with the fact that the pole mass of
quark cannot be reliably defined theoretically and suff
from an irreducible ambiguity of the order ofLQCD @9,10#.
We also note that similar bad convergence of perturba
series for the moments of the spectral density expres
through the pole mass, was observed in Refs.@6,7,26#.

As a by-product of our study we have obtained the NNL
analytical expression for the cross sectione1e2→QQ̄ of the
quark antiquark pair production in the threshold region. W
have also given the NNLO expressions for the energy lev
and the wave functions at the origin for the1S3 bound states
of QQ̄.
9-12
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