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b quark low-scale running mass fromY sum rules
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The b quark low-scale running mass,;, is determined from an analysis of thé sum rules in the
next-to-next-to-leading orddNNLO). It is demonstrated that using this mass one can significantly improve
the convergence of the perturbation series for the spectral density moments. Wenghiélin GeV)=4.56
+0.06 GeV. Using this result we derive the value of the modified minimal subtraction scheme mass
m: E(E)=4.2t 0.1 GeV. Contrary to the low-scale running mass, the pole mass df guark cannot be
reliably determined from the sum rules. As a by-product of our study we find the NNLO analytical expression
for the cross sectioa*e*—>Q6 of the quark-antiquark pair production in the threshold region, as well as the
energy levels and the wave functions at the origin for 1#8g bound states oQa. [S0556-282(199)08009-1

PACS numbgs): 14.65.Fy, 11.55.Hx, 12.38.Bx, 12.38.Cy

I. INTRODUCTION problem, it was pointed out how the “proper” quark mass
relevant for nonrelativistic problems can be defifd]. In

The value of the bottom quark mass is an essential ingrethis paper we try to determine this properly defined mass
dient of the theoretical description df hadrons. Among from the sum rules.
various applications, probably the most important one at For the theoretical analysis the moments of the photon
present is the determination of the Cabibbo-KobayashiPolarization operator are used. These moments can be com-
Maskawa matrix elements frod decays. The determination Puted analytically and compared to the experimental ones.
of the b quark mass is based on the sum rules for Yhe Thg moments of the photon vacuum polarization function are
mesons, proposed about 20 years d]. In the past sev- Jdefined through the dispersion integral
eral years, the sum rule analysis has been undertaken several
times by different authors. In particular, in the papaf a 1272M2" gn M2" r=R(s)ds
very high accuracy of the quark pole mass was quoted. The Moy=—"1r— EH(SNFO:—ZJ
next attempt to extract the precise value of thquark pole ' Qb
mass from the sum rules was undertaken by Jamin and Pich
in Ref. [4]. Their result differed from that of Ref3]. The  whereR(s) is
origin of the discrepancy between these two results, as well
as the flaws in both derivations, were pointed out byhKu o(e*e”—bb)
et al.[5], who also determined the quark mass. Two most R(s)= ————
recent papers on the subjd@&,7] were devoted to an im- Op
provement of the theoretical accuracy of the mass determi-
nation and to a more realistic estimate of the theoretical erWe defined the moments to be dimensionless by multiplying
ror. them by the mas#, of the firstY resonance in a suitable

In parallel to these developments, it became more angower. Also,Q,= —1/3 is the electric charge of thequark
more clear in the past years that the concept of the pole ma#s units of the positron charge.
of a heavy quark is not a good one due to the intrinsic am- The momentsM,, can be calculated using experimental
biguity of the order ofA o¢p in its numerical valug9,10]. In input for R(s). One gets
contrast to this observation, all previous analyses were aimed

0 Sn-%—l (l)

_47TazQED(mb)
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at determining the pole mass of thequark from the sum o M2 on 6 Ty =R,(s)ds
rules. We note in this respect thatactical problems in at- M p=—2 > TRl el E
tempts to use the pole mass in heavy quark physics are well Qp | 1.07agep K M S S
appreciated; one of the vivid examples is provided by the ©)

calculation of the inclusive semileptonic decay widths of the )
B mesons(see Ref[11] for a review. In response to this where M, andI', are the masses and the electronic decay
widths of the first six Y resonances andaéED(Ml)

=1.O7aéED is used. TheR.(s) describes the experimental

*Email address: melnikov@particle.physik.uni-karlsruhe.de spectral density, associated with the energy region above the
"Email address: yelkhovsky@inp.nsk.su openBB threshold; it is rather poorly known. The necessity
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to suppress the contribution of this region is one of the rea- Mﬁxp:MEheor, (6)
sons for using as high values ofas possible.

On the other hand, the same moments can be calculated
theoretically, using the operator product expang@RBE for ~ which give the numerical value for thequark mass, poten-
the photon polarization function. The first nonperturbativetially with a small uncertainty.
correction to the moments is associated with the gluon con- To summarize, the usuaand commonly used for the
densatd1,2]. It was shown that this contribution grows with analysig statement about theoretical calculations of the
n; however, forn=<20, the nonperturbative contribution to largen moments can be formulated as followd) for n
the moments was estimated to be less than[2%]. Given = ~10—20 the OPE ensures that nonperturbative corrections
exponential sensitivity of the moments to the value ofthe are small;(2) for suchn the perturbative calculation of the
guark mass, the influence of the nonperturbative correctiongioments requires the resummation of the Coulomb en-
is clearly minor and can be neglected. Therefore, the whol@éanced term&(a¢y/n). This is achieved by calculating the
analysis fom~ 10 reduces to a careful treatment of the per-spectral densityrR(s) in the threshold region which requires
turbative effects inR(s). However, the perturbative treat- a resummation of th€{(as/B)*) X[ 1;as,B; a2, asB, 871}
ment is not simple, since for large valuesrothe dominant  terms for the NNLO accuracy. It is often assumed implicitly,
contribution to the perturbative moments comes from thehat this picture is correct independently of all other param-
threshold energy region. The relative velocity of ttﬁsys- eters entering the sum rules analysis. We do not believe that
tem there is of the order afs. In this case, the theoretical this is the case. In particular, for the first point to be correct,
spectral density can be calculated in the framework of thdt is crucial that one does not attempt to extractpoée mass
nonrelativistic QCD, which means a simultaneous expansioff the heavy quark from the sum rules.
of the spectral density ing and in the relative velocity of When this paper was prepared for publication, two other
the quark antiquark pair. As is well known, the standardpapers on this subject appeaféd’] where the NNLO analy-
perturbation theory is not adequate in the threshold regiofis of theY sum rules has been performed. The aim of both
and the leading order approximation is the solution of thePapers was to extract the pole mass of tthquark. In our
Coulomb problem, which resums all corrections of the formapproach to the same problem we treat the so called low-
(as/ B)X. Going to next-to-leading ordéNLO) and next-to- ~€nergy running mass as a quantity which can be determined
next-to-leading ordeNNLO), one calculates the spectral Within the sum rule analysis; the pole mass of thguark is
density R(s) in the threshold region resumming all used at the intermediate stages of the calculation only.
Of(as! B)X[1;as,B; a2, asB,B%]} terms. For this purpose Let us present some heuristic arguments in favor of this
we use the so called direct matching procedagj which is ~ @pproach. Itis known that the pole mass of the quark cannot
described, e.g., in Ref$§14,15,7. We will not discuss all be defined when nonperturbative effects are addressed
necessary details of this approach here and will merely quote?; 10l. It is also believed that the bad behavior of the pertur-
the results of the calculations. On the other hand, a part dpation series in the relation, say between the pole mass and
the NNLO corrections was treated numerically in Ref.the modified minimal subtraction schemd$) mass, signals
[14,15; for this reason, we present some additional theoretthis. The consequence of these facts is that there is an irre-
ical results, which provide the imaginary part of the polar-ducible ambiguity of the order of\qcp in the numerical
ization operator in the threshold region in completely anavalue of the pole mass. If then the pole mass of the quark is

lytical form to NNLO. used in the sum rules analysis, its infrared sensitivity leads to
The theoretical expression for the spectral density emnew infrared effects, which have no counterpart in the stan-
ployed in this paper reads dard OPE[8]. In particular, they are not described by the

gluon condensatgl1].
On the other hand, one can realize, that this is an artifact
, (4  of the adopted procedure and the easiest way out of this
problem is to abandon determination of the pole mass from
the sum rule analysis. Therefore, we use the pole mass only
where G(r,0) is the Green function of the nonrelativistic as a tool to write the expression for the nonrelativistic
Schralinger equation Hamiltonian; however, we do not treat the pole mass as a
fixed number and recalculate it consistently, order by order
(H-E—i8)G(r,r)=83(r—ry), E=+s—2m. (5 in perturbation theory.
Instead of the pole mass, one should determine some
Taken literally, Eq.(4) is ill defined due to improper treat- “proper” mass, which does not suffer from a numerical am-
ment of the limitr — 0 within the nonrelativistic approach. In biguity due to contributions of the soft momenta region.
what follows, we circumvent this difficulty incorporating the Such proper masses are known—one of the most familiar in
full QCD result and matching it with its nonrelativistic coun- this respect is théMS mass. This will not be our choice,
terpart. however.

Integrating the theoretical expression for the spectral den- Elementary physical considerations suggest that the
sity in Eqg.(1) and equating the obtained result to the experi-threshold problems are the low-scale problems, in principle.
mental moments Eq(3) one obtains the sum rules of the The typical scale isu~m/\Jn~1—2 GeV for n~10. A
form useful and reliable mass should therefore be normalized at

, , 24m p?
R(s)=Ilim Im| N.Qp—| 1— — | G(r,0)
r—0 S 3m2
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such low scale.<m. On the other hand, in order to suppressMachenzie-(BLM-)type estimatd17] of this term is, how-
the contribution of the infrared region, the inequality,cp  ever, available and can be extracted from R&€]. Explic-
< u should be respected. The use of such low-scale runninily, the necessary term reads

masses in various aspects of heavy quark physics was repeat-
edly advocated in the last yedfsr a detailed discussion and

3 2
further references see R¢lL1)). JA(M)]pen:gCF,u aS('ul)) (%{lnz il +1
The low-scale running mass cannot be defined uniquely, ™ M€
because the only purpose of such definition is to remove the B1 u
uncontrollable contribution of the soft momenta region —(§+dlﬁo) In(m +d,¢, (8

which affects the pole mass. In this paper, we will work with
the so-called kinetic mass suggested in R&g]. . . _
The relation between the pole and the kinetic masses iwhereB, and B, are given in the next section anf , read

known to second order i [16]:
Bo(5 m% 13
di=—|5-IN2|—Cul = ,

1 213 6 12
— 2
Mpole™ mkin(MQ) + [A(MQ)]pen+ 2mkin(MQ) [MW(MQ)]perty

(7 Bo\?¥ (5 2 (72 31
d2— 7 (§—In2 - F_S_G . (9)
where
In the numerical analysis of the last section, we check the
[A()] =EC ﬂas(ful) s (f_ Emz_'“) sensitivity of our results to the possible modification of the
pert "3 ~FT g w13 2 )"0 d, term due to additional terms which are not accounted for

2 13 in the BLM approximation. We find, that our final result for
A(W__ _”} the kinetic mass is rather insensitive to it.

6 12 As the result of our analysis, we find that the perturbation
theory for the pole mass is not applicable: typically, the

ag(py) ad/13 1 2 NNLO corrections to the pole mass exceed the NLO ones
2 . o @l My s M -
[15(1) lper= Cept 1+ —||5—5In—/Bo and the dependence of the result on the choice of the scale of
T m|\12 2 uq . .
the strong coupling constant is very strong. These unwel-
7 13 come features, therefore, do not permit a reliable determina-
Als 12 | tion of the b quark pole mass from the sum rules, with a

trustworthy estimate of the theoretical uncertainty.

On the contrary, the situation with the low-scale running
mass looks more healthy: the perturbation series seem to be
gign alternating and the dependence on the normalization

to 1 GeV, which seems to be a reasonable choice for th X
problem at hand. Then the ratia, /m is of the order ofa scale for the coupling constant appears to be reduced, as
compared to the pole mass.

and this gives the counting rule for the contributions to the . i
mass which should be accounted for when one goes from The rest of the paper is organized as follows. In the next

one order of perturbation theory to the other. For example, tGection we discuss the framework of the calculation. In Sec.
obtain the LO result we consider the pure Coulomb potential!! the corrections to the Green function due to corrections to
without any corrections in the nonrelativistic Hamiltonian for € Static quark antiquark potential are derived. In Sec. IV

heavy quark antiquark pair. Correspondingly, the LO relatiorthe corrections to the Green function due to relativistic cor-
between the pole and the kinetic masses is, rections to the heavy quark Hamiltonian are obtained. In Sec.

V we combine these results and present the NNLO expres-
sion for the theoretical spectral densiys) in the threshold
region. In Sec. VI the results for the energy levels and the

wave functions at the origin for th&S; QQ resonances are
derived. In Sec. VIl we present our final analysis for the sum
The NLO and the NNLO corrections to this expression areryles and determine the low-scale mass of bhguark. Fi-
added in accordance with the above counting rule. Also, fohally we present our conclusions.
our treatment, we use the same normalization spgldor
the strong coupling constant in the expression for the mass,
as is used in the nonrelativistic Hamiltonian. This scale is
called uqoi in the rest of the paper. We first discuss a framework of our calculations and in-
We would like to note that, according to the above counttroduce all relevant notations. As we mentioned already, in
ing rules, it would be necessary to know the temqu in order to obtain the expression for the theoretical spectral
the relation between the pole mass and the kinetic mass. Thiensity, we have to calculate the expression for the imagi-
term is not known at present. The Brodsky-Lepage-hary part of the polarization operator in the threshold region.

For the rest of this papens denotes the strong coupling
constant in theVlS scheme. Also, we chooge, to be equal

4  ag
Mpole™ mkin(MQ) + 5 Ce ?MQ .

IIl. THE FRAMEWORK OF THE CALCULATION
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The threshold region is characterized by a small value of the 34 20

quark velocity3: ,81=§C2A— 3 CaTrNL—4CeTrN,
V)
p=\1- <L (10 31 20
a1=g “A §TR Lo

Here and belown is the pole mass. The pole mass enters the
usual perturbative expansion in quantum mechanics for the
nonrelativistic quarks. Later we will extract the low-scale
running mass from the pole one.

Dynamics of slow moving quark antiquark pair is gov- (

1798 56

S g 55
erned by the nonrelativistic Hamiltonian ﬁju ?gg)cATRNL— (§—16g3) CrTrNL

H=Hy+Vy(r)+U(p,r),

+ 20T N )2 (13
o 'RNLJ -
p> Ceas o
Ho="-— ,
m r
The SU(3) color factors are Cpo=3, Cc=4/3, Ty
Cra’ a =1/2. N_=4 is the number of quarks whose masses have
Viy(r)=— S[2,30|n(2,u'r)+al+ —S) been neglected.
4t 4 Given the HamiltoniaH, one can find the Green function
2 of the Schrdinger equation
x| B3 4In2(,u’r)+?
(H-E—i8)G(r,ry)=8%r—-ry), E=\s-2m.
+2(B1+2Boar)In(p'r)+ay |, (14
Once the Green function is found, the nonrelativistic cross
U(pur) = — p_4+ 7Cras 5(r)— Cras| 5. r(rp)p) section for theQQ pair production ine*e~ annihilation is
' am?3 m?2 2mar r2 obtained USing ECK4)

Treating the corrections to the Green function in the per-
3Craq Crag( S° Q(Sr)z turbation theory, one can consider the corrections due to
o1m2r 3 - om? r_3_ /5 V,(r) andU(p,r) separately. The corrections to the Green

function due toU(p,r) were recently calculated in Refs.
. CACraZ [14,15. These corrections are not simple conceptually, be-
- —(2%*-3) 6(r)> — 5 > (11)  cause they deliver divergent contributions to the Green func-
3 2mr tion at the origin. The divergences are removed by matching

_ _ _ the result of the calculations in quantum mechanics to the
In the above equations, the strong coupling constant is evalyesult of the full QCD calculatio23]. Technically, how-

ated at the scalpsof: ever, the calculation of the correction causedWbp,r) is
very simple and can be performed algebraicdbge Ref.
as= as(soft) - (120 [15]). On the other hand, the corrections to the imaginary
part of the Green function due to thg(r) perturbation can
The scalen’ equalsue”e. be calculated within the quantum mechanics and for this rea-

The operatorU(p,r) is the QCD generalization of the son these corrections are rather simple conceptually. How-
standard Breit potentii[L8]. The last term in the expression ever, they provide the most Cha”enging part of the whole
for the operatorU(p,r) is the non-Abelian contribution, calculation from the technical viewpoint. For this reason, the
originating from a correction to the Coulomb exchange,calculation of the corrections to the imaginary part of the

caused by a transverse glufitg]. The potentiaV,(r) rep-  Green function due to th¥,(r) perturbation is discussed
resents a deviation of the static QCD potential from the Coupelow in some detail.

lomb one. It was calculated to ordaﬁ in [20] and to order

a2 in [21,22. The coefficients there read, explicitly,
Ill. CORRECTIONS TO THE GREEN FUNCTION

11 4 DUE TO V(r)

ﬁo=§CA— §N"TR’ A. The Coulomb Green function

In this section we collect useful formulas for the Coulomb
Green function. A convenient expression for tBevave
The result of Ref[21] was recently corrected in ReR22]. Coulomb Green function can be found in REZ4]:
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—imekr+r) re gt 1+t\iv To proceed further, it is convenient to introduce new integra-
G(r,rqy)= tion variables
(rra) 4arr; Jo Jt(t+1)
X 2K Ak T Vit + D). (15) vt s
! ! T1rv P ixs (239
In the above expressiom=Cras/(28) andk=mg.
Using this representation, one easily obtains the expresFhen one gets
sion for G(r,0):
i i 2 /[ o 1 —iv 7iv_1
—imk @ [1+t)1" _m ("“) f TP
_ k 2ik o)=—I|—]| I'(2+o0) | d=d
G(r,O)—? I rJ dt| —| ek, (16) gl( 47\ k ( 0 p(l_T)fo'(l_p)fo'
X(1—pr)~277. (24)

From the expression for the cross secfioh Eq.(4)], it is
clear, that one is interested in the behavior of the Coulomb
Green function for smali. For smallr, the Green function
diverges as %/ the principal divergence is related to the

Substituting alsop=p7 we arrive at

m? (i n -1
behavior of the free¢;=0) Green function du(0)= 2 (_M) F(2+0’)f dﬂ -
a ) o
G(O)(r O) m |kr (17)
4ar € ldr 7|7
xf —1-7n1-—= . (25
7 T T

B. Generating function

To calculate corrections to the Coulomb Green function afinlly, changing the variables— ¢ with £=(1-7)/(1
the origin caused by th¥,(r) perturbation, it is convenient — 7), we get
to introduce a generating functiay(o): ,
m-iw\?
r” g9 (U)=—(—) F(2+¢T)f dn f dégé”
(2p ) . (18) 1 4 )1 o

g(o)= f d*G2(r,0)
X(1—§)[1—(1— *ff*l. 26)
Once this function is found, one easily obtains a correction to (1=911-(=md] (
the Green function at the origin caused by ¥hgr) term in
the potential. For further calculations, it will be convenient to
separate the generating function into two terms

The last integral is proportional td=,(1+0o,1+0;2
+20;1—7n) and equals

9(0)=0ied o) +91(0), (19 1 £7(1-9)° 5 (1+0)3
d 2¢(n+1)
where jo 5[1—(1—77)5]‘”1 “20 ')2 241
o —2¢y(1+n+o)—Inn]y",
2ur
gfree(o'):f dSFGg(I’,O)( Ib: ) ) (27

re where the series representation for the hypergeometric func-
(200 tion was used. Herezf,=TI'(z+n)/I'(z) is the Pochhammer
symbol. Integrating over;, we obtain

W(o)= f d3r{62<r,0>—GS<r,0>}(2“

In the above equation&,(r,0) is the free Green function

[cf. Eq. (17)]. m? (i M )n
It is an easy task to calculathe.. One gets 9i(0)= 7\ 1“(2+ U)T(O‘)E [2¢(n+1)
mz(iﬂ v I(n+1-iv)
Ofee= 7| | (o). (21) _ BPIS ) B S
e 4 2¢(n+1+0)=dn] Tn+1l—iv+o)
We need furtheg (o). For the Coulomb Green function r'(n+1)
we use the representation from Ed6). Integrating then TTintito)|’ (28)

overr in Eq. (20), one gets

5
91(0)=T—W(Iﬁ) F(2+cr)J dtds[

X(1+t+s) 277, (22 2We thank O. Yakovlev for pointing this out to us.

iv

1+t
Tt

1+s

iv } which can be presented in a more compact férm:
< _
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m2(iu)\?1+
91(o) _E<TM Tagl&n
I'’(n+o) I(n—iv) T(n+o)
r’(n) L(n—iv+o) T(n)

(29

PHYSICAL REVIEW D 59 114009
—1242(n)y(n—iv)+6y(n)y*(n—iv)

—3(n—iv);. (34)

Using these expressions, we easily find the corrections to
the imaginary part of the Green function at the origin, caused

by In"(2ur)/r perturbations. In the formulas below we disre-

In Egs. (28),(29) 9, stands for the partial derivative with 9ard the 14 pole which is present in the expression &t

respect ton. Equations(19),(21),(29) provide a necessary since it does not contribute to the imaginary part. We obtain

expression for the generating function.

C. Correction to the Green function due to I1'(2ur)/r, n<2
perturbation

To evaluate these corrections we will use the representa-
tion of the generating functiog(o) given in the previous
section. For the case of interest, the correction to the imagi-

nary part of the Green function at the origin due t&(2pur)/r

perturbation is obtained as thmh derivative of the imagi-

nary part of the generating function with respectotat o

explicitly
In(2ur
s6um=- [ aircir o2
_—m2 1 Ii,u 2 ,
=27 12/ ¥4 [+010).

(35

In a similar manner one obtains the correction due to

In?(2ur)/r perturbation

—0. To obtain these derivatives, we first expand the gener-

ating function up to the second order dén

2 2 2

i o i T
Ored )= g St N~ vet5|| I~ | +5
a? i S
+€ In?—yE +7 In?—yE —2§3
+. (30
and
m? a?
91(0)=5(91(0)+091(0)+791(0)+~- , (3D
where
91(0)= = 2 o[ (n)—Y(n=iv)]
=—vye—di,ivp(l—iv), (32

w1,
gl(O)+ F‘F Eaivl mﬂ(l—lv)

i
gi(O)=<InTM+1

1 o)
=5 2 andld(n) = g(n=iv)]
n=1

X[3(n)—h(n—iv)]}, (33
; ; 2
g1(0)=2 InITMJrl gi(O)—[(ln%Jrl) +1:9;(0)

1 1 3
- §07i3yiVl//(1—iV)— 3 nzl 545[3!//2(”)

—4y(n)y(n—iv)+2(n—iv)] + 7¢3(n)

2
56 5() = — f ¢ G(r 0 KT

i s
In?_'}/E

7
B 2

T

+g’1’(0)}. (36)

D. The second iteration of the logarithmic perturbation

The leading term of the static potenth|(r) provides an

O(as) correction. Therefore, one should calculate the second

order correction induced by the perturbation jm(@r. Such
calculation is described below.
Explicitly, we have to calculate

5G(2)(,u)=J d3rd3,G(r,00V(r)G(r,r;)V(r;)G(r,,0),

V(r)y=In(2ur)/r. (37)

For this purpose we use the representation for the Green

function G(r,r4), given in Eq.(15). We define

G B |,LL otog 1
1(0,01)=| 1~ T(—o)T(—oy)
© drdr
Xfo WF(T,Tl), (38)
where

2ikr 7 e2ikr17'1

F(T,Tl)zfd3rd3rle(r,0) —G(r.r)———G(r,,0).
1

(39

Then
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52
5G? =
G 0,9

(7'(7'1

Gl(a-la-l)|zr=0,0'1=0' (40)

Using Egs.(15),(16) for the Green functions, and per-
r; and the variablet
which enters the integral representation of @¥g,r;) func-

forming the integrations over,

tion, we arrive at the following result:

3

F(T!Tl):mFl(T!Tl)i (41)
- _fldudv 1+u\ 1+0\"”
S oA v
oo (A=1)(A-1)
XFZl 2,1_|V,2_|V,A—A1 y
(42
where
A=1+u+7, A;=1+v+7, (43

andF,,(a,b;c;z) is the Gauss hypergeometric function.
The functionG4(o,01) can be written as

H o+o T3
'“) M ey, (44

Gl(""’l):(? 8rk(1—iv)
where

1 » drdry

T(—a)T(—0y) o ;o d+o

W(o,041)= Fi(7,7).

(49)

For further calculation, it is convenient to define new vari-

ables

u—u;=u—7, v—UV1=0—T1

and integrate over and ;. Performing another variable

transformation
uq vy
u1—>X=1+—ul, vV1—Y= 1+Ul’
we finally get
I'(1-iv)?

W(o,0q1)=

T(l—iv—o)(1—iv—0y)

1 X o y
XJO dXdy(m (—

1-y
XFy(—iv,—o;1—iv—0;X)

— O

1 .
(xy)™"”

XFZl(_iV,_O'l;l_iV_O'l;y)

XFy(2,1=1v;2—iv;Xy).

PHYSICAL REVIEW D 59 114009

One notes that if the last hypergeometric function in the
above equation is expanded in Taylor seriexyn integra-
tions overx andy factorize. These series would, however,
diverge forxy=1. Nevertheless, upon integration oweand
y, one gets a series which converges ag.1We conclude
therefore, that this operation is legitimate. We write
W(o,0) in a factorized form:

F(1-iv)2(1—iv)

W(U!UI):F(1—|V—O')F(l_ly_a-l)

o

n
XE —iv

n=1N

T(n,o)T(n,o7), (46)
where

1 . X -
T(n,cr)=f dxx“‘l"V(ﬁ) Fo(—iv,—o;1—iv
o =

—0;X). (47)

According to Eq.(40), one needs an expansionTfn, o)
in o up to the first power. This can be easily done by ex-
panding the hypergeometric function in Taylor series in Eq.
(47), evaluating resulting integrals, extracting the linait
—0, and then resumming the resulting series. We obtain

1
T(n,0')=m—0'-|—l(n), (48)
where
2y Y(1—iv) P(n—iv)(n+iv)
==t =7 n(n—iv)
L (49)
n(n—iv)?

With this result, we obtain the series representation for the
functionW(o,01) with the required accuracy i, o;. Upon
differentiation overo and oy at o=0,=0 we get the cor-
rection to the Green functiodG(?:

n (In(i,u/k)+ Y(1—iv)

@ imd [ &
0GT )= gk 2 n—iv

n=1 n—iv

2
_Tl(n)) ]

IV. CORRECTIONS TO THE GREEN FUNCTION
DUE TO THE U(p,r) PERTURBATION

We now briefly discuss corrections to the Green function
at the origin caused by the operatd(p,r) from Eg. (11).
This correction is obtained as

5GU=—f d*rG(r,0)U(p,r)G(r,0). (50)
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As long as we are interested in t@eQ pairs, produced in the
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All terms in the above equation which cannot contribute to

triplet S states, only the corresponding projection of the op-the imaginary part of the Green function have been omitted.

eratorU(p,r) should be considered. SubstitutiBd=2 and
SL=0 in Eq.(11), it is easy to get thal)(p,r) can be pre-

sented in the following form:

p*  1lwag

Ce
U(pr)=— ——+ PRI
(pr)==7

CaCra2

2mr?

CFaS(l 2]
3’ (r)— Py P

(51)

Also, it is easy to recognize that the terms in E§6),
which still have to be integrated over can be easily ob-
tained if one redefines the eigenvalue and the coupling con-
stant of the lowest order Hamiltonigt,:

2
pc Crag 3E\|
R =~ %)
E2 p; mp?
E—&= E+m—m 1—[32. (57

At this stage, it is advantageous to express this operator ilhe new Hamiltoniar{ is still of the Coulomb form and,

terms of the zeroth order Hamiltoniathy in order to apply
the equation of motion for the Green functi@{r,0):

(Ho—E)G(r,00=683)(r).

This is most easily done using the following commutation

(52

therefore, the solution for the Coulomb Green function pre-
sented in the previous section can be used.

Therefore, we conclude, that the only nontrivial calcula-
tion required here is the correction to the Green function at
the origin caused by ther# perturbation, which is explicitly
given by the last term in Eq55). We refer the reader to the
paper{15] where the details of the calculation are discussed.

relations:
V. COMPLETE RESULT AND MATCHING
, 4759(r) 2L? Crag
[Ho.ipr]=——+——-——5.2, (53 We now combine the results of the above calculations and
mr r write the final result in the form
1) 2 4xsdr) 2 R(s) = K( shard Mtac) [R1(S) + Ra(S) ], (58
HO,—}z—H+—+—&r, (54
m mr?
Ru(s)= ENcQﬁcFaslm[ H(Cras, )
where p,=—i(d,+ 1/) is the radial momentum operator.
One finds that the operatdd(p,r) from Eq. (51) can be Ce Ca
written as X|1+Cra? =+ 7)H(Cpas,,8)H
H3 3CFas[ 1] 11Craq 22
Up,r)=—4—- 0T [Ho.ip(] 67Cr
4m . 4m rj 1am ’ RalS) =~ NeQF M| ——| o+ 2(B1+2B0a)
(2Cg+3C,)Cra2
BT 55 e (M) apial (M)
L 2 (477)2 L2 2

Let us consider the first three terms of Ef5). Inserting
them into Eq.(50) and using the equation of motion for the
Green function(52), we find

(4m)? 2
H2 3C.a 1
_ 3 ! __O_ Fs —
fd rG(r ,r)( am am {Ho,r)
itly
11Craq H Girp"
Tom [Ho:iPe]|G(r.r")

2 4
+4B°_CFa55G<2)('“b

—) ] : (59

In the above expressiomR, is the contribution due to the

V4 (r) perturbation. The scales,,u,,up there read explic-

1= MsoXH Vel

}G( 0)+ |prG(r 0)

“l2am T 2m
2

3 _
+f d°rG(0y) 4m+

sE
] G(r,0. (56

2mr
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b QUARK LOW-SCALE RUNNING MASS FROMY SUM RULES PHYSICAL REVIEW D 59 114009

The functionH(a,8) was first obtained in a similar con- panded in powers af;. It is therefore possible to extract the

text in Ref.[13] and is given by corrections to the energy levels and to the wave functions of
the resonances by performing the Laurent expansion around
B\ (iB ) —iBm E=E$10) of the corrections to the Green function obtained in
H(a,p)=|1- ?) E_(“'ﬁ ) 7E+|”( Wtact ) the previous sections. On one hand, these results are inter-
esting by itself, for applications to various problems that in-
rl1-ia + 32 } (61) volve perturbative calculations for bound states both in QED
28 : and QCD. On the other hand, they are used below to con-

struct the proper theoretical expression for the largeo-
We have absorbed all energy-independent divergent coffnents.

tributions to the factorC(wnarg, iiac)» Which is determined In the formulas below we denote:

by matching the above result f&(s) to the result of the d

perturbative calculations in full QC23] in the regionas W= w(z)’lﬁé:d_ W(z), etc.
<B<1, where both results are supposed to be valid. One z

gets

To present our results, it turns out to be useful to define a

as( Mhard as(fnard | 2 function
S ar S ar
,C(Mhardlﬂfact): 1+C1CF(T +C2CF(—) ) n-1 "
k
(62) S(n=2, R (66)
Ci=—4, C,=CgCh+CCYlA+TgN, C5+T,N,CY .
: 2 2 2 2 The energy levels and the wave functions at the lowest
Bo m2 order are given by
—ClZIn > d) (63
Hehar E(O)_ m[CFaS(M)]Z |\P(0)|2_[mCFaS(IU')]3
L n T o 3
and 4n 8n
(67)
CA=§)—§ g L—lln o_ 3_5 W—Zln m? First we present an expression for the energy levels valid
274 53 3 18/ " 3,2 up to (relative) order O(a2):
151 13 179 8 w2 m? En=EQ| 14+ 22 Bt~ (By+2B681) |[L(a) + Y- 1]
C'Z\‘A:____§3+772(___|n2)+_|n_’ n n o\ PoT P 0d1 Ma n+1
36 2 72 3 2 u
asBo)? ,
H_44 4 2 +( 28 2[[L(/~L1)+‘//n+1]2_¢n+1
2"g 9" i
4 2 2
11 _2l/fn+1 7’E+7T_ + aSBO
05:3- (64) n 3 27
VI. CORRECTIONS TO THE ENERGY LEVELS AND THE X|[L(mp) + ¢y 1—112—1— 24,
WAVE FUNCTIONS
_ Itis Known, th_at t.he proper expression for the Greeq fuqc- L, 2 (Crag)?[ 11 2 C,
tion which is valid in the whole threshold energy region is —n¢n+ﬁ(¢n+1+ Ye) |~ ~n \1en 3 Co [’
given by the expression
| (Wo?  edk w2 (8
G E+I€;0,0= i — .
( ) ; E,—E—-ie 0 2 Ek—E—Ie(GS) where u= e,
mn
HereE, and¥, are the energy levels and the wave functions L(w)=In Cram)’

at the origin of the perturbativéS; QQ resonances, which

can be calculated order by order in perturbation theory. Omand the scaleg,u,,u, are defined in Eq60). This result
the other hand, when a correction to the Green function iss in agreement with the one obtained in R&5].

calculated as a power series over a perturbation, the energy Using the same notations, we obtain the result for the
denominators entering the exact expressif) are also ex- square of the wave functions at the origin:
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|‘Ifn|2=|\P<n°>|2/cwham,maco(1+ 20‘—77) Bo+ g (Ba+2B080) |{3[L (1) + Y 11— 2N+ i+ ve) — 1}
3 S 2 n+ + 2 S 2
+§(“2f°) 2[[L<m>+l/fn+l]2—¢a+l—2¥+%}—2(“25(’) [L<Ml><2n¢;+2¢n+2yE+1>
, 2 1 o] [asBo)? )
£ 200 (o= yE)+ | 1= 27— | + 2SN+ 1) = 208+ 2051+ ven) + = — 292+ 22| | 3L(we)

407y, - 20yt n(5+Aye) 61 (o) | MYy UL+ Ayen)

+ynln?yy+2n(1+3yg) —5]

n 6 2
ny,+3(n—1)+4yen) (6—5n+n?+2n3¢;—n* 2ye(2n3¢5—n2¢,—3/24+n
_ Pn(Nehy+3( ) YeN) +( {3 4) n el {3 {2 ) +4n283(n)
n n2 n
) c ) 37 2 C, Cragm 1 69
nS,(n) |+ (Cras) oan? §+C—F n Ty tntyvem o) (69)

In the above expressiof( whard 1ac) Stands for the NNLO  large values of the corrections to the energy levels; for this

hard renormalization factor given explicitly in E(2). reason, the expansion of the denominators is not justified in
our opinion®
In contrast to the contribution of the perturbative reso-
VII. THEORETICAL MOMENTS AND NUMERICAL nances to the moments of the spectral function, the contribu-
ANALYSIS OF SUM RULES tion of the continuous spectrum to the moments behaves

The theoretical moments can be conveniently separate'aicely’ as far as its perturbative expansion is concerned. The

into the contributions of the perturbative resonances and O(fontribution of the perturbative continuum to the theoretical
the perturbative continuum: moments is obtained by numerical integration.

For numerical analysis of the sum rules, we use the value
of the strong coupling constaaty(M) equal to the world
M,=Pr+C,. (70) average valuerg(M7)=0.118. This value of the strong cou-
pling constant is evolved down to a required scaleising
the two-loop renormalization group evolution equation. We
The resonance contribution reads will later comment on the sensitivity of our results to the
value of the strong coupling constant at theesonance.
We also parametrize the unknown contribution of the ex-
(M| |¥,|? perimental continuuniR.(s) in Eq. (3) by a constant, which
Pr=6N.m (%) & 31T E e L (71 we vary between 0 and 2. The valuesyfin Eq. (3) equals
=1 m( /2m) to (2x5.297 GeVy, i.e., the continuum contribution starts
at the threshold of the opdBB production. To suppress the
and the continuum contribution is defined as the integral ofnfluence of this unknown contribution we have to go to
the functionR(s)/s"** overs [see Eq(58)] taken above the ~rather high values af. We have chosen equal to 14,16,18,
threshold. for our analysis. As the sum rules are written using the pole
We stress that the above expression for the moments dif’ass, we first determine its value for a given set of param-
fers from the result one gets, merely integrating the correcet€rs. The values of the kinetic massay=1 GeV are
tions to the Green function. The difference is due to the factfound using Eq.(7) treated with the necessary accuracy.
that in Eq.(71), we calculate the corrections separately to theClearly, the value of the pole mass as determined from the
numerator and the denominator. Working in the linfiteg ~ SUM rules sho_uld.be correlated with the values of the hard,
~1, it is possible to expand the denominators in EZf) so_ft and factorization sc_:ales. We note that hence(Bagcon-
around their values for the exact Coulomb problem; this@ins the strong coupling constant evaluatedugfy, the
would produce(parametrically an O(«) corrections to the abovementioned correlation in the kinetic mass should be
moments. However, there is a serious numerical difference
between the expanded and not expanded denominators. The

origin of the problem is related to the large valuessgfand 3We note that such an “expanded” version of E@1) was used
ay » entering the potential. This effectively translates into thein all recent analyses of the sum rules7].
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TABLE I. The kinetic massn,;, for uo=1 GeV as a function of the soft renormalization scale for the
momentsn=14,16,18 and successive approximations.fdi, evaluated for NNLOmM,, .

14 16 18 PT for My,
Scales Order of PT mMyge My Moole  Min Moole  Min for NNLO my,
Mso=4.5 GeV LO 4.69 4.57 47 4.57 4.7 4.575 1.08
Mhari=5 GeV NLO 4.74 4.49 4.75 4.50 4.76 451 0.68
Mac=5 GeV NNLO 4.88 4.50 4.89 451 4.90 4.52 0.72
Msoi= 3.5 GeV LO 4.73 4.59 4.73 4.59 473 4595 1.1
Mhai=D GeV NLO 4.77 4.50 478 4511 479 4.52 0.64
Miact=5 GeV NNLO 4.94 4.52 4.94 4.53 4.95 4.54 0.72
Msoi=2.5 GeV LO 4.79 4.63 4.79 4.63 4.79 4.63 1.07
Mhar=5 GeV NLO 482 4505 483 4517 484 4525 0.51
Miac=5 GeV NNLO 5.05 4565 5.05 4,57 5.06 457 0.72
Msoi=2 GeV LO 4.84 4.67 484 4666 4.84 4.66 0.97
Mhari=5 GeV NLO 4.84 4.49 485 4505 4386 4514 0.33
Miac=5 GeV NNLO 5.17 4.62 5.17 4.62 5.17 4.62 0.72

smaller. A glance at Table | proves that this is indeed themation. It is interesting to observe that this transformation
case; the most impressive situation occurs at NLO. indeed brings the values ofy;, obtained for various values
We fix the values of the hard and factorization scales abf u.. closer to each other.
5 GeV and examine the value of thequark mass as a func- The Euler transformation works in the following way.
tion of the soft scaleusy;. Our results are presented in Imagine we have a serie§(z)==(—1)"c,z". Then the
Table I. faster convergent approximation fé¢z) is given by
The last column in Table | demonstrates how the pertur-
bation theory works for the theoretical momeht,, at LO,

1 2
NLO, and NNLO if the NNLO value of the kinetic mass is f(z)=——

CO_(Cl_CO)(i) +(cy—2¢y+¢p)

used as an input. For comparison we quote here also the 1+z 1+z 1+z
values of theM,, moment for the pole mass, which corre-
sponds to the formal limitug—0 in our approach. For +oee (72

Msor= 3.5 GeV the NNLO pole mass equals 4.94 GeV. Cal-
culating My, with this mass we obtain M}
=0.2, MMN0=0.27 andMm YNC=0.71.

From Table | one can see two things—the perturbatio
theory for the pole mass behaves in a way that does not sholl : o . .
any sign of convergence and the NNLO corrections normallyl_ We then identifyzin the previous formul_a Withe( o).
exceed the NLO ones. Moreover, the pole mass strongly de- en we use the results in Table .I for= 16 and fson
pends on the soft renormalization scale. This picture is con= 4-2+ 2:5, 2 GeV. For the sake of illustration, we present
sistent with the expectation of the irreducible ambiguity ofSuch calculation fopesor=4.5 GeV:
order Agcp in the pole mass.

For the low-scale mass the situation is different in both ~ m=4.57-0.07+0.01=4.571— 0.07a¢+ 0.045:2),
respects. The first terms of the perturbation series are sign
alternating(if taken seriously, this feature signals that we are
on the right way. Also, the low-scale running mass exhibits
only a moderate dependence g, in a relatively wide
range of the soft renormalization scale. The width of thisWe then use Eq(72) and the above formula to obtain a
range depends on the order of perturbation theory we corfaster convergent series:
sider; it also depends on the initial value @f(M,). The

We restricted our consideration to two orders of perturbation
ntheory which we can use to determine the expression for the

as=ay(4.5=0.22. (73)

most stable picture emerges at the NLO, while the inclusion 457 o o2
of the NNLO effects makes the result less stable. This partial  m,,=——| 1+0.93——+0.91———+- - -
loss of stability is the consequence of the very large value of 1+as 1+a (14 ag)?

the second order correctiom, to the perturbative quark-
antiquark potential. =4.485 GeV. (79

If the sign alternating behavior of the perturbation series
for my, is taken seriously, one can try to perform someThe result does not change notably, as compared to the “na-
transformation of the perturbation series to accelerate thive” summation of theag series, indicating that in this case
convergence. One of numerous options is the Euler transfothe numerical value ofyg is fairly small.
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In the same way, we obtain the new values of the kinetiaelation between the pole mass and the kinetic mass cannot
masses for theus,=2.5 and 2 GeV. The results are: for drastically change our results for the kinetic mass in the
Mso=2.5 GeV, we obtaimmy,=4.51 GeV and forus,y; ~ NNLO approximation. In any case, working with the values
=2 GeV, m,=4.52 GeV. of the u¢.« Where perturbation theory seems to be reliable,

Clearly, such transformation cannot be rigorously justi-we think we can provide a reasonable estimate for the value
fied; however, the fact that the numbers come closer to eac$¥ the low-scale running mass to NNLO.
other looks gratifying. Moreover, both numbers appear to
become closer to the value of the NNLO mass, which can be

obtained by examining the region of the maximal stability
. . VIIl. CONCLUSIONS
Msoi>3 GeV. However, in our final result, Eq75), we
give a conservative estimate afi;, using the results ob- In this paper, we have determined thejuark low-scale
tained for the soft scales down jo,.x=2 GeV. running mas$12] from the analysis of the QCD sum rules in

Let us also comment on how the choice of the value ofthe next-to-next-to-leading order. We have shown that the
ag(My) is reflected on our result. The important point is thatuse of this mass significantly improves the convergence of
this dependence is rather moderate, since the change in thige perturbation series for the moments of the spectral den-
initial value of as(Mz) is roughly equivalent to the change sjty. As the result of our analysis we obtain the value of the
N psort- AS we always work in the region where the depen-ginetic mass normalized at 1 GeV,m,,(1 GeV)=4.56
dence ofmy, on the normalization scale of the coupling + g gg GeV, and the corresponding value of & mass
constant is relatively weak, the same equally applies to the- — — . J—
dependence on the initial value @f at theZ resonance. The m, m(m)—.4.?i0.1 GeV. This resu_lt for théS mass of
dependence on the factorization scale is much weaker thdhe b quark is in good agreement with the value rafm)
on the soft renormalization scale and amounts to a variatiogbtained in Ref[7].
of at most 20 MeV in value of the kinetic mass. Nevertheless, there are both technical and conceptual dif-

We arrive finally at the following conservative estimate ferences between our paper and the recent NNLO determi-
for the kinetic mass extracted from the QCD sum rules:  nations of theb quark mass Refd.7,6,26. There are two

important technical differencies. First, the region of allowed

Min(1 GeV)=4.56+0.06 GeV. (75)  scale parameterfipag, Mract: wsort Which we were using in
this paper differs from similar regions in Ref&,,6,26. In

We stress, that the error in the above estimate is primarily oBef' [7] larger region of allowed scale parameters was con-

the theoretical origin. The experimental errors in the masse&dered. while in Refd.6,26] all the scales were fixed to be

and electronic decay widths of thé resonances, as well as 4= M- Our case is somewhat intermediate, since we consider
poor knowledge of the continuum part of the observablghe region of parameteres smaller than in iR€f, but larger
spectrum, are minor effects as compared with, e.g., the soffian in Refs[6,26]. Second, as we already noted, for the
scale dependence of the kinetic mass. For the above estimafafeen function in the threshold region we use K1)

we use our results fopg., between 4.5 and 2 GeV. For Whereas in Refs[6,7,26 effectively its expanded version
lower scales, the perturbation series for the moments doedas used. Formally these two approaches should be equiva-

not look reliable enough. lent to NNLO. However, Eq(71) leads to larger NNLO
After the value of the kinetic mass is found, one can ob-corrections for the pole mass than its expanded version.
tain the estimate of th&1S massm. To order O(a?) the Finally, an important conceptual difference of this paper

corresponding equation was given in Rgf6]. One obtains from Refs.[6,7,26 is that we did not try to determine the
pole mass of thé quark fromY sum rules, since we believe

5(5)24_24; 0.1 GeV. (76) that this procedure is rather ambiguous. We have shown that
the NNLO corrections to the pole mass are typically larger

Using Eq.(7), one can derive the evolution equation with than the NLO ones. Also the value of the pole mass ofthe
respect tqug and calculate the kinetic mass at different nor-quark is very sensitive to the scale of the strong coupling
malization scales. The only thing to be remembered is that gonstant that is used in the analysis. We think that these
choice of the normalization scajeq is limited by two in- features are in accorq with th(_a fact that th(_a pole mass of the
equalities:A ocp< ug<m. From this point of view, the pole quark cannot b_e rehably d_eflned theoretically and suffers
mass, which formally corresponds to the limi,—0, is ~ from an irreducible ambiguity of the order dfocp [9,10.
seen to be a completely artificial notion, since it includes aVe also note that similar bad convergence of perturbation
nonperturbative contribution treated in terms of the perturbaseries for the moments of the spectral density expressed
tion theory. through the pole mass, was observed in Rg§s7,26.

Our NNLO results may look incomplete since we use As a by-product of our study we have obtained the NNLO
relation (7) between the pole and kinetic masses, which isanalytical expression for the cross sect@ie” — QQ of the
valid to ,uQag order, while formally one needs to know this quark antiquark pair production in the threshold region. We
relation more accurately, tagae3 order. However, a careful have also given the NNLO expressions for the energy levels
examination based on the BLM estim&8 of the C’)(,U«Qag) and '@e wave functions at the origin for thg; bound states
terms, shows that unknown corrections in that order in thef QQ.

114009-12



b QUARK LOW-SCALE RUNNING MASS FROMY SUM RULES

ACKNOWLEDGMENTS

We are grateful to V.L. Chernyak, A.A. Penin, and N.G.

PHYSICAL REVIEW D 59 114009

R(s). The research of K.M. was supported in part by BMBF
under Grant No. BMBF-057KA92P, and by Graduiertenkol-
leg “Teilchenphysik” at the University of Karlsruhe. A.Y.

Uraltsev for useful discussions. We would like to thank S.l.was partially supported by the Russian Foundation for Basic
Eidelman for the discussion of the experimental data orResearch under Grant No. 98-02-17913.

[1] V. A. Novikov et al, Phys. Rev. Lett38, 626 (1977; V. A.
Novikov et al, Phys. Rep., Phys. Let€41, 1 (1978.

[2] M. B. Voloshin, ITEP Report No. 1980-2@Lnpublishegt M.
B. Voloshin and Yu. M. Zaitsev, Usp. Fiz. Nauks2 361
(1987 [Sov. Phys. Usp30, 553 (1987].

[3] M. B. Voloshin, Int. J. Mod. Phys. A0, 2865(1995.

[4] M. Jamin and A. Pich, Nucl. Phy8507, 334 (1997.

[5] J. H. Kthn, A. A. Penin, and A. A. Pivovarov, Nucl. Phys.
B534, 356(1998.

[6] A. A. Penin and A. A. Pivovarov, Phys. Lett. B35 413
(1998.

[7] A. H. Hoang, Phys. Rev. 39, 014039(1999.

[8] I. I. Bigi and N. G. Uraltsev, Phys. Lett. B21, 412(1994.

[9] I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, Phys.
Rev. D50, 2234(1994.

[10] M. Beneke and V. Braun, Nucl. PhyB246, 301 (1994).

[11] N. G. Uraltsev, Lectures given at “Heavy Flavour Physics: A

Probe of Nature’s Grand Design(International School of
Physics “Enrico Fermi’), Varenna, 1997, hep-ph/9804275.
[12] I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, Phys.
Rev. D56, 4017(1997.
[13] A. H. Hoang, Phys. Rev. B6, 5851(1997).

[14] A. H. Hoang and T. Teubner, Phys. Rev5B, 114023(1998.

[15] K. Melnikov and A. Yelkhovsky, Nucl. Phy®8528 59(1998.

[16] A. Czarnecki, K. Melnikov, and N. Uraltsev, Phys. Rev. Lett.
80, 3189(1998.

[17] S. J. Brodsky, G. Lepage, and P. Mackenzie, Phys. Re28,D
28 (1983.

[18] L. D. Landau and E. M. Lifschitz,Relativistic Quantum
Theory(Pergamon, Oxford, 1974Pt. 1.

[19] S. N. Gupta and S. F. Randford, Phys. Re\24)2309(1981);
25, 3430E) (1982; S. N. Gupta, S. F. Randford, and W. W.
Repko,ibid. 26, 3305(1982.

[20] W. Fischler, Nucl. PhysB129 157 (1977); A. Billoire, Phys.
Lett. 92B, 343(1980.

[21] M. Peter, Nucl. PhysB501, 471 (1997.

[22] Y. Schroder, Report No. DESY 98-191, hep-ph/9812205.

[23] A. Czarnecki and K. Melnikov, Phys. Rev. Le#®0, 2531
(1998.

[24] A. I. Milshtein and V. M. Strakhovenko, Phys. Le®0A, 447
(1982.

[25] A. Pineda and F. J. Yndurain, Phys. Rev58) 094022(1998.

[26] A. A. Penin and A. A. Pivovarov, Report No. INR-98-0986,
hep-ph/9807421.

114009-13



