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Operator analysis of l 51 baryon masses in largeNc QCD
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We consider in detail the mass operator analysis for the nonstrangel 51 excited baryons in largeNc QCD.
We present a straightforward procedure for constructing the largeNc baryon wave functions, and provide
complete analytic expressions for the matrix elements of all the independent isosinglet mass operators. We
discuss the relationship between the old-fashioned operator analyses based on nonrelativistic SU~6! symmetry
and the modern largeNc approach, which has a firmer theoretical foundation. We then suggest a possible
dynamical interpretation for the subset of operators preferred strongly by the data.@S0556-2821~99!07809-1#

PACS number~s!: 14.20.Gk, 12.39.Jh, 12.40.Yx
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I. INTRODUCTION

Although the QCD gauge coupling is numerically to
large to permit a perturbative expansion at low energ
QCD generalized toNc colors admits a consistent perturb
tive expansion in terms of 1/Nc @1#. Effective theories for
baryons have been constructed that take into account
symmetries and power counting rules of largeNc QCD, al-
lowing baryon observables to be computed to any des
order in the 1/Nc expansion. The largeNc approach has bee
applied with great success to the ground state baryons w
fill the SU~6! 56-plet, including studies of SU~6! spin-flavor
symmetry@2–6#, baryon masses@4,7–9#, magnetic moments
@4,8–12#, and axial vector current matrix elements@2,4,8,12#.

Whether the largeNc framework works equally well in
describing the phenomenology of excited baryon multipl
is a question under active investigation. Recent attention
focused on thel 51 orbitally excited baryons, the SU~6!
70-plet for Nc53. The first application of largeNc to excited
baryons was a phenomenological analysis of the strong
cays @13#. This was followed by a series of more form
papers on the strong decays and axial vector current m
elements@14,15#, as well as on the matrix elements of th
mass operators relevant at lowest nontrivial order@16#. Re-
cently, the first phenomenological study of the electrom
netic transitions was presented@17,18#, while a phenomeno-
logical analysis of the nonstrangel 51 baryon masses
including corrections up to relative order 1/Nc

2 , was under-
taken by the present authors@19#. This is the subject of fur-
ther consideration in the present work.

A number of issues not addressed in Ref.@19# are consid-
ered here. First, we explain how the nonstrange baryon s
are constructed for arbitraryNc . Our construction differs
from that of Ref.@14#, and we believe it is somewhat mor
transparent. After obtaining rules for simplifying the bary
operator analysis, which is essential for a proper counting
degrees of freedom in fits to observables, we present c
plete analytic expressions for the matrix elements of all i
singlet mass operators relevant to the orbitally excited ba
ons, as functions of the excited baryon quantum numb
This presentation is relevant not only for obtaining the la
0556-2821/99/59~11!/114008~16!/$15.00 59 1140
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Nc results presented in our earlier work but also for iden
fying operator relationships holding only to leading order
1/Nc . For example, the matrix elements of some of the o
erators are linearly dependent in theNc→` limit, even
though the matrix elements are independent forNc53. Thus,
two operators that appear naively to be of leading orde
1/Nc may in fact produce only one leading-order linear co
bination. The operator basis presented here is thus slig
improved over that of Ref.@19#. We present numerical re
sults omitted from Ref.@19# for reasons of space, namely, fi
to mass eigenvalues in which the mixing angles are p
dicted. We also consider the physical interpretation of o
effective field theory results. It was shown in Ref.@19# that
only two nontrivial operators have numerically substant
coefficients when fits to the nonstrangel 51 mass spectrum
are performed, and this in itself is suggestive of some s
cific dynamical mechanism. In this work we attempt to ch
acterize the dynamics producing these results.

This paper is organized as follows. In Sec. II we revie
the formulation of the largeNc operator analysis for excited
baryons. In Sec. III we describe in detail the construction
the baryon states in largeNc . Sections IV and V discuss
operator reduction rules and construction of the operator
sis relevant to the mixed-symmetry70-plet states. In Sec. VI
we present numerical results not included in our prior wo
In Sec. VII we compare our results to model-independ
analyses of the past and, in Sec. VIII, to phenomenolog
models. Section IX summarizes our conclusions.

II. FRAMEWORK

The observed baryons have the appropriate quantum n
bers to be assigned to irreducible representations of
group SU(6)3O(3). Here SU~6! contains the spin and fla
vor symmetry group SU(2)3SU(3), and O~3! generates
spatial rotations. We define ‘‘quarks’’q as fields in the (2,3)
representation of the spin-flavor group. An appropriat
symmetrized collection ofNc quarks has the quantum num
bers of a largeNc baryon. ForNc53, states constructed in
this way have the same quantum numbers as those obse
in nature.

If all quarks were much heavier thanLQCD, then one
©1999 The American Physical Society08-1
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could identify the fields above as the valence quarks of
nonrelativistic quark model. Here, however, we make
such assumption. Our quark fields simply provide a con
nient tensor product space in which one can define bary
with the correct total quantum numbers. The baryon wa
functions can be expressed as tensors, with separate in
for the spin and flavor degrees of freedom for each quark
the nonrelativistic quark model, all spin-flavor transform
tions of the baryon tensors are accomplished by acting
these indices with elements of the group SU~6!, which is an
exact symmetry of the theory in the limitmq→`, wheremq
is the quark mass. In the present case, we cannot~and do not!
assume that SU~6! is a good symmetry, since the quarks a
light, but rather simply parametrize the complete breaking
SU~6! by allowing symmetry-breaking matrices to act on t
quark spin and flavor indices. One achieves the most gen
breaking of quark spin and flavor symmetries by using po
nomials in the SU~6! generators

S s i

2
^ 1D , S 1^

ta

2 D , S s i

2
^

ta

2 D , ~2.1!

wheres i are the usual Pauli matrices. Theta are either Pauli
or Gell-Mann matrices, depending on whether one is in
ested in two or three quark flavors. We focus on the tw
flavor case in our operator analysis. By acting on the qu
spin and flavor indices of a baryon wave function, the tens
above parametrize the breaking of the corresponding sym
tries. Within a largeNc baryon multiplet, there arealways
some states for which these symmetry breaking effects
maximal. For example, consider the ground state baryo
which form a tower of states with spins ranging from 1/2
Nc/2. The fact that the largeNc multiplet contains states with
spins of orderNc implies that spin-spin interactions like

1

Nc
S2[

1

Nc
(

quarks
a,b

sW a

2
•

sW b

2
~2.2!

shift some baryon mass eigenvalues at orderNc . ~The reason
for the 1/Nc prefactor is explained below.! For example, for
the stretched case of a baryon with spinNc/2, this matrix
element evaluates to 1/Nc3Nc/23(Nc/211). On the other
hand, the mean mass of the multiplet scales asNc , since
there areNc quarks in a baryon state. Thus there are alw
spin-dependent splittings somewhere in the multiplet that
comparable to the average multiplet mass. While this p
vents us from speaking of SU~6! as an approximate symme
try, it is nonetheless true that the breaking of this would
symmetry is a small effect on states of small total spin. Si
the physical, nonstrange baryons are chosen to have fi
total spin and isospin eigenvalues in the largeNc limit, it
follows that matrix elements ofs i /Nc and ta/Nc summed
over all quarks are of order 1/Nc , and hence can be treate
as small numbers. Thus, this parametrization of the comp
breaking of SU~6! provides an operator basis that is hiera
chical in 1/Nc on the physical baryon states. This fact allow
the construction of an effective theory for baryons that
both complete and predictive.
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Let us now specify the largeNc counting rules more pre
cisely. We define ann-body operator as one that acts onn
quark lines in a largeNc baryon state. Since we work in a
effective theory, we arrive at a complete operator basis in
pendent of any specific dynamical assumptions beyond
of QCD as the underlying theory. Ann-body operator has a
coefficient 1/Nc

n21 , reflecting the minimumn21 gluon ex-
changes necessary to generate the operator in QCD. H
ever, the overall effect of an operator on a given bary
observable is determined not only by the size of the oper
coefficient, but also by the compensating factors ofNc that
may arise when a spin-flavor generator is summed over
Nc quark lines in a baryon state. As discussed earlier,
generatorss i and ta sum incoherently overNc quark lines
since the spin and isospin eigenvalues for the physical b
ons are of order 1, even when one extrapolates to largeNc .
The generators ita, however, sums coherently, as is show
later by explicit computation@see Eq.~A1!#. Thus, the con-
tribution of ann-body operator to a given baryon observab
is of order Nc

11m2n , wherem is the number of times the
generators ita appears. Given the set of all operators co
structed by combining the generators in~2.1!, linearly depen-
dent operators of higher order can often be eliminated by
of operator reduction rules. For the ground state baryo
these rules were formalized by Dashen, Jenkins and Man
@8#; the generalization to excited baryons is considered
some detail in Sec. IV.

The discussion above generalizes in a straightforw
way to l 51 baryons with one orbitally excited quark. In th
large Nc limit, such baryons consist of one distinguishab
excited quark in the collective potential generated byNc
21 ground state quarks. One defines separate SU~6! genera-
tors that act on the excited quark and on the nonexc
‘‘core’’ quarks, respectively. In addition, one introduces t
orbital angular momentum generatorsl i to parametrize the
breaking of O~3!. Mass operators relevant to thel 51 bary-
ons are formed by contracting generators in this exten
set, as we discuss in Sec. IV. Again, an operator hierarch
obtained after taking into account the factors of 1/Nc that
appear in operator coefficients and the compensating fac
of Nc that arise from coherent sums over theO(Nc) ground
state core quarks.

III. STATES

The defining feature of baryon states filling the mixe
symmetry negative-parity SU~6! 70-plet is that the sole unit
of orbital angular momentum is carried by the excited qu
relative to the other two ground-state core quarks. The c
quarks are separately symmetrized on spin-flavor and sp
indices, while thel 51 excited quark is antisymmetrize
with respect to the other two. This construction produces
70-dimensional representation of SU~6!, and is phenomeno
logically relevant: Every negative-parity baryon with ma
less than 2 GeV has the appropriate spin, isospin,
strangeness quantum numbers to belong to a single70-plet,
although some of the strange baryons needed to fill the70
have not yet been observed. If one focuses upon nonstra
states alone, as is done in this work, then the relevant m
8-2
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OPERATOR ANALYSIS OFl51 BARYON MASSES IN . . . PHYSICAL REVIEW D 59 114008
tiplet becomes a20 of SU~4!, for which all component spin
and isospin multiplets have been seen.

The mixed symmetry baryon multiplet is generalized
Nc.3 by symmetrizing now amongNc21 core quarks, as
indicated by the Young diagram in Fig. 1. Although th
extrapolation is not unique, it is the most natural in prese
ing symmetry properties familiar fromNc53. Total symme-
try of the core is also the essential ingredient rendering
study of the orbitally excited baryons tractable in largeNc ,
since it greatly reduces the number of degrees of freedom
particular, the symmetry properties of core states are c
pletely specified by their total strangeness, spin, and isos
For nonstrange cores, the situation is even simpler: Owin
the total symmetry of the spin-flavor state, spin and isos
are equal in this case. The core state is denoted by

uSc5I c ;m1 ,a1&, ~3.1!

wherem’s anda ’s here and below denote projections of sp
and isospin, respectively, and the subscriptc denotes core.
The excited quark state is denoted

u1/2;m2 ,a2&. ~3.2!

Finally, the orbital O~3! eigenstate is labeled in obvious n
tation by

u l ,ml&. ~3.3!

Of course, physical states are labeled by total spinJ,J3
and isospinI ,I 3. The states we construct here also adm
separate specification of the total spinS carried by the
quarks. Nonstrange mixed-symmetry SU~6! states with one
spin-1/2, isospin-1/2 quark singled out have total quark s
and isospin related byS5I or I 61, with each ofS and I in
the range 1/2–Nc/2. The sole exception is that there are
mixed-symmetryS5I 5Nc/2 states. Let us definer[S2I
561,0 andh/2[I c2I 561/2. Then obtaining the desire
state by coupling the spins and isospins is achieved, by c
struction, by the use of Clebsch-Gordan coefficients:

uJJ3 ;II 3~ l ,S5I 1r!&

5 (
ml ,m1 ,a1 ,h

S l
ml

S
mU J

J3
D

3S Sc

m1

1/2
m2

US
mD S I c

a1

1/2
a2

U I
I 3

D
3cr,huSc5I c5I 1h/2;m1 ,a1&

^ u1/2;m2 ,a2& ^ u l ,ml&. ~3.4!

States with strangeness are defined analogously, excep
SU~3! Clebsch-Gordan coefficients appear in that case.

FIG. 1. Young diagram for the SU(2F) mixed symmetry repre-
sentation, the multiplet containing largeNc orbitally excited bary-
ons with l 51. The top row hasNc21 boxes.
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only notation in this expression yet undefined is the coe
cientcrh ; it simply represents that more than one irreducib
SU~6! or SU~4! representation can occur in the product of t
(Nc21)-quark core and the one-quark excited state, and
the numberscrh represent elements of orthogonal basis
tations. In the present case, elementary manipulations s
that only the totally symmetric and mixed-symmetry rep
sentations result. SinceS2Sc561/2, one hasc6,750 for
any multiplet. All nonstrange states in the symmetric rep
sentation haveS5I , and thusc6,6

SYM50, c6,6
MS 51. The only

complicated mixing occurs forc0,6 , and we obtain the mix-
ing by means of a trick: The symmetric and mixed-symme
multiplets possess different quadratic SU~4! or SU~6! Ca-
simir invariants, and thus one may compute the value of
Casimir operator both on the full state on the left-hand s
of Eq. ~3.4!, where it assumes a known value~see next sec-
tion!, or on the separate core and excited states on the ri
hand side of Eq.~3.4! using the matrix elements presented
Appendix A. After a straightforward calculation, one find
for the S5I nonstrange states,

c01
MS51AS@Nc12~S11!#

Nc~2S11!
and

c02
MS52A~S11!~Nc22S!

Nc~2S11!
, ~3.5!

and the coefficients for symmetric states are the orthogo
combination,c01

SYM52c02
MS , c02

SYM5c01
MS .

IV. REDUCTIONS

There are numerous operator identities or operator red
tion rules which are known for the ground state baryons a
which can be used to eliminate many operator products fr
lists of candidate independent operators. The identities
not general to all representations, but work when applied
ground state baryons. The proofs of many of them dep
upon the symmetry of the ground state.

In this section we study operator reductions applicable
the mixed-symmetry70-plet. Technical details are provide
in Appendix B. To put our findings in context, recall that th
operator reductions for the ground state come from th
sources. Two of them are the quadratic and cubic Cas
identities. The third comes because matrix elements of
operator between a state and its conjugate state are zero
operator does not belong to a representation that can
found in ~for the ground state withNc53) 56̄^ 56. There
are products of two generators of SU~6!, or rather certain
sums of products of these generators, that belong to re
sentations not found in56̄^ 56. Those sums are then zer
and this is the third source of operator identities. Refere
@8# investigates whether further identities can be found
volving products of three generators, and shows that the
swer is negative.

The basic operators that we start with are the genera
of SU(2F), given in a quark basis as
8-3
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CARLSON, CARONE, GOITY, AND LEBED PHYSICAL REVIEW D59 114008
Si[qa
† S s i

2
^ 1Dqa,

Ta[qa
† S 1^

ta

2 Dqa,

Gia[qa
† S s i

2
^

ta

2 Dqa, ~4.1!

wheres i and ta are the spin and flavor matrices. The co
lected and properly normalized SU(2F) adjoint representa
tion one-body operatorsSi /AF, Ta/A2, andA2Gia satisfy an
SU(2F) algebra like that of their underlying spin-flavo
generators.1 Other operatorsO can, since we are just inter
ested in their group theoretical behavior, be built from pro
ucts of these generators@8#.

For the70-plet, first note that the mixed-symmetry repr
sentation consists of a symmetric core plus one exc
quark. If one defines, in analogy with Eqs.~4.1!, separate
one-body operatorsSc ,Tc ,Gc acting on the core ands,t,g
on the excited quark line, then the operator reduction ru
for the ground state@8# may be used on the core operato
The only difference is thatNc→Nc21 in the core identities,
to account for the different numbers of quarks present.

For the70-plet overall, we find that the quadratic Casim
identity leads to a new operator reduction rule. Unfor
nately, the other two sources of identities for the ground s
lead to no identities for the70-plet. However, there are som
identities that come from considering products of three c
rents.

The quadratic Casimir identity for an arbitrary SU(2F)
representationR reads

$q†LAq,q†LAq%[2C2~R!1, ~4.2!

whereLA are the spin-flavor generators in the representa
R. For the mixed-symmetry representations we are look
at, denoted MSNc

, the Casimir invariant may be shown to b
~see@20#!

C2~MSNc
!5

Nc

4F
@Nc~2F21!12F~2F23!#. ~4.3!

In the mixed-symmetry case,LA is the sum of core and
excited generators~i.e., T5Tc1t, etc.!, and

C2~S1!5
1

4F
~4F221!,

C2~SNc21!5
1

4F
~Nc21!~Nc12F21!~2F21!,

~4.4!

1The normalizations are chosen so that the underlying spin-fla
generatorsLA[$(s i /2^ 1)/AF,(1^ la/2)/A2,A2(s i /2^ la/2)% sat-
isfy Tr LALB5

1
2 dAB.
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where SNc21 is the symmetric representation withNc21

quarks and S1 is just the fundamental representation of
single quark. This means that the quadratic Casimir iden
for MSNc

can be expressed as

2sSc1FtTc14FgGc52
1

2
~Nc12F21!, ~4.5!

so that the operatorgGc may always be eliminated in favo
of sSc and tTc .

The cubic Casimir identity reads,

dABC~q†LAq!~q†LBq!~q†LCq![C3~R!1. ~4.6!

For products of two generators contracted withdABC, one
may write

dABC~q†LBq!~q†LCq![
C3~R!

C2~R!
q†LAq1XA~R!,

~4.7!

whereXA is that part of the two-body combination on the le
hand side annihilated by contraction withq†LAq. For com-
pletely symmetric representations,XA50, as was shown ex
plicitly in @8#; one can show the same for completely an
symmetric representations. In such cases, one may deri
number of operator reduction rules. However,XA need not
be zero for arbitrary representations, since nothing gua
tees that all spin-flavor combinations of the quark operat
(q†q)(q†q) reduce to a single (q†q) for a representation o
arbitrary symmetry properties. We have found explicitly th
XAÞ0 for the mixed-symmetry representation by computi
several matrix elements containing both sides of Eq.~4.7!.
One concludes that no two-body operator reduction rules
low from the cubic Casimir relation for the mixed-symmet
representation.

Of course, the true cubic Casimir relation~4.6! holds in
general. We have investigated it for the mixed-symme
representation, and find no new operator relations, but ra
the Casimir identity

2

3 FC3~MSNc
!2C3~SNc21!2C3~S1!

C2~MSNc
!2C2~SNc21!2C2~S1!G

5
C3~SNc21!

C2~SNc21!
1

C3~S1!

C2~S1!
, ~4.8!

which can indeed be verified, using the previous quadr
Casimir identities and

C3~MSNc
!5

Nc

4F2
~F21!~Nc12F !@Nc~2F21!

1F~2F27!#,

or
8-4



th
a
w

od

-
u
de
th
op

d
ea
in
e

el-

-
ol
r
re

e
fo
p
0
t f

-

eir
-
ng
18

er 9

ary
or
-
en-
ar

ts
n

een
but

on-
ors

e

r-

a-

OPERATOR ANALYSIS OFl51 BARYON MASSES IN . . . PHYSICAL REVIEW D 59 114008
C3~SNc21!5
1

4F2
~Nc21!~Nc12F21!

3~Nc1F21!~2F21!~F21!,

C3~S1!5
1

4F2
~F221!~4F221!. ~4.9!

Regarding the last source of operator identities for
symmetric case, the statement for the mixed-symmetry c
is simple. All representations that appear in a product of t
one-body operators also appear in the product MS¯̂MS. No
additional operator identities follow.

For the mixed-symmetry representation at the three-b
level, there are two large representations~called b̄b0 and
ad j3 in Appendix B! that annihilate the baryon states. How
ever, one can show that the operators in our list that co
have overlap with these representations are all indepen
when acting on the physical baryon states. Thus, no fur
operator reduction rules occur for the flavor-singlet mass
erators.

The summary of operator reduction rules for the mixe
symmetry representation nonstrange baryons therefore r
as follows: Decompose the mixed-symmetry generators
sums of separate core and excited quark pieces as lab
above. One may apply the operator reduction rules of@8# to
the core generators alone, and one may also eliminategGc .

V. COUNTING OPERATORS

The building blocks from which one forms operators r
evant tol 51 baryons consists of the core operatorsSc

i , Tc
a ,

andGc
ia , the excited quark operatorssi , ta, andgia, and the

orbital angular momentum operatorl i . The mixed-symmetry
representation baryons have orbital quantum numberl 51,
and therefore the only required combinations ofl i are 1(D l
50), l i(D l 51), and theD l 52 tensor

l ~2!i j [
1

2
$ l i ,l j%2

l 2

3
d i j . ~5.1!

Since the physicalNc53 baryons have only two core va
lence quarks, one need only consider operators that inv
up to two core quarks in the largeNc analysis. The operato
reduction rules of@8# state that one may eliminate all co
contractions on flavor indices usingdab, dabc, or f abc, or on
spin indices in twoGc’s usingd i j or e i jk .

We construct in this paper the complete set of tim
reversal even, rotationally invariant, isosinglet operators
the nonstrange excited baryons. There are 18 such inde
dent operators.@Incidentally, for three flavors there are 2
operators. The difference between the two cases is tha
two flavors one has an additional operator reduction

Sc
i Gc

ia5
1

4
~Nc11!Tc

a . ~5.2!
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For more than two flavors, the operatorstScGc and
l igiaSc

j Gc
ja must be included#. For the 18 operators surviving

for two flavors the explicit power ofNc for a given operator
is determined by using the largeNc counting given in Sec. II.
Factors of 1/Nc

n21 are included in the definition of the opera
tors, as can be seen in Table I. The full largeNc counting of
the matrix elements isO(Nc

12n1m), wherem is the number
of times the coherent operatorGc

ia appears.~For more than
two flavors,Tc

a is also potentially coherent.! In Table I we
have organized the operators by the overall order of th
matrix elements in the 1/Nc expansion. Note that the non
strange 70-plet baryons require 7 masses and 2 mixi
angles, so that matrix elements of 9 operators of the
shown are necessarily linearly dependent upon the oth
when restricted to these states.

Furthermore, the analysis here is carried out for arbitr
values ofNc , and the matrix elements of a given operat
are usually not homogeneous inNc . It can happen that ma
trix elements of a given set of operators are linearly indep
dent forNc53 but dependent for other values, in particul
Nc→`. This turns out to be the case for^ ls& and ^ l tGc&,
which are both O(Nc

0), but ^ ls14l tGc /(Nc11)& is
O(1/Nc), so that only one of the original two truly represen
an independentO(Nc

0) operator. This result is dependent o
the particular states~here nonstrange baryons! used for
evaluating the matrix elements. Since no operator has b
eliminated, such a result is not an operator reduction,
rather what we call an operator demotion.

In our analysis of the masses and mixing angles of n
strange baryons, we begin with the leading operat
Nc1, ls, and l (2)gGc /Nc ~see Table I!, which are indepen-
dent for bothNc53 andNc→`. We then add subsets of th

TABLE I. The 18 linearly independent spin-singlet flavo
singlet operators forF52, organized by powers of 1/Nc in their
matrix elements. ForF.2, and ignoring possible coherence in m
trix elements of Tc

a , one must include (1/Nc
2)tScGc and

(1/Nc
2) l igiaSc

j Gc
ja in row Nc

21 .

Order of
matrix element Operator

Nc
1 Nc1

Nc
0 ls,

1

Nc
ltGc ,

1

Nc
l~2!gGc,

Nc
21

1

Nc
tTc ,

1

Nc
lSc ,

1

Nc
lgTc ,

1

Nc
Sc

2 ,
1

Nc
sSc ,

1

Nc
l~2!sSc ,

1

Nc
2
l~2!t$Sc ,Gc%,

1

Nc
2
ligja$Sc

j ,Gc
ia%

Nc
22

1

Nc
2
~lSc!~tTc!,

1

Nc
2
gScTc ,

1

Nc
2 l~2!ScSc ,

1

Nc
2
l~2!gScTc ,

1

Nc
2 $lSc ,sSc%,

1

Nc
2
~ls!Sc

2

8-5
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8 operators appearing atO(1/Nc) in Table I plus the de-
motedO(1/Nc) combinationls14l tGc /(Nc11), in search
of a complete set of 9 independent operators. A numbe
subsets consisting of 6 suchO(1/Nc) operators complete th
basis acting upon the baryon states forNc53. As one can
show by considering all possibilities, at least one of the
operators is linearly dependent forNc→`. This means that
one combination of theO(1/Nc

1) operators can be demoted
O(1/Nc

2). Using the labels of Table II, we chooseO9[(Nc

11)/NcO41O518l igja$Sc
j ,Gc

ia%/Nc
2 , which hasO(1/Nc

2)
matrix elements. This gives us an optimal basis, which
define as a basis where the number of demoted operator
binations is maximized.2

The set of operators we choose, along with their ma
elements computed for the nonstrangel 51 baryon states, is
presented in Table II. This set is identical to that in Ref.@19#,
except that we replacetTc /Nc by sSc /Nc , and
l igja$Sc

j ,Gc
ia%/Nc

2 by the demoted operator defined immed
ately above. Table III presents, for completeness, the ma
elements of the remaining 9 operators.

VI. NUMERICAL ANALYSIS

The nine mass parameters of the nonstrangel 51 baryons
appearing atNc53 consist of diagonal elements of tw
isospin-3/2 states,D1/2 andD3/2, and five isospin-1/2 states
N1/2, N1/28 , N3/2, N3/28 , and N5/28 ; here the subscript indi
cates total baryon spin, while total quark spin is indicated
the absence (1/2) or presence (3/2) of a prime. To round
the set of mass parameters, observe that there is one m
angle forN1/28 -N1/2 and one forN3/28 -N3/2.

In Ref. @19# we showed that fits of these nine mass p
rameters lead to an unexpected result: Only a few of
coefficients of the effective Hamiltonian turn out to be of
natural size~namely, about a few hundred MeV!, with the
rest being anomalously small or even consistent with ze
This analysis was performed with certain particular sets
operators that did not fully take into account the demotio
described above, and one may wonder whether these re
were a fluke resulting from an unfortunate choice of basis
the current work we possess rules for obtaining optimal
moted sets of operators as described in the previous sec
and have found that fits using a number of such differ
choices lead to similar results. In particular, with the sa
mass eigenvalues and mixing angles as in@19# and the op-
erator basis listed in Table II, one obtains the coefficientsci
defined by the relations

2Beginning with the three leading-order operators, there are
merous other choices for the remaining six that provide an oper
basis that is linearly independent forNc53 and rank 8 forNc

→`. Using the operator definitions in Tables II and III, and letti
O 98[ l igja$Sc

j ,Gc
ia%, one can check that all such sets containO6 and

O 98 , one ofO7 andO11, one ofO8 andO12, and two ofO4 , O5,
andO10. An optimal basis can be formed by taking appropria
linear combinations.
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where j 51, . . . ,9 represent mass bilinears, the rows
Table II. The results of this inversion are presented in Ta
IV. One sees that this fit is nearly identical to that of Tab
III in @19#, in particular that the operators1, l (2)gGc /Nc ,
and Sc

2/Nc again appear to be by far the most significa
ReplacingtTc by sSc and using the demoted 1/Nc

2 combina-
tion O9 has little effect except to drastically decrease coe
cient uncertainties in some cases.

The chief implication of Table IV is to reinforce confi
dence in the fits given in Ref.@19#: The operators chose
were not completely optimal, but nevertheless represent
optimal choice quite well. Moreover, the operators used
the other fits~Tables III, IV, V! in @19# are the same as in th
basis used here, and therefore direct comparisons betw
those fits and this work are immediate.

In fact, the only other fits we wish to present here a
those in which the mixing angles are neither taken from p
decays@13# nor photoproduction data@17#, but rather make
use only of the seven measured mass eigenvalues and pr
the mixing angles. Tables V, VI, and VII are the analogu
to Tables III, IV, and V in@19#, respectively. Note particu
larly the following features: In Table V, it is again seen th
the three leading operatorsO1 ,O2 ,O3 in the 1/Nc ~ordersNc

1

andNc
0 only! give a poor accounting for the data, even wh

including only mass eigenvalues; furthermore, the predic
mixing angles are nowhere near the experimental val
from @13# or @17#. This is no surprise, since one expects t
next order corrections to be of the same order as the m
splittings. Indeed, when three additional operatorsO4,5,6,
with matrix elements ofO(1/Nc), are included~Table VI!,
the situation becomes much better: In addition to an ex
lent x2/NDF of 0.23, one finds that the mixing angles pr
dicted from a mass analysis naturally approach the va
obtained from decays. Nevertheless, onlyO1 , O3, andO6
appear significant; what if one performs a fit using only tho
three operators? The answer is in Table VII. Here the res
are most surprising: Now the operatorO3 actually adjusts its
coefficient to give asmall contribution; thex2/NDF50.73 is
not bad, but while the prediction for the spin-3/2 angle
excellent, the prediction for the spin-1/2 angle is off by abo
2s. Even thoughO3 now looks insignificant, it is actually
required to give nonzero values to the mixing angles,
observe from Table II thatO1 andO6 do not contribute to
mixing.

Also, neitherO3 nor O6 contribute to the mass splitting
D3/2-D1/2. Among theO(1/Nc) or larger operators, only the
spin-orbit terms split theDJ . In fact, the main effect of the
spin-orbit terms is to split theDJ states; they also contribut
to the nucleon mixing, but their effect on the nucleon mas
is slight because of cancellations.~The coefficients of the
two spin-orbit terms have opposite signs, unlike what wo
be expected from a single overall spin-orbit terml •S5 l •s
1 l •Sc). So while the spin-orbit terms are small compared
1/Nc expectations, they do have some importance and
may expect that the errors in the two coefficients are co

u-
or
8-6



3. The third and sixth rows correspond to

^O9&

c&
Nc11

Nc

^O4&1^O5&1
8

Nc
2 ^ l igja$Sc

j ,Gc
ia%&

2
1

3Nc
3

~17Nc23!

1
5

3Nc
2

c13

2Nc
2

1

3Nc
2
ANc13

2Nc

1
1

6Nc
3

~17Nc23!

1
2

3Nc
2

Nc13!

Nc
2

1

6Nc
2
A5~Nc13!

Nc

2
1

Nc
2

1
4

3Nc
2

2
2

3Nc
2

O
P

E
R

A
T

O
R

A
N

A
LY

S
IS

O
F
l5

1
B

A
R

Y
O

N
M

A
S

S
E

S
IN

...
P

H
Y

S
IC

A
L

R
E

V
IE

W
D

59
114008

114008-7
TABLE II. Matrix elements^Oi& j of 9 operators, labeled asO1 ,O2 , . . . ,O9, respectively, that are linearly independent forNc5
off-diagonal matrix elements.

^O1& ^O2& ^O3& ^O4& ^O5& ^O6& ^O7& ^O8&

Nc^1& ^ ls&
1

Nc
^l~2!gGc& Kls1

4

Nc11
ltGcL 1

Nc
^lSc&

1

Nc
^Sc

2&
1

Nc
^sSc&

1

Nc
^l~2!sS

N1/2 Nc 2
1

3Nc
~2Nc23! 0 1

2

Nc11
2

1

3Nc
2

~Nc13! 1
1

2Nc
2

~Nc13! 2
1

4Nc
2

~Nc13! 0

N1/28 Nc 2
5
6 2

5

48Nc
~Nc11! 0 2

5

3Nc
1

2

Nc
1

1

2Nc
1

5

6Nc

N1/28 -N1/20 2
1

3
ANc13

2Nc
2

5

48Nc
ANc13

2Nc
~2Nc21! 2

1

Nc11
ANc13

2Nc
1

1

3Nc
ANc13

2Nc

0 0 1
5

12Nc
AN

N3/2 Nc 1
1

6Nc
~2Nc23! 0 2

1

Nc11
1

1

6Nc
2

~Nc13! 1
1

2Nc
2

~Nc13! 2
1

4Nc
2

~Nc13! 0

N3/28 Nc 2
1
3 1

1

12Nc
~Nc11! 0 2

2

3Nc
1

2

Nc
1

1

2Nc
2

2

3Nc

N3/28 -N3/20 2
1

6
A5~Nc13!

Nc

1
1

96Nc
A5~Nc13!

Nc

3~2Nc21!

2
1

2~Nc11!
A5~Nc13!

Nc

1
1

6Nc
A5~Nc13!

Nc

0 0 2
1

24Nc
A5~

N5/28 Nc 1
1
2 2

1

48Nc
~Nc11!

0
1

1

Nc
1

2

Nc
1

1

2Nc
1

1

6Nc

D1/2 Nc 1
1
3

0 0 2
4

3Nc
1

2

Nc
2

1

Nc
0

D3/2 Nc 2
1
6

0 0 1
2

3Nc
1

2

Nc
2

1

Nc
0



^O17& ^O18&

c&
1

Nc
2 ^l~2!ScSc&

1

Nc
2 ^l~2!gScTc&

13! 0 0

1
5

6Nc
2

2
5

6Nc
2

2
5

6Nc
2
ANc13

2Nc
2

5

12Nc
2
ANc13

2Nc

13! 0 0

2
2

3Nc
2

1
2

3Nc
2

1
1

12Nc
2
A5~Nc13!

Nc
1

1

24Nc
2
A5~Nc13!

Nc

1
1

6Nc
2

2
1

6Nc
2

0 0

0 0

C
A

R
LS

O
N

,
C

A
R

O
N

E
,

G
O

IT
Y

,
A

N
D

LE
B

E
D

P
H

Y
S

IC
A

L
R

E
V

IE
W

D59
114008

114008-8
TABLE III. As in Table II, for operators labeled asO10,O11, . . . ,O18.

^O10& ^O11& ^O12& ^O13& ^O14& ^O15& ^O16&

1

Nc
^lgTc&

1

Nc
^tTc&

1

Nc
2 ^l~2!t$Sc ,Gc%&

1

Nc
2 ^~ls!Sc

2&
1

Nc
2 ^$lSc ,sSc%&

1

Nc
2 ^~lSc!~tTc!&

1

Nc
2 ^gScT

N1/2 2
1

12Nc
2

~Nc13! 2
1

4Nc
2

~Nc13! 0 1
1

6Nc
3

~Nc13! 1
2

3Nc
3

~Nc13! 1
1

3Nc
3

~Nc13! 1
1

4Nc
3

~Nc

N1/28 1
5

6Nc
2

1

Nc
2

5

24Nc
2

~Nc11! 2
5

3Nc
2

2
5

3Nc
2

1
5

3Nc
2

2
1

2Nc
2

N1/28 -N1/2 1
1

3Nc
ANc13

2Nc

0 1
5

24Nc
2
ANc13

2Nc
~Nc11! 2

2

3Nc
2
ANc13

2Nc
2

1

6Nc
2
ANc13

2Nc
2

1

3Nc
2
ANc13

2Nc
0

N3/2 1
1

24Nc
2

~Nc13! 2
1

4Nc
2

~Nc13! 0 2
1

12Nc
3

~Nc13! 2
1

3Nc
3

~Nc13! 2
1

6Nc
3

~Nc13! 1
1

4Nc
3

~Nc

N3/28 1
1

3Nc
2

1

Nc
1

1

6Nc
2

~Nc11! 2
2

3Nc
2

2
2

3Nc
2

1
2

3Nc
2

2
1

2Nc
2

N3/28 -N3/2 1
1

6Nc
A5~Nc13!

Nc

0 2
1

48Nc
2
A5~Nc13!

Nc
~Nc11! 2

1

3Nc
2
A5~Nc13!

Nc
2

1

12Nc
2
A5~Nc13!

Nc
2

1

6Nc
2
A5~Nc13!

Nc
0

N5/28 2
1

2Nc
2

1

Nc
2

1

24Nc
2

~Nc11! 1
1

Nc
2

1
1

Nc
2

2
1

Nc
2

2
1

2Nc
2

D1/2 1
1

6Nc
1

1

2Nc
0 1

2

3Nc
2

1
8

3Nc
2

2
2

3Nc
2

2
1

2Nc
2

D3/2 2
1

12Nc
1

1

2Nc
0 2

1

3Nc
2

2
4

3Nc
2

1
1

3Nc
2

2
1

2Nc
2
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TABLE IV. Operator coefficients in GeV, assuming the complete set of Table II. The vertical divis
separate operators whose contributions to the baryon masses are of ordersNc

1 , Nc
0 , Nc

21 , andNc
22 , respec-

tively.

c1 c2 c3 c4 c5 c6 c7 c8 c9

10.463 20.036 10.369 10.087 10.086 10.438 20.040 10.048 10.001
60.020 60.041 60.208 60.097 60.080 60.102 60.074 60.172 60.084
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lated. Reduced experimental error bars on theDJ states
would clarify the role of and need for the spin-orbit terms

We conclude from the results presented here and in R
@19# that the largeNc operator analysis reproduces both t
experimentally measured masses and the mixing angles
tracted from the strong and electromagnetic decays. We h
shown here that fits to the mass eigenvalues alone ma
used to predict these angles successfully, and have found
this result holds, to varying degree, in both six and th
operator fits. These fits reveal that thex2 function is shallow
with respect to the mixing angles, so that a smallx2 is ob-
tained in Table VII using only three operators, even when
mixing angle predictions begin to diverge from the dec
analysis results. Our conclusions are unaffected by
choice of operator basis, which differs from that of Ref.@19#.

VII. VINTAGE SU „6… ANALYSES

Operator analyses of baryon masses were performed
before the 1/Nc expansion was proposed. A main differen
between modern work and the older work is that one
estimate the importance of each operator by the order in 1Nc
at which it contributes to the mass. Inevitably, there are ot
differences as well. In this section, we contrast what we h
done with some of the early work.

Greenberg and Resnikoff@21# ~GR! led the way in per-
forming an analysis based on SU~6!, and were later joined by
Horgan and Dalitz@22# ~HD!. Additionally, there was work
on numerical fits to the baryon mass spectrum separa
from those papers that laid out the operators. At a minim
in this context, we should mention the work in Refs.@23–
26#. The last of these papers also corrected some small~as it
turned out! numerical errors in the previous analyses. All t
analyses make the assumption that only one- and two-b
operators enter. For the nonstrange members of the70-plet,
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the early analyses found 5 independent operators, thre
which are independent of the orbital angular momentuml,
one linear inl, and one quadratic inl. Five operators is many
fewer than we use. We need to explain how the differen
come about. We will use the notation of GR and give a br
reprise of their logic.

Note before starting that GR and HD use wave functio
that involve only relative position coordinates, whereas
use Hartree or independent particle wave functions, tha
wave functions relative to a fixed center of mass. The H
tree wave functions are exact in theNc→` limit. This leads
to some difference in reckoning what is a one-body, tw
body, or three-body operator. For example, we considerl and
l •s as one body operators. The equivalent in GR or H
would be a sum over quarksa of La•sa , whereLa is in-
terpreted@22# as the orbital angular momentum of one qua
with respect to the center of mass of the others. They wo
consider this a three body operator, and do not use it.
differences between the older work and the present work
to this point of counting are least apparent in operators w
no factors of angular momentum, and we turn first to the

For one body terms, one needs operators that have m
elements between the6 and 6̄ of SU~6!, and one knows tha

6^ 6̄51% 35. ~7.1!

Looking for suitable spin-0 operators on the right hand si
there is only theT1

1. The notation isTdimSU(6)
dimSU(3), and we only

consider SU~3! singlets since we are considering neith
strangeness nor isospin breaking. For two-body operat
we first note that

6^ 6515% 21, ~7.2!

where the15 is antisymmetric and the21 is symmetric. Then
we examine the product
arison
TABLE V. Three parameter fit using operatorsO1,2,3, giving x2/NDF56.89/451.72. The operators in-
cluded formally yield the lowest order nontrivial contributions to the masses in the 1/Nc expansion. Masses
are given in MeV, angles in radians. Experimental data for angles here and below are for comp
purposes and not used for fitting. Parameters~GeV!: c150.54260.002,c250.07560.009,c3520.437
60.051.

Fit Expt. Fit Expt.

D(1700) 1615 1720650 N(1520) 1520 152368
D(1620) 1653 1645630 N(1535) 1562 1538618
N(1675) 1677 167868 uN1 ~pred! 2.4760.04 0.6160.09
N(1700) 1674 1700650 uN3 ~pred! 2.6560.03 3.0460.15
N(1650) 1666 1660620
8-9
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21^ 21̄51% 35% 405 ~7.3!

for suitable operators, finding anotherT1
1 and aT405

1 . Simi-
larly, the product

15^ 15̄51% 35% 189 ~7.4!

yields still one moreT1
1 and aT189

1 . All the T1
1’s give equiva-

lent results for a given multiplet; so we are left with 3 ind
pendent spin-0 mass operator candidates, namelyT1

1, T189
1 ,

andT405
1 .

On our list, we have four one- and two-body operato
that contain no orbital angular momentum. They are

1,Sc
2 ,s•Sc and t•Tc . ~7.5!

From our viewpoint, there is a further, tacit, assumpti
made by the earlier authors@21,22#: Their two-body opera-
tors do not distinguish between, in our language, two S-w
quarks and an S-wave and P-wave pair. This implies
whatever physics leads to thes i•s j terms in the effective
mass operator would give the same coefficient for any pai
quarks, whatever their wave functions. If so, the coefficie
of our Sc

2 ands•Sc terms would not be independent, and w
would have the same number of independent spin-0 op
tors as GR or HD. Indeed, with explicit matrix elemen
given by GR, we can verify the linear dependence of o
operators upon theirs or vice-versa.

Next we look for spin-1 operators that can be dotted i
the orbital angular momentum to give rotationally invaria
operators. GR and HD only consider angular moment

TABLE VI. Six parameter fit using operatorsO1, . . . ,6, giving
x2/NDF50.24/150.24. Masses are given in MeV, angles in rad
ans. Parameters~GeV!: c150.46660.014, c2520.03060.039,
c350.30460.142, c450.06860.101, c550.06260.046, c6

50.42460.086.

Fit Expt. Fit Expt.

D(1700) 1699 1720650 N(1520) 1522 152368
D(1620) 1643 1645630 N(1535) 1538 1538618
N(1675) 1678 167868 uN1 ~pred! 0.5360.29 0.6160.09
N(1700) 1712 1700650 uN3 ~pred! 3.0660.24 3.0460.15
N(1650) 1660 1660620

TABLE VII. Three parameter fit using operatorsO1 , O3, and
O6, giving x2/NDF52.93/450.73. Masses are given in MeV
angles in radians. Parameters~GeV!: c150.45760.005, c3

50.08860.198,c650.45960.032.

Fit Expt. Fit Expt.

D(1700) 1678 1720650 N(1520) 1525 152368
D(1620) 1678 1645630 N(1535) 1524 1538618
N(1675) 1676 167868 uN1 ~pred! 0.1160.23 0.6160.09
N(1700) 1688 1700650 uN3 ~pred! 3.1160.07 3.0460.15
N(1650) 1668 1660620
11400
s

e
at

f
s

a-

r

o
t

which is the relative angular momentum of a quark pa
Since unit angular momentum requires antisymmetry,
and HD use only the antisymmetric@in SU~6!# 15 two-quark
combination, and find only the operatorT35

1 . Perusing our
list, we find 3 operators at the one- or two-body level that u
l once:

l •s,l •Sc and lgTc . ~7.6!

The question of how to connect ourl to their angular mo-
mentum operator returns. Ifl is the angular momentum o
one quark relative to the overall center of mass, it is a thr
body operator, as discussed earlier, and thus would be
carded by the early authors. For us,l is the angular momen
tum with respect to the center of mass, and we can inter
part of it as the angular momentum of the excited quark w
respect to one particular core quark. Then, matching to
earlier authors,l •s andl •Sc would have the same coefficien
by arguments already made, ifSc is taken to refer to a quark
in that pair~and if not, it would be a three-body term!. Re-
garding our third term, again following GR or HD, we wou
apply it only to antisymmetric subsets of quarks, and
either purely symmetric@8# or purely antisymmetric quark
states one can prove a result@a consequence of Eq.~4.7!# that

giaTc
a}Sc

i 1si . ~7.7!

Thus, the third spin-1 operator in Eq.~7.6! becomes depen
dent upon the first two.

Similarly, spin-2 operators that can be combined with t
D l 52 part of l i l j come from the symmetric21 in the earlier
authors’s analysis. Here, they find only an operatorT405

1 . We
have two operators at the two- or fewer-body level, whi
are

l ~2!gGc and l ~2!sSc . ~7.8!

But again, if we ignore differences between quarks and re
that GR or HD would only let the operators act on symmet
states, there are operator reduction rules stating3

giaGc
ja}siSc

j ~7.9!

for the spin-2 piece, and again only the core quark that
pears in the pair under discussion is meant above. Henc
this view, we would have one operator also.

Thus, if we make GR’s or HD’s assumptions, we get th
results. However, our analysis is more general and re
only on an organizing principle suggested by the underly
theory. On the practical side, GR did not use the tensor
erator in their fits, on the grounds that there was not eno
data at that time to justify one more operator. We found t
this operator was quite important. They did, however, fi
that the spin-orbit operators had small coefficients@25#, a
result that was confirmed by Isgur and Karl@27#.

3To be explicit, this is the third identity from the bottom of Tab
VI in @8#.
8-10



n
tw

o
ics
a

m

ha

th
-
r

ed

nd
t is

b

at

may
een
he

di-
may

ons.
ting
or-

tors
he
the

ble

ted
fits
ng
tive

at
ates.
t fit
the

dea
alar

ex-

up-
for
rly
oth
p-
n,
r-
n
e
fits.

OPERATOR ANALYSIS OFl51 BARYON MASSES IN . . . PHYSICAL REVIEW D 59 114008
VIII. DYNAMICAL INTERPRETATION

The most striking feature of our analysis is that the no
strangel 51 mass spectrum is described adequately by
nontrivial operators,

1

Nc
l ~2!gGc and

1

Nc
Sc

2 . ~8.1!

Clearly, largeNc power counting is not sufficient by itself t
explain thel 51 baryon masses—the underlying dynam
plays a crucial role. In this section, we simply point out th
the preferred set of operators in Eq.~8.1! can be understood
in a constituent quark model with a single pseudoscalar
son exchange, up to corrections of order 1/Nc

2 . The argument
goes as follows:

The pion couples to the quark axial-vector current so t
the q̄qp coupling introduces the spin-flavor structures ita

on a given quark line. In addition, pion exchange respects
large Nc counting rules given in Sec. II. A single pion ex
change between the excited quark and a core quark co
sponds to the operators

giaGc
jal i j

~2! ~8.2!

and

giaGc
ia ~8.3!

while pion exchange between two core quarks yields

Gc
iaGc

ia . ~8.4!

These exhaust the possible two-body operators that have
desired spin-flavor structure~sincel (2)GcGc is a three-body
operator!. The first operator is one of the two in our preferr
set. The third operator may be rewritten

2Gc
iaGc

ia5C2•12
1

2
Tc

aTc
a2

1

2
Sc

2 ~8.5!

where C2 is the SU~4! quadratic Casimir identity for the
totally symmetric core representation@the 10 of SU~4! for
Nc53]. Since the core wave function involves two spin a
two flavor degrees of freedom, and is totally symmetric, i
straightforward to show thatTc

25Sc
2 . Then Eq.~8.5! implies

that one may exchangeGc
iaGc

ia in favor of the identity op-
erator andSc

2 , the second of the two operators suggested
our fits.

The remaining operator,giaGc
ia , is peculiar in that its ma-

trix element between two nonstrange, mixed symmetry st
is given by

1

Nc
^gG&52

Nc11

16Nc
1dS,I

I ~ I 11!

2Nc
2

, ~8.6!
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which differs from the identity only at order 1/Nc
2 . Thus, to

order 1/Nc , one may make the replacements

$1,giaGc
jal i j

~2! ,giaGc
ia ,Gc

iaGc
ia%⇒$1,giaGc

jal i j
~2! ,Sc

2%.
~8.7!

We conclude that the operator set suggested by the data
be understood in terms of single pion exchange betw
quark lines. This is consistent with the interpretation of t
mass spectrum advocated by Glozman and Riska@28#. Other
simple models, such as single gluon exchange, do not
rectly select the operators suggested by our analysis and
require others that are disfavored by the data.

IX. SUMMARY AND CONCLUSIONS

We have considered what the largeNc expansion tells
about the masses of the nonstrange P-wave excited bary
We have given the effective mass operator by enumera
all the independent operators that it could contain, and
dered those operators by their size in the 1/Nc expansion. We
have calculated the matrix elements of each of the opera
for any Nc . For the effective mass operator, we have fit t
coefficients of the individual operators to the data, using
masses given by the Particle Data Group@29# and after trun-
cating the full set of operators in suitable and reasona
ways.

We find that one can fit the masses well using selec
subsets of the full list of operators, and that the good
have mixing angles that are compatible with the mixi
angles that come from analyses of the mesonic and radia
decays of these baryons@13,17,30#. Estimating the size of
each operator using the 1/Nc scheme works, in the sense th
no operator is larger than expected based on those estim
Some operators are smaller. In fact, we can get a decen
keeping just the unit operator, one tensor operator, and
core spin-squared operator. This is compatible with the i
that the underlying dynamics is due to effective pseudosc
meson exchanges among the quarks@28#, and not easily
compatible with the idea that the masses splittings are
plained by single gluon exchange.
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APPENDIX A: EXPLICIT MATRIX ELEMENTS

Using the notation for quantum numbers defined in Eq.~3.4!, we first present matrix elements of the SU~6! generators
between completely symmetric core states:

^Sc85I c8 ;m18 ,a18uGc
iauSc5I c ;m1 ,a1&5

1

4A2I c11

2I c811
A~Nc11!22~ I c82I c!

2~ I c81I c11!2S Sc 1

m1 i
USc8

m18
D S I c 1

a1 a
U I c8

a18
D , ~A1!

^Sc85I c8 ;m18 ,a18uTc
auSc5I c ;m1 ,a1&5AI c~ I c11!S I c 1

a1 a
U I c

a18
D d I

c8I c
dS

c8Sc
dm

18m1
, ~A2!

^Sc85I c8 ;m18 ,a18uSc
i uSc5I c ;m1 ,a1&5AI c~ I c11!S Sc 1

m1 i
U Sc

m18
D d I

c8I c
dS

c8Sc
da

18a1
. ~A3!

To obtain the matrix elements ofs,t,g in terms of those forSc ,Tc ,Gc , simply note that the excited quark is grou
theoretically equivalent to a one-quark core with spin and isospin 1/2. Thus, replace eachNc21 by 1, and eachSc5I c and
Sc85I c8 by 1/2. The matrix elements of the orbital angular momentum operators are

^ l 8ml8u l
i u lml&5Al ~ l 11!S l 1

ml i
U l

ml8
D d l 8 l , ~A4!

^ l 8ml8u l
~2!i j u lml&5Al ~ l 11!~2l 21!~2l 13!

6
d l 8 l(

m
S 1 1

i j
U2

m D S l 2

ml m
U l

ml8
D . ~A5!

With these results we have computed the matrix elements of all the possible isosinglet mass operators:

^1&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

dS8S , ~A6!

^ ls&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!S82S
1

2
A~2S811!~2S11! (

l s5 l 61/2
F l s~ l s11!2 l ~ l 11!2

3

4G~2l s11!

3 (
h561

cr8hcrhH I c
1

2
S8

l J l s

J H I c
1

2
S

l J l s

J , ~A7!

^ l tGc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J1I 1 l 1S82S11
1

4
A3

2
Al ~ l 11!~2l 11!A~2S811!~2S11!

3 (
h8,h561

cr8hcrhA~2I c811!~2I c11!A~Nc11!22S h82h

2 D 2

~2I 11!2

3H 1

2
1

1

2

I c8 I I c

J H l 1 l

S8 J SJ H S8 1 S

I c
1

2
I c8J ~21!~h82h!/2, ~A8!

^ l ~2!gGc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J22I 1 l 1S
1

8
A15

2
Al ~ l 11!~2l 21!~2l 11!~2l 13!

3A~2S811!~2S11!H 2 l l

J S8 SJ (
h8,h561

cr8h8crh~21!~11h8!/2

3A~2I c811!~2I c11!A~Nc11!22S h82h

2 D 2

~2I 11!2H 1

2
1

1

2

I c8 I I c

J 5
I c8 I c 1

S8 S 2

1

2

1

2
16 , ~A9!
114008-12
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^ lSc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J2I 1 l 1S82SAl ~ l 11!~2l 11!A~2S811!~2S11!

3H 1 l l

J S8 SJ (
h561

cr8hcrh~21!~12h!/2AI c~ I c11!~2I c11!H 1 I c I c

1

2
S8 SJ , ~A10!

^tTc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

dS8S

1

4 F4I ~ I 11!2324 (
h561

crh
2 I c~ I c11!G , ~A11!

^Sc
2&5dJ8JdJ

38J3
d l 8 ld I 8Id I

38I 3
dS8S (

h561
crh

2 I c~ I c11!, ~A12!

^ lgTc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J1I 1 l 11
3

2
Al ~ l 11!~2l 11!A~2S811!~2S11!

3H 1 l l

J S8 SJ (
h561

cr8hcrhAI c~ I c11!~2I c11!H 1
1

2

1

2

I I c I c

J H 1
1

2

1

2

I c S8 S
J , ~A13!

^ l ~2!sSc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J1 l 1S
A5

2
Al ~ l 11!~2l 21!~2l 11!~2l 13!A~2S811!~2S11!H 2 l l

J S8 SJ
3 (

h561
cr8hcrhAI c~ I c11!~2I c11!H I c I c 1

S8 S 2

1

2

1

2
1
J , ~A14!

^ l igja$Sc
j ,Gc

ia%&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J2I 1 l
3

8
Al ~ l 11!~2l 11!A~2S811!~2S11!

3H 1 l l

J S8 SJ (
h8,h561

cr8h8crhH 1

2
1

1

2

I c8 I I c

J H I c8 1 I c

S
1

2
S8J A~2I c811!~2I c11!

3A~Nc11!22S h82h

2 D 2

~2I 11!2F ~21!S2I c11/2H 1

2
1

1

2

I c8 S8 I c8
J AI c8~ I c811!~2I c811!

1~21!S82I c811/2H 1

2
1

1

2

I c S Ic
J AI c~ I c11!~2I c11!G , ~A15!

^ l ~2!t$Sc ,Gc%&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J2I 1 l 1S82S11
1

8
A5l ~ l 11!~2l 21!~2l 11!~2l 13! ~A16!

3A~2S811!~2S11!H 2 l l

J S8 SJ (
h8,h561

cr8h8crhA~2I c811!~2I c11!
114008-13
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3A~Nc11!22S h82h

2 D 2

~2I 11!2H 1

2
1

1

2

I c8 I I c

J H 2 I c8 I c

1

2
S8 SJ

3FAI c8~ I c811!~2I c811!H 2 1 1

I c8 I c8 I J 1AI c~ I c11!~2I c11!H 2 1 1

I c I c I c8
J G ,

^sSc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

dS8S

1

2 F S S2
1

2D S S1
3

2D2 (
h561

crh
2 I c~ I c11!G , ~A17!

^~ lSc!~ tTc!&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J2I 1 l 1S82S11
1

4
Al ~ l 11!~2l 11!A~2S811!~2S11!H 1 l l

J S8 SJ
3 (

h561
cr8hcrh@~2I 11!h12#~21!~12h!/2AI c~ I c11!~2I c11!H 1 I c I c

1

2
S8 SJ , ~A18!

^~ ls!Sc
2&5dJ8JdJ

38J3
d l 8 ld I 8Id I

38I 3
~21!S82S

1

2
A~2S811!~2S11! (

l s5 l 61/2
F l s~ l s11!2 l ~ l 11!2

3

4G~2l s11!

3 (
h561

cr8hcrhH I c
1

2
S8

l J l s

J H I c
1

2
S

l J l s

J I c~ I c11!, ~A19!

^$ lSc ,sSc%&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J2I 1 l 1S82SAl ~ l 11!~2l 11!A~2S811!~2S11!

3H 1 l l

J S8 SJ (
h561

cr8hcrhH 1

2
@S8~S811!1S~S11!#2

3

4
2I c~ I c11!J

3~21!~12h!/2AI c~ I c11!~2I c11!H 1 I c I c

1

2
S8 SJ , ~A20!

^gScTc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

dS8S~21! I 2S
3

2 (
h561

crh
2 I c~ I c11!~2I c11!H 1

2
1

1

2

I c I I c

J H 1

2
1

1

2

I c S Ic
J ,

~A21!

^ l ~2!ScSc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J1I 2 l 1S82SA5l ~ l 11!~2l 21!~2l 11!~2l 13!

6

3A~2S811!~2S11!H 2 l l

J S8 SJ (
h561

cr8hcrhI c~ I c11!~2I c11!~21!~12h!/2

3H 2 I c I c

1

2
S8 SJ H 2 l l

I c I c I c
J , ~A22!
114008-14
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^ l ~2!gScTc&5dJ8JdJ
38J3

d l 8 ld I 8Id I
38I 3

~21!J12I 1 l 1SA5l ~ l 11!~2l 21!~2l 11!~2l 13!

6

3
3

2
A~2S811!~2S11!H 2 l l

J S8 SJ (
h561

cr8hcrhI c~ I c11!~2I c11!~21!~h11!/2

3H 1

2
1

1

2

I c I I c

J H I c I c 1

S8 S 2

1

2

1

2
1
J . ~A23!
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APPENDIX B: OPERATOR REDUCTIONS
FOR MIXED-SYMMETRY STATES

In order to establish a connection to the operator red
tion rules obtained in@8# for the completely symmetric
ground-state spin-flavor multiplet, let us first develop a co
mon notation and then review the results of the derivat
presented in the earlier work.

Each irreducible representation of SU(2F) is denoted by
a Dynkin label, which is a (2F21)-plet
@n1 ,n2 , . . . ,n2F21# of non-negative integersnr describing
the Young diagram of the representation; the number
boxes in rowr (51,2, . . . ,2F21) of the diagram exceed
the number in rowr 11 by nr . The conjugate of a given
representation is obtained by reversing the order of the i
gersnr . In this notation the completely symmetricNc-box
representation S is@Nc ,0,0, . . . ,0#, while the mixed-
symmetry l 51 baryons fill the representation MS5@Nc
22,1,0,0, . . . ,0#. Since all matrix elements of operatorsO
between baryonsB transforming according to a given repr
sentation appear through bilinears of the formB̄OB, such
operators fill the representations ofB̄^ B. In the case of the
ground-state representation, standard techniques for com
ing representations show that this product is

S̄^ S5@0,0,0, . . . ,Nc# ^ @Nc ,0,0, . . . ,0#

5 %

m50

Nc

@m,0,0, . . . ,m#, ~B1!

while the mixed-symmetry representation product gives

MS̄^ MS5@0,0, . . . ,0,1,Nc22# ^ @Nc22,1,0,0, . . . ,0#

5@0,0, . . . ,0# % @Nc21,0,0, . . . ,Nc21#

%

m51

Nc22

2 @m,0,0, . . . ,0,m#

%

m50

Nc22

@m,1,0,0, . . . ,0,1,m#

%

m50

Nc23

@m12,0,0, . . . ,0,1,m#
11400
c-

-
n

f

e-

in-

%

m50

Nc23

@m,1,0,0, . . . ,0,m12#. ~B2!

It is convenient to give these representations concise na
for future reference. Label@m,0,0, . . . ,m# as adjm , so that
adj0 is the singlet representation, adj1 is the adjoint repre-
sentation, and adj2 is called s̄s in @8#. Let

@m,1,0,0, . . . ,0,1,m#[āam , @m12,0,0, . . . ,0,1,m#[āsm ,
and @m,1,0,0, . . . ,0,m12#[ s̄am , so that āa0 , ās0, and
s̄a0 are denoted in@8# as āa, ās, and s̄a, respectively.

That the operators~4.1! satisfy an SU(2F) algebra im-
plies that any string of the one-body operators in Eqs.~4.1!
containing a commutator is reducible to a smaller string
such operators; only anticommutators need be conside
Since one-body operators appear in the adjoint representa
of SU(2F), one need only consider combinations symm
trized on the adjoint indices,1,adj,(adĵ adj)S ,(adĵ adj
^ adj)S , etc., which may be denoted 0-,1-, 2-, etc., bo
operators.

Let us turn to the question of representations that app
in symmetrized products of one-body operators, but h
vanishing matrix elements for the mixed-symmetry bary
states since they do not appear in the product MS¯̂MS. First
note that, unlike S̄̂ S, all representations in

~adĵ adj!S5adj0% adj1% adj2% āa0 , ~B3!

in particular āa0, appear in the product MŜ̄MS, meaning
that the mixed-symmetry representation has no similar
erator identity. One therefore turns to representations in
product (adĵ adĵ adj)S , which are listed in Table IV of
@8#. Comparing this list to Eq.~B2!, one sees that the onl
representations not present in the latter a

@0,0,1,0,0, . . . ,0,1,0,0#[b̄b0 and adj3. Products of three
one-body operators that transform according to these re
sentations should indeed be reducible when acting on mix
symmetry baryon states. The astute reader may notice
each of these representations has a special feature:b̄b0 does
not occur forF,3, and adj3 only gives reduction rules for
the physical caseNc53. The product of three one-body op
erators is enough to span the space of all physical bar
observables; for this reason, we do not consider represe
tions in the product of four or more one-body operators.
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