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We consider in detail the mass operator analysis for the nonsttanfeexcited baryons in largd, QCD.
We present a straightforward procedure for constructing the Ibkgbaryon wave functions, and provide
complete analytic expressions for the matrix elements of all the independent isosinglet mass operators. We
discuss the relationship between the old-fashioned operator analyses based on nonrelati@ssgiBtetry
and the modern largdl, approach, which has a firmer theoretical foundation. We then suggest a possible
dynamical interpretation for the subset of operators preferred strongly by the 885h6-282099)07809-1

PACS numbe(s): 14.20.Gk, 12.39.Jh, 12.40.Yx

I. INTRODUCTION N. results presented in our earlier work but also for identi-
fying operator relationships holding only to leading order in
Although the QCD gauge coupling is numerically too 1/N.. For example, the matrix elements of some of the op-
large to permit a perturbative expansion at low energiesgrators are linearly dependent in tiNy—oo limit, even
QCD generalized tdN, colors admits a consistent perturba- though the matrix elements are independent\Nge 3. Thus,
tive expansion in terms of W, [1]. Effective theories for two operators that appear naively to be of leading order in
baryons have been constructed that take into account theNc may in fact produce only one leading-order linear com-
symmetries and power counting rules of lalge QCD, al-  bination. The operator basis presented here is thus slightly
lowing baryon observables to be computed to any desireinProved over that of Ref.19]. We present numerical re-
order in the 1N, expansion. The largl, approach has been sults omitted from Ref.19] for reasons of space, namely, fits

applied with great success to the ground state baryons whictclj? {ngs?/veigelnvalues.(ijn V‘;EiCh rt]he. m|i>§intg angtlet_s aref pre-
fill the SU(6) 56-plet, including studies of S(@) spin-flavor Icted. We also consider the physical interpretation ot our

. effective field theory results. It was shown in REI9] that
symmetry[2—6], baryon massegt,7-9, magnetic moments

: . only two nontrivial operators have numerically substantial
[4,8-12, and axial vector current matrix eleme[l1>54,8,12._ coefficients when fits to the nonstranige 1 mass spectrum
Whether the largeN, framework works equally well in

e X i are performed, and this in itself is suggestive of some spe-
describing the phenomenology of excited baryon multipletg;ific gynamical mechanism. In this work we attempt to char-
is a question under active investigation. Recent attention hag.terize the dynamics producing these results.

focused on thd=1 orbitally excited baryons, the $6) This paper is organized as follows. In Sec. Il we review
70-plet forN.= 3. The first application of larghi; to excited  the formulation of the largél, operator analysis for excited
baryons was a phenomenological analysis of the strong deyaryons. In Sec. Ill we describe in detail the construction of
cays[13]. This was followed by a series of more formal the baryon states in largh.. Sections IV and V discuss
papers on the strong decays and axial vector current matrigperator reduction rules and construction of the operator ba-
elementq 14,15, as well as on the matrix elements of the sis relevant to the mixed-symmetf@-plet states. In Sec. VI
mass operators relevant at lowest nontrivial orfddéf]. Re-  we present numerical results not included in our prior work.
cently, the first phenomenological study of the electromagin Sec. VIl we compare our results to model-independent
netic transitions was presentgtl7,18, while a phenomeno- analyses of the past and, in Sec. VIII, to phenomenological
logical analysis of the nonstrange=1 baryon masses, models. Section IX summarizes our conclusions.

including corrections up to relative orderNE/, was under-

taken by fche present authdrE9]. This is the subject of fur- Il. FRAMEWORK
ther consideration in the present work.
A number of issues not addressed in R&f] are consid- The observed baryons have the appropriate quantum num-

ered here. First, we explain how the nonstrange baryon statéers to be assigned to irreducible representations of the
are constructed for arbitraril.. Our construction differs group SU(6)X O(3). Here SU6) contains the spin and fla-
from that of Ref.[14], and we believe it is somewhat more vor symmetry group SU(2¥SU(3), and @3) generates
transparent. After obtaining rules for simplifying the baryon spatial rotations. We define “quarksy as fields in the 2,3)
operator analysis, which is essential for a proper counting ofepresentation of the spin-flavor group. An appropriately
degrees of freedom in fits to observables, we present consymmetrized collection o, quarks has the quantum num-
plete analytic expressions for the matrix elements of all isobers of a largeN, baryon. ForN.=3, states constructed in
singlet mass operators relevant to the orbitally excited barythis way have the same quantum numbers as those observed
ons, as functions of the excited baryon quantum numbersh nature.

This presentation is relevant not only for obtaining the large If all quarks were much heavier thalgcp, then one
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could identify the fields above as the valence quarks of the Let us now specify the largd, counting rules more pre-
nonrelativistic quark model. Here, however, we make nccisely. We define am-body operator as one that acts on
such assumption. Our quark fields simply provide a convegquark lines in a largé\. baryon state. Since we work in an
nient tensor product space in which one can define baryonsffective theory, we arrive at a complete operator basis inde-
with the correct total quantum numbers. The baryon waveendent of any specific dynamical assumptions beyond that
functions can be expressed as tensors, with separate indiceSQCD as the underlying theory. Ambody operator has a
for the spin and flavor degrees of freedom for each quark. Izoefficient 1N2‘1, reflecting the minimurm—1 gluon ex-

the nonrelativistic quark model, all spin-flavor transforma-changes necessary to generate the operator in QCD. How-
tions of the baryon tensors are accomplished by acting oaver, the overall effect of an operator on a given baryon
these indices with elements of the group(BlJwhich is an  observable is determined not only by the size of the operator
exact symmetry of the theory in the limit,—, wherem,  coefficient, but also by the compensating factorsNgfthat

is the quark mass. In the present case, we cafamatdo nok  may arise when a spin-flavor generator is summed over the
assume that S(8) is a good symmetry, since the quarks areN, quark lines in a baryon state. As discussed earlier, the
light, but rather simply parametrize the complete breaking ojeneratorsy' and 72 sum incoherently oveN, quark lines
SU(6) by allowing symmetry-breaking matrices to act on thesince the spin and isospin eigenvalues for the physical bary-
quark spin and flavor indices. One achieves the most generghs are of order 1, even when one extrapolates to Ibige
breaking of quark spin and flavor symmetries by using poly-The generator' 72, however, sums coherently, as is shown

nomials in the S\B) generators later by explicit computatiofisee Eq.(A1)]. Thus, the con-
i . C. tribution of ann-body operator to a given baryon observable
g T g T is of orderN}*™ " wherem is the number of times the
®1], (1® =], ® =/, 2.9 i a :
2 2 2 2 generatore' 7@ appears. Given the set of all operators con-

, structed by combining the generatorg 1), linearly depen-
wherec' are the usual Pauli matrices. Theare either Pauli  dent operators of higher order can often be eliminated by use
or Gell-Mann matrices, depending on whether one is interof operator reduction rules. For the ground state baryons,
ested in two or three quark flavors. We focus on the twothese rules were formalized by Dashen, Jenkins and Manohar
flavor case in our operator analysis. By acting on the quarksg]; the generalization to excited baryons is considered in
spin and flavor indices of a baryon wave function, the tensorgome detail in Sec. IV.
above parametrize the breaking of the corresponding symme- The discussion above generalizes in a straightforward
tries. Within a largeN. baryon multiplet, there aralways  way tol =1 baryons with one orbitally excited quark. In the
some states for which these symmetry breaking effects anarge N, limit, such baryons consist of one distinguishable,
maximal. For example, consider the ground state baryonsxcited quark in the collective potential generated Ny
which form a tower of states with spins ranging from 1/2 to —1 ground state quarks. One defines separat@)Sj¢nera-
N¢/2. The fact that the largd, multiplet contains states with tors that act on the excited quark and on the nonexcited
spins of ordem, implies that spin-spin interactions like “core” quarks, respectively. In addition, one introduces the

orbital angular momentum generatdtsto parametrize the

1

1, 1 T 5 breaking of @3). Mass operators relevant to the 1 bary-
N_CS EN_C quark57'7 (2.2) ons are formed by contracting generators in this extended
a,B set, as we discuss in Sec. V. Again, an operator hierarchy is

. ] obtained after taking into account the factors oNJlthat
shift some baryon mass eigenvalues at ofdier (The reason  appear in operator coefficients and the compensating factors

for the 1N prefactor is explained belowFor example, for  of N, that arise from coherent sums over BéN,) ground
the stretched case of a baryon with spNg/2, this matrix  state core quarks.

element evaluates to N/ X N/2X(N¢/2+1). On the other
hand, the mean mass of the multiplet scalesNas since
there areN, quarks in a baryon state. Thus there are always
spin-dependent splittings somewhere in the multiplet that are The defining feature of baryon states filling the mixed-
comparable to the average multiplet mass. While this presymmetry negative-parity SB) 70-plet is that the sole unit
vents us from speaking of 36) as an approximate symme- of orbital angular momentum is carried by the excited quark
try, it is nonetheless true that the breaking of this would-berelative to the other two ground-state core quarks. The core
symmetry is a small effect on states of small total spin. Sincejuarks are separately symmetrized on spin-flavor and spatial
the physical, nonstrange baryons are chosen to have fixéddices, while thel=1 excited quark is antisymmetrized
total spin and isospin eigenvalues in the lafgg limit, it with respect to the other two. This construction produces the
follows that matrix elements of'/N. and 7N, summed 70-dimensional representation of 8), and is phenomeno-
over all quarks are of order N{, and hence can be treated logically relevant: Every negative-parity baryon with mass
as small numbers. Thus, this parametrization of the completiess than 2 GeV has the appropriate spin, isospin, and
breaking of SW6) provides an operator basis that is hierar- strangeness quantum numbers to belong to a sir@ieet,
chical in 1N, on the physical baryon states. This fact allowsalthough some of the strange baryons needed to fill7the

the construction of an effective theory for baryons that ishave not yet been observed. If one focuses upon nonstrange
both complete and predictive. states alone, as is done in this work, then the relevant mul-

lll. STATES
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| I l ,,,,, Dj only notation in this expression yet undefined is the coeffi-
cientc,,, ; it simply represents that more than one irreducible
SU(6) or SU4) representation can occur in the product of the
_ _ (N.—1)-quark core and the one-quark excited state, and so
FIG. 1. Young diagram for the SUE) mixed symmetry repre-  the numbers:,,, represent elements of orthogonal basis ro-
sentat!on, the multiplet containing largé orbitally excited bary-  {5tions. In the present case, elementary manipulations show
ons withl=1. The top row had.—1 boxes. that only the totally symmetric and mixed-symmetry repre-
) ) . sentations result. Sincg—S,==*1/2, one hag. =0 for
tiplet becomes 20 of SU(4), for which all component spin 3y multiplet. All nonstrange states in the symmetric repre-
and isospin multiplets have been seen. sentation havés=1, and thusc3"Y'=0,c¥S, =1. The only
The mixed symmetry baryon multiplet is generalized 10 mpjicated mixing occurs fary - , and we obtain the mix-
N.>3 by symmetrizing now amonlj.—1 core quarks, as jng by means of a trick: The symmetric and mixed-symmetry
indicated by the Young diagram in Fig. 1. Although this o, iiplets possess different quadratic @Jor SU6) Ca-
extrapolation is not unique, it is the most natural in presenVgimir invariants, and thus one may compute the value of the
ing symmetry properties familiar from.=3. Total symme-  c4gimir operator both on the full state on the left-hand side
try of the core is also the essential ingredient rendering the Eq. (3.4), where it assumes a known val(gee next sec-
study of the orbitally excited baryons tractable in lafdg,  tion), or on the separate core and excited states on the right-
since it greatly reduces the number of degrees of freedom. IR3nd side of Eq(3.4) using the matrix elements presented in

particular, the symmetry properties of core states are COMappendix A. After a straightforward calculation, one finds,
pletely specified by their total strangeness, spin, and iSOspify, the S=| nonstrange states

For nonstrange cores, the situation is even simpler: Owing to

the total symmetry of the spin-flavor state, spin and isospin
are equal in this case. The core state is denoted by c('\)"f= + 1 /S[Nc+2(S+ D] and
N(2S+1)
|Sc=|c;ml,al>, (31)
wherem’s anda’s here and below denote projections of spin MS_ _ (S+1)(N.—29) 35
and isospin, respectively, and the subscdpienotes core. 0= Ns(2S+1) ° '

The excited quark state is denoted
and the coefficients for symmetric states are the orthogonal

1/2;m,, ). 3.2 L

| 2:02) 32 combinationci ™= —c°, cg"™M=c}=.
Finally, the orbital @3) eigenstate is labeled in obvious no-

tation by IV. REDUCTIONS

, 1. (3'_3) There are numerous operator identities or operator reduc-
Of course, physical states are labeled by total sShify  {jon ryles which are known for the ground state baryons and
and isospinl,|3. The states we construct here also admityhich can be used to eliminate many operator products from
separate specification of the total spiicarried by the |55 of candidate independent operators. The identities are
quarks. Nonstrange mixed-symmetry @Ustates with one ot general to all representations, but work when applied to
spin-1/2, isospin-1/2 quark singled out have total quark SPiYyround state baryons. The proofs of many of them depend
and isospin related bg=1 or 1 =1, with each ofSandl in upon the symmetry of the ground state.
the range 1/2N./2. The sole exception is that there are no | this section we study operator reductions applicable to
mixed-symmetryS=1=N,/2 states. Let us define=S—1  he mixed-symmetry0-plet. Technical details are provided
=*1,0 and»n/2=I.—1==1/2. Then obtaining the desired i, Appendix B. To put our findings in context, recall that the
state by coupling the spins and isospins is achieved, by corsperator reductions for the ground state come from three
struction, by the use of Clebsch-Gordan coefficients: sources. Two of them are the quadratic and cubic Casimir
1335211 5(1,S=1 1 p)) identities. The third comes because matrix elements of an
SR P operator between a state and its conjugate state are zero if the

| S|J operator does not belong to a representation that can be
:m = (mI m 33) found in (for the ground state wittN.=3) 56®56. There
| M1, @1,7 .
are products of two generators of @) or rather certain
x( S 1/2 S)( . 1/2| 1 ) sums of products of these generators, that belong to repre-
my mym/la; as|ls sentations not found i56® 56. Those sums are then zero,

and this is the third source of operator identities. Reference
[8] investigates whether further identities can be found in-
®[1/2;my, az)@|l,m)). (3.4 voIvin.g produpts of three generators, and shows that the an-
swer is negative.
States with strangeness are defined analogously, except thatThe basic operators that we start with are the generators
SU(3) Clebsch-Gordan coefficients appear in that case. Thef SU(2F), given in a quark basis as

XCPV,]|SC=|C=| + 7]/2;m1,011>
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e where § -; is the symmetric representation witd,—1
S=0. 7®1 a quarks and §is just the fundamental representation of a
single quark. This means that the quadratic Casimir identity
; 2 for MSNC can be expressed as
a— _ e
T _Qa< ]® 2 )q ’

i 72
2972

1
25§ +FtTo+4FgG.=— 5 (Nc+2F 1), (4.5

la=q! q®, (4.1)
so that the operatayG, may always be eliminated in favor
of s§ andtT,.

The cubic Casimir identity reads,

where o' and 7% are the spin and flavor matrices. The col-
lected and properly normalized SUF2 adjoint representa-
tion one-body operatoiS/+\F, T? 2, andy2G'? satisfy an
SU(2F) algebra like that of their underlying spin-flavor

ABC/ ~TA A tAB tACr)—
generators. Other operator€) can, since we are just inter- d™ a'A%a)(q'A"a)(q'ATQ)=C5(R)1. (4.6
ested in their group theoretical behavior, be built from prod-
ucts of these generatof8]. For products of two generators contracted withfC, one

For the70-plet, first note that the mixed-symmetry repre- may write
sentation consists of a symmetric core plus one excited

quark. If one defines, in analogy with Eqgl.1), separate Cs(R)

one-body operatorS,,T.,G, acting on the core and,t,g d*BC(q'ABq)(q"ACq)=="=-q"A%q+XA(R),

on the excited quark line, then the operator reduction rules C2(R) 4
for the ground statg8] may be used on the core operators. 4.7

The only difference is thall;—N.— 1 in the core identities,

to account for the different numbers of quarks present. WhereXA is that part of the tWO'bOdy combination on the left
For the70-plet overall, we find that the quadratic Casimir hand side annihilated by contraction witfiA”qg. For com-

identity leads to a new operator reduction rule. Unfortu-Pletely symmetric representations;=0, as was shown ex-

nately, the other two sources of identities for the ground stat®licitly in [8]; one can show the same for completely anti-

lead to no identities for th&0-plet. However, there are some Symmetric representations. In such cases, one may derive a

identities that come from considering products of three curnumber of operator reduction rules. Howevf, need not

rents. be zero for arbitrary representations, since nothing guaran-
The quadratic Casimir identity for an arbitrary SUR  t€€s that all spin-flavor combinations of the quark operators
representatioiR reads (a'g)(q'q) reduce to a singleq('q) for a representation of
arbitrary symmetry properties. We have found explicitly that
{q"A%q,q"ARq}=2C,(R)1, (420 XA#0 for the mixed-symmetry representation by computing

several matrix elements containing both sides of @&q7).
whereA” are the spin-flavor generators in the representatiofone concludes that no two-body operator reduction rules fol-
R. For the mixed-symmetry representations we are lookindow from the cubic Casimir relation for the mixed-symmetry
at, denoted Mg, the Casimir invariant may be shown to be representation.
(see[20]) Of course, the true cubic Casimir relatiofh.6) holds in
general. We have investigated it for the mixed-symmetry
N, representation, and find no new operator relations, but rather
Cz(MSNC)zﬁ[NC(ZF—1)+2F(2F—3)]. (4.3 the Casimir identity

In the mixed-symmetry case\” is the sum of core and 2| Cs(MSy ) —C3(Sy -1) —C3(Sy)
excited generator6.e., T=T.+t, etc), and 3| C5(MSy )—Cy(Sy —1)—Co(Sy)
1
Co(Sy) = 75 (4F?—1), _ G- Cy(Sy s
CaSy,-1) CaS)’
1
Ca(Sy,-1) =7 (Ne= D)(Nc+2F —1)(2F - 1), which can indeed be verified, using the previous quadratic

(4.4) Casimir identities and

N¢
'The normalizations are chosen so that the underlying spin-flavor Ca(MSy,)= AF2 (F=1)(Ne+2F)[Ne(2F 1)
generators\*={(a'1221)/\JF,(1&\%/2)/\/2,\2(c' 22 \?/2)} sat-
isfy Tr AAAB=3 5B, +F(2F-7)],
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1 TABLE 1. The 18 linearly independent spin-singlet flavor-
Ca(Sy —1)=—=(Ng—1)(N.+2F—1) singlet operators foF =2, organized by powers of N{ in their
¢ 4F?2 matrix elements. FOF>2, and ignoring possible coherence in ma-
trix elements of T2, one must include (N2)tS.G. and

X(N;+F—-1)(2F—-1)(F—-1), (1N2)I'gS.GI2 in row N L.
1 Order of
Ci(S))= E(FZ— 1)(4F?-1). (4.9 matrix element Operator
N2 Nl
Regarding the last source of operator identities for the N© 1 1a
symmetric case, the statement for the mixed-symmetry case ¢ Is, WC“GC' Wcl 9Ge

is simple. All representations that appear in a product of two 1 1 1 1 1
one-body operators also appear in the produckWes. No NI e 1% yloTe Wﬁ, SR
' H ) C C C C C

additional operator identities follow.
For the mixed-symmetry representation at the three-body

level, there are two large representatidieslled bb, and
adj; in Appendix B that annihilate the baryon states. How- 1 1 1
ever, one can show that the operators in our list that could ~ N_2 S (ST, —08Te, =l?s8S,
have overlap with these representations are all independent N Ne Ne
when acting on the physical baryon states. Thus, no further
operator reduction rules occur for the flavor-singlet mass op- 1 1 1
erators. =1P98T., S{is.s8h (9
. . N2 N2 N2

The summary of operator reduction rules for the mixed-
symmetry representation nonstrange baryons therefore reads
as follows: Decompose the mixed-symmetry generators into
sums of separate core and excited quark pieces as label
above. One may apply the operator reduction ruleg8pto
the core generators alone, and one may also elimimp@te

1 1 i
_|(2)S , _|(2)t G, Jigia ’Gla

E%Ir more than two flavors, the operatotS.G. and
I'g'@SLG® must be includell For the 18 operators surviving
for two flavors the explicit power dil. for a given operator
is determined by using the lard&, counting given in Sec. Il.
Factors of 1]~ are included in the definition of the opera-
The building blocks from which one forms operators rel- [OrS, as can be seen in Table |. The full lafgecounting of
evant tol =1 baryons consists of the core operatgfs T2, ~ the matrix elements i©(N; ™" n;) wherem is the number
andG'?, the excited quark operatoss t?, andg'®, and the of times the co_herent operat_@’C appears(For more than
orbital angular momentum operatior The mixed-symmetry two flavors, T¢ is also potentially coherentin Table | we
representation baryons have orbital quantum nunmbet, have organized the operators by the overall order of their

V. COUNTING OPERATORS

and therefore the only required combinationd'ofre1(Al ~ matrix elements in the N; expansion. Note that the non-
=0), I'(Al=1), and theAl =2 tensor strange 70-plet baryons require 7 masses and 2 mixing
angles, so that matrix elements of 9 operators of the 18
112 shown are necessarily linearly dependent upon the other 9
|2 = S{L =56 (5.)  when restricted to these states.

Furthermore, the analysis here is carried out for arbitrary

) ) values ofN;, and the matrix elements of a given operator
Since the physicaN.=3 baryons have only two core va- are ysually not homogeneoushit . It can happen that ma-
lence quarks, one need only consider operators that involv@ix elements of a given set of operators are linearly indepen-
up to two core quarks in the lard¢; analysis. The operator dent forN.=3 but dependent for other values, in particular
reduction rules of8] state that one may eliminate all core N__.c. This turns out to be the case fois) and (ItG,),
contractions on flavor indices usig®, d*"¢, orf®*%, oron  which are both O(N®), but (Is+4ItG./(N.+1)) is
spin indices in tngc’s_usmg &' or €k, . O(1/N.), so that only one of the original two truly represents

We construct in this paper the _com_plete set of time-y, independen®(N?) operator. This result is dependent on

. . the particular stateghere nonstrange baryonsised for
the nonstrange exc_:lted baryons. There are 18 such 'ndepeg\'/aluating the matrix elements. Since no operator has been
dent operators[ln_mdentally, for three flavors there_are 20 eliminated, such a result is not an operator reduction, but
operators. The difference between the two cases is that f ! '

two fl h dditi | t ducti Q5ther what we call an operator demotion.
WO Tlavors oné has ah acdliional operator recuction In our analysis of the masses and mixing angles of non-

strange baryons, we begin with the leading operators
NI, Is, andl®gG,/N, (see Table), which are indepen-
dent for bothN.=3 andN.— . We then add subsets of the

S 1
SGE=7(N+ DTS, (5.2

114008-5
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8 operators appearing &(1/N.) in Table | plus the de- 9

motedO(1/N;) combinationls+4ItG./(N.+1), in search M,:E ci{O0)); (6.9
of a complete set of 9 independent operators. A number of =1

subsets consisting of 6 su€(1/N.) operators complete the
basis acting upon the baryon states fy=3. As one can
show by considering all possibilities, at least one of thes

operators'is Ii'nearly dependlent fili,—co. This means that Il in [19], in particular that the operators |?gG, /N,
one combination of th&(1/N;) operators can be demoted to 4. Sﬁ/NC again appear to be by far the most significant.

O(LN?). Using the labels of Table II, we choos= (N, Replacingt T, by s and using the demotedN combina-
+1)/N;Oy+ O+ 81'giH{( S, ,GEHNE, which hasO(1NZ)  tion O, has little effect except to drastically decrease coeffi-
matrix elements. This gives us an optimal basis, which wesjent uncertainties in some cases.
define as a basis where the number of demoted operator com- The chief implication of Table IV is to reinforce confi-
binations is maximized. dence in the fits given in Refl9]: The operators chosen
The set of operators we choose, along with their matrixwere not completely optimal, but nevertheless represent the
elements computed for the nonstrargel baryon states, is optimal choice quite well. Moreover, the operators used in
presented in Table Il. This set is identical to that in R&@],  the other fitTables IIl, IV, V) in [19] are the same as in the
except that we replacetT./N, by sS/N., and basis used here, and therefore direct comparisons between
I'gia{S.,Gi#}/N2 by the demoted operator defined immedi- those fits and this work are immediate.

ately above. Table Il presents, for completeness, the matrix !N fact, the only other fits we wish to present here are
elements of the remaining 9 operators. those in which the mixing angles are neither taken from pion

decays[13] nor photoproduction datgl7], but rather make

use only of the seven measured mass eigenvalues and predict
the mixing angles. Tables V, VI, and VIl are the analogues
to Tables I, IV, and V in[19], respectively. Note particu-

The nine mass parameters of the nonstrdrge baryons larly the following features: In Table V, it is again seen that
appearing atN.=3 consist of diagonal elements of two the three leading operatof®, ,0,,05 in the 1N, (ordersNé
isospin-3/2 states\,,, andA g, and five isospin-1/2 states, and NS only) give a poor accounting for the data, even when
Ny, Nip, Nap, Nji,, and Ng,; here the subscript indi- including only mass eigenvalues; furthermore, the predicted
cates total baryon spin, while total quark spin is indicated bymixing angles are nowhere near the experimental values
the absence (1/2) or presence (3/2) of a prime. To round outom [13] or [17]. This is no surprise, since one expects the
the set of mass parameters, observe that there is one miximgxt order corrections to be of the same order as the mass
angle forN;,~-Ny;, and one forNg,-Na/,. splittings. Indeed, when three additional operat6igs g,

In Ref. [19] we showed that fits of these nine mass pa-with matrix elements ofD0(1/N;), are includedTable Vi),
rameters lead to an unexpected result: Only a few of théhe situation becomes much better: In addition to an excel-
coefficients of the effective Hamiltonian turn out to be of alent x?/Npg of 0.23, one finds that the mixing angles pre-
natural size(namely, about a few hundred MgWvith the  dicted from a mass analysis naturally approach the values
rest being anomalously small or even consistent with zeroobtained from decays. Nevertheless, oflly, O3, and Og
This analysis was performed with certain particular sets ofippear significant; what if one performs a fit using only those
operators that did not fully take into account the demotionghree operators? The answer is in Table VII. Here the results
described above, and one may wonder whether these resultse most surprising: Now the operatdg actually adjusts its
were a fluke resulting from an unfortunate choice of basis. Ircoefficient to give asmall contribution; they?/Npe=0.73 is
the current work we possess rules for obtaining optimal denot bad, but while the prediction for the spin-3/2 angle is
moted sets of operators as described in the previous sectioexcellent, the prediction for the spin-1/2 angle is off by about
and have found that fits using a number of such differenRa. Even thoughO; now looks insignificant, it is actually
choices lead to similar results. In particular, with the sameequired to give nonzero values to the mixing angles, for
mass eigenvalues and mixing angles a§li8] and the op- observe from Table Il that); and Oy do not contribute to
erator basis listed in Table Il, one obtains the coefficients mixing.
defined by the relations Also, neitherO; nor Og contribute to the mass splitting

Ag-Aq,. Among theO(1/N.) or larger operators, only the

spin-orbit terms split the\ ;. In fact, the main effect of the

2Beginning with the three leading-order operators, there are nu_spin—orbit terms i_s _to split thA,J states; they also contribute

merous other choices for the remaining six that provide an operatd® the nucleon mixing, but their effect on the nucleon masses
basis that is linearly independent fof,=3 and rank 8 forN, IS slight because of cancellation§he coefficients of the
—. Using the operator definitions in Tables Il and Ill, and letting tWO Spin-orbit terms have opposite signs, unlike what would
04=1'gi?{S., G}, one can check that all such sets cont@inand ~ be expected from a single overall spin-orbit tetns=1-s
O}, one ofO; and Oy, one of Oz andOy,, and two of0,, 05,  +1-Sc). So while the spin-orbit terms are small compared to
and O1. An optimal basis can be formed by taking appropriate 1/N; expectations, they do have some importance and one
linear combinations. may expect that the errors in the two coefficients are corre-

where j=1,...,9 represent mass bilinears, the rows of
Table Il. The results of this inversion are presented in Table
V. One sees that this fit is nearly identical to that of Table

VI. NUMERICAL ANALYSIS
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TABLE II. Matrix elements(O;); of 9 operators, labeled &9;,0,, ...
off-diagonal matrix elements.

,0q, respectively, that are linearly independent fdg=3. The third and sixth rows correspond to

(01) (02) (03) (04) (05) (06) (07) (08) (09)
(Is) Lo 4 La L : L@ N 0n)+(Og) + 8 liglafsl Gia
Ng(1) Wc< 9G;) |S+Nc+1ItGC ﬁc(s& E( ) WC<S$> E( sS) N, (04) +(0Os) m( g'3{sL.G:})
c
N N ! (2N;—3) 0 2 ! (N+3) + = (Ng+3) ! (Ng+3) 0 ! (17N~ 3)
. (2N— N - il o - -
112 c 3Nc C Nc+1 3N(2: C 2N§ C g C 3Ng c
: N 5 > (Ngt1 0 > . Lt L2 L0
Ny, ¢ -3 aan, (Net D) 3N, Ne 2N, 6N, 3N?
1 [N+3 5 [N.+3 1 [N+3 1 [N.+3 5 [N.+3 1 [N+3
" Nq,,0 SRy i - /== Z(oN, - SRR i R i 0 0 == -\ =
NizNas 3 V2N, 48N, V 2N, (2Ne=1) Ne+1 V 2N, * 3N, V 2N, * 12N, V 2N, 3N2 V2N
L one-3 0 L L Nets L nets L ne+3 0 L amNe-3
— (2N~ — + — (N.+ +— (Ne+ — — (Ne+ +— -
N3/2 Nc + GNC( C ) Nc+l 6N(2:( 'C ) g( C ) g( C ) 6N2( c )
, . L 0 2 2 1 2 L2
N3 Ne -3 +FNC( ) 3N, +N_c +2_Nc 3N, 3NZ
1 [5(N.+3) + ! \/5(N0+3) 1 [5(Ng+3) 1 [5(N.+3) 1 [5(Ns+3)
NyrN30 =\ ——— 96N, Nc __ v PNty o (2t 0 0 o= 2Rt - c
6 Ne 2(No+1) N, 6N, Ne 24N, N¢ 6N?Z N¢
X(2Ng—1)
Ni, N 41 1 0 1 2 1 1 1
2 ———(N¢+1) + — + — +— + — -
48N, © N, Ne 2N, 6N N2
A N 1 0 0 4 42 ! 0 4
172 c +3 N, N N N
1 0 0 2 2 ! 0 -
A3/2 NC -5 +3_NC +WC _Wc 3N§

"N S3ISSVYIN NOAYVE T=HO SISATVNY d0.1vd3dO

8007TT 65 d M3IINIY TVIISAHd
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TABLE lll. As in Table I, for operators labeled a8,43,011, . .. ,O1s.
(010) (011 (012) (013 (014) (015) (016) (017) (018)
(g™ () Lo L L L L Lo L
N, \9'e N e N_2<I S G Q(('S)ﬁ) N—2<{|5c S m«lsc)(ﬂ—c)) N—2<9$Tc> N_2<I S ﬁzd 9%To)
C C C C C C C
1 1 2 1 1
N1/ - 5 (Nc+3) - —(N¢+3) 0 + —(Ne+3) + —(Nc+3) + ——(Ne+3) + —(Ng+3) 0 0
c c NC NC NC NC
. .5 1 (Nt 1) 5 5 .5 1 .5 5
2 6N, N 2 3N2 3N2 3N? 2N? 6N2 6N2
NN L1 Nt o LI SN 2 N3 1 N3 1 N3 o 5 N3 5 [N+3
vz 3N: V2N, 22 V2N e 3Nz V2N, 6Nz ¥ 2N, 3Nz V2N, 6NZ V2N, 12 V2N
N (Ne+3) L Ner3) 0 L Net3) L Net3) L Ner3) L Net3) 0 0
+ + — — (N¢+ — ——(Ne+ — —(Ng+ — —(N¢+ + — (Ng+
sz 2t 2ie 1Ng aNg e BN3 ° aNd e
. 1 1 L Nt D) 2 2 2 1 2 2
o - + — (Ne+ -— -— +— -— -— +—
¥ 3N, Ne BN2 3N2 3N2 3N2 2N2 3N2 3N2
, 1 [5(Ng+3) 1 [5(N+3) 1 [5(Ng+3) 1 [5(Nc+3) 1 [5(N.+3) 1 [5(N+3) 1 [5(N.+3)
NazNaz -+ N 0 Twme VTN Y TV TN eV N e VTN 0 aNTN, T Tae VTN
6N Ne 48N? c 3N2 c 12N2 c 6N?2 c 12N2 24N2 c
) 1 1 (Nt ) ! 1 1 1 ! 1
N — -— - — +— - = -— — -
52 2N, N 2 N2 N2 N2 2N2 6N2 6N2
A 1 1 o 2 8 2 1 o 0
+ + — — -— -—
v 6N, 2N, 3N2 3N2 3N2 2N2
A 1 1 o 1 4 e 1 o o
= b _ _ _
sz 12N, 2N, 3N2 3N2 3N2 2N2

c

c

a3g371 ANV ‘ALIOD ‘IANOYUVI ‘NOSTIVO
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TABLE IV. Operator coefficients in GeV, assuming the complete set of Table Il. The vertical divisions
separate operators whose contributions to the baryon masses are ofNfrd®S, N_*, andN; 2, respec-
tively.

(o C, Cg Cy Cs Ce (o Cg Co

+0.463 | —0.036 +0.369| +0.087 +0.086 +0.438 —0.040 +0.048| +0.001
+0.020 | £0.041 =*0.208 | *0.097 =0.080 =*=0.102 =*=0.074 =*=0.172| *=0.084

lated. Reduced experimental error bars on the states the early analyses found 5 independent operators, three of
would clarify the role of and need for the spin-orbit terms. which are independent of the orbital angular momentum
We conclude from the results presented here and in Refne linear inl, and one quadratic in Five operators is many
[19] that the largeN, operator analysis reproduces both thefewer than we use. We need to explain how the differences
experimentally measured masses and the mixing angles e&ome about. We will use the notation of GR and give a brief
tracted from the strong and electromagnetic decays. We hav€prise of their logic. .
shown here that fits to the mass eigenvalues alone may be Note before starting that GR and HD use wave functions
used to predict these angles successfully, and have found t&@t involve only relative position coordinates, whereas we
this result holds, to varying degree, in both six and thre¢!S€ Hartre_e or mdependent partlcle wave functions, that is,
operator fits. These fits reveal that th@function is shallow ~Wave functions relative to a fixed center of mass. The Har-
with respect to the mixing angles, so that a sm@llis ob- tree wave functlons are exact in thl%—mo. limit. This leads
tained in Table VIl using only three operators, even when thd® Some difference in reckoning what is a one-body, two-
mixing angle predictions begin to diverge from the decayP0dy, or three-body operator. For example, we condided
analysis results. Our conclusions are unaffected by out'S @ one body operators. The equivalent in GR or HD

choice of operator basis, which differs from that of Hag].  Would be a sum over quarks of L,-o,, whereL is in-
terpreted 22] as the orbital angular momentum of one quark

VII. VINTAGE SU (6) ANALYSES with respect to the center of mass of the others. They _wouId
consider this a three body operator, and do not use it. The
Operator analyses of baryon masses were performed lordjfferences between the older work and the present work due
before the N, expansion was proposed. A main differenceto this point of counting are least apparent in operators with
between modern work and the older work is that one camo factors of angular momentum, and we turn first to them.
estimate the importance of each operator by the ordemNg 1/ For one body terms, one needs operators that have matrix
at which it contributes to the mass. Inevitably, there are otheglements between thand6 of SU(6), and one knows that
differences as well. In this section, we contrast what we have o
done with some of the early work. 6®6=1®35. (7.1

Greenberg and ResnikofR1] (GR) led the way in per- . . . . .
forming an analysis based on @), and were later joined by -0°King for sunatile Spin-0 operaForgmc])Srb(tge right hand side,
Horgan and Dalit422] (HD). Additionally, there was work there is only theT;. The notation isT jimsys). and we only
on numerical fits to the baryon mass spectrum separatefonsider SUB) singlets since we are considering neither
from those papers that laid out the operators. At a minimun$trangeness nor isospin breaking. For two-body operators,
in this context, we should mention the work in Refg3—  We first note that
26]. The last of these papers also corrected some Samit
turned out numerical errors in the previous analyses. All the
analyses make the assumption that only one- and two-bodyhere thel5is antisymmetric and th21 is symmetric. Then
operators enter. For the nonstrange members of@halet, we examine the product

6 6=15621, (7.2

TABLE V. Three parameter fit using operataty , 5, giving x*/Npp=6.89/4=1.72. The operators in-
cluded formally yield the lowest order nontrivial contributions to the masses in theekpansion. Masses
are given in MeV, angles in radians. Experimental data for angles here and below are for comparison
purposes and not used for fitting. Parametée®V): c;=0.542+0.002,c,=0.075+0.009,c;= —0.437

+0.051.
Fit Expt. Fit Expt.
A(1700) 1615 172650 N(1520) 1520 15238
A(1620) 1653 164530 N(1535) 1562 153818
N(1675) 1677 16788 On1 (pred 2.47+0.04 0.61+0.09
N(1700) 1674 1708 50 6ns (pred 2.65+0.03 3.04-0.15
N(1650) 1666 1666 20
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TABLE VI. Six parameter fit using operato8; g giving  which is the relative angular momentum of a quark pair.
x?/Npe=0.24/1=0.24. Masses are given in MeV, angles in radi- Since unit angular momentum requires antisymmetry, GR
ans. Parameter¢GeV): ¢;=0.466-0.014, c,=—0.030:0.039,  and HD use only the antisymmetfitn SU(6)] 15 two-quark
€3=0.304£0.142, ¢,=0.0680.101, ©€5=0.062£0.046, Cs  combination, and find only the operatd?;. Perusing our

=0.424+0.086. list, we find 3 operators at the one- or two-body level that use
Fit Expt. Fit Expt. | once:
A(1700) 1699 172850 N(1520) 1522 15238 I-s,I-S.  and IgT,. (7.6)

A(1620) 1643 164530 N(1535) 1538 153818 . .
N(1675) 1678 16788 06y, (pred 0.53-0.29 0.61-0.09 The question of how to connect outto their angular mo-

N(1700) 1712 170850 6y, (pred 3.06:0.24 3.04-0.15 Menwm Epelratt_or Eet‘t"gns' Ifis I}he atng‘“?r mom.et’r.‘t”mth‘)f
N(1650) 1660 166 20 one quark relative 1o the overall center of mass, IL IS a three-

body operator, as discussed earlier, and thus would be dis-
carded by the early authors. For liss the angular momen-
tum with respect to the center of mass, and we can interpret
part of it as the angular momentum of the excited quark with
respect to one particular core quark. Then, matching to the
earlier authorsl,- s andl - S, would have the same coefficient
by arguments already made Sf is taken to refer to a quark
[ in that pair(and if not, it would be a three-body teynRe-
15915=19 359189 (7.4 garding our third term, again following GR or HD, we would

) ) 1 1 . . apply it only to antisymmetric subsets of quarks, and for

yields still one morel; and aTygg. All the Ty's give equiva-  gjther purely symmetri¢8] or purely antisymmetric quark

lent results for a given multiplet; so we are left with 3 inde- states one can prove a redidtconsequence of E¢.7)] that
pendent spin-0 mass operator candidates, nal’ﬁialyTigg,

21%21= 18355405 (7.3

for suitable operators, finding anoth®t and aTz,s. Simi-
larly, the product

and Tgs. 9T S +5'. 7.7
On our list, we have four one- and two-body operators
that contain no orbital angular momentum. They are Thus, the third spin-1 operator in E({.6) becomes depen-
dent upon the first two.
1,S;,s°S; andt-Te. (7.9 Similarly, spin-2 operators that can be combined with the

Al=2 part ofl'll come from the symmetri21 in the earlier
From our viewpoint, there is a further, tacit, assumptionguthors’s analysis. Here, they find only an operéﬂ;h)g. We

made by the earlier authof21,22: Their two-body opera- have two operators at the two- or fewer-body level, which
tors do not distinguish between, in our language, two S-wavgre

guarks and an S-wave and P-wave pair. This implies that

whatever physics leads to thg- o terms in the effective 129G, and 1?sS.. (7.9
mass operator would give the same coefficient for any pair of

quarks, whatever their wave functions. If so, the coefficientBut again, if we ignore differences between quarks and recall
of our S§ ands- S; terms would not be independent, and we that GR or HD would only let the operators act on symmetric
would have the same number of independent spin-0 operatates, there are operator reduction rules stating

tors as GR or HD. Indeed, with explicit matrix elements S

given by GR, we can verify the linear dependence of our g'8GlPos'S, (7.9
operators upon theirs or vice-versa.

Next we look for spin-1 operators that can be dotted intofor the spin-2 piece, and again only the core quark that ap-
the orbital angular momentum to give rotationally invariantpears in the pair under discussion is meant above. Hence, in
operators. GR and HD only consider angular momentunthis view, we would have one operator also.

Thus, if we make GR’s or HD’s assumptions, we get their

TABLE VII. Three parameter fit using operato€®,, Os, and  results. However, our analysis is more general and relies
Og, giving x*/Npe=2.93/4=0.73. Masses are given in MeV, only on an organizing principle suggested by the underlying
angles in radians. Parameter&eV): c¢,=0.457-0.005, c;  theory. On the practical side, GR did not use the tensor op-

=0.088+0.198, cg=0.459+0.032. erator in their fits, on the grounds that there was not enough
- - data at that time to justify one more operator. We found that
Fit  Expt. Fit Expt. this operator was quite important. They did, however, find

A(1700) 1678 172850 N(1520) 1525 15238 that the spin-orbit operators had small coefficief25], a

A(1620) 1678 164530 N(1535) 1524 1538 18 result that was confirmed by Isgur and Kg2[7].
N(1675) 1676 16788 6y, (pred 0.11+0.23 0.61-0.09
N(1700) 1688 170850 6ys (pred 3.11+0.07 3.04-0.15

N(1650) 1668 166620 3To be explicit, this is the third identity from the bottom of Table
VIin [8].
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VIIIl. DYNAMICAL INTERPRETATION which differs from the identity only at order NI. Thus, to

The most striking feature of our analysis is that the non-2rder 1Nc, one may make the replacements

strangel =1 mass spectrum is described adequately by two
nontrivial operators,

{Lg*GEIY .g°G GG ={Lg"GIP ¢}
L aga q —g (8.1) ®7
N, gG. an N e .

explain thel=1 baryon masses—the underlying dynamicsPe understood in terms of single pion exchange between
plays a crucial role. In this section, we simply point out thatquark lines. This is consistent with the interpretation of the
the preferred set of operators in E§.1) can be understood Mmass spectrum advocated by Glozman and Ri2Ba Other
in a constituent quark model with a single pseudoscalar mesimple models, such as single gluon exchange, do not di-
son exchange, up to corrections of ordéd/ The argument  rectly select the operators suggested by our analysis and may
goes as follows: require others that are disfavored by the data.

The pion couples to the quark axial-vector current so that
the qq coupling introduces the spin-flavor structusér?
on a given quark line. In addition, pion exchange respects the IX. SUMMARY AND CONCLUSIONS

large N, counting rules given in Sec. Il. A single pion ex-

change between the excited quark and a core quark correbwft::ave conS|d$rt(;d whattthe Iargl—g expanS|.(t)ndt§IIs
sponds to the operators about the masses of the nonstrange P-wave excited baryons.

We have given the effective mass operator by enumerating
a2 all the independent operators that it could contain, and or-
g GRIY (8.2 dered those operators by their size in thed léxpansion. We
have calculated the matrix elements of each of the operators
and for any N. For the effective mass operator, we have fit the
coefficients of the individual operators to the data, using the
g‘aGiCa (8.3  masses given by the Particle Data Gr¢@p] and after trun-
cating the full set of operators in suitable and reasonable
while pion exchange between two core quarks yields ways.

We find that one can fit the masses well using selected
subsets of the full list of operators, and that the good fits
have mixing angles that are compatible with the mixing
gogles that come from analyses of the mesonic and radiative
decays of these baryon43,17,3Q. Estimating the size of
deach operator using theNl/ scheme works, in the sense that

no operator is larger than expected based on those estimates.
Some operators are smaller. In fact, we can get a decent fit
1 keeping just the unit operator, one tensor operator, and the
o core spin-squared operator. This is compatible with the idea
2G¢'G'=Cp- 1 - ETng_ 555 (85 that the underlying dynamics is due to effective pseudoscalar
meson exchanges among the quafR8], and not easily
where C, is the SU4) quadratic Casimir identity for the compatible with the idea that the masses splittings are ex-
totally symmetric core representatigthe 10 of SU(4) for  plained by single gluon exchange.
N.=3]. Since the core wave function involves two spin and
two flavor degrees of freedom, and is totally symmetric, it is
straightforward to show that2=S2. Then Eq.(8.5 implies ACKNOWLEDGMENTS
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These exhaust the possible two-body operators that have t
desired spin-flavor structursincel ?)G.G. is a three-body
operatoy. The first operator is one of the two in our preferre
set. The third operator may be rewritten
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APPENDIX A: EXPLICIT MATRIX ELEMENTS

Using the notation for quantum numbers defined in 8y4), we first present matrix elements of the GUgenerators
between completely symmetric core states:

‘ 1 [21.+1 S. 1S\ (1. 1|1}
S =1":m!,a!|G?S.=1.:my,a;)=— c Ne+1)2— (12 =121 4+1.+1)2 _ . (Al
(Se=teimi adl GFIS=leimyan) =g \ o VNt D= (1o ® e et DA || ] o) AD
! ! ! ! a IC 1 IC

(S¢=1¢imy,en|Te|Se=1cimy,ar)=Vlc(lc+1) a, alal 91119575, 0mm, (A2)
. S 1S

<Sc:|c;mi'ailsusczlc;ml!al):\/Ic(lc+1) m, i‘m’ 6'é|553é5c6‘11a1' (A3)
1

To obtain the matrix elements af,t,g in terms of those forS;,T.,G., simply note that the excited quark is group-
theoretically equivalent to a one-quark core with spin and isospin 1/2. Thus, replac&lgaéhby 1, and eacls.= 1. and
S.=1, by 1/2. The matrix elements of the orbital angular momentum operators are

. A
('m{[HIm)=JI(1+1) ‘ ,>5|f|, (A4)
mi|m
- [(I+1)(21-1)(21+3) 1 142\ 2]1
I"m/ |11 1m :\/ s | . (A5)
< I| | |> 6 171 m i ilu mooum
With these results we have computed the matrix elements of all the possible isosinglet mass operators:
(1)=64136313,611 6116111055, (A6)

(I8Y=63138313.611611 8, (—1)5’—51J(2s'+1)(25+1) I(1 +1)—|(|+1)—§(2| +1)
=031 J3J3 1"1¢17] I3|3 2 I s\ls 4 S

=1*1/2

I, s |1, S

1
2t (A7)
J

Is

X > C,,C
Sy e

ENNTE

| 1) L1

, 1 /3
<|th>=5J,35JéJ35|,la,,,a,é,s(—l)“””s _SHZ\[EW' +1)(21+1)y(2S' +1)(25+1)

r_ 2
X S ey 21+ 1) (21 1) \/(Nc+1)2—<77 5 77) (21 +1)2
7'\ p==1
11 '
5 L5l 1 S . S .
% _ 1)z, A8
, s 3 sf)i L[y (A8)
10 2

c

1 [15
(199G.)= 5J,J5JéJ35.,la‘.,.a.é.s(—l)J2'+'+S§\gw(| +1)(21-1)(21+1)(21 +3)

2
X '+ +
V2SHDESID| | o o

|
a1+ p")2
] D CprpyCpp(— 1)

7 p==1
1 1 le e
’ 2 '
- 1 Z||s s
X2+ 1)(21,+1) \/(NC+1)2—(7’ - 7’) (21+1)% 2 2000 ] (A9)
TR N ==
¢ “12 2
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(1Se)= 5J'J5J§J35|'|5|'|5|é|3(—1)‘]_|+|+s,_s\/|(| +1)(21+1)(2S' +1)(2S+1)

1 1 1 I
X[J g ]2 CornCon(— DA+ 1) (21 + 1)1 1 g s (A10)
(e 2
1
(tTe)=0833813,811811 871,857 | 41 (1+1)—3— 42 Aellc+1)], (A11)
3 3 4
(S2)= 5330y, Jsama.f.a..ésrsE 2t 1), (A12)
3
<|ch):5J,J5Jéj35.,|5,,,5,é,3(—1)J+'+'+1§¢|(|+1)(2|+1)J(2s'+1)(2s+1)
1 1 1 1
A 1 = = R
X1 o s :Eﬂcp,,p,?wcu +1)2l+1)y 2 2 2 2y, (A13)
e I 1. 1) I, 8 S
J5 2 1 |
(1PsK) =8y 38)13,811811871,(— 1)J+'+S VI(+1)(21=1)(21+1)(21+3)/(2S' +1)(2S+1) ;g s
le 1o 1
S S 2
x”; Cpr nCpm\le(lc+1)(21+1) 11 , (A14)
- ]
2 2
R 3
('g"™{SL. G} = 831383,0,811 811811, (— 1) g I+ D21+ DV(2S' +1)(25+1)
1 1 !
O 2o L fle bt :
X1 g s/, 2 CpryCopl 2 2 <l g V21L+1)(21+1)
m==1 11l 2
r 1 1
7' —n\* 5 1 3
X \/(Ng+1)2— 5 (21+1)? (—1)S et 2y 2 25 iIal+1)210+1)
1L s 1
1,01
+(—1)S letu2 2 24 I+ 1)(21,+1) |, (A15)
le S I
|
<|<2>t{sC,Gc}>:5J,J5Jéjs5|,la.,.alé.s(—l)““*S S+1§¢5|(|+1)(2|—1)(2|+1)(2|+3) (A16)

2 1
'+ +
X (25 +1)(2S+1) 7 9 s

] Y CpyCop(21L+1)(21+1)

*1
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XL+ D 21+, l(le+1)(21+1) e
1Lo1 le Te I¢

1 3 )
<SS:>:6J’J5JéJ35|’|5I’I5Ié|36S’S§ S_E S‘I‘E - Z_rl Cpnlc(lc_l_l) y (Al?)
J—I+I+S’—S+11 7 11 I
((IS)(tTe)) = 8138313,811 8111 8131,(— 1) 7+ D2+1)y(2s FDERSHY ;o o
O P N
X 3 G2 D2 (D NI A D@D L o gt (A18)
- 2
((18)S2Y= 68311831 3.611 8118 (—1)5’*51¢(23'+1)(23+1) [<(1 +1)—|(|+1)—§(2| +1)
(o J'J J3J3 1"1¢17] I3I3 2 =T s\ls 4 s
L Sosl i ts
X 3 Gy 2 S 2 T+, (A19)
T [ R I O T B
({1Se, 88} = 833833,811811 81 (— 1) S TSI+ 1) (21+ 1) (28 +1)(25+1)
1 1 L 3
S Sn;ﬂcpwn [S(S+1)+S(S+1)]— —1(l+1)
1 1 g
X (=121 (1.4+1)(2l+1){ 1 s sl (A20)
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1 1) (1 1
52 2 P 2llz t 3
(98 Te)= 0y3033,81 811011, 05s(= ' 755 2 ¢ lellet1)(21e+1) ,
e le | 1) Llg S I
(A21)
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BI(1+1)(21—1)(21+1)(21+3)
<|(2)gStTc>:5J’J5J:’,,J35I’I5I’I5Iéls(_1)J+2|+l+S\/ 6
3 7 2 I (p+1)I2

x§¢(2s DS o o F};l Cpr Coyl el 1) (20 +1)(— 1)
L fs g

x4 2 2 11 (A23)
le |1 - -1
C Cc 2 2

[
APPENDIX B: OPERATOR REDUCTIONS Ne—3
FOR MIXED-SYMMETRY STATES ® [m1,0Q...,0m+2]. (B2

. . m=0
In order to establish a connection to the operator reduc-

tion rules obtained i8] for the completely symmetric It is convenient to give these representations concise names

ground-state spin-flavor multiplet, let us first develop a comfor future reference. Labg¢im,0,0, ... m] as adj,, so that

mon notation and then review the results of the derivatiorfdp is the singlet representation, ad§ the adjoint repre-

presented in the earlier work. sentation, and agj is «called ss in [8]. Let
Each irreducible representation of SU{Ris denoted by [m 1,0,0...,0,1m]=aa,, [m+2,0,0...,0,1m]=as,,

a  Dynkin label, which is a (B—1)-plet and [m,1,0,Q...,0m+2]=sa,, SO thatgao, asg, and

[ng,n,, ... ,Nye_1] Of non-negative integers, describing — . = — — .
the Young diagram of the representation; the number opdo are denoted i8] asaa, as, andsa, respectively. .
boxes in rowr(=1,2,...,F—1) of the diagram exceeds That the operatorga.]) satisfy an SU(E) algebra im-

plies that any string of the one-body operators in Edsl)

the number in rowr +1 by n,. The conjugate of a given o ‘s reducibl I . f
representation is obtained by reversing the order of the inte2ONtaining a commutator is reducible to a smaller string o

gersn, . In this notation the completely symmetii¢.-box such operators; only anticommutators need be considered.
representation S igN,,0,0,...,0, while the mixed- Since one-body operators appear in the adjqnt_representatlon
symmetry |=1 baryons fill the representation M$N, Of_ SU(2F), one n_e(_ed o_nly_ conS|d(_er co_mb|r_1at|ons_ Symme-
—-2,1,0,0...,0]. Since all matrix elements of operatafs tr|zeq on the aql;omt indices,, adj, (adp adj)s, (adj= adj
between baryonB transforming according to a given repre- ©2dl)s, €tc., which- may be denoted 0-,1-, 2-, etc., body

) . — operators.
sentation appear through bilinears of the foB®B, such Let us turn to the question of representations that appear

Operators fill the represe_ntations B&B. In the case of the -in Symmetrized products of One-body OperatorS’ but have
ground-state representation, standard techniques for combiganishing matrix elements for the mixed-symmetry baryon

ing representations show that this product is states since they do not appear in the productEWES. First

§®S=[0,0,Q ... N¢]®[N;,0,0,...,Q9 note that, unlike S, all representations in
NC . — . . . -

— o [mo00,...ml B1) (Tj@)ast adp®adj®@adp®aa,, (B3)

m=0 in particularaa,, appear in the product MSMS, meaning

that the mixed-symmetry representation has no similar op-

while the mixed-symmetry representation product gives o o401 jgentity. One therefore tumns to representations in the

MS®MS=[0,0,...0,1N.—2]®[N.—2,1,0,Q...,0] product (adpadj®adj)s, which are listed in Table IV of
[8]. Comparing this list to Eq(B2), one sees that the only
=[0,0,...,0®[N.—1,00... N.—1] representations not present in the latter are

[0,0,1,0,0...,0,1,0,0=bb, and adj. Products of three
one-body operators that transform according to these repre-
sentations should indeed be reducible when acting on mixed-

Ne—2

~
® 2[m,0,0,...,0m]

m=t symmetry baryon states. The astute reader may notice that
Ne—2 each of these representations has a special fedtbgedoes
® [m1,00...,01m] not occur forF<3, and adj only gives reduction rules for
m=0 the physical cas&l,=3. The product of three one-body op-
N.—3 erators is enough to span the space of all physical baryon
® [m+20,0...,01m] qbser_vables; for this reason, we do not consider representa-
m=0 tions in the product of four or more one-body operators.
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