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Note on the field theory of neutrino mixing
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The possibility of constructing the Hilbert space of definite flavor neutrino states, especially a one-flavor
neutrino state, is investigated in the theory with flavor-mixing mass terms in the Lagrangian. Reviewing the
work of Blasone and Vitiello in detail, we clarify that even if we construct the Hilbert space of a definite flavor
neutrino, the oscillation probabilities of neutrinos derived according to the usual way include arbitrary mass
parameters. We examine the structure of the flavor neutrino propagator and show that the physical poles of the
propagator coincide with mass eigenvalues of the mass matrix in the Lagrangian irrespective of such arbitrary
parameters. This gives a possible way of escaping the arbitrariness.@S0556-2821~99!03809-6#

PACS number~s!: 14.60.Pq
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I. INTRODUCTION

Since Pontecorvo@1# pointed out the possibility of neu
trino oscillation and, in addition, the solar neutrino proble
was proposed@2#, the neutrino oscillation problem has bee
much investigated experimentally and theoretically. Indi
tions in favor of neutrino oscillation from various kinds o
experiments have been reported@3#. Regarding the theoreti
cal aspect, several works have been published recently
pecially on the field theoretical approach to neutrino osci
tions@4–10#. One of the controversial points is how to defin
field theoretically one~anti!neutrino state with a definite fla
vor for deriving the neutrino oscillation formula. More defi
nitely, the problem is how to define field theoretically th
state such asune& employed usually in the quantum mechan
cal treatment@1#. Whereas there exists the assertion that i
impossible to construct a Fock space of ‘‘weak states’’@4#,
Blasone and Vitiello have given the opposite assertion
defining the creation and annihilation operators of defin
flavor neutrinos@7#. They said that the constructed Hilbe
space of definite flavor states is unitarily inequivalent to t
of definite mass states and that the effect due to such
inequivalence can be observed in the low-energy experim
of neutrino oscillations.

The main purpose of the present paper is to investigate
field theory of neutrino mixing. The investigation consists
the following two topics. The first is to examine the proble
of how to construct the Hilbert space of definite flavor sta
in connection with the work of Blasone and Vitiello@7#. The
second is to examine the structures of the flavor-neut
propagators in order to define the physical neutrino mass
the basis of a Green-function approach to the field the
with particle mixings@11#. The remaining part of the presen
paper is organized as follows. In Sec. II, we consider
problem of how to construct the Hilbert space of defin
flavor neutrino states by employing creation operators of~an-
ti!neutrinos with definite masses and flavors. After explor
in detail the logical structures of Ref.@7# on the construction
of the Hilbert space of definite flavor states, we point out t
the relation between creation and annihilation operators
0556-2821/99/59~11!/113003~15!/$15.00 59 1130
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the flavor neutrinos and those of the neutrino with defin
masses utilized in Ref.@7# has no field theoretical basis; thu
the conclusions drawn in Ref.@7# are unphysical. Section III
is devoted to examining the structures of the flavor-neutr
propagators in the case of two flavors.~The three flavor case
is explained in Appendix B.! This section is pedagogical an
helpful to grasp the essence of the procedure as to how
diagonalize the propagator developed by Kaneko, Ohn
and Watanabe@11# in the time when various models wit
particle mixings had been discussed@12#. The last section is
a summary and discussion, in which a remark is given on
formula of the neutrino oscillation probability.

We discuss exclusively the case of Dirac neutrinos w
two flavors in the body of this paper.

II. TWO KINDS OF HILBERT SPACES

A. Summary of the approach developed
by Blasone and Vitiello

Let us review briefly the work of Blasone and Vitiello@7#.
Their starting point is the relation between two sets of n
trino fields$ns(x),s5e,m% and$n i(x),i 51,2% with definite
flavors and masses, respectively. This relation is given b
Bogoliubov transformation expressed as

S ne~x!

nm~x!
D 5G21~u;t !S n1~x!

n2~x!
DG~u;t !

5S cosu sinu

2sinu cosu D S n1~x!

n2~x!
D , ~2.1!

whereG(u;t) is given by

G~u;t !5expFuE d3x@n1
†~x!n2~x!2n2

†~x!n1~x!#G ,
x05t. ~2.2!

n1(x) andn2(x) are expanded as
©1999 The American Physical Society03-1
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n i~x!5
1

AV
(
kW r

$ukW ,i
r

akW ,i
r

~ t !eikW•xW1vkW ,i
r

bkW ,i
r†

~ t !e2 ikW•xW%,

i 51,2, ~2.3!

where akW ,i
r (t)5akW ,i

r (0)e2 iv i t and bkW ,i
r (t)5bkW ,i

r (0)e2 iv i t

with v i5AkW21mi
2. Here ukW ,i

r and vkW ,i
r are solutions of the

free Dirac equation in momentum space with definite spir
and massmi . Here we add thet dependence of the operato
G,akW ,i

r , and bkW ,i
r explicitly in the above equations to mak

the explanations clearer.ukW ,i
r , and akW ,i

r (t), etc., are written
for simplicity asuk,i

r , ak,i
r , etc., in this subsection hereafte

The Hilbert spaceH1,2 of definite mass states is con
structed by operatingak,i

r† ’s andbk,i
r† ’s on the vacuumu0&1,2,

which satisfies

H ak, j
r

bk, j
r J u0&1,250, 1,2̂ 0u0&1,251. ~2.4!

By using the inverse of Eq.~2.1!, the generic matrix elemen
1,2̂ aun1(x)ub&1,2 is written as

1,2̂ aun1~x!ub&1,251,2̂ auG~u;t !ne~x!G21~u;t !ub&1,2,

~2.5!

whereua&1,2 is the generic element ofH1,2. The authors of
Ref. @7#, Blasone and Vitiello~BV!, considered that, sinc
the field operatorsns and n i are defined on Hilbert space
He,m andH1,2 respectively,G21(u) mapsH1,2 to He,m and
in particular the flavor vacuumu0&e,m is given by

u0&e,m5G~u;t50!21u0&1,2. ~2.6!

Equation~2.6! suggests thatu0&e,m is a condensate of mas
sive neutrino-antineutrino pairs and a coherent state. S
these two Hilbert spaces are orthogonal to each other in
infinite volume limit, BV performed all the computations at
finite volumeV and putV→` at the end.

From Eq.~2.1! BV gave, as a kind of dynamical map,

uk,s
r ãk,s

r [G21~u;t !uk, j
r ak, j

r G~u;t !,

vk,s
r* b̃k,s

r [G21~u;t !vk, j
r* bk, j

r G~u;t !,

~s, j !5~e,1!,~m,2!. ~2.7!

In order to exhibit this dynamical map explicitly, BV rede
fined ‘‘for convenience’’ the quantities appearing on the le
hand side~LHS! of Eq. ~2.7! asuk,1

ra ak,e
r [uk,e

ra ãk,e
r , etc., and

got

S ak,s
r

bk,s
r† D[G21~u;t !S ak, j

r

bk, j
r† D G~u;t !. ~2.8!

In order to obtain the formulas of the neutrino oscillatio
BV prepared the one-electron-neutrino state at timet50 de-
fined as
11300
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uak,s
r ~ t50!&[

1

Nak,s
r† ~ t50!u0&1,2

5
1

N @cosuak,1
r† ~ t50!u0&1,2

1Uksinuak,2
r† ~ t50!u0&1,2], ~2.9!

whereUk[uk,2
r* uk,1

r 5v2k,2
r* v2k,1

r , r 5helicity, the normaliza-
tion factor N 2512uVku2sin2u, and uVku2512uUku2. @In
Ref. @7#, after somewhat troublesome calculations employ
momentum-spin eigenfunctions, BV introduced substantia
the helicity eigenfunctions instead of the spin ones. In or
to see the essential point in Ref.@7#, it is enough for us to
employ the helicity-momentum eigenfunctions from the o
set to derive Eq.~2.9!.#

By taking the time evolution of Eq.~2.9! due to the free
Hamiltonian of then i(x) field as

uak,e
r ~ t !&5eiH 1,2tuak,e

r ~0!&, ~2.10!

the expectation values of the number operators

ns~k![(
r

ak,s
r† ~0!ak,s

r ~0! ~2.11!

with respect to the stateuak,e
r (t)& are given by

^ak,e
r ~ t !une~k!uak,e

r ~ t !&512Rksin2~2u!sin2S Dv

2
t D ,

~2.12!

^ak,e
r ~ t !unm~k!uak,e

r ~ t !&5Rksin2~2u!sin2S Dv

2
t D

1^ak,e
r ~0!unm~k!uak,e

r ~0!&,

~2.13!

with Dv5AkW21m1
22AkW21m2

2 and Rk5uUku2/(1
2sin2uuVku2). BV adopted Eqs.~2.12! and~2.13! as oscilla-
tion formulas. These oscillation formulas are different fro
the ordinary ones due to the factorRk and the last term of
Eq. ~2.13!. The factorRk , which depends onk, m1, andm2,
deviates from 1 due to the condensate and brings abo
new effect to be detected in neutrino experiments at l
energies. As to the last term of Eq.~2.13!, we note that the
sum of Eqs.~2.12! and~2.13! is not equal to 1. BV gave, a
the normalization of the total probability,

^ak,e
r ~ t !une~k!1nm~k!uak,e

r ~ t !&2^ak,e
r ~0!unm~k!uak,e

r ~0!&

51. ~2.14!

Here we point out two problems in the above argume
The first is that the meaning of the relations from Eqs.~2.6!
to ~2.8! is not clear. Although BV explained that the vacuu
3-2
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relation ~2.6! is outwardly independent of the choice of th
mapping~2.8!, these two relations are in fact intimately co
nected to each other. This point will be examined in the n
subsection. The other problem concerns the meaning of
second term of the RHS of Eq.~2.13! introduced to normal-
ize the total probability. We will discuss this point in Se
II C.

B. Reformulation

Now we reexamine the processes described above.
convenience notation is a little different from that in Ref.@7#
which was employed above.

First of all, we consider the Lagrangian density expres
in terms of the Heisenberg fieldc(x):

L~x!52c̄~x!~]”1m!c~x!1Lint~x!. ~2.15!

WhenLint(x) dose not include any derivative coupling, th
equation of motion is written as

~]”1m!c~x!5
d

dc̄~x!
Lint~x!5J~x!. ~2.16!

This Heisenberg fieldc(x) can be expanded@13# in terms of
helicity-momentum eigenfunctions as

c~x!5
1

AV
(
kW r

$u~kr !a~kr;t !eikW•xW1v~kr !b†~kr;t !e2 ikW•xW%

5
1

AV
(
kW r

eikW•xW$u~kr !a~kr;t !1v~2kr !b†~2kr;t !%.

~2.17!

Here $u,v% are the plane-wave eigenfunctions with massm
and satisfy the following free Dirac equation:

~ ik”1m!u~kr !50, ~ ik”2m!v~kr !50, k05AkW21m2,

~2.18!

where k”5gaka5gW kW1g4ik0 and ga†5ga. ~The helicity
eigenfunctions are used for technical simplicity in the f
lowing, and their concrete forms are given in Appendix
@14#.! The expansion coefficient operators in Eq.~2.17! are
time dependent and satisfy the canonical commutation r
tions for the equal time, which are derived from the equ
time commutation relations $cb(x),cb8

† (y)%x05y0
5d(xW

2yW )dbb8 and others50. Note that one can choose an
eigenfunctions with massm which is different from the mass
m in the equation of motion~2.16!. If c(x) is a free field
~i.e., Lint50) or an asymptotic field with physical massm,
we can take$u,v% to be the plane-wave solutions of the fre
Dirac equations withm5m and, at the same time,

S a~kr;t !

b~kr;t ! D 5S a~kr;0!

b~kr;0!
D e2 ivt, v5AkW21m2.

~2.19!
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But generally, the time dependence of the operators is no
simple.

Returning to the neutrino case, we expand the neutr
field of mass eigenstate, which satisfies the free Dirac eq
tion, as

n j~x!5
1

AV
(
kW r

eikW•xW$uj~kr !a j~kr;t !

1v j~2kr !b j
†~2kr;t !%, j 51,2, ~2.20!

where$uj ,v j% are the plane-wave eigenfunctions with ma
mj and satisfy the free Dirac equation~2.18! with m5mj .
The time dependence of the operator is expressed by
~2.19! with m5mj .

The neutrino field of flavor eigenstate is also expanded

ns~x!5
1

AV
(
kW r

eikW•xW$us~kr !as~kr;t !

1vs~2kr !bs
†~2kr;t !%, s5e,m. ~2.21!

$us ,vs% are the plane-wave eigenfunctions with massms

and satisfy the free Dirac equation~2.18! with m5ms , but
the time dependence of the creation and annihilation op
tors is not so simple as Eq.~2.19!. We want to stress here
that mj ’s are the neutrino masses to be observed experim
tally, while ms’s are arbitrarily fixed.~The special mass sym
bol ‘‘ ms’’ is used to stress this arbitrariness.!

The relation between the two kind of creation and anni
lation operators is not the same as the one between the
operators, Eq.~2.1!. Generally we have

S as~kr;t !

bs
†~2kr;t ! D 5

1

AV
E d3xe2 ikW•xWS ūs~kr !

v̄s~2kr !
D g4ns~x!

5
1

AV
E d3xe2 ikW•xWS us* ~kr !

vs* ~2kr !
D

3G21~u;t !n j~x!G~u;t !

5G21~u;t !S rs j~k! ils j~k!

ils j~k! rs j~k!
D

3S a j~kr;t !

b j
†~2kr;t ! DG~u;t !, ~2.22!

where (s, j )5(e,1),(m,2):

rs j~k![us* ~kr !uj~kr !5vs* ~2kr !v j~2kr !5cosS xs2x j

2 D ,

ils j~k![us* ~kr !v j~2kr !5vs* ~2kr !uj~kr !

5 isinS xs2x j

2 D , ~2.23!

cotxs5
uku
ms

, cotx j5
uku
mj

.

3-3
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There exists a unitary operatorI (ms ;t) which realizes the
transformation

S rs j~k! ils j~k!

ils j~k! rs j~k!
D S a j~kr;t !

b j
†~2kr;t ! D

5I 21~ms ;t !S a j~kr;t !

b j
†~2kr;t ! D I ~ms ;t !, ~2.24!

where

I ~ms ;t !5)
kW ,r

expH i (
~s, j !

js, j~k!@a j
†~kr;t !b j

†~2kr;t !

1b j~2kr;t !a j~kr;t !#J , ~2.25!

with js, j (k)5(xs2x j )/2, i.e., cosjs j (x)5rs j (x). Then
Eq. ~2.22! can be rewritten as

S as~kr;t !

bs
†~2kr;t ! D 5K21~u,ms ;t !S a j~kr;t !

b j
†~2kr;t ! DK~u,ms ;t !,

~2.26!

where K(u,ms ;t)[I (ms ;t)G(u;t). The explicit matrix
form of this transformation is given in Appendix A.

Next we introduce the mass and the flavor vacuau0&m and
u0& f as

H a j~kr;t !

b j~2kr;t !J u0&m50, H as~kr;t !

bs~2kr;t !J u0& f50.

~2.27!

From Eq.~2.26!, we obtain

05a j~kr;t !u0&m5K~u,ms ;t !as~kr;t !K21~u,ms ;t !u0&m ;

~2.28!

thus we see that the second condition of the vacuum of
~2.27! is satisfied automatically when we define the vacu
u0& f by

u0& f[K21~u,ms ;t !u0&m . ~2.29!

Because of theu, ms , andt dependence ofu0& f , we denote
the flavor vacuum asu0& f5u0(u,ms ;t)& hereafter.

It is worthwhile to note that the vacuum relation~2.29! is
given uniquely corresponding to the relation~2.26! for arbi-
trarily fixed $me ,mm%. If we choose thatme5m1 and mm
5m2, then I (ms ;t)51. Equations~2.26! and ~2.29! reduce
to Eqs.~2.8! and ~2.6!, respectively, given by BV@7#:

S as~kr;t !

bs
†~2kr;t ! D

ms5mj

5G21~u;t !S a j~kr;t !

b j
†~2kr;t ! DG~u;t !

5S as
BV~kr;t !

bs
BV†~2kr;t !

D , ~2.30!

u0~u,ms ;t !&ms5mj
5G~u;t !21u0&m5u0~u;t !&BV.
11300
q.

Here we attach the index ‘‘BV’’ to the quantities correspon
ing to those employed by Blasone and Vittielo@7#. From Eq.
~2.22! we obtain the relation between BV’s operators and
general ones:

S as~kr;t !

bs
†~2kr;t ! D 5S rs j~k! ils j~k!

ils j~k! rs j~k!
DG21~u;t !

3S a j~kr;t !

b j
†~2kr;t ! DG~u;t !

5S rs j~k! ils j~k!

ils j~k! rs j~k!
D S as

BV~kr;t !

bs
BV†~2kr;t !

D
5J21~ms ;t !S as

BV~kr;t !

bs
BV†~2kr;t !

D J~ms ;t !,

~2.31!

where

J~ms ;t !5)
kW ,r

expH i (
~s, j !

js, j~k!@as
†BV~kr;t !bs

†BV~2kr;t !

1bs
BV~2kr;t !as

BV~kr;t !#J . ~2.32!

As easily seen from Eqs.~2.25!, ~2.30!, and~2.32! we have
GJ5IG.

From the reformulation described above, we see that, c
trary to the choice of BV, there is no theoretical basis
choose special values ofms’s and then thems dependence is
not removed from the formulas, such as Eqs.~2.26! and
~2.29!. Since any physical observable should have noms

dependence, one may expect that thems dependence will
disappear in calculated physical observables. To examin
we calculate the oscillation probability in the next subsect
in accordance with the line of BV@7#.

C. Oscillation probability

Let us define the one-electron-neutrino stateuae(kr;0)&
at the time t50, in accordance with BV@7#, by operat-
ing ae

†(kr;0) to u0&m . The initial condition
^ae(kr;0)uae(kr;0)&51 needs the normalization factor o
the state as

uae~kr;0!&5
1

Ne~k!
ae

†~kr;0!u0&m

5
1

Ne~k!
@cosure1~k!a1

†~kr;0!

1sinure2~k!a2
†~kr;0!#u0&m , ~2.33!

where uNe(k)u25@cosure1(k)#21@sinure2(k)#2. Another
initial condition ^am(kr;0)uae(kr;0)&50 imposes the rela-
tion

re1~k!rm1~k!2re2~k!rm2~k!50 ~2.34!
3-4
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on thers j parameters. The expectation values of the num
operators are

^ae~kr;t !une~k;0!uae~kr;t !&

512
@re1~k!re2~k!#2

Ne~k!2
sin2~2u!sin2S Dv

2
t D , ~2.35!

^ae~kr;t !unm~k;0!uae~kr;t !&

5
1

Ne~k!2 F1

4
@re1~k!rm1~k!2re2~k!rm2~k!#2

1re1~k!rm1~k!re2~k!rm2~k!sin2~2u!sin2S Dv

2
t D G

1~sin2ulm1
2 1cos2ulm2

2 !, ~2.36!

wherens(k;t)[( ras
†(kr;t)as(kr;t), s5e,m. The sum of

Eqs. ~2.35! and ~2.36! is not equal to 1. By defining the
number operators n̄s(k;t)[( rbs

†(kr;t)bs(kr;t) and

Ns(k;t)[ns(k;t)2n̄s(k;t), we see that the equality

^ae~kr;t !uNe~k;0!1Nm~k;0!uae~kr;t !&51 ~2.37!

holds for any timet>0, irrespectively of the values ofme
andmm .

Note that

^ae~kr;t !un̄e~k;0!1n̄m~k;0!uae~kr;t !&uBV

5sin2uuVku2

5^ae~kr;0!unm~k;0!uae~kr;0!&uBV . ~2.38!

Although BV introduced^ae(kr;0)unm(k;0)uae(kr;0)& in
Eq. ~2.14! to normalize the total probability, Eq.~2.14! holds
accidentally in the case of the BV choiceme5m1 and mm
5m2. Such a term is essentially the contribution from t
antineutrinos and the probability normalization is given
Eq. ~2.37! in itself.

From the oscillation amplitudes

Fee~kr;t !5m^0uae~kr;0!ae
†~kr;t !u0&m /Ne~k!2

5
1

Ne~k!2
@~cosure1!2eiv1t

1~sinure2!2eiv2t#,

Fme~kr;t !5^ae~kr;0!uam~kr;t !&

5m^0uam~kr;0!ae
†~kr;t !u0&m /Nm~k!Ne~k!

5
cosusinu

Nm~k!Ne~k!
~2rm1re1eiv1t

1rm2re2eiv2t!, ~2.39!
11300
erwe can derive the oscillation probabilities, which are diffe
ent from the oscillation formulas of BV@7#, i.e., the expec-
tation value of the number operators, as

uFee~kr;t !u2512
~re1re2!2

Ne~k!4
sin2~2u!sin2S Dv

2
t D ,

~2.40!

uFme~kr;t !u25
sin2~2u!

Nm~k!2Ne~k!2 F1

4
~re1rm12re2rm2!2

1re1re2rm1rm2sin2S Dv

2
t D G

5
~re1re2!2

Ne~k!4
sin2~2u!sin2S Dv

2
t D ,

~2.41!

where the second equality in Eq.~2.41! is due to Eq.~2.34!.
~When we setre15rm251, re25rm15Uk , le15lm250,
and le252lm15Vk corresponding to BV’s choice, all the
formulas above consistently tend to the corresponding o
in Refs. @7# and @10#.! The total oscillation probability is
equal to 1, i.e.uFee(kr;t)u21uFme(kr;t)u251, but each os-
cillation probability uFee(kr;t)u2 or uFme(kr;t)u2 is ms de-
pendent throughrs j ’s. Thus the calculated oscillation prob
abilities seem to be unphysical.

There is another possibility to define the one-electro
neutrino state at the timet50 as

uae~kr;0!&[ae
†~kr;0!u0~u,ms ;0!&. ~2.42!

In this case, the normalization of the state is automatica
satisfied:

^ae~kr;0!uae~kr;0!&51. ~2.43!

The oscillation amplitude derived from
^0(u,ms ;0)uae(kr;0)ae

†(kr;t)u0(u,ms ;t)& becomes the
product of some number and the ter
m^0uK8(u,ms ;0)K821 (u,ms ;t)u0&m , where the prime on
K means to exclude fromK(u,ms ;t) the contribution of the
momentumk and the helicityr. This vacuum expectation
value becomes 0 asV→` as far ast.0, and then the oscil-
lation amplitude is 0, while, as to the expectation values
the number operators with respect to theu0(u,ms ;t)&, we
have nonvanishing values@10#. As easily confirmed, how-
ever, these expectation values are not free from the de
dence onms’s.

III. STRUCTURE OF THE NEUTRINO PROPAGATOR:
THE CASE OF TWO FLAVORS

The naive way to convert the propagator of the flav
neutrino into the one of the mass eigenstates may be
3-5
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^0uT@ns~x!n̄r~y!#u0&

5^0uT@G21~u!n i~x!G~u!G21~u!n̄ j~y!G~u!#u0&,

~3.1!

whereu0&5u0&m . It is not always clear whether the quanti
of the LHS deserved to be called the propagator of the fla
neutrino. So we examine the pole structure of the neutr
propagator according to the diagonalizing procedure p
posed by Kaneko, Ohnuki, and Watanabe@11#, which had
been developed many years ago as the field theory of par
mixture interactions.

The diagonalization of the flavor neutrino propagator
the three-flavor case can be examined along the same lin
described below, which is given in Appendix B.

A. Starting Lagrangian

Let us consider the following Lagrangian density with
mutual transition between two neutrino fields specified
the flavor degrees of freedoms5e andm:

L~x!52„n̄e~x! n̄m~x!…~]”1M !S ne~x!

nm~x!
D 1Lint~x!,

~3.2!

where

M5S mee mem

mme mmm
D , ]”ªgr]r5gW ¹W 1g4

1

i

]

]x0
,

~gr!†5gr. ~3.3!

Lint(x) includes the weak interaction and the Higgs o
which remains after spontaneous symmetry breaking in
unified theory. As a result ofM†5M , required from the
Hermiticity of L(x), mee andmmm are real andmem* is equal
to mme . The Hamiltonian is

Hem~x!5„n̄e~x! n̄m~x!…~gW ¹W 1M !S ne~x!

nm~x!
D 2Lint~x!.

~3.4!

The eigenvalues ofM are

m1~2!5
1

2 ~mee1mmm2~1 !A~mmm2mee!
214umemu2! ,

~3.5!

andHem(x) is expressed in diagonalized form as

Hem~x!5( n̄ j~x!~gW ¹W 1mj !n j~x!2Lint~x!. ~3.6!

For simplicity, we takemem5mme , derived fromCP invari-
ance; then we can take

S ne~k,r !

nm~k,r !
D 5S cosu sinu

2sinu cosu D S n1~k,r !

n2~k,r !
D , ~3.7!
11300
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tanu5
1

2mem
@2~mmm2mee!1A~mmm2mee!

214mem
2 #.

~3.8!

We takemmm>mee>0 with no loss of generality; thenm2
>um1u and

m1>0 for Ameemmm>umemu,

m1,0 for Ameemmm,umemu. ~3.9!

In the following calculations, it will be useful for us to
employ the relations

mee5m1~cosu!21m2~sinu!2,

mmm5m1~sinu!21m2~cosu!2, ~3.10!

mem5sinucosu~2m11m2!, tan~2u!5
2mem

mmm2mee
;

~3.11!

further, we have

m1m25meemmm2mem
2 , ~3.12!

mee2m152mmm1m25memtanu,
~3.13!

mee2m252mmm1m152memcotu.
~3.14!

B. Poles of the propagator matrix

The propagator expressed by Heisenberg fields and
corresponding vacuum is rewritten with the interaction fie
as

Ssr8 ~x2y!ªH^0uT@ns
H~x!n̄r

H~y!#u0&H

5 I^0uT@Sns
I ~x!n̄r

I ~y!#u0& I , ~3.15!

whereS[Texp(i *d4xLI) is the so-called DysonSmatrix. In
the RHS of Eq.~3.15! we dropped the phase factor, which
irrelevant to the following considerations.Ssr8 (x2y) can be
calculated perturbatively by using the interaction represe
tion.

The Fourier transform of the propagator~3.15!, Ssr8 (k” )
5*d4xexp(2 ikx)Ssr8 (x), satisfies

Ssr8 5dsrSr1(
l

Ssl8 PlrSr , ~3.16!

whereSr(k” ) is the free propagator of thenr field. When we
define the matrix@ f sr(k” )# to be

Ssr8 ~k” !5@ f ~k” !21#sr , ~3.17!

we obtain
3-6
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f sr~k” !5dsrSr~k” !212Psr~k” !. ~3.18!

@Ssr8 (k” )# has two poles, determined by

det@ f sr~k” !#50. ~3.19!

Let us examine the pole structure ofSsr8 . We separate
Hamiltonian~3.4! into two parts:

Hem~x!5H em
0 ~x!1H em

int~x!2Lint~x!, ~3.20!

H em
0 ~x!5„n̄e~x! n̄m~x!…S gW ¹W 1S mee 0

0 mmm
D D S ne~x!

nm~x!
D ,

H em
int~x!5„n̄e~x! n̄m~x!…S 0 mem

mme 0 D S ne~x!

nm~x!
D .

Then the free propagator of thenr field corresponding to
H em

0 (x) is Sr(k” )ª(2k”1 imrr1e)21, and we take the
proper self-energy part to bePsr52 imsr as the contribu
tion from

We neglect here the weak and the Higgs interactio
~Properly speaking, one has to include the effect of Hig
interactions which is not always weak. We neglect this int
action owing to our ignorance of it.! We have

@ f sr~k” !#5S 2k”1 imee imem

imem 2k”1 immm
D . ~3.21!

As easily seen,@Ssr8 (k” )# has two poles at

k”5 imj with mj~ j 51,2! given by Eq.~3.5!.
~3.22!

Therefore, the physical one-particle masses given as pole
Ssr8 (k” ) are seen to coincide with the eigenvalues of the m
matrix M.

It should be noted that there is an arbitrariness in sepa
ing H(x) into the ‘‘free’’ and ‘‘interaction’’ parts. So it is
worthy to make a remark on this point. We rewrite t
Hamiltonian~3.4! as

Hem~x!5H̃ em
0 ~x!1H̃ em

int~x!2Lint~x!,

H̃ em
0 ~x!5„n̄e~x! n̄m~x!…S gW ¹W 1S m̃ee 0

0 m̃mm
D D S ne~x!

nm~x!
D ,

~3.23!

H̃em
int~x!5„ne~x! n̄m~x!…S Dee mem

mem Dmm
D S ne~x!

nm~x!
D ,

Dssªmss2m̃ss . ~3.24!

Then, instead ofSs andPrs employed above, we use
11300
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S̃r~k” !ª~2k”1 im̃rr1e!21, @P̃rs#ªS 2 iDee 2 imem

2 imem 2 iDmm
D .

~3.25!

Taking account of the contribution fromH̃em
int(x) as before,

we obtain

dsrS̃r2P̃sr5dsrSr2Psr5 f sr , ~3.26!

which shows that the arbitrariness in definingSr(k” ) disap-
pears in the physical one-particle masses.

C. Diagonalization of the pole part in the propagator

We examine the diagonalization of the pole part in t
neutrino propagatorSsr8 (k” ). Writing the cofactor corre-
sponding tof sr asFsr , we have

@Ssr8 #5@ f sr#215
1

det@ f #
@Fsr#T. ~3.27!

We definef sr
( j ) andFsr

( j ) to be the values off sr andFsr at the
pole mj of @Ssr8 #, respectively. We have

@ f sr
~ j !#@Fsr

~ j !#T5S i ~2mj1mee! imem

imem i ~2mj1mmm!
D

3S i ~2mj1mmm! 2 imem

2 imem i ~2mj1mee!
D

5@2~mj2mee!~mj2mmm!1mem
2 #S 1 0

0 1D
5det@ f j #S 1 0

0 1D 50 ~3.28!

due to Eq.~3.13! and ~3.14! @or in accordance with Eq
~3.19!#.

Next we define

~r~ j !!21
ª

d$det@ f sr~k” !#%

d~2k” !
U

k”5 imj

. ~3.29!

From Eq.~3.21! we obtain

RHS of Eq.~3.29!5@22k”1 i ~mee1mmm!#k”5 imj

5 i ~m12m2!~21! j , ~3.30!

leading to

S r~1!

r~2!D 5S 1

i ~m22m1!

1

i ~m12m2!

D 5
sucu

imem
S 1

21D ,

su[sinu, cu[cosu. ~3.31!
3-7
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We introduce a set of new renormalized fieldsc j
R(x) and

c̄ j
R(x), j 51,2, expressed as

cs~x!5(
j

As jc j
R~x!, c̄s~x!5(

j
Ās j c̄ j

R~x!,

~3.32!

where the coefficientsAs j ’s are determined so tha

^0uT@c i
R(x)c̄ j

R(y)#u0& has only one pole term liked i j /(2k”

1 imj ); Ās j is a complex conjugate toAs j . Thus, from

@S8~k” !#5
r~1!

2k”1 im11e
F ~1!T1

r~2!

2k”1 im21e
F ~2!T

1~nonpole contributions!, ~3.33!

the conditions of the renormalized field can be expresse

r~1!F ~1!T5AS 1 0

0 0DA†, r~2!F ~2!T5AS 0 0

0 1DA†,

~3.34!
th

11300
as

i.e.,

r~ j !Frs
~ j !5Ār jAs j , ~3.35!

which leads to

r̄ ~ j !F̄rs
~ j !5Ās jAr j5r~ j !Fsr

~ j ! . ~3.36!

Thus we have

Ār jAs j5
Ār jAm j Ām jAs j

Am j Ām j

55
r̄ ~ j !F̄mr

~ j !Fms
~ j !

Fmm
~ j !

,

r~ j !Frm
~ j ! F̄sm

~ j !

F̄mm
~ j !

.

~3.37!

A possible solution is given by

As j5
ur~ j !u

Ar~ j !Fmm
~ j !

Fms
~ j ! v, uvu251 . ~3.38!

The concrete form of@As j # is expressed as
@As j #5S usucu /memu

Asucu

mem

~2m11mee!

S 2 imem

i ~2m11mee!
D ,

usucu /memu

Asucu

mem

~m22mee!

S 2 imem

i ~2m21mee!
D D v ~3.39!

5
mem

umemu
ivS 2ucuu 2usuu

ucuu
su

cu
2usuu

cu

su

D . ~3.40!
For su ,cu ,mem.0 andv5 i , we have

@As j #5S cu su

2su cu
D . ~3.41!

This matrix is the same as the matrix which diagonalizes
mass matrix of neutrino in the Lagrangian~3.2!.

From the construction, we see that the propagator

Si j
R~k” !ªFourier transformof̂0uT@c i

R~x!c̄ j
R~y!#u0&

5(
s,r

BisSsr8 ~k” !B̄j r , BªA21, ~3.42!

has an one-pole term in the diagonal element, i.e.,
e

@Si j
R~k” !#5F(

l

1

2k”1 iml1e
S (

s,r
Bisr~ l !Fsr

~ l ! ~k” !B̄j rD
1~contribution from continuous spectra!G

5S 1

2k”1 im11e
0

0
1

2k”1 im21e

D
1~contribution from continuous spectra!.

~3.43!

When we writeAs j aszs j
1/2, i.e.,

@zs j
1/2#ª@As j #, ~3.44!

we can expressSsr8 (k” ) as
3-8
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Ssr8 ~k” !5(
j

zs j
1/2z̄r j

1/2

2k”1 imj1e
1E d~k2!

lsr~k,k” !

k21k22 i e
. ~3.45!

Note that the diagonalization procedure of the propaga
Ssr8 described above is somewhat different from that adop
by Kanekoet al. @11#. The authors of Ref.@11# considered
the intermediate step by introducing a set of fie

$f j (x),f̃ j (x)% as defined by

cs~x!5(
j

As jf j~x!,

c̄s~x!5(
j

As j f̃ j~x!, ~3.46!

and examined the pole-part diagonalization of

S̃i j ~k” !ªFourier transform of^0uT@f i~x!f̃ j~y!#u0&. ~3.47!

Such an intermediate procedure is not necessary in
present case due to dropping the effect ofLint(x).

IV. SUMMARY AND FINAL REMARKS

We have reconsidered the problem of constructing
two kinds of Hilbert space in the field theory with mixin
among neutrinos. For that purpose we have mainly reex
ined the paper of BV@7#, in which it is asserted that the usu
oscillation formulas of neutrinos receive certain modific
tions caused by the Bogoliubov transformation among
creation-annihilation operators with definite flavors a
those with definite masses. After explaining the logical str
ture of Ref.@7#, we gave a reformulation of it along the lin
of thought of BV @7#, and made clear the problematic an
dubious points of Ref.@7#. The fundamental viewpoint of ou
consideration is based on the following two points. The fi
is that any Heisenberg field operator, such as the flavor n
trino fieldsce(x) andcm(x), is expanded in terms of a com
plete set of helicity-momentum eigenfunctions with an ar
trarily fixed mass ms . The second is that any direc
observable such as the oscillation formulas of neutri
should have no dependence on such a massms .

We have pointed out in Sec. II that, concerning the m
ping ~2.8! which corresponds to the case of a special cho
me5m1 and mm5m2, there is no theoretical reason whic
enforces us to adopt such a special mapping, and that va
oscillation formulas such as those examined in Sec. II C c
not be thought of as correct. It seems worthwhile to str
that we cannot be free fromms insofar as we try to prepar
a one-flavor-neutrino state with definite momentu
as

†(kr;t)u0& and bs
†(kr;t)u0&; therefore, it is necessary fo

us to derive the oscillation formula without recourse to su
a state. One probable way may be obtained through the
sideration with recourse to the neutrino propagator, as
scribed in Sec. III.@The trial of Blasone, Henning, and Vi
tiello @10# using the neutrino propagator is still based on
one-flavor-neutrino state,as

†(kr;t)u0& andbs
†(kr;t)u0&, and
11300
or
d

he

e

-

-
e

-

t
u-

-

s

-
e

us
n-
s

,

h
n-
e-

e

so seems not to be correct.# Considerations including such a
approach are found in Refs.@4,6,8#.

Here we give a remark on the preparation of the o
flavor-neutrino state, which is a certain refinement of an id
proposed by Sassaroli@9#. ~The details are described in Ap
pendix C.! The author of Ref.@9# prepared the one-flavor
neutrino state as

unm~k;0!&5 (
r 5↑,↓

@Ara1
†~kr;0!1Bra2

†~kr;0!#u0&m . ~4.1!

DeterminingAr andBr so as to satisfy the boundary cond
tions at the initial time, the usual oscillation formulas a
reproduced. The preparation of the one-flavor-neutrino st
Eq. ~4.1!, is a mere assumption, and then it is a future pro
lem whether Eq.~4.1! could be grounded on a field
theoretical approach.

In Sec. III and Appendix B we investigated the structu
of the flavor-neutrino propagator by following the ‘‘diago
nalization’’ procedure developed by Kanekoet al. @11#. A
set of the renormalized fields$c j

R(x),c̄ j
R(x)% can be defined

as

cs~x!5(
j

zs j
1/2c j

R~x!, c̄s~x!5(
j

z̄s j
1/2c̄ j

R~x!, ~4.2!

with (z1/2)†(z1/2)5I , so that the Fourier transform~FT! of

^0uT@c j
R(x)c̄ j

R(y)#u0&, i.e., Sj j
R(k” ), has a single one-pole

term, and

Ssr8 ~k” !5FT of ^0uT@cs~x!c̄r~y!#u0&

5(
j

zs j
1/2z̄r j

1/2

2k”1 imj1e
1E d~k2!

lsr~k,k” !

k21k22 i e
. ~4.3!

The matrix @z1/2#, which may be called the generalizedz
factor, has been shown to be essentially the same as
diagonalizing the mass matrixM in the starting Lagrangian
with the neutrino mixing. The propagator@Ssr8 (k” )# should be

independent of the choice of the mass parametersm̃rr’s, that
is, independent of the choice of the perturbative vacuum c
responding to the ‘‘free’’ Hamiltonians specified by the ma
parametersm̃rr’s. The result of Sec. III is consistent wit
this requirement.

Taking account of the considerations in Secs. II and III
seems favorable for us to treat the neutrino-oscillation pr
lem by utilizing the neutrino propagator. The works dev
oped by Giuntiet al. @5# and Grimus and Stockinger@8#
seem instructive from our viewpoint.

On the construction of the related Hilbert spaces, we h
shown explicitly in the critical examination of Ref.@7# that
there is no physical basis selecting one-flavor Hilbert sp
from many-flavor Hilbert spaces which are mathematica
allowed. In the superrelativistic case we are allowed to w
3-9
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with recourse to the Hilbert space of mass eigenstates@4#,
since the mass differences among neutrinos can be negle
in this energy region. Therefore, it seems to be an impor
task to derive field theoretically the oscillation formula
neutrino experiments at low energies, with recourse to
relation of field operatorsns5( jAs jn j (x). From this view-
point, the works developed by Giuntiet al. @5# and Grimus
and Stockinger@8# are very suggestive, as mentioned abo
It seems necessary for us to investigate in detail how to
rive oscillation formulas reflecting real experimental situ
tions on the basis of the field theory.
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APPENDIX A

Explicit forms of the plane-wave eigenfunctionsu(kr)
andv(kr), satisfying

~ ik”1m!u~kr !50, ~2 ik”1m!v~kr !50, ~A1!

are given in the Kramers representation ofg matrices~i.e.,
gW 52ry^ sW , g45rx^ I , g552rz^ I ) @14# by

u~k↑ !5S ca

cb

sa

sb

D , u~k↓ !5S 2sb*

sa*

2cb*

ca*
D , ~A2!

v~k↑ !5S sb*

2sa*

2cb*

ca*
D , v~k↓ !5S ca

cb

2sa

2sb

D . ~A3!

Here, c5cos(x/2), s5sin(x/2), cotx5ukW u/m, kz
5kcosq, kx1 iky5ksinq eif, a5cos(q/2)e2 if/2, b
5sin(q/2)eif/2. Here u(kr) and v(kr) are the eigenfunc-
tions of helicitysW•kW /ukW u, sW5(I 3sW )/2:

1

k
~sW•kW !u~k↑ !5

1

2
u~k↑ !,

1

k
~sW•kW !u~k↓ !52

1

2
u~k↓ !,

1

k
~sW•2kW !v~k↑ !5

1

2
v~k↑ !,

1

k
~sW•2kW !v~k↓ !52

1

2
v~k↓ !.

~A4!

The solutions of Eqs.~A1! with massmj are written as
uj (kr) andv j (kr). We obtain
11300
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ui* ~kr !uj~ks!5v i* ~2kr !v j~2ks!5r i j ~k!d rs ,

ui* ~kr !v j~2ks!5v i* ~2kr !uj~ks!5 il i j ~k!d rs ,

i , j 51,2,e,m, ~A5!

where v j (2kr)ªv j (pr) with pW 52kW , p05k0 j

5AkW21mj
2; r i j 5cos@(x i2x j )/2#, l i j 5sin@(x i2x j )/2#

with cotx j5ukW u/mj . We have

(
r

$uj
b~kr !•uj

d~kr !* 1v j
b~2kr !•v j

d~2kr !* %5dbd .

~A6!

With this notation, the transformation of the creation a
annihilation operators of flavor neutrinos into those of ma
eigenstates, Eq.~2.26!, is given by

S ae~kr;t !

am~kr;t !

be
†~2kr;t !

bm
† ~2kr;t !

D 5K~u,k!S a1~kr;t !

a2~kr;t !

b1
†~2kr;t !

b2
†~2kr;t !

D ,

K~u,k!5S P~u,k! iL~u,k!

iL~u,k! P~u,k!
D , ~A7!

with

P~u,k!5S cure1~k! sure2~k!

2surm1~k! curm2~k!
D ,

L~u,k!5S cule1~k! sule2~k!

2sulm1~k! culm2~k!
D . ~A8!

K(u,k) is confirmed to be a unitary operator:

K~u,k!K~u,k!†5K~u,k!†K~u,k!5I . ~A9!

APPENDIX B

We examine the diagonalization of the flavor neutri
propagator in the three-flavor case along the same line
thought as given in Sec. III.

1. Three-flavor mixing mass matrix

The relevant Lagrangian density with mutual transitio
among three-flavor neutrinos,e, m, and t, is written after
taking account of the spontaneous symmetry breaking in
Higgs sector as
3-10
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L~x!52„n̄eL~x! n̄mL~x! n̄tL~x!…~]”1M 8!S neR8 ~x!

nmR8 ~x!

ntR8 ~x!
D

2„n̄eR8 ~x! n̄mR8 ~x! n̄tR8 ~x!…~]”1M 8†!S neL~x!

nmL~x!

ntL~x!
D

1Lint8 ~x!, ~B1!

whereM 85@msr8 #. (Lint8 is assumed to include no bilinea
terms and no derivative of the neutrino field.! We perform
the unitary transformations

S neL~x!

nmL~x!

ntL~x!
D 5VLS n1L~x!

n2L~x!

n3L~x!
D ,

S neR~x!

nmR~x!

ntR~x!
D 5VRS n1R~x!

n2R~x!

n3R~x!
D , ~B2!

so that the mass matrix is diagonalized:

VL
†M 8VR5S m1 0

0 m2 0

0 0 m3

D with real m j ’s. ~B3!

We can arbitrarily use the right-handed neutrino fieldnrR8
given by nrR8 (x)5(sWrsnsR(x),W†W5I , while the mass
matrix M 8~assumed to be detM 85” 0) is uniquely expressed
as

M 85M•U, UU†5I , M5@mrs#, ~B4!

whereM is Hermitian as well as positive definite.~The last
means that all eigenvalues are positive.! Using the matrixV
which diagonalizesM as

V†MV5S m1 0 0

0 m2 0

0 0 m3

D , mj.0, VV†5I ,

~B5!

we chooseW to be

W5U†; ~B6!

then, by definingn jL andn jR as

nsL/R~x!ª(
j

vs jn jL /R~x!, V5@vs j #, ~B7!

the Lagrangian density~B1! is expressed as
11300
L~x!52„n̄eL~x! n̄mL~x! n̄tL~x!…~]”1M !S neR~x!

nmR~x!

ntR~x!
D

2H.c.1Lint~x!

52„n̄e~x! n̄m~x! n̄t~x!…~]”1M !S ne~x!

nm~x!

nt~x!
D

1Lint~x!; ~B8!

the first term in the last line has the diagonal form
2( j 51

3 n̄ j (x)(]”1mj )n j (x).
Similarly to Eq.~3.23!, we write the Hamiltonian density

as

H~x!5H 0~x!1H int~x!2Lint~x!,

H 0~x!5„n̄e~x! n̄m~x! n̄t~x!…~gW ¹W 1M̃ !

3S ne~x!

nm~x!

nt~x!
D , ~B9!

H int~x!5„n̄e~x! n̄m~x! n̄t~x!…

3S Dee mem met

mme Dmm mmt

mte mtm Dtt

D
3S ne~x!

nm~x!

nt~x!
D , ~B10!

M̃5S m̃ee 0 0

0 m̃mm 0

0 0 m̃tt

D ,

Drr5mrr2m̃rr . ~B11!

We give useful relations as follows:

mrs5(
j 51

3

vr j v̄s jmj , r,s5~e,m,t!, ~B12!

V†5V215
1

detV
@uT# with us j5cofactor ofvs j , ~B13!
3-11
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~detV!(
j

vr j v̄s j5~detV!drs

5(
j

vr jus j , ~B14!

~detV!(
r

v̄r jvrk5~detV!d jk

5(
r

ur jvrk , ~B15!

(
j

mj5(
r

mrr , ~B16!

P jmj5detM . ~B17!

2. Pole structure of the Fourier transform of the neutrino
propagator

We consider the Fourier transform of the neutrino pro
gator:

Ssr8 ~k” !5Fourier transform of^0uT@ns~x!n̄r~y!#u0&,

~B18!

wherens(x) and n̄r(y) are the unrenormalized Heisenbe
operators appearing in the Hamiltonian~B9!.

In the same way as described in Sec. III B,Ssr8 (k” ) satis-
fies

Ssr8 ~k” !5dsrSr~k” !1(
l

Ssl8 ~k” !Plr~k” !Sr~k” !,

s,r5e,m,t, ~B19!

with Sr(k” )5(2k”1 im̃rr1e)21, and is expressed as

Ssr8 ~k” !5@ f ~k” !21#sr with f sr~k” !5dsrSr~k” !212Psr~k” !.
~B20!

DroppingLint(x), the proper self-energy partPsr is given
as

Psr52 i ~M2M̃ !sr , ~B21!

and we have

@ f sr~k” !#5@dsr~2k”1 im̃rr!1 i ~M2M̃ !sr#

5S 2k”1 imee imem imet

imme 2k”1 immm immt

imte imtm 2k”1 imtt

D .

~B22!

The physical one-particle masses are determined as th
poles obtained from

det@ f sr~k” !#50. ~B23!
11300
-

e-

From the form of Eq.~B22!, we see that the arbitrariness
separatingH int(x) from the ‘‘free’’ part in Eq. ~B10!, i.e.,
the arbitrariness in definingSr(k” ), disappears in the physica
one-particle masses under the approximation~B21!. These
one-particle masses determined from Eq.~B23! with f sr(k” )
given by Eq. ~B22! coincide with the eigenvalues$mj , j
51,2,3% of the mass matrixM5@mrs#.

3. Diagonalization of the pole part in the propagator

We follow the same procedure of the diagonalization
described in Sec. III C. Writing the cofactor off sr(k” ) as
Fsr(k” ), we write Ssr8 (k” ) in the same form as Eq.~3.27!;
then, we obtain

det@ f sr#uk”5 imj
505F(

l
f sl

~ j !Frl
~ j !G5F(

l
Fls

~ j ! f lr
~ j !G .

~B24!

The explicit form of r ( j ) defined in the same way as Eq
~3.29! is written as

~r~ j !!2152~mee2mj !~mmm2mj !2~mmm2mj !~mtt2mj !

2~mtt2mj !~mee2mj !1memmme1mmtmtm

1metmte . ~B25!

By employing Eqs.~B12! and ~B13!, we obtain, after some
calculations,

~r~1!!2152~m12m2!~m12m3!,

~r~2!!2152~m22m1!~m22m3!,

~r~3!!2152~m32m1!~m32m2!.
~B26!

As to Frt
( j )’s, expressed from the definition as

Fet
~ j !52mmemtm1mte~mmm2mj !,

Fmt
~ j !52memmte1mtm~mee2mj !,

Ftt
~ j !5mmemem2~mee2mj !~mmm2mj !,

~B27!

some calculations lead to

Frt
~ j !5

v̄r jvt j

r~ j !
, r5e,m,t, j 51,2,3; ~B28!

thus, we obtain

r~ j !

Ftt
~ j !

5
~r~ j !!2

uvt j u2
. ~B29!

Next we define a set of new fieldsc j
R(x) and c̄ j

R(x), j
51,2,3, in the same way as Eq.~3.32!. The condition for
determining the matrixA is

r~ j !~F ~ j !!T5AE~ j !A†, ~B30!
3-12
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with

E~1!5S 1 0 0

0 0 0

0 0 0
D , E~2!5S 0 0 0

0 1 0

0 0 0
D ,

E~3!5S 0 0 0

0 0 0

0 0 1
D .

The above equation leads to

Ār jAs j5r~ j !Frs
~ j !5

Ār jAt j Āt jAs j

Āt jAt j

5
r~ j !F̄tr

~ j !Fts
~ j !

Ftt
~ j !

;

~B31!

therefore, noting Eq.~B29! we are allowed to take

As j5Ar~ j !

Ftt
~ j !

Fts
~ j !v5

vur~ j !u
uvt j u

Fts
~ j ! , uvu251. ~B32!

Employing the concrete forms~B28! of Fts
( j )5F̄st

( j ) , we ob-
tain

S Ae1

Am1

At1

D 5
vur~1!uv̄t1

r~1!uvt1u S ve1

vm1

vt1

D 5e1S ve1

vm1

vt1

D , ~B33!

S Ae2

Am2

At2

D 5
vur~2!uv̄t2

r~2!uvt2u S ve2

vm2

vt2

D 5e2S ve2

vm2

vt2

D ,

~B34!

S Ae3

Am3

At3

D 5
vur~3!uv̄t3

r~3!uvt3u S ve3

vm3

vt3

D 5e3S ve3

vm3

vt3

D ,

~B35!

where

e jª
vur~ j !uv̄t j

r~ j !uvt j u
. ~B36!

By choosing the order asm3.m2.m1, we have

r~1!,0, r~2!.0, r~3!,0; ~B37!

then,

e j5~21! j
vvt j

uv̄t j u
. ~B38!
11300
Thus the form of the matrixA satisfies the unitary condition
i.e.,

AA†5A†A5I , ~B39!

and is essentially the same asV which diagonalizes the mas
matrix M:

A5@Ar j #5V•E with E5S e1 0 0

0 e2 0

0 0 e3

D ,

~B40!

A†MA5S m1 0 0

0 m2 0

0 0 m3

D . ~B41!

Si j
R(k” ), the Fourier transform of̂ 0uT@c i

R(x)c̄ j
R(y)#u0&, is

now written as

@Si j
R~k” !#5A†S8~k” !A

5F(
l

1

2k”1 im11e S (
sr

Ās ir
~ l !Fsr

~ l !Ar j D G
1~contribution from continuous spectra!

5S 1

2k”1 im11e
0 0

0
1

2k”1 im21e
0

0 0
1

2k”1 im31e

D
1~contribution from continuous spectra!, ~B42!

and as toSsr8 (k” ) we obtain the same form as given by E
~3.45!.

APPENDIX C

We consider a process of onenm production at the time
t50 and detection ofns at the timet.0. We assume tha
this initial nm state is so prepared that it can be expressed

unm~k;0!&5 (
r 5↑,↓

@Ara1
†~kr;0!1Bra2

†~kr;0!#u0&m ,

~C1!

whereAr andBr are to be determined in accordance with t
experimental situation of preparing the initial sta
unm ;0&; r 5helicity. Now we examine the probability ampli
tudes of finding one left-handed flavor neutrinons at a
space-time point (xW ,t) through some charged-current wea
interaction for detection. We define these amplitudes as
3-13
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Fs~xW ,t ![mK 0U 11g5

2
ns~xW ,t ! (

r 5↑,↓
@Ara1

†~kr;0!

1Bra2
†~kr;0!#U0L

m

, s5e,m. ~C2!

In the Kramers representation ofg matrices explained in
Appendix A, we have

11g5

2
uj~k↑ !5sjS 0

0

x~1 !~k!
D , x~1 !~k![S a~k!

b~k!
D ,

11g5

2
uj~k↓ !5cjS 0

0

x~2 !~k!
D , x~2 !~k![S 2b* ~k!

a* ~k!
D ,

j 51,2, ~C3!

where sj5sin(x j /2), cj5cos(x j /2) with cotx j5ukW u/mj ;
x (1)(k) andx (2)(k) are the eigenfunctions of (sW •kW )/k with
the eigenvalues11 and 21, respectively. Thus,Fs’s are
rewritten as

Fe~xW ,t !5
eikW•xW

AV F ~A↑cus1e2 iv1t1B↑sus2e2 iv2t!

3S 0

0

x~1 !~k!
D 1~A↓cuc1e2 iv1t1B↓suc2e2 iv2t!

3S 0

0

x~2 !~k!
D G , ~C4!

Fm~xW ,t !5
eikW•xW

AV F ~2A↑sus1e2 iv1t1B↑cus2e2 iv2t!

3S 0

0

x~1 !~k!
D 1~2A↓suc1e2 iv1t

1B↓cuc2e2 iv2t!S 0

0

x~2 !~k!
D G . ~C5!

We require the following boundary conditions:

BC^1&, Fe~xW ,t50!50, ~C6!

BC^2&, E d3xuFm~xW ,t50!u251. ~C7!
11300
From BĈ 1&, we obtain

A↑52
sus2

cus1
B↑ , A↓52

suc2

cuc1
B↓ . ~C8!

Under these constraints, BC^2& leads to

@ uB↑u2s2
21uB↓u2c2

2#/cu
251. ~C9!

The probabilities of findingne andnm at time t, defined by

P~nm→nm ;t ![E d3xuFm~xW ,t !u2, ~C10!

P~nm→ne ;t ![E d3xuFe~xW ,t !u2, ~C11!

are given by

P~nm→nm ;t !5
1

cu
2 @ uB↑u2s2

21uB↓u2c2
2#

3F12sin2~2u!sin2S Dv

2
t D G

512sin2~2u!sin2S Dv

2
t D due to Eq.~C9!,

~C12!

P~nm→ne ;t !5su
2@ uB↑u2s2

21uB↓u2c2
2#4sin2S Dv

2
t D

5sin2~2u!sin2S Dv

2
t D due to Eq.~C9!, ~C13!

which coincide with the oscillation formulas usually em
ployed. Note that, in general, the prepared stateunm(k;0)&,
Eq. ~C1!, cannot be set equal to the state

(
r

Cram
† ~kr;0!u0&m /Nm~k!. ~C14!

Because if we set it so, Eqs.~C8! lead to

s2

s1
5

rm1

rm2
,

c2

c1
5

rm1

rm2
, ~C15!

by taking into account of Eqs.~A7! and Eq.~A8!, and~C15!
does not hold form1Þm2, i.e., as far as the neutrino mixin
exists.

The above derivation of the usual oscillation formu
which amounts to a certain refinement of the idea propo
by Sassaroli@9#, is essentially based on the assumption of
initial state, Eq.~C1!. Although it may be necessary for us t
establish the physical basis of this assumption, the ab
derivation gives us a clue to the task of how to define
one-flavor-neutrino stateunm(k;0)& under the condition
3-14
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ns(x)5( jAs jn j (x). In the super relativistic case, the sam
linear transformation as that for$ns(x),n j (x)%,

S as~kr;t !

bs~kr;t ! D 5(
j

As j S a j~kr;t !

b j~kr;t ! D , ~C16!

is obtained and we have, from Eq.~C8!,
a,
.

Ac
in
y

nc
s,

D

11300
A↑~↓ !52
su

cu
B↑~↓ ! due to

s2

s1
→1,

c2

c1
→1,

~C17!

which is consistent with

unm~kr;0!&5am
† ~kr;0!u0&m . ~C18!
,

7;
0;
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