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Note on the field theory of neutrino mixing
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The possibility of constructing the Hilbert space of definite flavor neutrino states, especially a one-flavor
neutrino state, is investigated in the theory with flavor-mixing mass terms in the Lagrangian. Reviewing the
work of Blasone and Vitiello in detail, we clarify that even if we construct the Hilbert space of a definite flavor
neutrino, the oscillation probabilities of neutrinos derived according to the usual way include arbitrary mass
parameters. We examine the structure of the flavor neutrino propagator and show that the physical poles of the
propagator coincide with mass eigenvalues of the mass matrix in the Lagrangian irrespective of such arbitrary
parameters. This gives a possible way of escaping the arbitrar[i8&&56-282(99)03809-9

PACS numbegps): 14.60.Pq

[. INTRODUCTION the flavor neutrinos and those of the neutrino with definite
masses utilized in Ref7] has no field theoretical basis; thus
Since Pontecorvl] pointed out the possibility of neu- the conclusions drawn in R€i7] are unphysical. Section IlI
trino oscillation and, in addition, the solar neutrino problemis devoted to examining the structures of the flavor-neutrino
was propose@?2], the neutrino oscillation problem has been propagators in the case of two flavofghe three flavor case
much investigated experimentally and theoretically. Indicals €xplained in Appendix B.This section is pedagogical and
tions in favor of neutrino oscillation from various kinds of helpful to grasp the essence of the procedure as to how to
experiments have been reporf@). Regarding the theoreti- diagonalize the propagator developed by Kaneko, Ohnuki,
cal aspect, several works have been published recently, e8nd Watanab¢l1] in the time when various models with
pecially on the field theoretical approach to neutrino oscillaiParticle mixings had been discusded]. The last section is
tions[4—10]. One of the controversial points is how to define & summary and discussion, in which a remark is given on the
field theoretically ondantijneutrino state with a definite fla- formula of the neutrino oscillation probability.
vor for deriving the neutrino oscillation formula. More defi- ~ We discuss exclusively the case of Dirac neutrinos with
nitely, the problem is how to define field theoretically the two flavors in the body of this paper.
state such aly,) employed usually in the quantum mechani-

cal treatmenfl]. Whereas there exists the assertion that it is Il. TWO KINDS OF HILBERT SPACES
impossible to construct a Fock space of “weak statf4];

Blasone and Vitiello have given the opposite assertion by A. Summary of the approach developed
defining the creation and annihilation operators of definite by Blasone and Vitiello

flavor neutrino[7]. They said that the constructed Hilbert  |et us review briefly the work of Blasone and Vitie[13].
space of definite flavor states is unitarily inequivalent to thatTheir starting point is the relation between two sets of neu-
of definite mass states and that the effect due to such afino fields{v,(x),c=e,u} and{»;(x),i=1,2} with definite

inequivalence can be observed in the low-energy experimenifavors and masses, respectively. This relation is given by a

of neutrino oscillations. Bogoliubov transformation expressed as
The main purpose of the present paper is to investigate the
field theory of neutrino mixing. The investigation consists of ve(X) 1 vy(X)
: ; _— : = (6;t) G(6:t)
the following two topics. The first is to examine the problem v, (X) Vo(X)

of how to construct the Hilbert space of definite flavor states
in connection with the work of Blasone and Vitiell@]. The ( cosé sin0> ( Vl(X))

- v,(X) @3

second is to examine the structures of the flavor-neutrino =
propagators in order to define the physical neutrino mass on

the basis of a Green-function approach to the field theor R

with particle mixingg 11]. The remaining part of the present ¥vhereG(6’,t) 's given by
paper is organized as follows. In Sec. Il, we consider the

problem of how to construct the Hilbert space of definite G(0;t)=ex;{ 9f d3x[y1(x) Vz(x)_,,;(x) v1(X)]
flavor neutrino states by employing creation operator@of

ti)neutrinos with definite masses and flavors. After exploring

in detail the logical structures of RdfZ] on the construction x°=t. (2.2
of the Hilbert space of definite flavor states, we point out that

the relation between creation and annihilation operators of;(x) andv,(x) are expanded as

—siné® cosé
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vi(X)= N2 2 (Ul af (Ve +ul B (He %,

i=1,.2, 2.3

where cvr.z,i(t)=af;,(O)e*i‘”‘t and B (t)=B,(0)e !
with ;= Vk?+m?. Hereuy, andvy; are solutions of the

free Dirac equation in momentum space with definite gpin
and massn; . Here we add thédependence of the operators

G,y , and B, explicitly in the above equations to make
the explanations cleareurlzvi, and “rﬁ,i(t)i etc., are written
for simplicity asuy ;, a;;, etc., in this subsection hereafter.

The Hilbert spacele of definite mass states is con-
structed by operating, ,’s and,B”’s on the vacuunO) »,
which satisfies

#
Bk]

By using the inverse of Eq2.1), the generic matrix element
1.4a|v1(x)|b)1 5 is written as

148l v1(x)[b) 1= 1 48|G (6;t) ve(X)G~H(6;t)[b) 1 5,

(2.5
where|a); , is the generic element df/; ,. The authors of
Ref. [7], Blasone and Vitiello(BV), considered that, since
the field operators/, and »; are defined on Hilbert spaces
He,,, andHy » respectively,G () mapsH, , to H , and
in particular the flavor vacuurTO)e,M is given by

]|0>12 0, 140[0);,=1. (2.9

0)e,,=G(6;t=0)"10); 5. (2.6

Equation(2.6) suggests tha0), , is a condensate of mas-

sive neutrino-antineutrino pairs and a coherent state. Since
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|ark,o'(t:0)>E ak a'(t_o)|0>12

Zl'*

[cosaa (t=0)[0)1,

+U,sinfaj, (t=0)[0) 4, (2.9

whereU, =u5ui ,=v™ ", 1, r=helicity, the normaliza-
tion factor A2=1—|V,|?sirf6, and IVi[2=1—|Uy% [In
Ref.[7], after somewhat troublesome calculations employing
momentum-spin eigenfunctions, BV introduced substantially
the helicity eigenfunctions instead of the spin ones. In order
to see the essential point in R¢T], it is enough for us to
employ the helicity-momentum eigenfunctions from the out-
set to derive Eq(2.9).]

By taking the time evolution of Eq2.9) due to the free
Hamiltonian of ther;(x) field as

| o)) =€M12] o o(0)), (2.10
the expectation values of the number operators
nU(k)EZ aj(0)ag ,(0) (2.10

with respect to the statey, ,(t)) are given by

(arieDIne(iof o)) =1- Rksinz(za)sin2<A7wt) .
(2.12

(e (D[N, (K) |y (1) = RkSinz(Zﬁ)Sin2<A7wt>

these two Hilbert spaces are orthogonal to each other in the

infinite volume limit, BV performed all the computations at a
finite volumeV and putV—c at the end.
From Eq.(2.1) BV gave, as a kind of dynamical map,

Uf ,ak . =G~ X(O;t)uj el ;G(6;1),

UkUBkO'_G 1(0t)l} Brk,JG(eit)u

(e1),(u,2). (2.7

In order to exhibit this dynamical map explicitly, BV rede-

(0.))=

fined “for convenience” the quantities appearing on the left-

hand side(LHS) of Eq. (2.7) asuj’aj .=Uj%aj ., etc., and

got
(;ff) Ele;t)( ;rkf (2.8
k.o K,j

)G(G;t).

In order to obtain the formulas of the neutrino oscillation,

BV prepared the one-electron-neutrino state at tim@ de-
fined as

+{a (0)[n,(K)| i o(0)),
(2.13

with  Aw=VK2+mi—VK2+m2  and =|Uy % (1
—sirfg|V,/?). BV adopted Eqs(2.12) and(2.13 as oscilla-

tion formulas. These oscillation formulas are different from
the ordinary ones due to the factBf and the last term of

Eqg. (2.13. The factorR,, which depends ok, m;, andm,,
deviates from 1 due to the condensate and brings about a
new effect to be detected in neutrino experiments at low
energies. As to the last term of E@®.13, we note that the
sum of Egs(2.12 and(2.13 is not equal to 1. BV gave, as
the normalization of the total probability,

(@ e(D[Ne(K) +1,,(K) e o(1)) = (@ o(0) [N, (K) [} (0))
=1. (2.19
Here we point out two problems in the above argument.

The first is that the meaning of the relations from E@s6)
to (2.8) is not clear. Although BV explained that the vacuum
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relation (2.6) is outwardly independent of the choice of the But generally, the time dependence of the operators is not so
mapping(2.8), these two relations are in fact intimately con- simple.

nected to each other. This point will be examined in the next Returning to the neutrino case, we expand the neutrino
subsection. The other problem concerns the meaning of thigeld of mass eigenstate, which satisfies the free Dirac equa-
second term of the RHS of E(R.13 introduced to normal- tion, as

ize the total probability. We will discuss this point in Sec. L
e v,—(x)=—vz e X{u;(kr)a;(kr;t)

kr

B. Reformulation + )
. ) +oj(—kn)gj(—krt)}, j=1.2, (2.20
Now we reexamine the processes described above. For

convenience notation is a little different from that in Rgfi ~ where{u; ,v;} are the plane-wave eigenfunctions with mass

which was employed above. m; and satisfy the free Dirac equatid@.18 with w=m;.
First of all, we consider the Lagrangian density expressed he time dependence of the operator is expressed by Eg.
in terms of the Heisenberg fielgl(x): (2.19 with m=m; .

. The neutrino field of flavor eigenstate is also expanded as
L(X)= = p(X)(d+m)¢h(X) + Ling(X). (2.19

1 .
_ = K. .
When £;(x) dose not include any derivative coupling, the ve(X)= v % e Mug(kr)ag(kr;t)
equation of motion is written as
+u (—knBl(—krt)}, o=eu. (2.20)

——Lin(X)=JI(X). (216 {u,,v,} are the plane-wave eigenfunctions with mass
oP(X) and satisfy the free Dirac equati®®.18 with u=pu,, but
] ) ] ) the time dependence of the creation and annihilation opera-
This Heisenberg field/(x) can be expandeld 3] in terms of 15 is not so simple as E¢2.19. We want to stress here
helicity-momentum eigenfunctions as thatm;’s are the neutrino masses to be observed experimen-

L tally, while w,'s are arbitrarily fixed(The special mass sym-

_ oy KX Fo e o iKeX bol “ u,” is used to stress this arbitrarineks.

x)= \/V % {utknatkr;ye™ v (kngi(krite } The relation between the two kind of creation and annihi-
lation operators is not the same as the one between the field
operators, Eq(2.1). Generally we have

(0+m)ih(x)=

-~ > ek Xu(kr)a(kr;t)+o(—kr) BT(—kr;t)}.
kr

\/v ( a(,(kr;t) ) 1 fds —iIZ~>Z( U{r(kr) ) 4 ( )
=— xe _ v, (X
(2.19 Bi(—krit)) oo (—kn))
Here{u,v} are the plane-wave eigenfunctions with mass u* (kr) )

and satisfy the following free Dirac equation: _ J d3xeik-x(
vi(—kr)

(ik+mu(kr)=0, (ik—pwo(kr)=0, ko= Vk>+u?,
(2.18

where k= y°k,= yk+ y%iky and y*T=v% (The helicity :G—l(o;t)(
eigenfunctions are used for technical simplicity in the fol-

XGL(6;) v (X)G(6;1)

pos(K) im;(k))
I)\O'J(k) pa’](k)

lowing, and their concrete forms are given in Appendix A aj(kr;t)
[14].) The expansion coefficient operators in E8.17) are x| 4 ] )G(e;t), (2.22
time dependent and satisfy the canonical commutation rela- Bj(—krt)

tions for the equal time, which are derived from the equal- o )
. . . T - Where (O-YJ)_(e’l)l(ILLYZ)'
time commutation relatlons{z//b(x),wb,(y)}XO:yOz S(x

—VY) 8, and others=0. Note that one can choose an - - _ Xo— Xj
eigt)an?gnctions with masg which is different from the massy Paik) = (kN (kN =05 (—knoj( kr)—cos( 2 )
m in the equation of motior{2.16. If (x) is a free field

(i.e., Liny=0) or an asymptotic field with physical mass  i\,j(K)=uZ(kr)vj(—kr)=v(—kr)u;(kr)

we can takqu,v} to be the plane-wave solutions of the free

Dirac equations withu=m and, at the same time, :isin< Xv_Xi) 2.23
2 ) ’
(a(kr;t)) (a(kr;O)) ot R
= e ' w= +m-. k k
Akr;t)) | B(kr;0) coty, = Cot,)(l:u.
(219 Mo m]

113003-3



KANJI FUJII, CHIKAGE HABE, AND TETSUO YABUKI

There exists a unitary operatdfu,, ;t) which realizes the
transformation

Pai(K)  INg(K)\ [ aj(kr;t)

RILY) pgj(k))(ﬂf(—kr;t))

| S N, 22e
U\ Bl(—kr;ty) e

where
(poi)=11 exp{i(Ej) €, ([ af (kr;t) Bl(—kr;t)
k,r g,

+/3;(—kr;t)aj(kr;t)]]. (2.25

with £, i(K)=(x,—x;)/2, i.e.,
Eq. (2.22 can be rewritten as

ay (KT:t)
(ﬁi(—kr:t)) -
(2.26

where K(6,u,;t)=1(u,;t)G(6;t). The explicit matrix
form of this transformation is given in Appendix A.

Next we introduce the mass and the flavor val@)a, and
|0)¢ as

[ aj(kr;t)

0),=0 o(kr; 0);=0
,Bj(—kr;t) | Im=0. Bs(—kr;t) | )t
(2.27

CO,j(X) =pyi(X). Then

aj(kr;t)

-1 .
(0,10:1) BJ( kr:t)

) K(O,nq;3t),

From Eq.(2.26), we obtain

0= a;(kr;t)[0)n=K( 6,1y ;t) @ (KI K10, 11451) |0)pn;
(2.28
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Here we attach the index “BV” to the quantities correspond-
ing to those employed by Blasone and Vitti¢ld. From Eq.
(2.22 we obtain the relation between BV'’s operators and the
general ones:

( a,(Kr;t) )_( Pai(K) Ny (K)
BL—kr;)]  LiNgi(k)  pgj(k)

X gt |GUED

_(pgj(lo im;(k)) a§V<kr;t>)
“ling (k) pgy(k) S\ BBV (—kr;t)
aBV(kr;t)

BEVI(—kr;t)

)Gl(e;t)

=J71(,U«0-;t) ‘J(/uo'rt)y

(2.3)

where
Hpe:)=1I1 exq’i > Eq(K[al®Y(kr;) BIBY(—kr;t)
k,r (a.])

+B§V<—kr;t>aEV<kr;t>J]. (2.32

As easily seen from Eq$2.25, (2.30, and(2.32 we have
GJ=1G.

From the reformulation described above, we see that, con-
trary to the choice of BV, there is no theoretical basis to
choose special values gf,’'s and then the.,, dependence is
not removed from the formulas, such as E{2.26) and
(2.29. Since any physical observable should have up
dependence, one may expect that fhe dependence will
disappear in calculated physical observables. To examine it,
we calculate the oscillation probability in the next subsection

thus we see that the second condition of the vacuum of E¢n accordance with the line of BY7].
(2.27) is satisfied automatically when we define the vacuum

|0)¢ by
|0) =K~ 1(0, 5 ;1)[O)p. (2.29

Because of th®, u,, andt dependence dD);, we denote
the flavor vacuum af0);=|0(6,u,;t)) hereafter.

It is worthwhile to note that the vacuum relati¢®.29 is
given uniquely corresponding to the relatih26) for arbi-
trarily fixed {ue,u,}. If we choose thaju,=m; and u,
=m,, thenl(u,;t)=1. Equationg2.26) and(2.29 reduce
to Egs.(2.8) and(2.6), respectively, given by BY7]:

( a (kr;t) ) o ( aj(kr;t) )G
Bl(—krit) O] g1~k | SO
aBV(kr t)
BV~ krit) (2.30

|O(0 /'L(r!t)>,u, *m G l|0>m |O(0 t)>BV

C. Oscillation probability

Let us define the one-electron-neutrino statg(kr;0))
at the timet=0, in accordance with B{7], by operat-
ing al(kr;0) to |0),. The initial condition
(ae(kr;0)|ac(kr;0))=1 needs the normalization factor of
the state as

| are(kr;0)) = al(kr;0)|0),

1
Ne(k)

1 t
N (k) [Cosgpel( )al(kryo)
+5iNGper(K) s (kr;0)1|0)m,  (2.33
where |Ny(K)|2=[cos8per(K) 12+ [SinOpes(k)]?. Another
initial condition («,,(kr;0)|a(kr;0))=0 imposes the rela-
tion

Pe1(K)p1(K) — pea(K)p2(k) =0 (2.34
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on thep,; parameters. The expectation values of the numbewe can derive the oscillation probabilities, which are differ-

Operators are
<ae(kr;t)|ne(k;0)|ae(kr;t)>
[per(K)pea(k)]?

—1— —sin2(20)sin2<A7wt),

2.3
Ne(k)? (239

(ae(kr;t)|n, (k;0)|ae(kr;t))

1
= W 2LPea(K)pua(K) —pea(K)p2(K) 12

A
+pe1<k)pﬂl<k)pe2<k>p#2<k>sin2<2e>sin2(T”t)}

(2.39

whereng(k;t)EE,az(kr;t)a,,(kr;t), o=e,u. The sum of
Egs. (2.35 and (2.36 is not equal to 1. By defining the
number operators Fg(k;t)EEr,BZ(kr;t)/Bg(kr;t) and
Ng(k;t)zng(k;t)—ﬁ,(k;t), we see that the equality

+(SiPONZ, +COFONT,),

(ae(kr;t)|Ng(k;0)+ N, (k;0)|ae(kr;t))=1 (2.37)

holds for any timet=0, irrespectively of the values qi,
andu, .
Note that

(ae(kr;t)|ne(k;0) +n,(k;0)| are(kr; 1))y
=sirtg|V,/?
=(ag(kr;0)[n,(k;0)|ag(kr;0))|gy.  (2.39

Although BV introduced(a,(kr;0)|n,(k;0)|ag(kr;0)) in
Eq. (2.14 to normalize the total probability, E¢2.14) holds
accidentally in the case of the BV choige,.=m; and u,,

=m,. Such a term is essentially the contribution from the
antineutrinos and the probability normalization is given by

Eq. (2.37) in itself.
From the oscillation amplitudes

Fod Kr;t) = (0] ae(Kr;0) el (Kr;1)|0Ym /NG(K)?

[(COSBper) et

~ Nu(k)?
T (sin Bpe) 261°2],

Fue(kr;t)=(ae(kr;0)|a,(kr;t))
= (0] @, (kr;0) al(Kr;t)|0)m /N, (K) N(K)

cosfsin 6

AT

+p2pe€?),

jwqt
— PuiPer®' !

(2.39

ent from the oscillation formulas of BY7], i.e., the expec-
tation value of the number operators, as

| Fodkr;t)[2=1 _ (Parper) Sln2(20)S|n2( )
Ne(k)? .40
sin2(20) 1
| Fue(kr;t)|?= W[ (Pe1P 1= Pe2P u2)?

Aa)
+ pelPeZP,LLlpMZSmZ

_(pelpe2)2 . . (A_a) )
_—Ne(k)4 Sir(26)sir? >t

(2.41

where the second equality in E@.41) is due to Eq(2.34.
(When we sepe1=p,2=1, per=pu1=Uk, Nea=\,2=0,
and A= —\ 1=V, corresponding to BV's choice, all the
formulas above consistently tend to the corresponding ones
in Refs.[7] and [10].) The total oscillation probability is
equal to 1, i.e] FodKr;t)|?+|F e(kr;t)|?>=1, but each os-
cillation probability | Fo(kr; t)|2ﬂor | Fue(kr;t)|? is u, de-
pendent through,;'s. Thus the calculated oscillation prob-
abilities seem to be unphysical.

There is another possibility to define the one-electron-
neutrino state at the time=0 as

|ae(Kr;0))=al(kr;0)[0(8,u,;0)). (2.42

In this case, the normalization of the state is automatically
satisfied:

(ag(kr;0)|ag(kr;0))=1. (2.43
The oscillation amplitude derived from
(0(0,1,;0)| ae(kr;0)arl(kr;t)|0(0,1,;t)) becomes the
product of some number and the term
m(O|K' (0, 4;0)K" ™1 (8,14,;1)|0)yn, Where the prime on

K means to exclude fro(6,u, ;t) the contribution of the
momentumk and the helicityr. This vacuum expectation
value becomes 0 ag— < as far ag>0, and then the oscil-
lation amplitude is 0, while, as to the expectation values of
the number operators with respect to {66, ;t)), we
have nonvanishing valug40]. As easily confirmed, how-
ever, these expectation values are not free from the depen-
dence onu,’s.

lll. STRUCTURE OF THE NEUTRINO PROPAGATOR:
THE CASE OF TWO FLAVORS

The naive way to convert the propagator of the flavor
neutrino into the one of the mass eigenstates may be

113003-5
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(O|T[¥,(x)v,(y)1|0)
=(0|T[G™X(B) »i(X)G(6)G () v;(y)G(6)]]0),
(3.2

PHYSICAL REVIEW D 59 113003

with

tang=5——[— (M, —Mee) + (M, — Mee)2+4mZ, 1.

(3.8

1
2m

eu

where|0)=|0),,. It is not always clear whether the quantity W
of the LHS deserved to be called the propagator of the flavor,
neutrino. So we examine the pole structure of the neutrino
propagator according to the diagonalizing procedure pro-
posed by Kaneko, Ohnuki, and Watandldd], which had
been developed many years ago as the field theory of particle m,<0 for W<|m .
mixture interactions. e e

The diagonalization of the flavor neutrino propagator in  |n the following calculations, it will be useful for us to
the three-flavor case can be examined along the same line agploy the relations

e takem,,=m.=0 with no loss of generality; them,
|m,| and

m=0 for ymegm,,=|me,,

(3.9

described below, which is given in Appendix B.

A. Starting Lagrangian

Let us consider the following Lagrangian density with a
mutual transition between two neutrino fields specified by

the flavor degrees of freedom=e and w:

E(X)=—(7e(x) 7M(X))(¢9+M) o) + Ling(X),
v, (X) 32
where
Mge Mg, .o 190
Mz(mﬂe mw)’ ﬁ::w&p:wai_ﬁ’
(y")T=y". 3.3

Lint(X) includes the weak interaction and the Higgs one

Mee=M;(C0SH)%+ my(sin6)?,

m,,,, = My(sin §)?+my(cose)?,

(3.10

2m
tan20)= ;==
uu™ Mee

(3.11

Mg, = SiN#cosf(—m;+my),

further, we have

(3.12

— 2
miMy=MedM,, ,, — me,./. J

Mge— My = —M,, ,+My=mg,tand,

(3.13

Mee— My=—m, ,+M;=—mg,coté.

(3.19

B. Poles of the propagator matrix

unified theory. As a result oMT=M, required from the
Hermiticity of £(x), mee andm,,, are real andng,, is equal
to m,.. The Hamiltonian is

ve(X)

V(%)

) - ﬁint(x)-
(3.9

Heu(X)=(ve(X) v,())(YV+M)

The eigenvalues df are

1
m1(2):§(mee+ mﬂu_(+) \/(m,u/,l,_ mee)2+4|me;¢|2) )
(3.9

and’He,(x) is expressed in diagonalized form as

Heu(¥)=2 ;) (YV+m)v(X) = Ling(X). (3.6

For simplicity, we takemg,,=m,,, derived fromCP invari-
ance; then we can take

(ve(k,r)
v, (K,r)

cosé

sina)(vl(k,r)

—sing cosé/\ vy(k,r)

), 3.7

corresponding vacuum is rewritten with the interaction fields
as

S, (x—y) =0 T[vH(x)2F (y)1]0)y
= (O[T[SP,(x) v, (Y10},  (3.15

whereS=Texp(i fd*x£,) is the so-called DysoB matrix. In
the RHS of Eq(3.15 we dropped the phase factor, which is
irrelevant to the following considerationsg,p(x—y) can be
calculated perturbatively by using the interaction representa-
tion.

The Fourier transform of the propagat(s.15), S,’,p(k)
= [d*xexp(—ikx)S,, (x), satisfies

S(,rp: 50’psp+ E}\: S:r)\H)\pSp ’ (316)

whereS,(K) is the free propagator of the, field. When we
define the matrix f, (k)] to be
S, (K =[f(k)""1,,, (3.17)

we obtain

113003-6



NOTE ON THE FIELD THEORY OF NEUTRINO MIXING PHYSICAL REVIEW D59 113003

fo,(K)=6,,S,(K) " 1—1II,,(K). (3.189 _ - - —iAge —im
’ rr ’ S, (k) =(—k+im,,+e) "L, [T1,,]= _imee _iAe“ .
[S,,(K)] has two poles, determined by oK (gMZS)
deff,,(K)]=0. (319 Taking account of the contribution frorﬁL’}f(x) as before,
Let us examine the pole structure Sgp. We separate we obtain
Hamiltonian(3.4) into two parts: = = _
05pSy— Il 5p=06,,5,—,,=f,,, (3.2
—_140 int _
Hen(X)=H e, (00 T H 6,0 = Line(X), (320 which shows that the arbitrariness in definigK) disap-
pears in the physical one-particle masses.
H,0= a0 70| 77+ 0 ))( VE(X))
=(v 14 ,
o ¢ K Y 0 Myu V,L(X) C. Diagonalization of the pole part in the propagator

0 m po(X) We examine the diagonalization of the pole part in the
Hg;ﬁ(X):(;e(X) ;”“(X))(m e")( © ) neutrino propagatorS, (k). Writing the cofactor corre-

pe 0 J1wu(X) sponding tof ,, asF,,, we have
Then the free propagator of the, field corresponding to , 4 1 T
Hgﬂ(x) is S,(K):=(—k+im,,+€)~', and we take the [S5p]=Lfop] :de[f][FC’P] : (327
proper self-energy part to d¢,,= —im,, as the contribu _ _
tion from We definef()) andF{) to be the values of,, andF,, at the
Ve — iV y v, polem; of [S] ], respectively. We have

We neglect here the weak and the Higgs interactions. _ _ i(—m;+mee) iMe,
(Properly speaking, one has to include the effect of Higgs [fﬁ}g][Fﬁ,Jg]T=( _ W )
interactions which is not always weak. We neglect this inter- 'Mey, H(=my+my,)
action owing to our ignorance of jtWe have (i(— m;+m,,) —imeg, )

—k+imge ime —ime, H(—m;+Mee)
[fo(K]=| L B2
iMg,, K+im,,

10
=[—<mj—mea(mj—muu>+méﬂ](0 1)

As easily seenLS[,p(k)] has two poles at

(1 0
k=im; with m(j=12 givenby Eq(3.5). :de(fj]<0 1):0 (3.28
(3.22

Therefore, the physical one-particle masses given as poles
S;p(k) are seen to coincide with the eigenvalues of the mass Next we define

due to Eq.(3.13 and (3.14 [or in accordance with Eq.

matrix M.

It should be noted that there is an arbitrariness in separat- _ d{deff, (K}
ing H(x) into the “free” and “interaction” parts. So it is (p)~Li= 7 (3.29
worthy to make a remark on this point. We rewrite the d(—K) k=im,

Hamiltonian(3.4) as

- o From Eq.(3.21) we obtain
Hep(X)=H 2, () +HEHX) = Lin(X),

ew .
RHS of Eq.(3.29=[ — 2K+ (Meet M,,,.) Tk—im,
- _ oo (Mg O ve(X) (M M) (— 1)
79 00-Guo oo 79+ ™ ))( e ) —i(my—mp)(— 1)), (3.30
0 m,,/ /) \vux) .
(3.23 leading to
~ — Ace Me,, ve(X) ;
Hlerlz(x):(ye(x) V;L(X))( me,“ AMM VM(X) ’ p(l) _ i(mz_ml) :Sgcf) 1
p? 1 ime, | =1/
Agpi=Myy—Mm,, . (3.249 i(my—my)

Then, instead o8, andII,, employed above, we use Sy=sinf, Ccy=cosd. (3.3
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We introduce a set of new renormalized fielq&?(x) and
ZF(X), j=1,2, expressed as

PHYSICAL REVIEW D 59 113003

i.e.,

pIFI =A,A,;, (3.35
Yo =2 AT, () =2 Ag (X, which leads to
i i _ o
(3.32 pIFD=A, A, =pVFJ). (3.3
where the coefficientsA,;’s are determined so that Thus we have
(O|T[ z,/;iR(x)ZjR(y)]|O> has only one pole term liké;; /(—k — = ()
+im;); A, is a complex conjugate t8,;. Thus, from P FM_PFW
B A AN A =0
(1) 2) A A =AMl e (3.37)
[S/(k)]= —F FuT, P o AT A pOEDE)
—Kk+im,+e —Kk+imy+e K %
+ (nonpole contributions (3.33 .
A possible solution is given by
the conditions of the renormalized field can be expressed as 0
T
1 0 0 Ayi=———FV 0w, |o|?=1. (3.39
p(l)F(l)T:A<0 O)AT’ p(z)F(z)T:A(O 1)AT, ) /p(J)FL!I)L ®
(3.349  The concrete form ofA,;] is expressed as
|
|SeCo/Me,,| ( —ime, ) |SeCo/Me,,| ( —img, )
[Agj] SyCy i(—mp+mge) )’ SyCyh i(—my+mee) w (3.39
(—mi+mge) (M= Mee)
me;/, eu
m —lcyl —[s4l
= ou i Sy Cy (34@
L |C0|C_0 _|S‘9|S_0
|
Forsy,cy,mg,>0 andw=i, we have 1 o
[Sf01=|2 ————| 2 Bigp“)FE,';(k)ij)
T —K+im+e\ap
Co So
[Asi]l= —s, C,)° (3.41 + (contribution from continuous spec)%a
This matrix is the same as the matrix which diagonalizes the _ 0
mass matrix of neutrino in the Lagrangi&®2). _ —k+im +e
From the construction, we see that the propagator 1
0 -
- k+ |m2+ €

Si} (k) :=Fourier transformdf| T[ t,//iR(X)EjR(y)ﬂO)

=> B;,S,,(kB;,, B=A"% (3.42
o.p

has an one-pole term in the diagonal element, i.e.,

+ (contribution from continuous specjra
(3.43

1/2
aj

When we writeA;; asz,{, i.e.,

[2X2):=[ A1,

oj

(3.49

we can express, (K) as
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UZ 112 so seems not to be corrga€onsiderations including such an

SI(IEDS Z‘”—‘”JrJ’ d(xz)l\“L’;’k_). (3.45  approach are found in Ref§4,6,8.
i —k+imj+e k*+Kk“—ie Here we give a remark on the preparation of the one-
flavor-neutrino state, which is a certain refinement of an idea
Note that the diagonalization procedure of the propagatoproposed by Sassard®]. (The details are described in Ap-
S,,, described above is somewhat different from that adoptegendix C) The author of Ref[9] prepared the one-flavor-
by Kanekoet al. [11]. The authors of Refl11] considered neutrino state as
the intermediate step by introducing a set of fields
{$(x),$;(x)} as defined by
|vﬂ<k;0>>=r;l[AraI<kr;0>+Bra£<kr;o>1|0>m. (4.)

w,,(x>=§ A di(X),

DeterminingA, andB, so as to satisfy the boundary condi-

_ - tions at the initial time, the usual oscillation formulas are
Pe(X)= 2 Ayihi(X), (3.49  reproduced. The preparation of the one-flavor-neutrino state,

! Eq. (4.1), is a mere assumption, and then it is a future prob-
lem whether Eq.(4.1) could be grounded on a field-
theoretical approach.
~ ) ~ In Sec. lll and Appendix B we investigated the structure
Sij (k) :=Fourier transform of(0[ T[ ¢i(x) #;(y)1/0). (3.47)  of the flavor-neutrino propagator by following the “diago-

nalization” procedure developed by Kanektal. [11]. A

Such an intermediate procedure is not necessary in th ; : Rryy 7R :
present case due to dropping the effectCaf(x). fit of the renormalized fieldg/"(x). 4 (x)} can be defined

and examined the pole-part diagonalization of

IV. SUMMARY AND FINAL REMARKS

We have reconsidered the problem of constructing the '/’rr(x):; Z Y(x), ’/’U(X):; 2R, (42
two kinds of Hilbert space in the field theory with mixing
among neutrinos. For that purpose we have mainly reexam-
ined the paper of BY7], in which it is asserted that the usual With (z9"(z/%) =1, so that the Fourier transforifFT) of
oscillation formulas of neutrinos receive certain modifica-<O|T[w}?(x)E]R(y)ﬂO), ie., Sﬁ(k), has a single one-pole
tions caused by the Bogoliubov transformation among theerm, and
creation-annihilation operators with definite flavors and
those with definite masses. After explaining the logical struc- _
ture of Ref.[7], we gave a reformulation of it along the line  Sy,(K)=FT of (0| T[#,(x) 4;,(y)1|0)

of thought of BV[7], and made clear the problematic and vz
dubious points of Ref.7]. The fundamental viewpoint of our _ Zaj %pj +f d(x?) A gp(,K) 4.3
consideration is based on the following two points. The first T —k+imj+e K24+ k2—ie '

is that any Heisenberg field operator, such as the flavor neu-
trino fields ¢o(x) and¢,(x), is expanded in terms of a com- i ) )
plete set of helicity-momentum eigenfunctions with an arbi-1 e matrix[z*~<], which may be called the generalized
trarily fixed mass u,. The second is that any direct f§CtOF, h_a§ been shown to be_essentlally_ the same as that
observable such as the oscillation formulas of neutrino&i2gonalizing the mass maitrM in the starting Lagrangian
should have no dependence on such a mass with the neutrino mixing. The propagat@ﬁ(’,p(k)]~should be
We have pointed out in Sec. Il that, concerning the mapindependent of the choice of the mass parametgyss, that
ping (2.8) which corresponds to the case of a special choicés, independent of the choice of the perturbative vacuum cor-
me=my and u,=m,, there is no theoretical reason which responding to the “free” Hamiltonians specified by the mass
enforces us to adopt such a special mapping, and that varioggrametersn,’s. The result of Sec. Il is consistent with
oscillation formulas such as those examined in Sec. Il C canthis requirement.
not be thought of as correct. It seems worthwhile to stress Taking account of the considerations in Secs. Il and Ill, it
that we cannot be free from,, insofar as we try to prepare seems favorable for us to treat the neutrino-oscillation prob-
a_one-flavor-neutrino state with definite  momentum,jem by utilizing the neutrino propagator. The works devel-
al(kr;t)|0) and B! (kr;t)|0); therefore, it is necessary for oped by Giuntiet al. [5] and Grimus and Stockingd8]
us to derive the oscillation formula without recourse to suchseem instructive from our viewpoint.
a state. One probable way may be obtained through the con- On the construction of the related Hilbert spaces, we have
sideration with recourse to the neutrino propagator, as deshown explicitly in the critical examination of Rdf7] that
scribed in Sec. llI[The trial of Blasone, Henning, and Vi- there is no physical basis selecting one-flavor Hilbert space
tiello [10] using the neutrino propagator is still based on thefrom many-flavor Hilbert spaces which are mathematically
one-flavor-neutrino statezZ(kr;t)|0) and Bz(kr;t)|0>, and allowed. In the superrelativistic case we are allowed to work
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KANJI FUJII, CHIKAGE HABE, AND TETSUO YABUKI PHYSICAL REVIEW D 59 113003

with recourse to the Hilbert space of mass eigenstitgs ur (kryuj(ks)=v{ (—knv;(—ks)=p;j(k) s,
since the mass differences among neutrinos can be neglected
in this energy region. Therefore, it seems to be an important

task to derive field theoretically the oscillation formula in u (knvj(—ks)=v{ (—kr)uj(ks)=i\;j(k) &5,
neutrino experiments at low energies, with recourse to the
relation of field operatorg,,=ZX;A,;vj(x). From this view- ij=12e u, (A5)

point, the works developed by Giurgt al. [5] and Grimus
and Stockingef8] are very suggestive, as mentioned above. . .
It seems necessary for us to investigate in detail how to dewhere  v;(—kr):=v;(pr) with p=—k, po=Kp;

rive oscillation formulas reflecting real experimental situa- = \/k2+ mj2; pii=cog (xi—x;)/2], \ij=sin(xi—x;)/2]
tions on the basis of the field theory. with coth=|IZ|/mj . We have
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aq(kr;t) aq(kr;t)
APPENDIX A a, (kri) ay(kr:t)

Explicit forms of the plane-wave eigenfunctiongkr) Bi(—kr;t) | ~ 9, Bi(—kr;t) |’
anduv (kr), satisfying BL(—kf;t) ﬁz(—kr;t)

(iK+myu(kr)=0, (—ik+m)v(kr)=0, (A1)

) ) _ . . P(6,k) iA(6,k)

are given in the Kramers representationyofnatrices(i.e., K(6,k)= AR P(OK) | (A7)
- - [ ; '
y=—py@0, ¥'=p®l, ys=—p,®l1)[14] by

Ca —sB* with

cpB sa*

utk?)= sa |’ utkl)= —cp* |’ (A2) p(8 k)-( Coper(K) SePez(k))

sB ca* , —Sgpu1(K)  Coppa(K) )’

sB* Ca Cohe1(K)  Sphea(k)

e C A(a,k>:(_" alk) S ) e

okn=| 2| kn=| Pl e Sl Coh2ll9

—cB* |’ —sa |’

ca* —-sB K(0,k) is confirmed to be a unitary operator:
Here,  c=cos(y/2), s=sin(x/2), coty=|k|/m, K, K(6,K)K(6,k)T=K(6,k)TK(8,k)=1. (A9)
=kcosd, k,+ik,=ksinde'?, a=cos@®/2)e '*?, B
=sin(9/2)e'#2. Here u(kr) andv(kr) are the eigenfunc-
tions of helicitys-k/|k|, s=(1Xa)/2: APPENDIX B

We examine the diagonalization of the flavor neutrino
E(§-E)u(kT)=£u(kT) E(*-E)u(kl)=—3u(kl) propagator in the three-flavor case along the same line of
k 2 "ok 2 ' thought as given in Sec. Il.
1. . 1 1. . 1 . _
E(S~—k)v(kT)=§v(kT), E(s-—k)v(ki)z—zu(kl). 1. Three-flavor mixing mass matrix
(A4) The relevant Lagrangian density with mutual transitions

among three-flavor neutrinog, u, and r, is written after
The solutions of Egs(Al) with massm; are written as taking account of the spontaneous symmetry breaking in the
uj(kr) andv;(kr). We obtain Higgs sector as
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VéR(X)
LX) == e (X) v, (X) v (X))(I+M")| vir(X)
v R(X)
VeL(X)
— (Vor(X) VR(X) VIR())(H+M )| v (X)
v (X)
+ Lin(X), (B1)

whereM'=[m, 1. (Li, is assumed to include no bilinear
terms and no derivative of the neutrino figl#Ve perform
the unitary transformations

ver(X) v (X)

v (X) | =V | va(X)

Vo (X) 3L (X)

Ver(X) v1R(X)

v,R(X) | =Vg| v2r(X) |, (B2)

v,R(X) v3r(X)

so that the mass matrix is diagonalized:
my 0
VIM'Vg=| 0 w2 O |withreal u’s. (B3

0 0 wus

We can arbitrarily use the right-handed neutrino fielg,
given by vl’,R(x)=2(,Wp(,v(,R(x),WTW=I, while the mass
matrix M’ (assumed to be dét’ +0) is uniquely expressed
as

M'=M-U, UU'=I, M=[m,,], (B4)
whereM is Hermitian as well as positive definitéThe last
means that all eigenvalues are positiudsing the matrixV
which diagonalizedv as

m 0 O
ViMy=| 0 m; 0 |, m>0, VV'=l,

0 0 msg

(BS)
we chooséW to be

w=uT: (B6)

then, by definingy;. andv;g as
vguR<x)==§ voviLr(X), V=[vgl,  (B7)

the Lagrangian densitBl) is expressed as

PHYSICAL REVIEW D59 113003

Ver(X)
LOX)= = (ver(X) v, () v 0)G+M)| ¥,ur(X)
VTR(X)
—H.C.H Lin(X)
ve(X)
== (ve(X) vu(X) V() (G+M)| vu(X)
v,(X)
+ Lint(X); (B8)

the first term in the last line has the diagonal form
=271 () (6+m) vi(X).

Similarly to Eg.(3.23), we write the Hamiltonian density
as

H(X)="HO(X) +H ™(X) = Lin(X),

HOX)=(we(X) v,(X) v,())(YV+M)

ve(X)
X[ vu(X) |, (B9)
vA(X)
HI™M(X) = (ve(X) v,(X) VX))
Aee Mg,  Me,
X | Mye AMM Myr
m’Te m’T,LL A’TT
ve(X)
x| vu(X) |, (B10)
v(X)
ﬁee 0 0
M={ © Fh,uu 0.
O 0 ﬁ]’7"7'
A,,=m,,—m,,. (B11)
We give useful relations as follows:
3
mpUijlvpjvgjmj, p.o=(e,u,7), (B12)
1 .
VI=v~1=——[u"] withu,;=cofactor ofv,;, (B13

detV
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(detV) D) v,jv,=(detV)s,,
J

=; Vpilg (B14)

(detV)% 0,V k= (detV) &
:2 Upj pk (B15)
Ej: mj:%: m,,, (B16)
IT;m;=detM. (B17)

2. Pole structure of the Fourier transform of the neutrino
propagator

We consider the Fourier transform of the neutrino propa-

gator:

S,,,(k)=Fourier transform of(0|T[ »,(x)»,(y)]|0),
(B18)

PHYSICAL REVIEW D 59 113003

From the form of Eq(B22), we see that the arbitrariness in
separatingH '"(x) from the “free” part in Eq.(B10), i.e.,
the arbitrariness in defining,(K), disappears in the physical
one-particle masses under the approximatiB&1). These
one-particle masses determined from E8R3) with f, (K)
given by Eq.(B22) coincide with the eigenvaluegm; ]
=1,2,3 of the mass matriM =[m,].

3. Diagonalization of the pole part in the propagator

We follow the same procedure of the diagonalization as
described in Sec. IlIC. Writing the cofactor &f,,(k) as
Fop(K), we write S(’,p(k) in the same form as Eq3.27);
then, we obtain

et llicm,~0-| 3 1R -| 3 )
(B24)

The explicit form of p) defined in the same way as Eq.
(3.29 is written as

(p") 7= = (Mee—m;) (M, —m;) — (M, — mp)(m_,—m;)
- (mTT_ mj)(mee_ mj) + meMmMe+ m,uTmTM

+my.m... (B25)
er''ire

wherev,(x) and v,(y) are the unrenormalized Heisenberg By employing Eqs(B12) and (B13), we obtain, after some

operators appearing in the HamiltoniéBo9).
In the same way as described in Sec. III%(k) satis-
fies

Syp(K)=8,,S,(k) + 2}\: S\ (KT, ,(K)S,(K),

o,p=€,u,T, (B19

with Sp(k)z(—k+ir~npp+ €)1, and is expressed as

Sy (K =[f(K) "1y, with f,,(K)=5,,S,(k)~*—TI,,(K).
(B20)

Dropping Lin(X), the proper self-energy palt,, is given
as

I,,=—i(M=M),,, (B21)
and we have
[fop(K) 1= 85p(—k+im ) +i(M—M),,]
—k+img, img, iMme,
= im e —k+im,, im,,
im e im_, —K+im_,
(B22)

calculations,
(p) 1= —=(my—my)(my—my),
(p'?) 1= —(my—my)(my—my),

(p®) 1= —(mz—my)(mz—m,).

(B26)
As to FU)'s, expressed from the definition as
FJ)=—m,em,,+m(m,,—m,),
Ffu!f)r: - me,um're+ mT;L( Mee— mj)l
F(Tjﬂl?: m,u,eme,u_ (mee_ m])(m,u./,c_ m])l
(B27)
some calculations lead to
i U_ iU 7 )
W=—0 - p=eu,7 j=123; (B29
p(J)
thus, we obtain
(i) ( (J))Z
P__2P (B29)

F(TI’T) |UT]'|2'

Next we define a set of new fieldgR(x) and ¥(x), j

The physical one-particle masses are determined as three-1 2 3, in the same way as E(.32. The condition for

poles obtained from

deff,,,(k)]=0. (B23)

determining the matriA is

p(J)(F(j))T:AE(J)AT, (B30)
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with Thus the form of the matri satisfies the unitary condition,
ie.,
0 0 0 O
EL—| 0 o], e2={o0 1 of, AAT=ATA=I, (B39)
0 000 and is essentially the same @svhich diagonalizes the mass
matrix M:
0
E®=| 0 e 0 O
0 1 A=[A,]=V-E with E=| 0 e 0],
0 0 €3
The above equation leads to (B40)
AALALA,  pVFDED m 0 O
A A (J F(l 7 = .
A, A F(TJT) J AtMA=[ 0O m, O (B41)
(B31) 0 0 my

therefore, noting Eq(B29) we are allowed to take ﬁﬁ(k), the Fourier transform of0|T[ l//iR(X)ZF(Y)ﬂO), is

now written as
(i o|p'|

— [P (i) 2_
A=\ gif wo= Ty T Froe [0l7=1 B32 (R 1= aTs (kA
. i ; _z; EA MDA
Employing the concrete form@28) of F)=FU) we ob- - —k+im,+e aiP """ appj
tain
+ (contribution from continuous specjra
Aer — Vel Uel
A _ w[pW[v _ ; 0 0
pUl = | Y] T €| Ve, (B33 —Kk+im;+e
A P |le|
71 U1 U
1
— 0 _ 0
A o= [ ver Ve —k+imy+e
u2 | — (2)|v | u2 | =€ u2 |y 0 0
ATZ 2 2 U2 —k+im3+6
(B34) I .
+ (contribution from continuous specjra (B42)
A — v v
) wlp®os| O e and as t0S,,,(k) we obtain the same form as given by Eq.
Au | = W u3 | =€3| Vus |, (3.45.
AT3 P ™ U:3 U:3
(B3Y) APPENDIX C
where We consider a process of ong, production at the time
t=0 and detection o¥, at the timet>0. We assume that
| p' j)|v_T j this initial v,, state is so prepared that it can be expressed by
G = (B36)
P |Urj| + +
|uM(k;0)>=r:2H [Aral(kr;0)+B,al(kr;0)1|0)m,
By choosing the order as;>m,>m;, we have ' (C1)
p'V<0, p®>0, p¥<0; (B37)  whereA, andB, are to be determined in accordance with the
experimental situation of preparing the initial state
then, |v,,;0); r=helicity. Now we examine the probability ampli-
tudes of finding one left-handed flavor neutring at a
—(-1i=2 @U7j (B39) space-time pointi,t) through some charged-current weak
|vﬂ| interaction for detection. We define these amplitudes as
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- 1+ - From BQ1), we obtain
<I>U<x,t>zm<o B0, 50 S [Acal(kr;0)
2 =70
A—_025 y__ SiCg (C9

+Bra;(kr;0)]o> . o=e,u. (C2)
m Under these constraints, BZ) leads to

In the Kramers representation of matrices explained in

Appendix A, we have [|B;|?s3+|B,|?c5]/c5=1. (C9)
14y, . (k) The probabilities of finding’e and v, at timet, defined by
2 uj(kT)=s; 0 . X P(k)= Bk)]’
X (k) P(Vﬂ_wﬂ;t)zf d3x| D ,(x,1)[2, (C10
° B* (k)
*+ s _ - -
5 Uj(kl)=c; 0 % )(k)E( a* (K) ) P(yﬁve;t)zfd3x|<1>e(x,t)|2, (C11)
x' 7k
are given b
=12, (€3 weny
i _ ; T . 1
where s;=sin(x;/2), cj—cos.(xj/2) WIFh coti(jj|k|/rr?j, P(v,— vﬁ;t)=—2[|Bles§+|Bl|zc§
x (k) and () (k) are the eigenfunctions ob(- k)/k with Cy
the eigenvalues+1 and — 1, respectively. Thusp's are A
. w
rewritten as X 1—sir12(20)sir12(7t”
kX _ _ : o[Aw
D (x,t)= \/V (ATCaSle*'wlt-F BTSeszeflwzt) =1—S|n2(20)sm2 7'[ due to EQ(CQ),
(C12
0
—iw —iw . A
X[ 0 | +(Acecie U1+ B sece ) P(V'u—>ve;t)=S(2;[|BT|ZS§+|Bi|2C§]4SII’]2(th)
x (k)
] L [Aw
0 =sm2(20)sm2(7t due to Eq(C9), (C13
X 0 , (C4)
(k) which coincide with the oscillation formulas usually em-

ployed. Note that, in general, the prepared sta;;—:(k;O)),
Eqg. (C1), cannot be set equal to the state

ik-x
D ,(X,1)= —| (—A;Ss5.6 7 114+ B.c 5,0 w2h)
“ W 1= 1o S, Cral(kr;0)|0) /A, (K). (C14)
r
0 Because if we set it so, EqEC8) lead to
X O +(_AL50C1e_iwlt S C
2 Pu1 2 Pu1
X () o=t 2= (C19
S1 Pu2 C1 Pu2
0
it by taking into account of Eq$A7) and Eq.(A8), and(C15
+Bcyce ) 0 - (C5  does not hold fom; #m,, i.e., as far as the neutrino mixing
X (k) exists.
The above derivation of the usual oscillation formula,
We require the following boundary conditions: which amounts to a certain refinement of the idea proposed
_ by Sassaroli9], is essentially based on the assumption of the
BC(1), ®(x,t=0)=0, (C6) initial state, Eq(C1). Although it may be necessary for us to
establish the physical basis of this assumption, the above
- derivation gives us a clue to the task of how to define a
3 — 2_
BC(2). J d X|(I)/‘(X’t_o)| =1 €7 one-flavor-neutrino  statgv,(k;0)) under the condition
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vo(X)=Z2;A,v(X). In the super relativistic case, the same

g 4 Sp S2 C2

linear transformation as that fw,(x),»;(x)}, Ap=-— c_gBm) due to S—l—>l, C—l—>1,
a,(kr:t) o (KT;1) (C17)
Bo(kr:t) _Ej: Ao Bj(kr;t))’ (€18 \which is consistent with

is obtained and we have, from E@8), |v,,(kr;0))=a},(kr;0)[0)p. (C19
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