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Valence QCD: Connecting QCD to the quark model
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A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the
valence degrees of freedom, the pair creation through theZ graphs is deleted in the connected insertions,
whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new ‘‘valence
QCD’’ Lagrangian where the action in the time direction is modified so that the particle and antiparticle
decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements
~e.g.,FA /DA andFS /DS ratios! in the nucleon reproduce the SU~6! quark model predictions in a lattice QCD
calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into
the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and theD
become degenerate for the quark masses we have studied~ranging from 1 to 4 times the strange mass!. Thep
andr become nearly degenerate in this range. It is shown that valence QCD has theC, P, T symmetries. The
lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified
partially conserved axial Ward identity. As a result, the theory has a U(2NF) symmetry in the particle-
antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to
Uq(NF)3Uq̄(NF). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and
various matrix elements. This leads to an approximate Uq(2NF)3Uq̄(2NF) symmetry which is the basis for
the valence quark model. In addition, we find that the masses ofN, D,r,p,a1, anda0 all drop precipitously
compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappear-
ance of the ‘‘constituent’’ quark mass which is dynamically generated through tadpole diagrams. The origin of
the hyperfine splitting in the baryon is largely attributed to the Goldstone boson exchanges between the quarks.
Both of these are the consequences of the lack of chiral symmetry in valence QCD. We discuss its implications
concerning the models of hadrons.@S0556-2821~99!01009-7#

PACS number~s!: 12.38.Gc, 11.30.Rd, 12.39.Ki
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I. INTRODUCTION

In addition to its classification scheme, the quark mo
is, by and large, quite successful in delineating the spectr
structure, and decays of mesons and baryons. One o
wonders what the nature of the approximation is, especi
in view of the advent of quantum chromodynamics~QCD!,
which is believed to be, after all, the fundamental theory
quarks and gluons. In order to address this question, we n
to understand first where the quark model is successful
where it fails.

To begin with, we need to define what we mean by
quark model. We consider the simplest approach which
cludes the following ingredients.

~i! The Fock space is restricted to the valence quarks o
i.e. three quarks for the baryon and a quark-antiquark pair
the meson. Although there are variations which inclu
quark self-energy and so on which go beyond the insta

neous interaction and invoke higher Fock space~e.g.,q4q̄ for
the baryon andq2q̄2 for the meson!, we will not consider
them here.

~ii ! These valence quarks, be they dressed constit
quarks or bare quarks, are confined to a potential or a bag
this zeroth order, the hadron wave functions involvingu, d,
0556-2821/99/59~11!/112001~26!/$15.00 59 1120
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ands quarks and antiquarks are classified by the flavor-s
and spatial coordinates according to the SUq(6)3SUq̄(6)
3O(3) group@for brevity, we shall refer to it as SU~6!#. The
wave functions are totally antisymmetric in the color spa
for the baryons and symmetric in the color-anticolor com
nations for the mesons. For example, theS- and D-wave
baryons are described by the 56-plets and theP-wave bary-
ons by the 70-plets. Similarly, theS- andP-wave mesons are
described by the 36-plets@1#.

~iii ! The SU~6! symmetry is broken down to SU(3
3SU(2) by the residual interaction between the qua
which is weak compared to the confining potential. The d
generacies within the multiplets are lifted by these resid
interactions. Of course, additional breakings of flavor SU~3!
due to the quark masses are responsible for the detailed s
ting within the octet-decuplet baryon multiplets and the m
son nonets.

There are many different versions of the quark mo
which share these attributes. They have been called the n
quark model, nonrelativistic quark model, constituent qu
model, bag model, etc., in the literature. Here we shall re
to them generically as the valence quark model with the
fining features of the lowest Fock space~or valence Fock
space! and the SU~6! flavor-spin symmetry, albeit approxi
mate, as their common denominator. In this work, we sh
©1999 The American Physical Society01-1
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concentrate our discussion on the light quark systems w
the valence quark picture is less well understood. For mes
with heavy quarks, such as charmoniums and upsilons,
valence picture based on the nonrelativistic potential mo
which fits experiments reasonably well is confirmed by
nonrelativistic lattice QCD calculations@2–5#. We shall not
address them in this study.

Given the definition of the valence quark model, it is
easy to understand where it succeeds as where it fails.
example, with the one-gluon-like exchange potential@6# as
the residual interaction between the nonrelativistically c
fined quarks describing the hyperfine and fine splittings
the hadron masses, the valence quark model is very suc
ful in fitting meson and baryon masses@7–10# and baryon
magnetic moments@6,11,12#. It is also successful in delin
eating the pattern of electromagnetic~EM! @1,13,14#, semi-
leptonic and nonleptonic weak decays@15#, the Okubo-
Zweig-Iizuka~OZI! rule @16#, etc. Similarly it is true for the
MIT bag model where the relativistic quarks and antiqua
are confined in a bag with a one-gluon-exchange interac
@17,18#.

It is worthwhile noting that all these are based on t
valence quark picture augmented by the SU(6)3O(3) for its
flavor-spin and space group. On the other hand, there
notable failures. For example, it fails to account for the U~1!
anomaly~the h8 mass!, the proton spin crisis, and thepNs
term. All these problems are associated with large contri
tions from disconnected insertions involving sea quarks@19–
21#. These are places where the OZI rule fails badly. Con
quently, it is natural not to expect the valence quark mode
work in these cases.

There are also other places where the valence qu
model does not work well. They include hadron scatterin
couplings, and form factors which are well described
models utilizing the chiral symmetry inherent in QCD. E
amples of successful approaches based on chiral symm
include pp scattering@22,23#, vector dominance@24#, the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin~KSRF! re-
lation @25#, low-energypN scatterings@22,26#, pN scatter-
ing up to about 1 GeV with the Skyrmion@27#, nucleon static
properties @28#, electromagnetic form factors@28#, pNN
form factor @29#, NN interaction, and Goldberger-Treima
relation@30#. All these have been worked out quite succe
fully by parallel developments which explore the chiral sy
metry of QCD. These include thes model, current algebra
PCAC ~partial conservation of axial vector current!, chiral
perturbation theory, and the more recent developments in
porating largeNc QCD @31,32#, such as the Skyrmion
@28,33# and the contracted current algebra@34#.

The common theme of these models is chiral symme
which involves the meson cloud in the baryon and thus
higher Fock space beyond the valence. This cloud degre
freedom is essential in the case of the vector dominanc
EM form factors, the pion cloud for the Goldberger-Treim
relation, and the nonvanishing neutron electric form fac
Therefore, it is a challenge to understand why the vale
quark model ‘‘works’’ without spontaneously broken chir
symmetry and where the hyperfine splitting in hadron sp
troscopy and the constitute quark mass come from.
11200
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From the above discussion, it is clear that the Fock sp
beyond the valence is important and we mentioned two
grees of freedom, namely, cloud and sea. How to relate th
degrees of freedom back to QCD unambiguously, how
find out their roles in physical quantities, and, more imp
tantly, how to relate them to chiral symmetry are the ma
subjects of this paper. It turns out that chiral symmetry pla
essential roles in light hadron spectroscopy as well as had
structure. We find that both the ‘‘constituent’’ quark ma
and the hyperfine splitting in light baryons are more of
consequence of spontaneous chiral symmetry breaking
that of gluons and sea quarks.

In Sec. II, we will define these dynamical degrees of fre
dom in the Euclidean path integral formalism for the ha
ronic tensor in deep inelastic scattering. In Sec. III, we int
duce a valence QCD theory which modifies QCD
eliminate quark-antiquark pair production, thus suppress
both the cloud and sea degrees of freedom. The discrete
continuous symmetries of valence QCD are explored. In S
IV, we adopt a lattice action for valence QCD and prove
reflection positivity and Hermiticity. The pion mass, the pio
decay constant, and the current quark mass from the a
Ward identity are used to define the zero-quark-mass limit
the lattice. In Sec. V, we calculate various ratios of mat
elements to check the SU~6! relations. The nucleon form
factors are calculated and presented in Sec. VI. We t
study hadron spectroscopy in comparison with that of Q
to explore the origin of the hyperfine splitting and the ‘‘co
stituent’’ quark mass in Sec. VII. Perhaps the most excit
aspect of valence QCD is a new understanding of the or
of dynamical mass generation, something missing in the
lence quark model and put in by hand via a constituent qu
mass. In Sec. VIII, we compare the symmetry breaking p
terns in valence QCD and QCD. Finally, in Sec. IX, w
summarize the lessons learned from the valence QCD
draw an analogy between the valence quark model and
nuclear shell model. We will also discuss the implication f
model building of hadrons.

II. QUARK DYNAMICAL DEGREES OF FREEDOM

We have so far alluded to the meson clouds and
quarks in addition to the valence quarks. They appear
various QCD-inspired hadronic models and effective th
ries. How does one define the valence, the cloud, and the
quarks unambiguously and in a model-independent way
QCD? It turns out that the best way of revealing these
namical degrees of freedom is in deep inelastic scatte
where the quarks show up as the parton densities.

The deep inelastic scattering of a muon on a nucleon
volves the hadronic tensor which, being an inclusive re
tion, involves all intermediate states:

Wmn~q2,n!5
1

2MN
(

n
~2p!3d4~pn2p2q!

3^NuJm~0!un&^nuJn~0!uN&spin ave . ~1!

Since deep inelastic scattering measures the absorptive
of the Compton scattering, it is the imaginary part of t
1-2
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forward amplitude and can be expressed as the curr
current correlation function in the nucleon, i.e.,

Wmn~q2,n!5
1

p
Im Tmn~q2,n!

5
1

2MN
K NU E d4x

2p
eiq•xJm~x!Jn~0!UNL

spin ave

.

~2!

It has been shown@35# that the hadronic tenso
Wmn(q2,n) can be obtained from the Euclidean path-integ
t
te

e
-
e

to

ac
e
fe

s
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11200
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formalism where the various quark dynamical degrees
freedom are readily and explicitly revealed~Fig. 1!. In this
case, one considers the ratio of the four-point funct

^ON(t)Jn(xW ,t2)Jm(0,t1)ON(0)& and the two-point function
^ON„t2(t22t1)…ON(0)&, where ON(t) is an interpolation
field for the nucleon with momentump at Euclidean timet.

As both t2t2@1/DMN and t1@1/DMN , whereDMN is
the mass gap between the nucleon and the next excita
~i.e., the threshold of a nucleon and a pion in thep wave!, the
contributions generated by the interpolation fieldON will be
dominated by the nucleon with the Euclidean propaga
e2MN[( t2t2)1t1] . Hence,
W̃mn~qW 2,t!5

~1/2MN!K O~ t !E ~d3x/2p!e2 iqW •xWJm~xW ,t2!Jn~0,t1!O~0!L
^O~ t2t!O~0!&

U
t2t2@1/DMN

t1@1/DMN

5

~ f 2/2MN!e2MN~ t2t2!^Nu E ~d3x/2p! e2 iqW •xWJm~xW ,t2!Jn~0,t1!uN&e2MNt1

f 2e2MN~ t2t!

5
1

2MNV
^Nu E d3x

2p
e2 iqW •xWJm~xW ,t2!Jn~0,t1!uN&, ~3!
ser-
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where t5t22t1 , f is the transition matrix elemen
^0uONuN&, andV is the three-volume. Inserting intermedia
states,W̃mn(qW 2,t) becomes

W̃mn~qW 2,t!5
1

2MNV (
n

~2p!2d3~pn2p1q!^NuJm~0!un&

3^nuJn~0!uN&spin avee
2~En2EN!t. ~4!

We see from Eq.~4! that the time dependence is in th
exponential factore2(En2EN)t. To go back to the delta func
tion d(En2EN1n) in Eq. ~1!, one needs to carry out th
inverse Laplace transform@36,35#

Wmn~q2,n!5
V

i Ec2 i`

c1 i`

dtentW̃mn~qW 2,t!. ~5!

This is basically doing an anti-Wick rotation back
Minkowski space.

In the Euclidean path-integral formulation ofW̃mn(qW 2,t),
contributions to the four-point function can be classified
cording to different topologies of the quark paths betwe
the source and the sink of the proton. They represent dif
ent ways the fields in the currentsJm and Jn contract with
those in the nucleon interpolation operatorON . This is so
because the quark action and the electromagnetic current
both bilinear in quark fields, i.e., of the formC̄MC, so that
the quark number is conserved and as a result the quark
does not branch the way a gluon line does. Figures 1~a! and
-
n
r-

are

ne

1~b! represent connected insertions~CIs! of the currents. Fig-
ure 1~c!, on the other hand, represents a disconnected in
tion ~DI! where the quark fields fromJm andJn self-contract
and are hence disconnected from the quark paths betwee
proton source and sink. Here, ‘‘disconnected’’ refers only
the quark lines. Of course, quarks swim in the background
the gauge field and all quark paths are ultimately connec
through the gluon lines.

The infinitely many possible gluon lines and addition
quark loops are implicitly there in Fig. 1 but are not expli
itly drawn. Figure 1 represents the contributions of the cl
of ‘‘handbag’’ diagrams where the two currents are hook
on the same quark line. These include leading twist con
butions in deep inelastic scattering.

The other contractions involving the two currents hooki
onto different quark lines are represented in Fig. 2. Give
renormalization scale, these are higher-twist contribution

FIG. 1. Quark skeleton diagrams in Euclidean path-integral f
malism for evaluatingWmn from the four-point function defined in
Eq. ~3!. These include the lowest-twist contributions toWmn . ~a!
and ~b! are the connected insertions and~c! is the disconnected
insertion.
1-3
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K. F. LIU et al. PHYSICAL REVIEW D 59 112001
the Bjorken limit. Details of the operator product expansi
will be given elsewhere@37#. From now on, we will neglect
these ‘‘cat’s ears’’ diagrams in Fig. 2.

In the deep inelastic limit wherex2<O(1/Q2) ~we are
using the Minkowski notation here!, the leading light-cone
singularity of the current product~or commutator! gives rise
to a free quark propagator between the currents. In the ti
ordered diagrams in Fig. 1, Fig. 1~a! @Fig. 1~b!# involves
only a quark@antiquark# propagator between the current
whereas Fig. 1~c! has both quark and antiquark propagato
Hence, there are two distinct classes of diagrams where
antiquarks contribute. One comes from the DI; the ot
comes from the CI. It is frequently assumed that connec
insertions involve only ‘‘valence’’ quarks which are respo
sible for the baryon number. This is not true. To define
quark distribution functions more precisely, we shall call t
antiquark distribution from the DI~which is connected to the
‘‘valence’’ quark propagators and other quark loops throu
gluons! the ‘‘sea’’ quark. We shall refer to the antiquark
the backward-time-going quark propagator betweent1 andt2
in Fig. 1~b! as the ‘‘cloud’’ antiquark. On the other hand, th
quark in the time-forward propagator betweent2 and t1 in
Fig. 1~a! includes both the valence and the cloud quar
This is because a quark propagator fromt50 to t5t (t
.0) involves both time-forward and -backward zigzag m
tions so that one cannot tell if the quark propagator betw
t2 andt1 is due to the valence or the cloud. All one knows
that it is a quark propagator. In other words, one need
consider cloud quarks in addition to the valence to acco
for the production of cloud quark-antiquark pairs in a co
nected fashion@Fig. 1~a!#, whereas the pair production in
disconnected fashion is in Fig. 1~c!.

One important point to raise at this stage is that this se
ration into valence, anticloud, and sea is gauge invariant@i.e.,
in the path-integral formalism of Eq.~4!, no gauge fixing is
required# and topologically distinct as far as the quark sk
eton diagrams in Fig. 1 are concerned. However, the sep
tion depends on the frame of the nucleon. It is expected
the parton model acquires its natural interpretation in
large momentum frame of the nucleon, i.e.,p>q. Conse-
quently, in the large momentum frame, the parton density
the u andd antiquarks comes from two sources:

q̄~x!5q̄c~x!1q̄s~x!, ~6!

whereq̄c(x) is the cloud antiparton distribution from the C

FIG. 2. Quark skeleton diagrams similar to those in Fig. 1,
cept that the two current insertions are on different quark lin
These correspond to higher-twist contributions toWmn and are sup-
pressed by 1/Q2.
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in Fig. 1~b! andq̄s(x) denotes the sea antiparton distributio
from the DI in Fig. 1~c!. The strange and charm quark
would only contribute in the DI in Fig. 1~c!. Similarly, theu
andd quarks have two sources, i.e.,

q~x!5qV1c~x!1qs~x!, ~7!

whereqV1c(x), denoting the valence and cloud quarks, a
qs(x), denoting the sea quark, are from Fig. 1~a! and Fig.
1~c!, respectively. Upon definingqc(x)5q̄c(x) ~note that the
subscriptc denotes the cloud not charm!, the valence parton
distribution is obtained by

qV~x!5qV1c~x!2q̄c~x!, ~8!

and is responsible for the baryon number, i.e.,*uV(x)dx

5*@u(x)2ū(x)#dx52 and*dV(x)dx5*@d(x)2d̄(x)#51
for the proton.

It has been shown@35# that the sea partons in Fig. 1~c!
cannot give rise to a large Gottfried sum rule violation, i.
ūs(x)5d̄s(x), instead the origin ofū(x)Þd̄(x) comes pri-
marily from the cloud antipartons in Fig. 1~b!.

After the dynamical degrees of freedom are establishe
deep inelastic scattering~DIS!, we need to address their re
evance to the quark model. The quark model is designe
delineate hadron properties in the rest frame or at low en
gies, such as hadron masses, decay constants, form fa
electroweak transitions, etc. Unlike the hadronic ten
which entails the calculation of four-point functions as illu
trated in Eq. ~4!, these quantities involve two-point an
three-point functions. The question is, where do the dyna
cal degrees of freedom reside in the three-point functi
which describe the matrix elements of hadrons? To track
degrees of freedom, we can consider the operator pro
expansion as an illustration.

Since the momentum transferuqW u and energy transfern
are large in DIS, the product of currents in the forwa
Compton amplitudeTmn(q2,n) can be expanded as a seri
of local operators. The matrix elements of these local qu
bilinear operators are then related to the moments of
parton distribution. The details will be given elsewhere@37#.
We simply note that the effect of expanding in terms of 1/Q2

pinches the separation of the two currents~i.e., t1 and t2 in
Fig. 1! into one space-time point. Thus the topologically d
tinct contributions to the four-point functions extracted fro
Figs. 1~a!, 1~b!, and 1~c! are related to the matrix elemen
obtainable from the three-point functions in Figs. 3~a!, 3~b!,
and 3~c!, respectively. The latter represents matrix eleme
of the series of the local operators. Notice that for any sin
matrix element related to the quark bilinear operatorC̄GC,
i.e., ^NuC̄GCuN&, Fig. 3~c!, which inherits the sea degree o
freedom from Fig. 1~c!, is still distinct from Fig. 3~a! and
3~b! and continues to be a DI. On the other hand, Figs. 3~a!
and 3~b! are no longer topologically distinct. In fact, the
represent thesameCI for the local operator. Therefore, th
valence and cloud degrees of freedom from Figs. 1~a! and
1~b! are lumped together in the CI of three-point function

-
.

1-4
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VALENCE QCD: CONNECTING QCD TO THE QUARK MODEL PHYSICAL REVIEW D59 112001
They cannot be separated in a single matrix element in c
trast to the case for four-point functions.

What we have shown in this section is that for a flav
singlet currentC̄GC, the matrix element̂NuC̄GCuN& has
both the CI@Figs. 3~a! and 3~b! represent the same CI in th
case# and the DI@Fig. 3~c!#. While one can study the se
effect directly from the DI, one cannot separately study
valence and the cloud in theZ graphs since both are include
in the CI and Figs. 3~a! and 3~b! are topologically indistin-
guishable. Similarly one can trace the quark degrees of f
dom in decay constants and hadron masses which are ob
able from the two-point functions. The flavor-nonsing
hadrons are obtainable from the CI depicted in Fig. 4~a!. The
flavor-singlet meson, e.g.,h8, also involves the DI in Fig.
4~b!. The quark propagators in the two-point functions
Figs. 4~a! and 4~b! include the valence and cloud (Z graphs!
only; they do not involve the sea contribution. The sea
fects come only through the fermion determinant in this ca

III. VALENCE QCD

After having examined the roles of the quark dynami
degrees of freedom, we come back to the question of w
approximation to QCD the valence quark model represe
As illustrated in Fig. 3, the sea is only involved in the DI pa
of the three-point function and thus can be isolated. On
other hand, as stressed in Sec. II, the cloud and valence
tributions are lumped in the CI in Fig. 3@Figs. 3~a! and 3~b!
are the same for a single quark bilinear operatorC̄GC] and
cannot be separateda posteriori. Thus to single out the va
lence effects requires an approximation to QCD. This can
achieved by forcibly eliminating pair creation and annihi
tion by decoupling the quark from the antiquark. In oth
words, we want to eliminate allZ graphs such as the typica
one illustrated in Fig. 5. We introduce valence QC
~VQCD!, a theory which is designed to achieve this go

FIG. 3. Quark skeleton diagrams in the Euclidean path-inte
formalism considered in the evaluation of matrix elements for
sum of local operators from the operator product expansion
Jm(x)Jn(0). ~a!, ~b!, and ~c! corresponds to the operator produ
expansion from Figs. 1~a!, 1~b!, and 1~c!, respectively.

FIG. 4. ~a! The connected insertion for a meson propagator.~b!
The disconnected insertion part for the flavor-singlet meson pro
gator which involves the annihilation channel.
11200
n-

-

e

e-
in-

t

f-
e.

l
at
s.

e
n-

e

r

.

First of all, we shall introduce the particle fieldu and the
antiparticle fieldv in lieu of the Dirac fieldC in the valence
QCD Lagrangian

LVQCD52
1

4
FmnFmn2ūFg411

2
D41gW •DW 1mGu

2 v̄Fg421

2
D41gW •DW 1mGv. ~9!

Comparing with the QCD Lagrangian, the valence vers
has changed theg4 into (g411)/2 for the particle fieldu and
(g421)/2 for the antiparticle fieldv. We note that theu and
v fields do not couple. Now we want to prove that the prop
gator of theu field only propagates forward in time and do
not zigzag in the time direction to generate partic
antiparticle pairs. The propagatorSu(x,y;A) satisfies the
equation

2S g411

2
D41gW •DW 1mDSu~x,y;A!5d~x2y!. ~10!

This can be cast in an integral representation with the st
propagatorSu

0(x,y;A4) as the bare part of the solution@38#.
The static propagatorSu

0(x,y;A4) satisfies the following
equation with no propagation in the spatial direction:

2S g411

2
D41mDSu

0~x,y;A4!5d~x2y!. ~11!

It is easy to write down the formal solution fo
Su

0(x,y;A4):

Su
0~x,y;A4!52u~x42y4!e2m~x42y4!

11g4

2
PFx

yGd~xW2yW !

2
d~x42y4!

m
e2m~y42x4!

12g4

2
PFx

yGd~xW2yW !,

~12!

where

PFx

yG[P expS igE
y4

x4
dz4A4D

is the path-ordered parallel transport factor in the time dir
tion. We see that the usual antiparticle propagation in Q

al
e
f

a-

FIG. 5. A typicalZ graph as a diagram in time-ordered pertu
bation.
1-5
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which involves theu(y42x4) is now replaced byd(x4

2y4) in the second term. Thus,Su
0(x,y;A4) is the static par-

ticle propagator which moves forward in time only. Now th
full propagatorSu(x,y;A) can be represented in an integr
equation in terms ofSu

0(x,y;A4):

Su~x,y;A!5Su
0~x,y;A4!1E d4zSu

0~x,z;A4!gW •DW Su~z,y;A!.

~13!

The kernelgW •DW is responsible for hopping in the spati
direction. The full solution can be obtained by substituti
Su

0 for Su iteratively, leading to a hopping expansion serie

Su~x,y;A!5Su
0~x,y;A4!

1E
y4

x4
dz4E d3zSu

0~x,z;A4!gW •DW Su
0~z,y;A4!

1E
y4

x4
dz48E

y4

z48dz4E d3z8d3zSu
0~x,z8;A4!

3gW •DW Su
0~z8,z;A4!gW •DW Su

0~z,y;A4!1•••.

~14!

It is clear from this expansion that the time integration va
ablesz48 ,z4 , . . . are sequenced betweenx4 andy4 due tou
and d functions in Eq.~12!. A typical term in the series is
shown graphically in Fig. 6.

From this we see that there is no time-backward propa
tion in Su(x,y;A). Therefore, there is no pair creation
annihilation in the particle propagator, although it still prop
gates forward and backward in the spatial direction. Si
larly, one can show that the antiparticle propaga
Sv(x,y;A) contains only time-backward propagation.

Although there is no pair creation or annihilation
VQCD, there are still quark loops in the spatial directi
which could lead to nontrivial dynamical effects via the fe
mion determinant. Since we want to emulate the vale
quark model, the sea degree of freedom needs to be rem
also. By the same token, we will not include the fermi
determinant in the calculation. In other words, both qu
loops associated with the external currents and the inte
quark loops associated with the determinant are droppe
the present study.

FIG. 6. A term in the hopping expansion series in Eq.~14! is
graphically presented.
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A. Pauli spinor representation

In the process of replacing the fermion fieldC in QCD by
two Dirac spinorsu and v in VQCD, we seem to have
doubled the degrees of freedom. It turns out that half of
degrees of freedom inu and v are not dynamical and thu
can be integrated out. As a result, VQCD can be represe
by Pauli spinor fields. To prove this, we first look at th
particle part of the fermion action from the VQCD Lagran
ian in Eq. ~9! and write it in terms of the upper and lowe
components:

Su5E d4x~ ū1ū2!S D41m isW •DW

2 isW •DW m
D S u1

u2
D

5E d4xF ū1S D41m2
~sW •DW !2

m
D u1

1S ū21ū1

i ~sW •DW !

m
DmS u21

2 i ~sW •DW !

m
u1D G .

~15!

After changing the field variablesu1→x1, and u2

1@2 i (sW •DW )/m#u1→j1, the action becomes

Su5E d4xF x̄1S D41m2
~sW •DW !2

m
D x11 j̄1mj1G . ~16!

Since thej̄1mj1 part has no dynamics and is quadratic, it c
be integrated out, leaving the particle action represented
the Pauli spinorx1:

Su5E d4xx̄1S D41m2
DW 21sW •BW

m
D x1 . ~17!

Similarly, the antiparticle actionSv can also be written in
terms of the Pauli spinor:

Sv5E d4xx̄2S 2D41m2
DW 21sW •BW

m
D x2 . ~18!

We can redefine the Dirac spinor as

x5S x1

x2
D

and rewrite the VQCD Lagrangian as
1-6
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LVQCD52
1

4
FmnFmn2xS g4D41m2

DW 21sW •BW

m
D x

52
1

4
FmnFmn2~x1x2!S D41m2

DW 21sW •BW

m
0

0 2D41m2
DW 21sW •BW

m

D S x1

x2
D . ~19!
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It is clear from Eq.~19! that particle fieldx1 and antiparticle
field x2 decouple. This also proves thatLVQCD in Eq. ~9!
does not double the fermion degrees of freedom~DOF!. Af-
ter integrating out the nondynamical DOF it has exactly fo
propagating spinors as shown in Eq.~19!. It is worthwhile
remarking that the Pauli form ofLVQCD in Eq. ~19! re-
sembles that of the nonrelativistic QCD Lagrangian af
Foldy-Wouthuysen transformation. It has a single time
rivative like in the Schro¨dinger action and it contains th
(DW 21sW •BW )/m term, much like the nonrelativistic expansio
However, we should stress that the Pauli form of VQCD
not a nonrelativistic or other expansion. Its form is exa
Furthermore, it does not have spin-orbit, tensor, and Dar
terms as in nonrelativistic QCD.

B. Discrete symmetry

Let us explore the symmetries of VQCD and see if th
is any change from QCD. First we examine the discrete s
metries: parity, charge, and time reversal.

The gluon part of the VQCD is the same as in QCD a
there is no need to modify the transformation of the glu
field. For parity and time reversal, theu and v fields trans-
form the same way asC in QCD. Thus in VQCD

PS u~x!

v~x!
D P215g4S u~xP!

v~xP!
D , ~20!

TS u~x!

v~x!
DT215s2S u~xT!

v~xT!
D , ~21!

wherexP5(2xW ,x4), xT5(xW ,2x4). It is easy to show tha
the VQCD actionSVQCD5*d4xLVQCD is invariant under the
above parity and time reversal transformations.

As for the charge transformation, we need to take i
account the fact thatu and v are particle and antiparticle
fields which should be transformed into each other un
charge transformation. We find thatSVQCD is invariant under
the following charge transformation:

CS ua

va
DC215S ~g2!abvb

†

~g2!abub
† D . ~22!

Thus, with the appropriate definition, VQCD satisfies t
C, P, andT invariance.
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C. Continuous symmetry: U„2NF…

Next, we shall address the continuous symmetries. S
the Dirac structure of the time derivative is modified
VQCD, it is no longer Lorentz invariant, although it is sti
translational invariant. This should be acceptable for the p
pose of our study, i.e., hadron physics at low energy a
small momentum transfer. After all, the quark model is su
posed to be an effective theory of low energy and sm
momentum transfer, unlike the parton model which a
dresses different kinetic regimes.

As in QCD, VQCD has global vector and axial symm
tries. It is invariant under the U~1! transformation

u→eiau, v→eia8v. ~23!

This leads to the conserved vector currents

]mJm
u 50, ]mJm

v 50, ~24!

where the Noether currents associated with these ga
transformations are

Jm
u 5ūS ig i

i
g411

2
D u, Jm

v 5 v̄S ig i

i
g421

2
D v. ~25!

Therefore, the particle and antiparticle are separately c
served. This is in contrast to the conserved currentJm

5C̄ igmC in QCD where only the difference of the partic
and the antiparticle numbers or the valence number is c
served, i.e.,

NV5E d3xC̄g4C

5E d3p

~2p!3 (
s

@bs
†~pW !bs~pW !2ds

†~pW !ds~pW !#, ~26!

whereb†/d† andb/d are the creation and annihilation oper
tors of particles and antiparticles in QCD.

The axial symmetry of VQCD is realized in theg5 trans-
formation

u→eiug5v, v→eiu8g5u. ~27!
1-7
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The LagrangianLVQCD with m50 is invariant under this
transformation which transposes theu and v terms in the
Lagrangian. As a result, one has the conserved axial curr

Am5 i ūS g i

g411

2
D g5v, ~28!

Am
† 5 i v̄S g i

g421

2
D g5u. ~29!

We should point out that there is no Adler-Bell-Jack
anomaly@39# in VQCD. This is so because in VQCD there
no quark loop involving the time direction; hence there is
triangle diagram to generate the axial anomaly. WithmÞ0,
the axial Ward identities are

]mAm52mūig5v, ~30!

]mAm
† 52mv̄ ig5u. ~31!

It is useful to consider the particle fieldu and antiparticle
field v as two flavors and define

z5S u

v D ;

then the VQCD Lagrangian in Eq.~9! can be written as

LVQCD52
1

4
FmnFmn2 z̄Fg41t3

2
D41gW •DW 1mGz.

~32!

At the massless limit, VQCD is invariant under the transf
mation

z→eiaIz, z→eia8t3z, z→eiug5t1z, z→eiug5t2z,
~33!

where t ’s are the Pauli spinor in the two-componentu,v
space. The four operatorsI , t3 , g5t1, andg5t2 are the gen-
erators of the U~2! algebra. So massless VQCD has U~2!
vector and axial symmetries in the particle-antiparticle spa
For degenerate masslessNF flavors, it has U(2NF) symme-
try. This is in contrast to the SU(NF)L3SU(NF)R3UV(1)
chiral and UV(1) symmetry of QCD. In VQCD withNF

flavors, the chargesQ6
a 5*d3x@ ūg4(ta/2)u6ūg4g5(ta/

2)v# do not form a complete SU(NF)3SU(NF) algebra be-
cause the vector and axial currents contain different fie
This can also be seen from the states. For massless partiu
satisfies the Dirac equation

Fg411

2
D41gW •DW Gu50, ~34!

andg5v satisfies the same equation:
11200
nts

-

e.

s.
,

Fg411

2
D41gW •DW G~g5v !50. ~35!

Therefore,x65 1
2 (u6g5v) is a solution of the Dirac equa

tion in Eq.~34!, but it has different particle content; i.e., it i
a mixture of particles and antiparticles. As a result,x6 does
not have a definite handedness, it contains both heli
states. From this we conclude that massless VQCD does
have SU(NF)L3SU(NF)R chiral symmetry as in QCD. In-
stead, it has the vector-axial U(2NF) in the flavor and
particle-antiparticle space.

D. Zero-quark-mass limit

Even though we have explored the axial symmetry
VQCD in Sec. III C in the massless limit, there is a conce
that the the zero-quark-mass limit may be singular. This
be seen from the Dirac equation for a free quark. From
~34!,

S ]4 sW •]W

sW •]W 0
D S u1

u2
D 50. ~36!

This leads to two Laplace equations for the upper and lo
components of the particle fieldu:

¹2u150, ¹2u250. ~37!

There are no time derivatives in these constraint equat
and thus no dynamics@40#. Similarly, ones sees that thej
field in Eq. ~16! is ill defined for them50 case.

To address this problem, we consider the following a
proach. Let us consider the fermion part of the VQCD L
grangian with a small admixture of antiparticle part in t
particle action and vice versa,

LF52ūFg411

2
D41e

g421

2
D41m1gW •DW Gu

2 v̄Fg421

2
D41e

g411

2
D41m1gW •DW Gv, ~38!

and then let bothm ande go to zero.
Let us first consider the free quark case. In this case,

fermion Lagrangian is

L 8F52ūS ]41m sW •]W

sW •]W 2e]41m
D u

2 v̄S e]41m sW •]W

sW •]W 2]41m
D v. ~39!

This involves two time derivatives. The eigenvalues foru are
determined from

detS 2E1m isW •pW

isW •pW eE1m
D 50, ~40!
1-8
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which are, for smalle,

E5m1
pW 2

m
, ~41!

E52
m~12e!

e
2S m1

pW 2

m
D . ~42!

Note that in Eq.~41! the kinetic energy termpW 2/m is differ-
ent from pW 2/2m in the nonrelativistic case. Now if we lete
approach zero faster thanm, the second branch in Eq.~42!
will be decoupled from the physical spectrum. However,
the massless limit, a gap betweenE5p50 and E5` is
generated from Eq.~41!. This could pose a problem for pe
turbation treatment around this axially symmetric point.

However, the situation is modified when the quarks
interacting. In this case, the Dirac equation foru is

S D41m isW •DW

isW •DW 2eD41m
D S u1

u2
D 50. ~43!

One of the coupled equation from Eq.~43! is

S D4
22

m

e
~12e!D42

m2

e Du25
~DW 21sW •BW !u21 igsW •EW u1

e
.

~44!

If we let m and e approach zero at the same rate such t
m/e5l@lQCD , the right-hand side of Eq.~44! leads to a
constraint equation

~DW 21sW •BW !u21 igsW •EW u150, ~45!

and the left-hand side leads to two equations, both with
ear time dependence:

D4u250, ~46!

~D42l!u250. ~47!

Since l@lQCD , the solution from Eq.~47! is decoupled
from the physical system of the hadrons.

Therefore, the Dirac equation for the massless interac
quark with thee regulator leads to the following couple
equations:

D4u11 isW •DW u250, ~48!

D4u250, ~49!

with Eq. ~45! as a constraint. This should admit propagati
solutions. A similar situation exists forv. Thus, we can ap-
proach the interacting massless quark case with the hel
the infrarede regulator.
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IV. LATTICE VQCD

In order to solve VQCD, we devise a lattice version of t
theory. The lattice VQCD action is based on Wilson’s acti
in QCD and takes the form

SVQCD
L 5SG1SF

u1SF
v , ~50!

whereSG is Wilson’s gauge action and the quark actionSF
u

and the antiquark actionSF
v are

SF
u5(

x
H ū~x!u~x!2k@ ū~x1a4!~11g4!U4

†~x!u~x!

1u0ū~x!~12g4!u~x!#2k(
i

@ ū~x1ai !~1

1g i !Ui
†~x!u~x!1ū~x!~12g i !Ui~x!u~x1ai !#J ,

~51!

SF
v 5(

x
H v̄~x!v~x!2k@ v̄~x!~12g4!U4~x!v~x1a4!

1u0v̄~x!~11g4!v~x!#2k(
i

@ v̄~x1ai !~1

1g i !Ui
†~x!v~x!1 v̄~x!~12g i !Ui~x!v~x1ai !#J ,

~52!

with u0, the tadpole contribution of the gauge linkUm , taken
to be (Trh)1/4 @41#. This has VQCD in Eq.~9! as the clas-
sical continuum limit.

A. Reflection positivity and Hermiticity

Similar to the continuum case in Sec. III B, the lattic
VQCD action in Eq.~50! is invariant under the correspond
ing latticeC, P, andT transformations.

For Euclidean action, it is imperative that it satis
Osterwalder-Schrader reflection positivity@42# in order to
allow the Euclidean correlations to be continued back to
Minkowski space. We shall follow the derivation for th
Wilson action@43#. To prove reflection positivity, one need
to show

^~QF !F&>0, ~53!

whereF is a function of the fieldsū, u, v̄, v, andU on the
positive time part of the lattice andQ is the time reflection
operator. We shall consider the ‘‘link-reflection’’ case whe
the time reflection is with respect to thet5(0→1) link. In
this case,Q is defined by the transformation

Qux,t5ūx,12tg4 , Qūx,t5g4ux,12t , ~54!

Qvx,t5 v̄x,12tg4 , Q v̄x,t5g4vx,12t , ~55!
1-9
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QU~x,tx ;y,ty!5U†~x,12tx ;y,12ty!. ~56!

We shall prove the reflection positivity for theu part of the
action. The proof can be extended similarly to include thev
field. Denoting the field variables in the half-space with po
tive time t>1 by u1,ū1,U1, and in the other half-spac
with t<0 by u2,ū2,U2, theu part of the VQCD action can
be separated into three parts:

SVQCD5S1@ ū1,u1,U1#1S2@ ū2,u2,U2#1Sc@ ū1,u2#,
~57!

where

Sc@ ū1,u2#52k(
xW

@ ūxW ,1
1

~11g4!uxW ,0
2

# ~58!

is the action which connectsS1 and S2 and involves links
betweent50 and t51. Here we have used the tempor
gauge. Because of the fact that

QS1@ ū1,u1,U1#5S1
† @Qū1,Qu1,QU1#

5S2@ ū2,u2,U2#, ~59!

the integral in Eq.~53! is then

^~QF !F&5Z21E dUdū1du1

3e2S1[ ū1,u1,U1]F@ ū1,u1,U1#

3E d~Qū1!d~Qu1!

3e2S1
† [Qū1,Qu1,QU1]F†@Qū1,Qu1,QU1#

3expS 2k(
xW

ūxW ,1
1

~g411!~QūxW ,1
1

!D . ~60!

Consider the Taylor expansion of the last exponentia
Eq. ~60!:

12k(
xW

ūxW ,1
1

~g411!~QūxW ,1
1

!1•••. ~61!

The only terms that survive the Grassmann integration
the first two terms and, with a diagonal representation ofg4,
they give semipositive definite contributions to^(QF)F&.
Extension to include thev field is straightforward and thu
the reflection positivity for the VQCD action is proved.

In constructing meson propagators, the usual practice
first invert the quark matrix to obtain the quark propaga
from the source to all lattice points, i.e.,M 21(x,0). Then the
antiquark propagator which goes backward in time is
tained through the Hermiticity relation

M 21†~0,x!5g5M 21~x,0!g5 , ~62!
11200
-

l

n

re

to
r

-

where † indicates the Hermitian conjugation in the color a
Dirac indices. In VQCD, a similar situation exists. In co
structing a qq̄ meson, one needs the quark propaga
Mu

21(x,0) and the antiquark propagatorM v
21(0,x). It turns

out that the Hermiticity relation

M v
21†~0,x!5g5Mu

21~x,0!g5 ~63!

still exists, so that one can obtain the antiquark propaga
from the quark to construct a meson propagator as befo

B. Free quark propagator

It is useful to understand the free quark spectrum and
residue at the pole for the lattice VQCD and see how diff
ent they are from the Wilson and the continuum ones. T
inverse of the free quark propagator of VQCD in momentu
space is

SF
u 21~p!512k~12g4!2k~11g4!e2 ip4a

2k(
i

@~11g i !e
2 ipia1~12g i !e

ipia#,

~64!

wherea is the lattice spacing. We can compute the propa
tor in discrete timet5nta:

SF
u~ t,pW !5E

2p

p dp4

2p
SF

u~p!eip4t. ~65!

For nt.0 andpW in the three-direction,

SF
u~ t,p3!5

e2Et

B
@A2keEa1k~eEa21!g4

22ikg3sin~p3a!#, ~66!

where

A5125k22k cos~p3a!, ~67!

B5A22k214k2sin2~p3a!,

Ea5 lnS B

2Ak22k2D ,

andE is the energy. For smallp3a, i.e., p3a!1,

Ea5m̄a1
ma12

2ma~ma11!
~p3a!2, ~68!

where

m̄a5 lnS 126k

2k D ~69!

is the free quark mass which is the same as in the Wil
case andma51/2k24 is the small mass approximation fo
m̄a.
1-10
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FIG. 7. The dispersion relations between Ea andp3a for a free quark are compared between the Wilson~solid lines! and the lattice
VQCD ~dashed lines! version forma50.05, 0.1, 0.5, and 1.0.
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We plot in Fig. 7, the dispersion relation ofEa vs p3a for
a range ofma (ma50.05, 0.1, 0.5, and 1.0! for both the
valence~dashed lines! and the Wilson case~solid lines!. We
see that for heavy quarks, i.e.,ma50.5 and 1, the two curve
at the top are close to each other. But they differ at sm
mass and low momentum. At smallp3a, the behavior of Eq.
~68! holds for the valence case. Atma5m̄a50, there is a
singularity at Ea5p3a50. For any finitep3a, Ea5 ln 3
which resembles the infinite gap in the free massless qu
situation in the continuum@see Eq.~41!#.

Finally, we see that at zero momentum the static pro
gator is

S~ t.0,pW 50!5
1

126k
e2m̄t

11g4

2
. ~70!

This is the same as in the Wilson case and the wave func
normalization factor 1/(126k) is also the same. To conve
lattice matrix elements of local currents with bilinear qua
fields, e.g.,C̄(x)GC(x), to the continuum ones, besides t
finite lattice renormalization one needs to multiply the fac
(126ku0)/2k5u0emqa to take into account the finite mas
normalization due to the Wilson quark action with tadpo
improvement@41,45#. Hereu051/8kc wherekc is the criti-
cal k at which point the pion mass is zero andmqa
5 ln(1/2ku023) is the tadpole-improved definition of th
bare quark mass in Eq.~69!.

C. Lattice details

We use the same gauge configurations which have b
used for the study of hadron masses, matrix elements,
form factors @45,46,20,21,47# in the quenched approxima
tion. This way we keep the scale of the lattice spacing
changed. These quenched gauge configurations were g
ated on a 163324 lattice atb56.0. The gauge field wa
thermalized for 5000 pseudo-heat-bath sweeps from a
start and 100 configurations separated by at least 1
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sweeps were used. Periodic boundary conditions were
posed on the quark fields in the spatial directions. In the ti
direction, fixed boundary conditions were imposed on
quarks to provide larger time separations than available w
periodic boundary conditions. All quark propagators in t
quenched approximation were chosen to originate from
tice time slice 5; the secondary nucleon source was fixe
time slice 20~except fork50.154 where the quark propaga
tors from time slice 3 to 22 were used!. In the case of
VQCD, all quark propagators originate from time slice 2 a
terminate at time slice 22 for the three-point function calc
lation. We also averaged over the directions of equival
lattice momenta in each configuration; this reduces e
bars.

We have verified that the time separation is sufficient
that there is a plateau for the quark bilinear current insert
at time slicest1 after the nucleon ground state is achieve
The quenched approximation part is done for the light
quarks withk50.154, 0.152, 0.148, and 0.140, andqW 2a2

up to 4(2p/L)2. The nucleon massesMNa for k
50.154, 0.152, and 0.148 are 0.731~11!, 0.883~9!, and
1.153~7!, respectively. The corresponding pion massesmpa
are 0.375~4!, 0.487~3!, and 0.679~3!. Extrapolating the
nucleon and pion masses to the chiral limit where we de
mine kc50.15672(4) and the nucleon mass at the ch
limit to be 0.536~13!. Using the nucleon mass to set the sca
which we believe to be appropriate for studying nucle
properties@45,46,20#, the lattice spacinga2151.75(2) GeV
is determined. The threek ’s then correspond to quar
masses of about 120, 205, and 370 MeV, respectively.

Since we use the same gauge configurations for VQC
the lattice spacing is the same as that in the quenched
proximation. This is certainly obvious if we choose the stri
tension or the glueball mass to set the scale. Using the ph
cal nucleon mass to set the scale in the quenched app
mation opens up the question as to what extent the ferm
determinant effects are implicitly included. It is shown@48#
that the quenched approximation can be viewed as includ
1-11



m
th

m
b
t
y

os
al

o
te
le

-
ba
t

tio

a
ot
or
d-
io
he

ill
io
d

a

-

al

ted
not
al-
r

tion.

the

-
the
cay
.

o-

K. F. LIU et al. PHYSICAL REVIEW D 59 112001
leading terms in the loop expansion of the fermion deter
nant which are commensurate with the size of loops in
gauge action. This leads to a shift inb or the coupling con-
stant. However, when the infinite volume and continuu
limits are taken@49#, the scales set by hadron masses and
the string tension are consistent. Since we are not at
infinite volume and continuum limits, the scales differ b
;20%. Nevertheless, whatever scale we decide to cho
the lattice spacing is the same in the following VQCD c
culations as in our quenched QCD results.

The determination ofkc which corresponds to the zer
quark mass will be discussed in the next section. To de
mine the finite quark mass, we shall use the tadpo
improved form of the lattice free quark mass in Eq.~69!, i.e.,

mqa5 lnS 1

2ku0
23D5 lnS 4kc

k
23D , ~71!

where we have usedu051/8kc .

D. Pion decay constant, pion mass, andkc

The pion decay constantf p plays an essential role in low
energy chiral dynamics. It sets the scale for chiral pertur
tion theory and relates the Goldstone boson mass to
quark mass through the Gell-Mann–Oakes-Renner rela
@44#

f p
2 mp

2 52~mu1md!^q̄q&, ~72!

where^q̄q& is the quark condensate, which is the order p
rameter for chiral symmetry breaking. In VQCD, it is n
clear if there is a corresponding relation or, more imp
tantly, if the U(2Nf) symmetry is broken to generate Gol
stone bosons. We can, however, look for clues from the p
decay matrix element with the axial current. In QCD, t
pion decay constant is defined by

^0uAm~x!up~p!&5 i f ppmeip•x. ~73!

Applying the axial identity from Eq.~31! to the zero-
momentum pion state, we obtain, in VQCD,

^0u]4A4
†~x!up~0!&5mp

2 f p~mp!e2mpt

52m^0uv̄ ig5uup~0!&e2mpt, ~74!

wherem is the quark mass. From this, we find

mp
2 f p~mp!

^0uv̄ ig5uup~0!&
52m. ~75!

It is clear from Eq. ~75! that as long as the ratio
f p(mp)/^0uv̄ ig5uup(0)& does not diverge as fast as 1/mp

2

when the quark mass approaches zero, the pion mass w
to zero in the massless quark limit. Furthermore, if the p
decay constantf p is not zero in the massless limit, it woul
signal spontaneous axial symmetry breaking with the pion
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the Goldstone boson. The quantitiesf p ,mp and the current
quark massm are calculated by fitting the following two
point functions to

K(
xW

F i v̄g421
2

g5u~xW ,t ! GP~0,0!L ——→
t @ a

f pmpZp

2mp
e2mpt,

~76!

K(
xW

F i ] tv̄
g421

2
g5u~xW ,t ! GP~0,0!L ——→

t @ a

2mZp
2

2mp
e2mpt,

~77!

K(
xW

P~xW ,t !P~0,0! L ——→
t @ a

Zp
2

2mp
e2mpt.

~78!

Here P is the pseudoscalar interpolation fieldūig5v and
Zp5^puPu0& is the wave function overlap. We use the loc
current for the axial current in Eq.~76! for the lattice calcu-
lation. There are finite lattice renormalizations associa
with the operators in these matrix elements. We have
calculated them, but we expect the multiplicative renorm
ization constantsZA and ZP for the axial and pseudoscala
operators to be of order 1, as in the quenched approxima
Our results presented below are subject to this caveat.

With Wilson-type fermions, one needs to find outkc cor-
responding to zero quark mass. To determinekc , we plot the
dimensionless pion mass, the current quark mass, and
pion decay constant in Fig. 8 as a function ofmqa
5ln(4kc /k23) wherekc is to be determined from the ex
trapolation. The pion mass is very linear in the range of
quark mass considered. At the same time, the pion de
constantf p behaves like 1/mp in this range. Since from Eq
~76! and Eq.~77!

f p~mp!mp
2 52mZp , ~79!

FIG. 8. The dimensionless pion massmpa, the current quark
massma, and the pion decay constantf pa are shown as a function
of mqa5 ln(4kc /k23). The solid lines represent the linear extrap
lation with respect tomqa.
1-12
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if the linear behavior betweenmp andm persists all the way
down to zero quark mass andZp remains constant, thenf p

will diverge like 1/mp or 1/m. Alternatively, at smaller quark
mass than we calculated here,f p could conceivably become
constant and in this casemp would fall off like Am as in
QCD with a constantZp . Unfortunately, using conjugat
gradient to invert the quark matrix, we have encounte
critical slowing down. The smallest quark mass we run
k50.162 already takes 5000 iterations to converge. It is
practical for us to go down any further. Short of theoretic
guidance and numerical evidence, we extrapolate the p
mass to zero both linearly and quadratically with respec
mqa5 ln(4kc /k23) with k50.162, 0.1615, 0.1610, 0.1590
0.1585, 0.1580, 0.1575, 0.1570, 0.1565, 0.1560, 0.1
0.154, 0.152, and 0.148. We found thatkc50.1649(10)
(x250.002 with 14 data points! for the linear dependenc
and kc50.1636(19) (x250.04 from the three largestk ’s!
for the quadratic dependence. We plot in Fig. 9 the quadr
fit of mp as a function ofmqa with kc determined from the
linear mp fit. We see that thekc point from the quadratic fit
crosses the abscissa atmqa50.031; however, its error ba
overlaps with that from the linearmp fit. Also plotted in
Figs. 8 and 9 is the current quark massma from Eq. ~77! as
a function of mqa. Extrapolating the quark mass linear
with respect tomqa, we obtain kc50.1642(9) (x253.5
from the first eightk ’s!. The covariance matrix has not bee
used in these extrapolations. We see that the current q
massma from Eqs. ~75! and ~77! crosses the abscissa
mqa50.017. This is consistent with that extrapolated fro
the pion mass, either linearly or quadratically. Thekc so
obtained overlaps with both of the above twokc’s within
errors. It is gratifying to know that different definitions ofkc
agree. On the other hand, it does not differentiate the
scenarios of the pion mass dependence on the quark m
We shall use the linear extrapolation withkc50.1649(10) to
define zero quark mass in this study. Also plotted in Fig. 9

FIG. 9. The dimensionless pion massmpa, f pmp
2 a3, and cur-

rent quark massma are shown as a function ofmqa5 ln(4kc /k
23) with kc determined from the linearly fit ofmp with respect to
mqa.
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f pmp
2 a3. We see that it is quite linear in the range of qua

mass that we have considered. This confirms thatf pmp
2

}mq or equivalently Eq.~79!, since we have just shown in
Fig. 9 thatmqa andma are linearly related. We should stres
that we still do not know the behavior of the pion mass a
pion decay constant when the quark mass is small. Bu
least we can say thatf p is nonzero~divergent or not! andmp

approaches zero at the massless quark limit. This we tak
be the evidence that there is a spontaneous axial symm
breaking with the two pionsūig5v and v̄ ig5u as the Gold-
stone bosons for each flavor.

In VQCD, there are two quark condensates^ūu& and

^v̄v& which are expected to be smaller thanu^C̄C&u in QCD
but nonzero due to the quark loops in the spatial directi
To the extent that they serve as the order parameter of a
symmetry breaking as suggested by the existence of
Goldstone bosons and nonvanishingf p , the symmetry
breaking seems to be weaker than in QCD. It is shown i
Schwinger-Dyson equation study@50# recently that the pseu
doscalar meson mass grows either linearly or as the sq
root of the quark mass depending on whether it is large
small compared to a scale set by the quark condensate.
linear dependence we see between the pion mass and
quark mass in Fig. 8 may mean that the quark masses we
calculating are still larger than the scale set by the qu
condensatêūu& and ^v̄v& and the quadratic pion mass d
pendence of the quark mass may yet to set in at sma
quark masses. Either way, the nonzero^ūu& and ^v̄v& sup-
ports the spontaneous axial symmetry breaking scenario
two Goldstone pions.

V. SU„6… RELATIONS IN HADRON STRUCTURE

We shall examine the ratios of flavor-singlet couplin
constants to the isovector ones for the axial and scalar
rents and the neutron to proton magnetic moment ra
mn/mp and compare them to those in QCD. In VQCD, t
sea quark contributions@e.g., Fig. 3~c!# are scrapped. In ad
dition, the cloud quarks associated withZ graphs in the con-
nected insertions@Figs. 3~a! and 3~b!# are excluded. As a
result, we shall see that approximate SU~6! relations emerge
from these ratios.

A. Axial-vector couplings, RA , and F A /DA

The polarized DIS experiments@51–53# found a surpris-
ingly small flavor-singlet axial coupling constantgA

0

@0.27~10! @52# and 0.28~16! @53##. Being the quark spin con
tent of the nucleon, i.e.,gA

05Du1Dd1Ds, this is much
smaller than the expected value of unity from the nonrela
istic quark model or 0.75 from the SU~6! relation~i.e., 3/5 of
the isovector couplinggA

351.2574). This has attracted a lo
of theoretical attention@54# and the ensuing confusion wa
dubbed the ‘‘proton spin crisis.’’

Direct lattice calculations ofgA
0 from the forward matrix

element of the flavor-singlet axial current have been carr
out and the smallness ofgA

0 is understood@20,55#. As ex-
plained in Sec. II,gA

0 is composed of two components, i.e
1-13
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gA
05gA

0(CI)1gA
0(DI) where gA

0(CI) is obtained from the
connected insertion in Fig. 10~a! and gA

0(DI) is obtained
from the disconnected insertion in Fig. 10~b!. Lattice calcu-
lation @20# indicates that each of theu, d, and s flavors
contributes20.1260.01 to the DI@Fig. 10~b!#. This nega-
tive vacuum polarization from the sea quarks is largely
sponsible for bringing the value ofgA

0 from gA
0(CI)

50.62(9) to 0.2560.12, in agreement with the experiment
value ~see Table I!. This is an example where the sea co
tributes substantially and leads to a large breaking in
SU~6! relation. Thus, it is understandable that it should co
as an unexpected result from the valence quark model —
latter does not have the sea degree of freedom and has
ply ignored it by assuming the OZI rule.

The role of the sea is clear. How about the role of t
cloud then? Since its contribution to the CI of three-po
functions is entangled with the valence, we cannot separa
out as is done for the sea. To see its effect indirectly,
consider the ratio

RA5
gA

0

gA
3

5
Du1Dd1Ds

Du2Dd

5
~Du1Dd!~CI!1~Du1Dd1Ds!~DI!

Du2Dd
~80!

as a function of the quark mass. Our results which co
spond to strange and twice the charm masses are plotte

FIG. 10. Quark line diagrams of the three-point function in t
Euclidean path integral formalism for evaluatinggA

0 from the
flavor-singlet axial-vector current.~a! is the connected insertion
which contains the valence and cloud degrees of freedom and~b! is
the disconnected insertion which contains the sea quark.
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Fig. 11 as a function of the quark massmqa5 ln(4kc /k23).
The dotted line is the valence quark model prediction of
for both the nonrelativistic and relativistic cases. For hea
quarks~i.e.,k>0.133 orma>0.4 in Fig. 11!, we see that the
ratio RA is 3/5 irrespective of whether the DI is include
~shown asd in Fig. 11! or not ~CI alone is indicated ass).
This is to be expected because the cloud~sea! quarks which
are pair produced via theZ graphs~loops! are suppressed fo
nonrelativistic quarks byO(p/mq) or O(v/c). As for light
quarks, the full result~CI1DI! is much smaller than 3/5
largely due to the negatively polarized sea contribution in
DI ~Table I lists the results at the chiral limit.! Even for the
CI alone,RA still dips under 3/5. As we shall see later this
caused by the cloud quarks.

Now, we turn to the VQCD case. The same 100 gau
configurations used for quenched QCD calculation are u
for the VQCD case. Since in VQCD there is only CIs@Fig.
10~a!#, theRA ratio in Eq.~80! becomes

RA5
gA

0

gA
3 ~CI!5

~Du1Dd!~CI!

~Du2Dd!~CI!
. ~81!

FIG. 11. The ratiosRA between flavor-singlet and isovectorgA

in VQCD and QCD are plotted against the dimensionless qu
massmqa from the strange to the charm region.n indicates the
VQCD case,s/d indicates CI/sea1CI in the QCD case. The
dashed line is the SU~6! prediction of 3/5.
ents,
TABLE I. Axial coupling constants and quark spin contents of proton in comparison with experim
the nonrelativistic quark model~NRQM!, and the relativistic quark model~RQM!.

CI CI 1 DI Experiments NRQM RQM

gA
05Du1Dd1Ds 0.62~9! 0.25~12! 0.28~16! @53#, 0.27~10! @52# 1 0.754

gA
35Du2Dd 1.20~10! @45# 1.20~10! 1.2573~28! 5/3 1.257

gA
85Du1Dd22Ds 0.62~9! 0.61~13! 0.579~25! @56# 1 0.754

Du 0.91~10! 0.79~11! 0.82~5! @53#, 0.82~6! @52# 4/3 1.01
Dd 20.29~10! 20.42~11! 20.44~5! @53#, 0.44~6! @52# 21/3 20.251
Ds 20.12~1! 20.10~5! @53#, 20.10~4! @52# 0 0
FA5(Du2Ds)/2 0.45~6! 0.45~6! 0.459~8! @56# 2/3 0.503
DA5(Du22Dd1Ds)/2 0.75~11! 0.75~11! 0.798~8! @56# 1 0.754
FA /DA 0.60~2! 0.60~2! 0.575~16! @56# 2/3 2/3
1-14
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TABLE II. Scalar contentsspN , FS , and DS in comparison with phenomenology and quark mod
~QM!. The 17.7 MeV in the last column is determined with the quark mass from the lattice calculatio

CI CI 1 DI Phenomenology QM

^puūu1d̄dup& 3.02~9! 8.43~24! <3

^puūu2d̄dup& 0.63~9! <1

^Nus̄suN& 1.53~7! 0

FS 0.91~13! 1.51~12! 1.52 @61,62#—1.81 @63# <1
DS 20.28~10! 20.88~28! 20.52 @61,62#—20.57 @63# 0
spN 17.8~5! MeV 49.7~2.6! MeV 45 MeV @58# <17.7 MeV
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The results are plotted in Fig. 11 as a function of the dim
sionless quark massmqa ~with k50.162, 0.1615, 0.1610
0.1590, and 0.1585! in comparison with the QCD case. W
see that, even for light quarks in the strange region (mqa
;0.07), it is much closer to the valence prediction of 3/5,
contrast to the QCD calculation with CI alone. This sho
that VQCD indeed seems to confirm our expectation of
valence quarks behavior, i.e., obeying the SU~6! relation.
The deviation from the exact 3/5 prediction in Fig. 11 r
flects the fact that there is still a spin-spin interaction b
tween the valence quarks as evidenced in thesW •BW term in
the VQCD action with Pauli spinors in Eq.~17!. Its effect,
however, appears to be small. This also confirms our ea
assertion that the deviation of the CI ofRA in QCD (s in
Fig. 11! is largely due to the the cloud quark-antiquark pai

With only the CI, theFA /DA ratio is related to VQCDRA
in Eq. ~81!:

FA

DA
~CI!5

11RA

32RA
. ~82!

From RA50.566(11) for the smallest quark mass (k
50.162), we obtainFA /DA50.643(4). Thefact that this is
only slightly larger than the QCD prediction of 0.60(2) fo
the CI ~see Table I! has to do with the fact that the se
contribution is essentially independent of flavor in our calc
lation, i.e.,Dus5Dds5Ds @20#. As a result,FA , DA , and
the FA /DA ratio are identical with or without the sea quar
from the DI~see Table I! and they do not reflect the large se
effect due to the individual flavor.

B. Scalar matrix elements,RS , and DS /F S

A similar situation exists for the scalar current matrix e
ements. It has been suggested that the well-knownpNs

term @spN5m̂^Nuūu1d̄duN& with m̂5(mu1md)/2] puzzle
@57,58# can be resolved because of the large OZI violat
contribution from the sea with a larges̄s content in the
nucleon @57,59# such that y52^Nus̄suN&/^Nuūu1d̄duN&
;0.220.3. This has been verified in lattice calculatio
@60,21# which show that the DI is;1.8 times of the CI~see
Table II! @21# and they ratio as large as 0.3660.03 @21#.

Unlike the case of the axial current matrix element, d
ferent flavors contribute differently to the DI of the scal
matrix element —s contributes less thanu and d. As a
result, the SU~3! antisymmetric and symmetric paramete
11200
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-
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er
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-

g

-

FS5(^puūuup&2^Nus̄suN&)/2, DS5(^puūuup&22^pud̄dup&
1^Nus̄suN&)/2 are strongly affected by the large DI part. W
see from Table II that bothDS and FS compare favorably
with the phenomenological values obtained from the SU~3!
breaking pattern of the octet baryon masses with either lin
@61,62# or quadratic mass relations@63#. This agreement is
significantly improved from the valence quark model whi
predictsFS,1 and DS50 and also those of the CI alon
@61,62#. The latter yields FS50.91(13) and DS
520.28(10) which are only half of the phenomenologic
values@61–63#. This again underscores the importance of t
sea quark contributions.

Next, we address the effect of the cloud quarks in the
Similar to the ratioRA in the axial-vector case, we plot th
ratio

RS5
gS

I 50

gS
I 51

5
^puūu1d̄dup&

^puūu2d̄dup&

5
~^puūu1d̄dup&!~CI!1~^puūu1d̄dup&!~DI!

^puūu2d̄dup&
~83!

as a function of the quark mass in Fig. 12.
The dotted line is the valence quark model prediction o

for both the nonrelativistic and relativistic cases. Again f
heavy quarks~i.e., k>0.133 orma>0.4 in Fig. 12!, we see
that the ratioRS is 3 irrespective whether the DI is include
~shown asd in Fig. 12! or not ~CI alone is indicated ass).
As for light quarks, the full result~CI1DI! is much larger
than 3 largely due to the large sea contribution in the
~Table II lists the results at the chiral limit!. Even for the CI
alone,RS still overshoots 3. As we shall see, this is aga
caused by the cloud quarks. For VQCD, theRS ratio be-
comes

RS5
~^puūu1d̄dup&!~CI!

~^puūu2d̄dup&!~CI!
. ~84!

We see in Fig. 12 that the ratios~denoted byL) for the light
quarks are approaching the valence quark prediction o
This again confirms that the deviation of the CI result
QCD is primarily due toZ graphs with cloud quarks an
antiquarks. When they are eliminated in VQCD,RS becomes
close to the SU~6! relation.

The DS /FS ratio in VQCD is
1-15
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DS /FS~CI!5
32RS

11RS
. ~85!

From RS53.086(19) for the smallest quark mass (k
50.162), we obtainDS /FS520.021(4) which is close to
zero as in the valence quark picture~Table II! and differs
from the lattice QCD calculation of20.58(18) ~sea1CI!
and20.31(11) ~CI! ~see Table II! by a large margin.

C. Neutron to proton magnetic moment ratio

After having established the importance of the sea
cloud effects in the axial and scalar matrix elements, o
would naturally ask what happens to the vector current m
trix elements, especially the neutron to proton magnetic m
ment ratiomn /mp . How much will the sea and cloud affec
the ratio and in what way? After all, themn /mp ratio was
well predicted by the valence picture — a celebrated defining
success of the SU~6! symmetry.

It has been known for some time that a nontrivial s
quark contribution to baryon magnetic moments is essen
to reproducing the experimental moments@64–66#. It turns
out that the individual sea contribution of each flavor is n
small @66,47#. Although the central value of our lattice resu
@GM

s (0)520.3660.20 @47## differs in sign from that of the
SAMPLE experiment which hasGM

s (Q250.1 GeV2)
510.2360.3760.1560.19 from the elastic parity violating
electron scattering@67#, they are consistent within errors
The u and d contributions are;80% larger,GM

u,d(0)(DI)
520.6560.30. However, their net contribution to the pr
ton and neutron magnetic moments,

m~DI!5@2/3GM
u ~0!~DI!21/3GM

d ~0!~DI!21/3GM
s ~0!#mN

520.09760.037mN , ~86!

becomes smaller due the cancellation of the quark charge
u, d, ands.

FIG. 12. The ratiosRS between isoscalar and isovector sca
charge in QCD@Eq. ~83!# and VQCD@Eq. ~84!# are plotted agains
the dimensionless quark massmqa from the strange to the charm
region.s/d indicates CI/sea1CI in the QCD case andL indicates
the VQCD case. The dashed line is the valence quark model
diction of 3.
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As illustrated in Fig. 13, where the neutron to proton ma
netic moment ratio is plotted against the quark mass,
small SU~6! breaking sea quark effect is further nullified b
the cloud effect@47#. As a result, themn /mp ratio for the
combined CI and DI comes to20.6860.04 at the chiral
limit. This is quite consistent with the experimental value
0.685. Barring any as yet unknown symmetry principle, t
cancellation between the cloud and sea contributions is p
ably accidental and in stark contrast to thepNs term and
flavor-singletgA

0 where the cloud and sea effects add up
enhance the SU~6! breaking.

Also shown in Fig. 13 are results of VQCD~indicated as
n) which are very close to the SU~6! value of 22/3 @the
result for the smallest quark mass case is20.662(22)], in-
directly verifying the cloud effects of QCD (s for the CI in
Fig. 13! which shows a 2.5s departure from22/3 at the
chiral limit. If there is any deviation of the VQCD from
22/3, it should be due to the residual spin-spin interact
between the quarks in the baryon. Given the size of the e
in our present results, we cannot make a definite conclus
on this aspect.

VI. FORM FACTORS

In all the ratios we considered in the preceding secti
i.e., RA , RS , and mn /mp , the SU~6! breaking due to the
cloud in theZ graphs is at the level of 10 – 20 % which
relatively small compared with, say, the sea quark effec
RS . However, its effect is large in the nucleon form facto
and has been a subject of wide interest.

A. Meson dominance

The dipole form of the nucleon electromagnetic and ax
form factors is interpreted as the product of two monopol
For example, the isovector part of the nucleon Dirac fo
factor can be written as@68#

r

e-

FIG. 13. The neutron to proton magnetic moment ratiomn /mp is
plotted against the dimensionless quark mass.s indicates the CI
result only andd shows the full result with both CI and DI.n
indicates the ratio in the VQCD case. The solid line is the vale
quark model prediction of22/3 and the dashed line is the expe
mental result of20.685.
1-16
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F1
V~q2!5

1

2
@F1

p~q2!2F1
n~q2!#5

1

2

1

12q2/mr
2

grNN~q2!

f r

~87!

to reflect that the dominating process is the photon coup
to the r meson which in turn couples to the nucleon
shown in Fig. 14.

One monopole inF1
V(q2) is ther meson propagator, an

the other one isgrNN(q2)5 f r(L22mr
2)/(L22q2) to param-

etrize therNN vertex ~see Fig. 14!. By the same token, the
isovector axial form factor with axial meson dominan
takes the form@69#

gA
3~q2!5

gA
3~0!

12q2/ma1

2
ga1NN~q2!, ~88!

where ga1NN(q2) is the a1NN vertex and can be param
etrized with a monopole form. The isovector pseudosca
form factor should reflect the pion pole for smallq2 and has
the form

gP
3 ~q2!5

gP
3 ~0!

12q2/mp
2

gpNN~q2!

gpNN~0!
, ~89!

wheregpNN(q2) is the pNN form factor. Thus one of the
major differences of the various form factors of the nucle
is reflected in the mass of the meson which dominates
matrix element in thet channel for the specific current. W
plot in the following the isovector axial form factorgA

3(q2),
the proton electric form factorGE

p(q2), the strangeness scala
form factorgS

s(q2) @21#, and the isovector pseudoscalar for
factorgP

3 (q2) @20# in Fig. 15. We should mention in passin
that both GE

p(q2) and gA
3(q2) shown in Fig. 15 from the

lattice calculations@45,47# agree with the experiments withi
;6%.

We see that, sincegA
3(q2) andgP

3 (q2) involve only the CI
andGE

p(q2) is dominated by the CI@47#, their different be-
haviors in q2 reflect ther, a1, and p propagators in the
cloud which serve as the intermediate states in the me
dominance picture as depicted in Fig. 16.

If one assumes thatgrNN(q2), ga1NN(q2), andgpNN(q2)

have a similar form inq2, then the fact thatgP
3 (q2) falls off

faster thanGE
p(q2) which in turn falls off faster thangA

3(q2)

FIG. 14. The schematic diagram which depicts the photon c
pling to the nucleon going through ther meson in a vector domi-
nance picture.
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is to be expected, since experimentallyma1
51230 MeV

.mr5769 MeV.mp5140 MeV. This is clearly a mani-
festation of the cloud quark effect through the meson clo
We can attempt to define the meson-nucleon vertex by di
ing the form factors in Eqs.~87!, ~88!, and ~89! by their
respective meson propagators. These are plotted in Fig
We see that the resultinggrNN(q2), ga1NN(q2), and

gpNN(q2) extracted this way are much closer to each ot
than those in Fig. 15. We should mention that the monop
fit of gpNN(q2) gives gpNN(0)512.262.3 which confirms
the Goldberger-Treiman relation@46#.

Also plotted in Fig. 15 is the strangeness scalar form f
tor gS

s(q2) which is from the DI@Fig. 3~c!#. It is very soft and

has been interpreted as due to theKK̄ intermediate states a
depicted in Fig. 18~a! @21#. The DI with u or d quarks are
even softer@21# and are consistent with the dispersion ana
sis of pp intermediate states in chiral perturbation theo
(xPT! @58#. This appears to be the source of the pion a
kaon loops in xPT @59# which are responsible for the

-

FIG. 15. The isovector axial form factorgA
3(q2), the proton

electric form factorGE
p(q2), the strangeness scalar form fact

gS
s(q2), and the isovector pseudoscalar form factorgP

3 (q2) are plot-
ted as a function of2q2.

FIG. 16. The quark line diagram for the CI which illustrates t
meson dominance picture with different intermediate meson s
corresponding to the respective probing current.
1-17
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nonanalytic contribution ofmq
3/2 or mp

3 and mK
3 in hadron

masses@see Fig. 18~b!#. This nonlinear dependence on th
quark masses ormp

2 has been observed prominently in ha
ron masses with dynamical fermions in lattice simulatio
@70#. This illustrates the sea quark effect in hadron mas
and form factors. The neutron charge form factor in the st
SU~6! quark model would be identically zero, since the po
tively chargedu quark and the negatively chargedd quarks
have the same spatial wave function. Thus, the small pos
GE

n(q2) signals the effects of the cloud and the sea with
the contamination of the valence part like in other quantiti
We present the lattice calculation ofGE

n(q2) @47# in Fig. 19
together with the experimental result. It is seen that both
cloud from the CI and the sea from the DI are positive a
their contributions are similar in size.

B. Density and size of nucleon

Now, we can look at the time averaged radial dens
distribution of the nucleon due to different current prob
Define the time-averaged density distribution as

FIG. 17. The meson-nucleon-nucleon verticesgrNN(q2),
ga1NN(q2), gpNN(q2), andga0NN(q2) deduced from the EM form
factorsgA

3(q2), gP
3 (q2) and the isovector scalar form factorgS

3(q2)
are plotted as a function of2q2.

FIG. 18. ~a! The quark line diagram which illustrates theKK̄
intermediate states which dominates the form factorgS

s(q2). ~b! The
kaon loop diagram in chiral perturbation theory.
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r~r !5N
1

~2p!2E dtd4qei ~qW •rW2q0t !F~q2!

5N
1

~2p!3/2E d4qd~q0!eiqW •rWF~q2!, ~90!

whereN is the normalization factor so that*d3rr(r )51. We
plot the pseudoscalar densityrP(r ), the scalar strangenes
densityrS

s(r ), the electric charge densityrc(r ), and the axial
current density rA(r ) so obtained from
gP

3 (q2), gS
s(q2), GE

p(q2), andgA
3(q2) in Fig. 20.

We see thatrP(r ) has the longest range. This is presum
ably due to the pion cloud which dominates the pseudosc
channel and has the longest Compton wavelength of all h
rons. The next longest is the scalar strangeness densityrS

s(r )

which seems to reflect theKK̄ meson intermediate states
Fig. 18~a! and corresponds to the kaon loop in chiral pert
bation theory as shown in Fig. 18~b!. Then comes the electric
charge density in the protonrc(r ) which is well known and
has been frequently used to extract the size of the nucle
Finally, the one with the smallest size is the axial curre
densityrA(r ) which reflects the small Compton waveleng
of the a1 meson.

Now what is the size of the nucleon? As seen from F
20, it is in the eyes of the beholder. In other words, it d
pends on what probe is used to measure it. It ranges f
3.56~3! fm for the pseudoscalar density, 1.06~9! fm for the
strangeness density, and 0.797~29! fm for the proton charge
density, to 0.627~29! fm for the axial current density, a larg
variation.

We see that even though the clouds in the CI do not br
the SU~6! symmetry as much as the seas in the DI for t
scalar and axial currents, they afford a large variation
hadron form factors and sizes. Short of these meson clo
the valence quark model simply is not capable of delineat

FIG. 19. The neutron electric form factorGE
n(q2) together with

the fit to the experimental result~solid line!. Thes indicates the CI
contribution and thed shows the full result with both the CI an
the DI.
1-18
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the richness of the various form factors. A model like t
Skyrmion, on the other hand, is capable of detailing
Goldberger-Treiman~GT! relation @28#, the meson domi-
nance of the nucleon form factors@68,71#, negative square
charge radius of the neutron@28#, etc. All these are achieve
via the ingredient of the meson clouds.

C. Form factors in VQCD

We calculated the isovector-axial form factorgA
3(q2), the

isoscalar-scalar form factorgS
0(q2), the proton electric form

factor GE
p(q2), and the isovector pseudoscalar form fac

gP
3 (q2) in VQCD at k50.162, which corresponds to th

quark mass of;120 MeV. They are plotted in Fig. 21 as
function of2q2. For comparison, we also plot in Fig. 22 th
corresponding form factors from QCD atk50.154, which is
about the same quark mass as in the VQCD case.

We see that although these form factors in VQCD are s
different among themselves, the differences are relativ
smaller compared to those in QCD first of all and, seco
they are overall harder@except forgS

0(q2)]; i.e., they fall off
slower than the corresponding ones in QCD. The most d
matic change is the pseudoscalar form factor where the
as determined bŷ r 2&526@dF(q2)/d(2q2)#uq250 is re-
duced by about a factor of 2. This is consistent with t
pseudoscalar meson-dominance picture in Fig. 16, where
pseudoscalar form factor in QCD is dominated by the p
which in turn couples to the baryon through thepNN vertex.
Yet, this meson ‘‘cloud’’ is removed in VQCD by prohibit
ing pair creation. In this case, the current couples directly

FIG. 20. ~Color! The normalized pseudoscalar densityrP(r ) ~in
red!, the scalar strangeness densityrS

s(r ) ~in yellow!, the electric
charge densityrc(r ) ~in green!, and the axial current densityrA(r )
~in blue! are plotted as a function of the radial distance from
center of the nucleon.
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the quarks and consequently the^r 2& of the hadron become
smaller. To a lesser extent, similar situations occur in
vector and axial channels. This is again an indirect way
visualizing the meson clouds effects in the CI.

We also plot the neutron electric form factorGE
n(q2) for

VQCD at k50.162 and its counterpart~CI QCD at k
50.154) in Fig. 23. We see that these two results are co
parable in size and indicate that there are still some spin-
correlation between the quarks in VQCD which breaks
SU~6! symmetry.

FIG. 21. The isovector axial form factorgA
3(q2), the isoscalar

scalar form factorgS
0(q2), the proton electric form factorGE

p(q2),
and the isovector pseudoscalar form factorgP

3 (q2) in VQCD at k
50.162 which corresponds to the quark mass of;120 MeV are
plotted in terms of2q2. They are normalized atq250 to 1 in order
to compare theirq2 dependence.

FIG. 22. For comparison, the samegA
3(q2), gS

0(q2), GE
p(q2),

andgP
3 (q2) in QCD atk50.154 which is at about the same qua

mass, i.e.,;120 MeV, are plotted in terms of2q2. They are also
normalized to 1 atq250.
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D. Goldberger-Treiman relation and vector dominance

There are several interesting aspects to observe in VQ
Since the axial Ward identities in Eqs.~30! and ~31! are
associated with the current involving both theu andv fields,
they are applicable only to meson states with the crea
and annihilation of quark-antiquark pairs. Thus, the identit
are useful in addressing the relation of the ‘‘pion’’ mass a
decay constant with the quark mass as PCAC is in QCD.
the other hand, it does not apply to baryons where only
quarks are involved. For example, the pseudoscalar cur
matrix element between the nucleon states does not hav
pion pole as evidenced in Fig. 21. Consequently, there is
Goldberger-Treiman relation in VQCD. Conversely, the co
served vector current in Eq.~24! between the baryons an
meson states leads to separately conserved quark and
quark numbers. This entails the three-point function calcu
tion as illustrated in Fig. 10~a!. Yet it does not apply to
situations involving quark-antiquark creations or annihi
tions because the conserved vector current in Eq.~25! does
not have the pair annihilation termv̄gmu. Similarly, there is
no vector dominance in the pion and nucleon EM form fa
tors. As discussed in the preceding section, there shoul
no meson dominance in form factors in VQCD.

More generally, one can say that there is neither cross
symmetry, dispersion relation, nor unitarity in VQCD. B
these features, or the lack of them, are shared by the val
quark model that we are trying to emulate.

VII. HADRON SPECTROSCOPY

To explore further the consequences of the valence
proximation, we study the hadron masses. Since had
masses entail calculations of two-point functions, the
quarks do not appear explicitly as they do in three-po
functions@see Fig. 10~b!#. The only exception is the flavor
singlet meson where the DI@Fig. 4~b!# is part of the meson
propagator. The implicit sea quark effects in the loops wh

FIG. 23. The neutron electric form factorGE
n(q2) for VQCD

(d) at k50.162 is compared with the QCD result (s) at k
50.154.
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manifest themselves through the fermion determinant
known to affect the scaling@48#, the topological susceptibil-
ity, phase transition, theh8 mass, and the slope of the hadro
mass with respect to the quark mass@21,70#.

Here, we shall concentrate on the effects of the clo
quarks on hadron masses which are practically unknown.
first plot in Fig. 24 the masses ofD, N, r, and p as a
function of the quark massmqa5 ln(4kc /k23) on our lattice
with quenched approximation. We see that the hyperfi
splittings between theD andN and ther andp grow when
the quark mass approaches the chiral limit as expected.

In the infinite volume and continuum limits, it is foun
@49# that usingmr to set the scale, theK, F mesons and the
octet and decuplet baryon masses are all within about 6%
the experimental results.

Next we plot in Fig. 25 the masses ofD, N, r, and p
from VQCD as a function of the quark massmqa
5 ln(4kc /k23) (kc50.1649 in this case! on the same set o
lattice configurations. It is a surprise that the truncation
the Z graphs appears to have such a dramatic effect on
these meson and baryon masses.

First of all, we notice that theD and the nucleon agre
with each other within errors all the way down to the sma
est quark mass around the strange quark range. Thus
hyperfine splitting is largely gone in VQCD. This is true als
between ther and p. Extrapolating to the zero-quark-mas
limit, the r massmra is 0.054~8!. With a2151.75 GeV,
mr595(14) MeV in VQCD. This is a factor of 6.4 smalle
than that in the quenched approximation which givesmra
50.343(6). Second, we see that the masses ofD, N, andr
are all dropped greatly compared to those in QCD~Fig. 24!.
At the zero-quark-mass limit,mDa50.102(14), mNa
50.074(11). They are much smaller than their correspo
ing values of 0.638~41! and 0.536~13! in the quenched QCD

FIG. 24. The dimensionlessD, N, r, andp masses in quenched
QCD are plotted as a function of the quark massmqa5 ln(4kc /k
23). The pion mass is proportional toAmqa, while the others are
extrapolated to the chiral limit with a linearm dependence.
1-20
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VALENCE QCD: CONNECTING QCD TO THE QUARK MODEL PHYSICAL REVIEW D59 112001
calculation in Fig. 24. Furthermore, the hyperfine splitti
betweenD and N is now 49~7! MeV which is ;3.7 times
smaller than our quenched result of 179~11! MeV.1

For a more direct comparison to see how the nucleon
D masses drop, we plot the nucleon andD masses in VQCD
and quenched QCD in Fig. 26. In going from quenched Q
to VQCD the nucleon mass is reduced by about a cons
amount;0.4 in lattice units or about 700 MeV. TheD mass
drops by the same amount for heavier quarks. For qua
around the strange, it drops further to meet the nucleon.
also plot ther andp masses in VQCD and quenched QC
in Fig. 27. Analogous to theN-D situation, the vector meso
drops by about an equal amount;0.31 or 537 MeV,
whereas the pseudoscalar meson drops about 0.22 or
MeV in the strange region and approaches zero in both
quenched QCD and VQCD cases. Figures 26 and 27 s
that at fixed quark mass VQCD leads to much smaller h
ron masses than quenched QCD. It is quite revealing to
how the quark mass in VQCD should be tuned in order
restore the hadron masses to realistic values. Using a la
spacinga2151.75 GeV theresults in Fig. 26 suggest
quark mass of about 300 MeV (mqa;0.17) is required.
This is just in the range that quark models typically find f
constituent masses.

Shown in Fig. 28 are thea1 anda0 mesons calculated in
quenched QCD and VQCD. We see that both mesons c
down in mass from QCD to VQCD by a large amount.a1

1Our quenched result is smaller than the experimentalD-N split-
ting of 298 MeV mainly due to the fact that our results are not
the infinite volume and continuum limits. It is shown that wh
these limits are taken, the octet and decuplet baryons are within
of the experimental values@49#.

FIG. 25. The dimensionlessD, N, r, andp masses in VQCD
are plotted as a function of the quark massmqa5 ln(4kc /k23). All
the masses are extrapolated to the zero-quark-mass limit wi
linear mq dependence.
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appears to be degenerate withp and r in VQCD over the
range of the quark mass in Fig. 27 and Fig. 25. However,
cannot be certain about this point, especially in view of t
fact that the errors ona1 for the three lightest quarks ar
quite large.a0, on the other hand, seems to be heavier th
the pion in this range of the quark mass.

A. Origin of hyperfine splitting

We see that the hyperfine splitting betweenD and nucleon
has largely disappeared in the light quark sector when
remove the cloud quark and antiquark in theZ graphs. This
is rather mysterious in that according to the usual lore,
hyperfine splitting is primarily due to the color-magnet
coupling induced spin-spin interaction between the qua
@6,17#. This color-magnetic coupling is related to the spat
motion of the quarks which should not be affected by t
truncation of theZ graphs which only constrains the qua
motion in the time direction. Indeed, this color-magne
coupling is explicitly shown assW •BW in the Pauli spinor rep-

%

FIG. 26. The dimensionlessN and D masses from QCD are
compared with those in VQCD as a function of the quark mass

FIG. 27. The dimensionlessp and r masses from QCD are
compared with those in VQCD as a function of the quark mass

a
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K. F. LIU et al. PHYSICAL REVIEW D 59 112001
resentation of VQCD in Eqs.~17! and~19!. Furthermore, it is
this sW •BW term that is fully responsible for the hyperfine spl
ting betweenY andhb in the heavy quark system. The latt
is proved by the lattice QCD calculation with the nonrelat
istic QCD action containing such a term in the form
sW •BW /2Mb @3–5#.

This raises a question as to how effective the color-s
interaction is as far as the hyperfine splitting is concerned
light hadron spectroscopy. The same question has b
raised by Glozman and Riska@72,73#. Upon studying the
negative parity and positive parity excitations of theN, D,
and L spectra, they found that the reverse ordering of
positive and negative parity resonances ofN and particularly
D from those of theL cannot be accommodated wit
the color-spin structure of the pairwise interacti
l i

c
•l j

csW i•sW j ; instead it is consistent with the flavor-sp

structurel i
F
•l j

FsW i•sW j . This is so because flavor-spin stru
ture of L is different from that ofN andD. Interpreting this
as due to Goldstone boson exchange, they can fit the
lying baryon spectrum with a confinement potential in ad
tion. They can also fit the magnetic moments of the bary
octets by taking into account of the meson exchange curr
@73,74#.

A similar problem was encountered in searching for sca
diquark clustering in lattice hadron form factors@75#. Sig-
nificant scalar diquark clustering is predicted in quark mo
els which rely on the hyperfine interaction of the one-gluo
exchange-potential~OGEP! to split the N and D. While
significant mass splitting is seen in the lattice simulations
Refs.@75–77# there is no evidence of scalar diquark clust
ing. This result leads one to look for other sources of hyp
fine splitting that do not necessarily lead to clustering in
wave function, such as meson exchange@75#.

Furthermore, it is well known from the light baryon spe
trum that the spin-orbit interaction is much weak

FIG. 28. The dimensionlessa1 and a0 masses from QCD are
compared with those in VQCD as a function of the quark mass
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@78,79,9,10,8# than that which accompanies the spin-spin
teraction in the one-gluon-exchange picture@6#. This is prob-
lematic for the gluon-exchange picture if it is to explain bo
heavy quarkonia which require a spin-orbit interaction a
light baryons which require a much weaker one. Howev
Goldstone boson exchange does not have the spin-orbi
teraction between the light quarks and, hence, has no p
lem in this regard.

This Goldstone-boson-exchange picture appears to
quite consistent with what we find in VQCD. The flavo
nonsinglet meson exchange between the quarks is re
sented by theZ graph depicted in Fig. 29. Since all theZ
graphs are removed in VQCD, there will be no meson
changes between the quarks as a result. This can explain
the hyperfine splitting betweenD and nucleon is greatly re
duced in VQCD~Fig. 26!. But this does not answer the que
tion as to why the color-magnetic coupling induced spin-s
interaction is not as effective in light baryons as in hea
quarkonium. While we do not have strong evidence for it,
note that one aspect of the light quark may contribute to
difference. Unlike those of the heavy quarks, the propaga
of the light quarks in the background gauge field can fluc
ate into color-singlet meson clouds, leading to meson do
nance in various form factors~see Fig. 16!. The range of
fluctuation depends on the Compton wavelength of the m
son. The longest range is the pion cloud as evidenced in
softness of the pseudoscalar form factor of the nucleon~Figs.
15 and 20!. By the same token, Goldstone boson exchan
between the quarks in Fig. 29 can have a range comme
rate with its Compton wavelength. On the other hand,
range of one-gluon exchange is limited since the gluon
confined. If the range of Goldstone boson exchange is lon
than the gluon confinement scale, the hyperfine interac
from Goldstone boson exchange is likely to be more eff
tive than that from the color-magnetic coupling. In oth
words, the light quarks in the baryon have larger separati
than those between the quarks and antiquarks in he
quarkonia. Together with the limited range of the confin
gluons, this could be the reason for the diminished col
magnetic coupling in light baryons.

B. Origin of dynamical quark mass

Another significant feature of the VQCD spectroscopy
Figs. 25, 26, 27, and 28 is that all the hadron masses d
substantially from their counterparts in QCD~including pion

FIG. 29. The meson exchange between quarks in the baryo
depicted as aZ graph. The antiquark produced in theZ graph forms
a meson with another quark in this case which is ‘‘exchange
between the two quarks.
1-22
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at finite quark mass!. For example, the nucleon moves dow
from 940 MeV in QCD ~we used this to fix the scale! to
130~19! MeV in VQCD, D drops from 1117~72! MeV to
179~25! MeV, and r drops from 600~11! MeV to 95 ~14!
MeV. It is well known that chiral symmetry breaking lead
to a dynamical quark mass related to the quark conden
@80#, in addition to the existence of Goldstone bosons. T
can be seen from

^C̄C&5^C̄LCR1C̄RCL&, ~91!

which mixes the left- and right-handed quarks and has
effect of a dynamical mass as a result of the chiral symm
breaking.

To the extent that we can interpret the falling hadr
masses in VQCD as due to the drop of dynamical or c
stituent quark mass, we can draw the following conclusio

~1! It is usually assumed in valence quark models t
constituent quark mass arises due to dressing by the glue
the sea quark-antiquark pairs. Since the hard glue dressin
VQCD is expected to be the same as in QCD, it is not lik
to be responsible for the dropping of hadron masses
VQCD. Furthermore, the quenched lattice calculations@49#
can reproduce ther, K, F mesons and the octet and d
cuplet baryon masses to within about 6% of the experime
results. This is an indication that the quark loops which g
erate sea quark-antiquark pairs are not the primary sourc
hadron masses either. Here we see from our lattice calc
tion of VQCD that the dynamical quark mass actually aris
from the ‘‘dressing’’ of the cloud quarks — quark-antiqua
pairs in the connected insertion.

~2! In chiral symmetry models, the dynamical mass
generally generated through thes — the chiral partner of the
pion. For example, in the linear sigma model, the dynam
mass is given@81,82# as

mdyn5
gsqq

2

2ms
2 ^C̄C&ms

, ~92!

wherems and gsqq are thes mass and its coupling to th
quark. This is represented as thes-quark tadpole diagram
illustrated in Fig. 30~a!. A similar mechanism exists in th
four-fermion Nambu–Jona-Lasinio model@83#. In QCD, the
quark-line diagram which corresponds to thes-quark tad-

FIG. 30. ~a! s-quark tadpole diagram in the linear sigma mod
which is the mechanism for dynamical mass generation in
model. ~b! The quark line diagram of theZ graph which corre-
sponds to thes-quark tadpole in~a!.
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pole in Fig. 30~a! would look something like Fig. 30~b!
which inevitably involves cloud quarks and antiquarks in t
Z graph.

This s-quark tadpole interpretation is consistent wi
what we observe in VQCD. DroppingZ graphs in VQCD,
which include these tadpoles, diminishes the coupling to
quark condensatêC̄C& and leads to the falling of all the
hadron masses from QCD. However, there is still a class
tadpole diagrams which survive. These are the spatial m
ing quark loops restricted within time slices. They may s
couple to ^ūu& and ^v̄v&. But since these condensates
VQCD are much smaller than that in QCD, the dynamic
mass is also much smaller. This can explain why the mas
of D, N, andr are small but nonzero in VQCD~Figs. 25, 26,
and 27!.

The interpretation we offer for the hyperfine splitting an
the dynamical quark mass is reminiscent of the little b
@84#, the cloudy bag@85#, and the chiral quark models@86#
on which the phenomenological studies of baryon mas
@72–74# and baryon structure@87,88# are based. Arguing tha
the chiral symmetry breaking scaleLxSB is higher than the
confinement scaleLQCD , it is proposed@86# that the rel-
evant dynamical degrees of freedom are the fundame
quarks, gluons, and the Goldstone bosons in an effec
theory at intermediate scales betweenLxSB and LQCD .
What we observe in VQCD seems to suggest that the s
for the structure of baryons falls just in this range so that
coupling to Goldstone bosons and dynamical mass gen
tion are evident when QCD and VQCD are compared.

There are other suggestions for the flavor-spin structur
the quark-quark interaction. These are induced by instan
@89,90#. It is known that the instantons give rise to chir
symmetry breaking and generate dynamical quark mass
sociated with^C̄C& @91,92#. The point-to-point hadronic
correlation functions in the instanton liquid model@93# have
been verified by lattice QCD calculation@94# and the role of
instantons is revealed through cooling@95#. Although its di-
rect connection to the cloud degree of freedom in relation
VQCD is less transparent, the instanton picture, being
root of chiral symmetry breaking, is expected to reprodu
the consequences of the chiral quark model.

VIII. SYMMETRY BREAKING

It is well known that the chiral symmetry SU(NF)L
3SU(NF)R3UV(1) of QCD is spontaneously broken to th
diagonal SUV(Nf)3UV(1). VQCD, as we have learned in
this study, has a different symmetry breaking pattern. It st
out with the U(2NF) symmetry~see Sec. III C! with vector
and axial symmetries in the particle-antiparticle space. Fr
our lattice simulation, we find that the pseudoscalar mes
corresponding to the interpolation fieldsūg5v and v̄g5u be-
come massless at the zero-quark-mass limit, the pion de
constantf p is nonzero~it may actually diverge as 1/mp), and
the condensateŝūu& and^v̄v& do not vanish. We take thes
as the evidence for spontaneous breaking of the axial s
metry in Eqs. ~30! and ~31!. This then leads to Uq(NF)
3Uq̄(NF) symmetry, which is the vector symmetry for th
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quarks and antiquarks separately. Again by virtue of the
tice simulation, we find that the SU~6! relation holds quite
well for the gA

0/gA
3 ~or FA /DA), gS

3/gS
0 ~or DS /FS), and

mn /mp ratios. Furthermore,N andD are nearly degenerate
so arer and p. All these indicate that, although the SU~6!
breaking color-magnetic coupling is present in the VQC
action @Eqs.~17!, ~18!, and~19!#, its effects are small. As a
result, VQCD has an approximate higher symmetry, i
Uq(2NF)3Uq̄(2NF), where the ‘‘2’’ represents the spin sub
group SU~2!. This Uq(2NF)3Uq̄(2NF) is just the nonchiral
U(6)3U(6) symmetry of Dashen and Gell-Mann@96# for
NF53 with quarks and antiquarks in the (6,1) and (1,6̄)
representations respectively. It was proposed as a ‘‘go
symmetry for ‘‘stationary~i.e., bound! and quasistationary
~i.e., resonant! states of hadrons at rest.’’ It is interesting
note that after stripping off the sea and cloud quarks fr
QCD, we find that the remaining VQCD possesses the s
symmetry.

IX. CONCLUSION: ANALOGY TO SHELL MODEL
AND MANY BODY THEORY

Instead of simulating QCD, we have mutilated it with th
VQCD approximation. The valence QCD theory we ha
constructed does not respect Lorentz invariance. It also
lates unitarity, the dispersion relation, and crossing sym
try. But these are the attributes shared by the valence q
model which we set out to understand and our purpose
this study is to sort out the roles the various dynamical qu
degrees of freedom play in different observables. This
much like the study of the brain.2 One tries to correlate the
dysfunction of a certain part of the body with the damage
a specific part of the brain to infer its controlling mechanis

After defining the valence, the cloud, and the sea qua
from the hadronic tensor in deep inelastic scattering, we h
been able to follow these degrees of freedom to three-p
and two-point functions which are relevant to the qua
model at low energies. Upon eliminating the cloud quarks
the connected insertion with the help of the VQCD acti
and the sea quarks in the disconnected insertion with
quenched VQCD calculation, we find from the ratios
gA

0/gA
3 , gS

3/gS
0 , mn /mp and the masses ofN, D, r, and p

that there is an approximate SU~6! symmetry in VQCD
which emerges from shaking off the ‘‘dressing’’ cloud an
sea quark-antiquark pairs. Its symmetry breaking patter
distinct from that of QCD. We summarize the symme
breaking pattern of QCD and VQCD in the following cha

QCD: SU~NF!L3SU~NF!R3UV~1!⇒SUV~NF!3UV~1!

VQCD: U~2NF!⇒Uq~NF!3Uq̄~NF!

⇒'Uq~2NF!3Uq̄~2NF!.

We should point out that the Uq(2NF)3Uq̄(2NF) symmetry
due to the spin degeneracy is only approximately true.

2We thank T. Cohen for this analogy.
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see that the ratiogA
0/gA

3 in Fig. 11 is not exactly 3/5 and the
neutron electric form factorGE

n(q2) in Fig. 23 is not exactly
zero. The degeneracies betweenD andN and betweenr and
p are not perfect either. These indicate that there are
some color-magnetic coupling induced spin effects. Nev
theless, it is a fairly good symmetry. What we have dem
strated in this study is that QCD has this approximate sy
metry in its valence approximation in the manner of VQC
action. To our best knowledge, this is the connection
tween QCD and the valence quark model.

The relation of the valence quark model and QCD ac
ally is analogous to that between the shell model of nuc
and the many body theory. It is perhaps instructive to po
out the parallel developments in the history of nuclear ph
ics and hadron physics as far as the fermion dynamical
grees of freedom are concerned. We recall that the ra
d’être of the shell model consists of the pattern of ene
levels, the spin and parity quantum numbers of nuclei, a
the Schmidt lines for the magnetic moments of nuclei. Sim
lar reasons, e.g., the mass pattern of baryons and mes
SU~3! flavor symmetry, and the magnetic moments of prot
and neutron lent their support for the existence of the qu
model. Later experiments and theoretical developments
many body theory pointed out the inadequacies of the s
model and ideas such as collectivity of the giant resonan
@97#, pairing through the induced phonon-exchange inter
tion @98#, and core polarization for the magnetic moments,
the Arima-Horie effect@99# were introduced. These involv
the particle-hole degrees of freedom in the disconnected
sertion which are the core polarization effects beyond
shell model. With the advent of QCD as the fundamen
theory of quarks and gluons, similar ideas are introduc
For example, the resolution of the U~1! anomaly in terms of
the topological susceptibility in the largeNc analysis by Wit-
ten @19# and Veneziano@19# is the schematic model@97#
approach to generating theh8 mass by the collective cou
pling between quark loops. The concept of quark and glu
condensates is certainly related to pairing in the many b
theory. A lack of appreciation for vacuum polarization due
the sea quarks for flavor-singlet observables in the qu
model has led to the ‘‘proton spin crisis’’@20,54# and the
pNs term puzzle@57,58,21#. The importance ofZ graphs for
the density dependence was pointed out for the effec
nucleon-nucleon interaction@100#, and the higher-density ef
fects in the relativistic mean-field theory are largely due
theZ graphs with sigma meson exchanges@101#. The impor-
tance of the cloud quarks in hadrons through theZ graphs is
just beginning to be unraveled. The violation of the Gottfri
sum rule leading toū(x)Þ v̄(x) is shown to be due to the
cloud antiquarks@35#. Furthermore, we have learned in th
present study that the hyperfine splitting in baryons and
dynamical quark mass are related to the cloud degree of f
dom, which are probably the most surprising results
VQCD.

The valence quark model, as we come to realize it tod
is just like the shell model in nuclear physics. The U(6
3U(6) symmetry which comes with the valence qua
model as the defining characteristic is not as good a sym
1-24
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try as one tends to believe. Even with the supplemen
SU~6! breaking one-gluon exchange, it does not capture
richness of the cloud degrees of freedom in various fo
factors and matrix elements in the connected insertio
Moreover, the lack of sea degrees of freedom in the disc
nected insertions is responsible for its overestimate of
flavor-singletgA

0 by a factor of;3 as well as its underesti
mate of thepNs term by a factor;324. What it lacks
appears to be the spontaneously broken chiral symmetr
QCD. This is exemplified in hadron spectroscopy where
find that the hyperfine splitting between N andD and the
dynamical quark mass are related to the cloud quarks in
Z graphs.

One lesson we learned in this study is that the vale
quark model is not necessarily a bad place to start build
an effective theory of hadrons, provided one knows how
incorporate chiral symmetry and restores the cloud and
degrees of freedom. Working in the intermediate scale
tween chiral symmetry breaking and confinement which
appropriate for studying hadron structure and spectrosc
one may start with the chiral quark model@86#. Integrating
out the short-range part of the quark field is shown to lead
D

-

F

11200
f
e

s.
n-
e

of
e

e

e
g
o
ea
e-
s
y,

o

a very successful effective chiral theory of mesons@102#.
One may extend this to the baryon sector with the qu
coupling to the gluons and mesons@84–86#. In this way, the
cloud degrees of freedom will show up in the form facto
and matrix elements via meson dominance and meson
change currents. It can also give rise to hyperfine splitt
and dynamical quark mass. The meson loops on the qu
lines, on the other hand, are responsible for the sea deg
of freedom. We will study this effective theory of baryons
the future.
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