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Quantum fluctuations of the Chern-Simons theory and dynamical dimensional reduction

Ivan Andrić,* Velimir Bardek,† and Larisa Jonke‡
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We consider the large-N Chern-Simons theory for attractive bosonic matter~Jackiw-Pi model! in the Hamil-
tonian collective-field approach based on the 1/N expansion. We show that the dynamics of low-lying density
excitations around the ground-state vortex configuration is equivalent to that of the Sutherland model. The
correspondence between the Chern-Simons coupling constantl and the Calogero-Sutherland statistical param-
eter ls signals some sort of statistical transmutation accompanying the dimensional reduction of the initial
problem.@S0556-2821~99!03710-8#

PACS number~s!: 11.10.Lm, 03.65.Sq, 05.30.2d
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Gauge models of a scalar field with the Chern-Simo
term @1# in 211 space-time dimensions are known to su
port soliton or vortex solutions@2,3#. By using the nonrela-
tivistic field theory of the self-attracted bosonic matter mi
mally coupled to an Abelian Chern-Simons gauge field,
authors of Ref.@2# have shown that there exists a static se
dual soliton solution for a specific choice of the coupli
constant. We have rederived this soliton solution in
collective-field approach by including higher-order terms
the 1/N expansion@4#. In our approach, this soliton solutio
saturates the Bogomol’nyi bound and does not receive qu
tum corrections to its energy in the next-to-leading appro
mation.

In this paper we analyze the quantum dynamics of lo
lying density fluctuations around a specific vortex soluti
and show that it is equivalent to the dynamics of quant
fluctuations in the Calogero-Sutherland model@5#. There ex-
ist a number of papers@6# that elucidate the connection be
tween the Chern-Simons-based anyonic physics in the f
tional quantum Hall effect and the Calogero-Sutherla
model, but it should be emphasized that we are working
completely different physical situation. We are trying to e
tablish a dynamical reduction of the Jackiw-Pi model to
Calogero-Sutherland one. In Ref.@7# we conjectured the
form of quantum fluctuations in the Jackiw-Pi model and t
allowed us to identify the dynamics of these fluctuations w
those of the Calogero-Sutherland model. In this paper,
are looking for the same result using a different approach
thus indirectly confirming the conjecture made in@7#.

We begin our analysis of the Jackiw-Pi model by repe
ing the main results of Ref.@4#. The collective-field approach
to the model is described by the Hamiltonian

H5
1

2E d2rr~r !F“p~r !1n̂3S 1

2

“r~r !

r~r !

1ulu E d2r 8r~r 8!
r2r 8

ur2r 8u2
2v

r2R

ur2Ru2D G 2

, ~1!
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wheren̂ is the unit vector perpendicular to the plane in whi
particles move, the dimensionless constantl is the so-called
statistical parameter, the vorticityv is a dimensionless inte
ger, andp(r ) is the canonical conjugate of the collectiv
field r(r ):

@¹p~r !,r~r 8!#52 i¹d~r2r 8!. ~2!

The leading part of the collective-field Hamiltonian in th
1/N expansion is given by the effective potential

Veff5
1

2E d2rr~r !S 1

2

“r~r !

r~r !

1ulu E d2r 8r~r 8!
r2r 8

ur2r 8u2
2v

r2R

ur2Ru2D 2

. ~3!

Owing to the positive definiteness of the effective poten
~3!, the Bogomol’nyi limit appears. The Bogomol’nyi boun
is saturated by the positive normalizable solutionr0(r ) of
the Liouville-type equation

D ln r0~r !14ulupr0~r !54pvd~r !. ~4!

It has been shown in@4# that there exists a radially symme
ric, positive, and normalizable collective-field configuratio
that minimizes the energy~1!. It is given by the vortex form

r0~r !5
uluN2

2pr 2 F S r 0

r D Nulu/2

1S r

r 0
D Nulu/2G22

. ~5!

The vorticity v is fixed by the normalization condition, i.e
v5Nulu/221. The parameterr 0 reflects the scale invarianc
of the problem and cannot be determined. Now, ifN is large
enough, we can replace the soliton configurationr0(r ) by
the d profile:

r0~r !5
N

2p

d~r 2r 0!

r 0
. ~6!

Here we have used the well-known representation of thd
function:
©1999 The American Physical Society02-1
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d~x!5 lim
e→0

exp~x/e!

e@11exp~x/e!#2
, e5

1

Nulu
. ~7!

At this point we analyze the dynamics of the collective-fie
excitations around the ground-state solution of the Jackiw
model. We perform the 1/N expansion of the collective field
r(r ) in the form

r~r !5r0~r !1h~r !, ~8!

wherer0(r ) is the ground-state semiclassical configurat
andh(r ) a small density quantum fluctuation aroundr0(r ).
Inserting Eq.~8! in Eq. ~1! and expanding inh(r ), we obtain
the leading termVeff(r0) and the Hamiltonian quadratic i
fluctuations and its canonical conjugate. After introduci
the operators

A~z!5
]p

]z
2 i

]

]z S h

2r0
1ulu E d2r 8lnuz2z8uh~z8! D ,

A†~z!5
]p

] z̄
1 i

]

] z̄
S h

2r0
1ulu E d2r 8lnuz2z8uh~z8! D ,

~9!

with the c-number commutator~all other vanishing!

@A~z!,A†~z8!#52
]2

]z] z̄8
S d2~z2z8!

2r0
1ulu lnuz2z8u D ,

~10!

we are left with a Hamiltonian that governs the dynamics
low-lying excitations in the form

H52E d2rr0~z!A†~z!A~z!. ~11!

There are some subtleties involving the ordering of the
eratorsA andA†, but an interested reader can find all deta
in Ref. @4#.

Now, to find the spectrum of low-lying excitations, w
have to diagonalize the Hamiltonian~11!. We expand the
operatorsA and A† in terms of a new, complete set of op
erators

A~z!5(
n

fn~z!an , A†~z!5(
n

fn* ~z!an
† ~12!

that satisfy the standard bosonic commmutation relations

@an ,am
† #5dn,m , @an ,am#5@an

† ,am
† #50. ~13!

We demand that the Hamiltonian~11! should take the diag
onal form

H5(
n

vnan
†an . ~14!

Here,n represents a pair of quantum numbers, and it is
sumed that the sum is replaced by an integral in the non
10770
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crete case. We insert expansion~12! in the commutator~10!
and apply Eq.~13! to obtain the completeness relation:

(
n

fn~z!fn* ~z8!52
]2

]z] z̄8
S d2~z2z8!

2r0
1ulu lnuz2z8u D .

~15!

Inserting Eq.~12! in Eq. ~11!, and demanding Eq.~14!, we
obtain

2E d2rr0~r !fm* ~z!fn~z!5vmdn,m . ~16!

Next, we multiply relation~16! by fm(z8) and sum overm,
apply the completeness relation~15!, and finally we obtain
the equation for the functionsfn(z):

1

2
vnfn~z!52]z] z̄fn~z!2] z̄ ln r0~z!]zfn~z!

2„]z] z̄ ln r0~z!…fn~z!2ulupr0~z!fn~z!.

~17!

Since we are interested in the excitations around a spe
ground state, namely, the one given in Eq.~6!, we use Eq.~4!
to rewrite the last two terms in Eq.~17! and look for the
solution in terms of a new function cn(r ,w)
5fn(r ,w)Ar0(r ):

vncn~r ,w!52
1

2
~“2 iA!2cn~r ,w!

2
1

2 S vd~r !1uluN
d~r 2r 0!

r 0
Dcn~r ,w!.

~18!

Equation~18! can be interpreted as a Schro¨dinger equation
for the bosonic particle in the magnetic field and in the a
ditional delta-function potential, where

Ar~r ,w!50, Aw~r ,w!52
Nulu
2r

sgn~r 2r 0!,

B5¹3A52
Nulu

r
d~r 2r 0!. ~19!

Notice that we can omit the ‘‘vorticity’’ term in Eq.~18!,
because forr→0 the wave function must vanish at least
r 2. The operator on the right-hand side of Eq.~18! commutes
with the angular momentum operator (2 i ]/]w), so we ex-
tract a factor exp(6inw) from the eigenfunction, and obtain

1

r
] r~r ] r !c̃0,n~r !1F2vn2

1

r 2 S Nulu
2

sgn~r 2r 0!6nD 2G
3c̃0,n~r !1

Nulu
r 0

d~r 2r 0!c̃0,n~r !50, ~20!
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FIG. 1. On the left, the functionF(x) is plotted forn5m5101, Nl/25100. The area in the small box is shown enlarged on the righ
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wherec̃0,n(r ) represents the lowest-energy solution, for ea
n. We have two classes of solution of Eq.~18!. The first one
is

cn~r ,w!5exp~6 inw!3H Jn~x! for r ,r 0 ,

Nm~x! for r .r 0 ,
~21!

and the second one is

cn~r ,w!5H exp~6 inw!Jn~x! for r ,r 0 ,

exp~7 inw!Nn~x! for r .r 0 ,
~22!

whereJn(x) andNn(x) are Bessel functions,x5A2vnr , m
5Nulu/26n, and n5Nulu/27n. Demanding continuity of
the solutionc̃0,n(r ) at r 0, we integrate Eq.~20! aroundr 0
and an obtain equation of the type

F~x![Js~x!Ns8~x!2
2

Nulup
50. ~23!

To find out the energy of the solutions~21! and ~22!, we
have to solve Eq.~23!, using the expansion for Bessel fun
tion for large s,s8 @8#. For small x, i.e., for low-energy
fluctuations, the functionF(x) decreases monotonously an
has only one zero, and this is precisely what we are look
for. We illustrate the behavior of the function F~x! in Fig. 1.
Notice that the next zero of the functionF(x) is at x;s.
This means thatvn*N2/r 0

2, and it costs infinite amount o
energy to reach the next state. Effectively, our lowest-ene
state is the only relevant state in largeN. Solving Eq.~23! for
sÞs8, i.e., for the solution~21!, we obtain the zero mode
(vn50), but for s5s8, i.e., for the solution~22!, we have
2vnr 0

254n27nNulu. Sincevn is positive by definition, we
finally have

cn~r ,w!5H exp~2 i unuw!Jn~x! for r ,r 0 ,

exp~1 i unuw!Nn~x! for r .r 0 ,
~24!

wheren5 1
2 Nl1unu and
10770
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vn5
1

r 0
2 S 2n21unu

Nulu
2 D . ~25!

We can compare the above relation with the dispersion r
tion of fluctuations around the constant solution in the Su
erland model on a circle of radiusr 0 @9,10#:

vn
s5

1

r 0
2 S 12ls

2
n21

Nsls

4
unu D , ~26!

where Ns is the number of particles andls is a coupling
constant in the Sutherland model. In order to establish a
correspondence, we should rescale the dispersion rela
~25! as vn→4vn /(12ls), and demand a sort of statistica
transmutation given by

Nulu5
2Nsls

12ls
. ~27!

It is interesting to note that the above relation is invaria
~and therefore valid for allls) under the duality transforma
tion ls→1/ls , with Ns→2lsNs , reflecting the well-known
symmetry of the Sutherland model@10#.

We will now show how our result can be extended
more general vortex solution then that which is concentra
at the origin. The ground-state solution of Eq.~4! is given in
the terms of the analytic functionf (z):

r0~z,z̄!5
2

ulup
u f 8~z!u2

@11u f ~z!u2#2
5

1

2ulup U f 8f U 1

cosh2 lnu f u
.

~28!

Let us investigate configurations of vortices positioned at
origin and around it at the locationszi such that outside the
circle of radiusR there are no vortices (uzi u,R). Thenf is a
polynomial inz/R the degree of which is determined by th
normalization condition. At the origin,f goes like (z/R)aN,
a&1. The vortices are positioned at the zeros off 8. We have
a strong vortex at z50, and other vortices are inside th
circle. Owing to the normalization condition
2-3
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N5E dxdyr~z,z̄!5
i

2ulupER2
dv15

i

2ulupE]R2
v1

5
i

2ulupE]R2S f d f̄

11 f f̄
2

d f f̄

11 f f̄
D , ~29!

lnufu is proportional toN. Now, cosh22 lnufu and therefore
r0(z,z̄) is strongly peaked atu f u51, up toO(1/N2), with the
width D}1/N. The conditionu f (z/R)u51 describes a close
string which in the large-N limit approaches the circle o
radiusR. For illustration, take a simple example

f ~z!5S z

RD nS S z

RD m

21D , ~30!

wheren, m are of orderN, n1m5Nulu/2. This describes the
strongvortex at the origin and a certain number of equid
tant vortices positioned on the circle around the orig
r0(z,z̄) has a maximum on the closed string determin
from u f u51:
,

.

10770
-
.
d

S r

RD 2(n1m)

22 cos~n1m!wS r

RD n1m

1S r

RD 2n

51. ~31!

In the large-N limit, the equationr 5r (w) is approaching a
circle of radius r 5R1O(1/N). Therefore in the large-N
limit, we have a bulk-to-edge dimensional reductio
lim

N→`
r0(z,z̄)→d(u f u21)→d(r 2R), so we can repeat al

of the presented calculations following Eq.~6!, substituting
r 0 by R.

In conclusion, we can say that in the large-N limit the
dynamics of low-lying density excitations around the vort
configuration in the Jackiw-Pi model is equivalent to that
the Sutherland model. Further study is still needed to fu
understand the physical meaning of this dimensional red
tion and the statistical transmutation associated with it.
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