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Quantum fluctuations of the Chern-Simons theory and dynamical dimensional reduction
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We consider the larght Chern-Simons theory for attractive bosonic materckiw-Pi modelin the Hamil-
tonian collective-field approach based on th gkpansion. We show that the dynamics of low-lying density
excitations around the ground-state vortex configuration is equivalent to that of the Sutherland model. The
correspondence between the Chern-Simons coupling constamd the Calogero-Sutherland statistical param-
eter \¢ signals some sort of statistical transmutation accompanying the dimensional reduction of the initial
problem.[S0556-282199)03710-§

PACS numbsg(s): 11.10.Lm, 03.65.Sq, 05.36d

Gauge models of a scalar field with the Chern-Simonsyheren is the unit vector perpendicular to the plane in which
term[1] in 2+1 space-time dimensions are known to sup-particles move, the dimensionless constaii the so-called
port soliton or vortex solutionf2,3]. By using the nonrela-  statistical parameter, the vorticity is a dimensionless inte-
tiViStiC f|e|d theory Of the Se|f-attl’acted bOSOhiC matter mini- ger, andﬂ-(r) iS the Canonica| Conjugate of the Co”ective
mally coupled to an Abelian Chern-Simons gauge field, thgie|q p(r):
authors of Ref[2] have shown that there exists a static self-
dual soliton solution for a specific choice of the coupling [Va(r),p(r’)]=—iVS(r—r’). 2
constant. We have rederived this soliton solution in the

collective-field approach by including higher-order terms inThe |eading part of the collective-field Hamiltonian in the

the 1IN eXpanSiOI'[4]. In our approach, this soliton solution 1/N expansion is given by the effective potentia'
saturates the Bogomol'nyi bound and does not receive quan-

tum corrections to its energy in the next-to-leading approxi- 1 1 Vp(r)
mation. Vo= — dzr (r) —
i i 2] " P 2700
In this paper we analyze the quantum dynamics of low- p

lying density fluctuations around a specific vortex solution

and show that it is equivalent to the dynamics of quantum +|)\|f d2r’ p(r")
fluctuations in the Calogero-Sutherland mofdgl There ex-

ist a number of paper$] that elucidate the connection be-

tween the Chern-Simons-based anyonic physics in the fra@wing to the positive definiteness of the effective potential
tional quantum Hall effect and the Calogero-Sutherland3), the Bogomol'nyi limit appears. The Bogomol'nyi bound
model, but it should be emphasized that we are working in g saturated by the positive normalizable solutjgy{r) of
completely different physical situation. We are trying to es-the Liouville-type equation

tablish a dynamical reduction of the Jackiw-Pi model to the

Calogero-Sutherland one. In R€f7] we conjectured the AInpo(r)+4|N|mpo(r)=4mv &(r). (4)
form of quantum fluctuations in the Jackiw-Pi model and that

allowed us to identify the dynamics of these fluctuations withit has been shown if4] that there exists a radially symmet-
those of the Calogero-Sutherland model. In this paper, weic, positive, and normalizable collective-field configuration
are looking for the same result using a different approach anthat minimizes the energgt). It is given by the vortex form
thus indirectly confirming the conjecture made[ .

—r’ r-R 2 @
— U .
—r'2 lr-RP2

r
r

We begin our analysis of the Jackiw-Pi model by repeat- ININ2 (1 N[22\ NIN2] =2
ing the main results of Ref4]. The collective-field approach po(r)= 5 (—) + —) } . 5)
to the model is described by the Hamiltonian 2 r Fo
1 1V The vorticity v is fixed by the normalization condition, i.e.,
H= —f d2?rp(r)| Var(r)+nx| = p(r) v=N]|\|/2— 1. The parameter, reflects the scale invariance
2 2 p(r) of the problem and cannot be determined. Now\ i large
o R\ ehno;gh, ;{\lle can replace the soliton configuratig r) by
- - the ¢ profile:
+|x fdzr’ r') -v @
N e o |r—R|2)
_ N a(r—rg) 6
po(r)=5— B (6)
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exp(x/€) 1 crete case. We insert expansid®2) in the commutatof10)
(7) and apply Eq(13) to obtain the completeness relation:

(92 52 o
At this point we analyze the dynamics of the collective-field >, ¢,(z)¢%(z')=2—— ( (22 z)
d Po

excitations around the ground-state solution of the Jackiw-Pi " z'
model. We perform the N expansion of the collective field (15

(0 infhe form Inserting Eqg.(12) in Eq. (11), and demanding Eq14), we
p(r)=po(r)+ n(r), (8  obtain

where pg(r) is the ground-state semiclassical configuration 2 * _

and 7(r) a small density quantum fluctuation aroupg(r). Zf drpo(r) dm(2) dn(2) = @mdpm - (16)
Inserting Eq(8) in Eq. (1) and expanding im(r), we obtain

the leading ternV.x(po) and the Hamiltonian quadratic in Next, we multiply relation(16) by ¢,(z’) and sum ovem,
fluctuations and its canonical conjugate. After introducingapply the completeness relatioh5), and finally we obtain

— lim -
= e ¢ NI

+[\|Injz—2']|.

the operators the equation for the functiong, (z):
dm  d 2, 1
A(Z):E_l 9z +|A|f der In|z z |77(Z )| Ewnd’n(z):_‘92(727¢n(2)_0’§|nPO(Z)[?zd’n(Z)
om0 7 = (92971 po(2))$n(2) = [\ | 7po(2) $n(2).
AT(Z):—_+i—4(—+|)\|J<dzr/|n|Z_Z,|7](Zl)), 1
9z 9z\2po 17)

© Since we are interested in the excitations around a specific

with the c-number commutatofall other vanishing ground state, namely, the one given in &), we use Eq(4)
to rewrite the last two terms in Eq17) and look for the

. 2 §%(z2—2") , solution in terms of a new function ¢, (r,¢)
[A(2),A'(z )]:282(9_' 200 +|)\||I’I|Z—Z| ) =¢n(r, @) Vpo(r):

(10 1 )
] =— =5 V - A il

we are left with a Hamiltonian that governs the dynamics of Onn(1.9) == 5 (V1A YT 0)
low-lying excitations in the form 1 ( 1)

5| v+ INN———¢n(r,¢).
H=2 f d’rpo(2)AT(2)A(2). (11 8
There are some subtleties involving the ordering of the op; : . . ;
eratorsA andA", but an interested reader can find all dEtai|SE)?L1?20&(,£)nﬁ;aga?teic:gt?r:%eéeriazsngtiii%r%g;g ?# iﬂgnad-

in Ref. [4]. o ) ; ;
Now, to find the spectrum of low-lying excitations, we ditional delta-function potential, where
have to diagonalize the Hamiltoniagiil). We expand the N|A|
operatorsA and A" in terms of a new, complete set of op- Al(r,e)=0, A(r,o)=— > sgnr—ry),
erators
N[A|
AD=2 ¢(da,, A= ¢ri(2a, (12 B=VXA=———5(r=ro). (19

that satisfy the standard bosonic commmutation relations Notice that we can omit the “vorticity” term in Eq(18),
because for—0 the wave function must vanish at least as
[ay.8]]=8nm, [an.aml=[a},al]=0.  (13)  r2 The operator on the right-hand side of Et8) commutes
with the angular momentum operator {(d/d¢), SO we ex-

We demand that the Hamiltonidd1) should take the diag- {ract a factor expting) from the eigenfunction, and obtain

onal form
1 ~ N[\ 2
sz wparay,. (14) 7013 don(r)+| 20n— r_2 —5Sgrr —ro)=n
i Ty ~ N|X ~
Here, n represents a pair of quantum numbers, and it is as- X Pon(r)+ | |5(r—r0)¢//oyn(r)=0, (20)
sumed that the sum is replaced by an integral in the nondis- o
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FIG. 1. On the left, the functiof (x) is plotted forv= =101, NA/2=100. The area in the small box is shown enlarged on the right.

whereT/foyn(r) represents the lowest-energy solution, for each 5 N|\|
n. We have two classes of solution of E48). The first one “’n:r_z 2n*+n| | (29
is 0
I(x) for r<r We can compare the above relation with the dispersion rela-
(T @):exp(iimp)x[ v o (21)  tion of fluctuations around the constant solution in the Suth-
e N,(x) for r>rg, erland model on a circle of radiug [9,10:
and the second one is 1{1—\ N\
w§=—2< > Sn2+%|nl). (26
exp(xing)J,(x) for r<ry, "o
Pa(r, @)= _. (22) . : . .
exp*ing)N,(x) for r>rg, where Ny is the number of particles ani is a coupling

constant in the Sutherland model. In order to establish a full
whereJ, (x) andN,(x) are Bessel function= \/2_wnr, I correspondence, we should rescale the dispersion relation
=N|\|/2=n, and v=N|\|/2Fn. Demanding continuity of (25 asw,—4w,/(1—\4), and demand a sort of statistical
the solutiongon(r) atro, we integrate Eq(20) aroundr,  transmutation given by
and an obtain equation of the type
2N\ ¢
1-\g'

NN |= (27)

F(X)=J5(X)Ng(X)— 0. (23

NIx| It is interesting to note that the above relation is invariant
(and therefore valid for alk) under the duality transforma-
tion Ag— 1/A 4, with Ng— — ANy, reflecting the well-known

symmetry of the Sutherland moddlO].

To find out the energy of the solution&1) and (22), we
have to solve Eq(23), using the expansion for Bessel func-

tion for. large 0,0’ [8,]' For smallx, i.e., for low-energy We will now show how our result can be extended to
fluctuations, the functioifr (x) decreases monotonously and 46 general vortex solution then that which is concentrated

has only one zero, and this is precisely what we are looking,; e origin. The ground-state solution of Ed) is given in
for. We illustrate the behavior of the functiorixy in Fig. 1. the terms of the analytic functiof(z)

Notice that the next zero of the functidh(x) is atx~a.

This means that,=N?/rj, and it costs infinite amount of _ 92 1f'(2)|2 1 |f 1

energy to reach the next state. Effectively, our lowest-energy pq(z,z)= = - .
state is the only relevant state in lafgeSolving Eq.(23) for N [1+]1(2)[22 27| flcosRIn|f|
a#a', i.e., for the solution21), we obtain the zero mode (28)

(w,=0), but fore=0¢', i.e., for the solution22), we have

2w,r2=4n2FnN|\|. Sincew, is positive by definition, we Let us investigate configurations of vortices positioned at the

origin and around it at the locatiorzs such that outside the

finally have circle of radiusR there are no vorticedZ;|<R). Thenf is a
r polynomial inz/R the degree of which is determined by the
(T, @)= exp(—ilnfe)d,(x) for r<ro, (24) normalization condition. At the origirf, goes like ¢/R)*N,
me exp(+i|n|e)N,(x) for r>rg, a=<1. The vortices are positioned at the zero$'ofWe have
a strong vortex atz=0, and other vortices are inside the
wherev=3N\+|n| and circle. Owing to the normalization condition
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2n
=1. (31

R

o i i r 2(n+m) r\ntm
N=f dxdyp(z,z)=mfR2dwl= WLRZwl (ﬁ) -2 c0$n+m)go(§) +

_ ! f fdf _ dff (29) In the largeN limit, the equationr =r (¢) is approaching a
2N or2\ 14+ FF  1+ff)’ circle of radiusr=R+O(1/N). Therefore in the largé
limit, we have a bulk-to-edge dimensional reduction:
In|f| is proportional toN. Now, cosh?In|f| and therefore |iy, po(z.2)— 8(|f|— 1)— 8(r —R), so we can repeat all
po(z,2) is strongly peaked df| =1, up toO(1/N?), with the o
width A« 1/N. The condition|f(z/R)|=1 describes a closed

string which in the largeN limit approaches the circle of
radiusR. For illustration, take a simple example

of the presented calculations following E@), substituting
roby R
In conclusion, we can say that in the laiyelimit the
dynamics of low-lying density excitations around the vortex
Z\N/ [ z\m configuration in the Jackiw-Pi model is equivalent to that of
f(z)=(§ ( ﬁ) 1), (30 the Sutherland model. Further study is still needed to fully
understand the physical meaning of this dimensional reduc-
wheren, mare of ordeiN, n+m=N|\|/2. This describes the tion and the statistical transmutation associated with it.
strongvortex at the origin and a certain number of equidis-

tant vortices positioned on the circle around the origin. This work was supported by the Ministry of Science and
po(z,2) has a maximum on the closed string determinedTechnology of the Republic of Croatia under Contract No.

from |f|=1: 00980103.
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