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Can the QCD effective charge be symmetrical in the Euclidean and Minkowskian regions?
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We study a possible symmetrical behavior of the effective charges defined in the Euclidean and
Minkowskian regions and prove that such symmetry is inconsistent with general principles of the theory.
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A possible way to resolve the ghost-pole problem for theprocess ofe* e~ annihilation into hadrons. The structure of
running coupling obtained by using the renormalizationthe perturbative expansion for this quantity is similar to the
group resummation can be found by imposingll&a  perturbative representation for the Adler function in the Eu-
Lehmann analyticity, which reflects fundamental propertieslidean region(*t channel”) defined by Eq(1). The func-
of local quantum field theory. This idea in the QCD case hasions D(Q?) andR(s) in some sense can be called ass"
been elaborated ifl]. The correct analytic properties of the dual” functions and, similarly to Eg(2), one can define the
running coupling give the possibility of a self-consistenteffective charge in the timelike region by
definition of the effective running coupling in the timelike,

Minkowskian region[2,3]. This treatment becomes impor- R(s)c1+r,a%f(s), (4)
tant now that tests of QCD are being extended down to very
low momentum scales. In this Brief Report we study a posyhere the subscripg means ‘s channel.”

in the spacelike and timelike domains. charges in the spacelike and timelike regions:
The conventional renormalization group method deter-

mines the running coupling in the Euclidean region. To find - = ds _

a QCD parametrization of processes that are characterized by a®f(Q?)=Q? f ———af(s) (5
timelike momenta, such as the proces®6&~ annihilation 0 (s+Q%?

into hadrons, one has to use some special procedure of “ana-

lytic continuation” from the Euclidean to the Minkowskian and

region. To this end let us consider the Adlerfunction,

which corresponds to the vector quark currents. The pertur- —fr, 1 [stiedz—_

bative expansion improved by the renormalization group a(89)=—5 ez (—2). )
method in the massless case has the foam §5/47)

_ _ The contour of integration in E¢6) lies in the region of the
D(Q*)x*1+d;a(Q?) +d,a*(Q%)+- - . (1) analyticity of the corresponding integrand.
o ) o ) The effective charge in thechannel is defined through
The D function is an analytic function in the complex the spectral functiorp(o) by Eq. (3). The corresponding

plane with a cut along the negative real axis. Defining thesxpression for thes channel charge can be written down as
effective charge by follows:

D(Q?)=1+d,a*(Q?) @ —y 1 (*do
| _ a'ts)=— [ oo, U
one can see that it must possess the following spectral rep- T)s O

resentation:
Nearly a quarter century ago, Schwinger propdggdhat

_ 17> do the Gell-Mann—Low function, or thg8 function, in QED
a®(Q?)= ;j 5p(0). (3)  could be represented by a spectral function for the photon
00+Q propagator, which has a direct physical meaning. The

r{unction of thes-channel effective coupling7) is indeed
proportional to the spectral density, according to Schwing-
er's identification

The appropriate quantity to define the effective charge i
the Minkowskian regioni* s channel’) is theR ratio for the

—eff
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Defining Te,B function of the t-channel chargg3), %
B(Q%) =0Q%da*"(Q?)/dQ?, we can write down the follow- P(x)= f_xdyK(x—y) oY), (12)
ing relation between the twg functions:
with the kernel

——— = Bs(S). 9 1 1
(s+Q?%? =
K)=7 costt(x/2)

Thus, the general properties of the theory lead to the follow- _ _ _
ing properties of the3 function considered as a function of By applying the Fourier transform to E¢L1) one finds
the Euclidean momentui®?: B(Q?) is an analytic function

= d
B(QY)=Q? f >
0 (12

in the complexQ? plane with a cut along the negative real 6(p)=K(p)d(p), (13
axis.
Note that we have defined the effective charge in ghe where
channel. However, an analogous analysis can be performed _ mp
for the running coupling and similar relations and conclu- K(p)= Wwp) (14)

sions can be obtained for it as well. In the framework of

perturbation theory, the difference between theand  possible nontrivial solutions of EGL3) appear at the points
s-channel running coupling appears starting from the three,

for which K (p) = 1. However, there is only one point of that
loop level (these are the well-knowm? termg. Therefore, sort: p=0 -(l-Fr)]) y P
o e ) :p=0. Therefore,
B(Q?%)=B(s=Q°)+0O(3-loop). It is also at the three-loop
level  that the p-function  coefficients become $(p)=consx 5(p), (15)
renormalization-scheme dependent.
Because the running couplings in teandt channels are which leads to the “trivial” solution 3(Q?) =const and
similar, in that they exhibit universal behavior at the origin, others-t self-dual solutions are absent.
ay(s=0)=a(Q?=0), and the same logarithmic decrease at  Thus, the behavior of the running couplings in the space-
infinity, it is interesting to consider whether there exists allké and timelike regions cannot be symmetrical in any
possible solution, which can be called s “self-dual so-  'enormalization scheme. It should be stressed that to reach
lution” of Eg. (9), in which there is a symmetrical behavior this conclusion we used only the properties of analyticity,

of the charges for the and's channels. In this casg(Q?) which reflect the general principles of the theory, and, there-
— B(s=Q?) and we have the following integral equation; fore, this result can be considered as a rigorous consequence
of the basic principles of local quantum field theory.
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2 _ 2
AQI=Q jo (s+Q??2
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