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Global effects due to cosmic defects in Kaluza-Klein theory
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Using Kaluza-Klein theory we study the quantum mechanics of a scalar particle in the background of a
magnetic cosmic string and in the background of a chiral cosmic string. We show that the wave functions, the
phase shifts, and scattering amplitudes associated with the particle depend on the global features of those
spacetimes. These dependences represent gravitational analogues of the well-known Aharonov-Bohm effect. In
addition, we discuss the Landau levels in the presence of a cosmic string in the framework of Kaluza-Klein
theory.[S0556-282(99)03610-3

PACS numbgs): 04.50:+h, 11.10.Kk

[. INTRODUCTION cosmic string. The line element corresponding to the mag-
netic flux string in five dimensions is given (0]

Topological defects in spacetime can be characterized by
metrics with a zero Riemann-Chistoffel curvature tensor ev-
erywhere, except on the defects, i.e., by conic-type curvaturg
singularities[1]. Examples of such topological defects are
the domain wall 2], the cosmic string2,3], and the global with a=1—4u, whereu is the linear mass density of the
monopole[4]. Cosmic strings provide a bridge between string. By using the standard Kaluza-Klein decomposition of
physics on microscopic and macroscopic scales. They ange five-dimensional metric, it can be shown that this metric
linear defects, analogous to vortex filaments in superfluidepresents the magnetic flux string with a longitudinal field
helium[5] and to dislocations and disclinations in condensed
matter physic§6] and may have been formed in the very BZ= k1 5A(r), 2
beginning of the universg7].

On the other hand, Kaluza-Klein theories in five or morewherex is the Kaluza constant. The azimuthal vector poten-
dimensions have experienced a renewed interest in recefigl A,=«*(®/2m) is pure gauge, except for a singularity
years. The geometrical unification of gravitation and eletro-on the axis. Notice that in Eq1) the parameter charac-
magnetism obtained in the five-dimensional version of genterizes the cosmic string. Klein-Gordon equation in the met-
eral relativity constructed by KaluZ&®] and Klein[9] gave  ric (1) reduces to
some beautiful results. In a recent paper Azreg-Ainou and
Clement[10] make a systematic investigation of stationary 2 2 2 2. o
cylindrically symmetric solutions to the five-dimensional at_;ap(pap)_ﬁ %‘ﬂ‘?x —0x—d+M
Einstein and Einstein-Gauss-Bonnet equations. In addition to P
the known solutions, they have found some new ones that =0, 3
can be characterized with five-dimensional generalizations of
four-dimensional metrics which are singular on the0  Where we mada®=x. The solution of this equation can be
axis. Examples of such solutions are five-dimensional geneiebtained using the ansatz
alizations of the cosmic string, the chiral cosmic stritd],
and the magnetic flux strind.2].

e ethereE. € andQ are consiants. We consder now the co-
gre mainl intgrest?ad on the effects of global featu}r/és 0 rdinate transformation that changes the mefrjanto a flat
y 9 etric. The transformation is

these defects on the quantum states of the particle. We solve

the Klein-Gordon equation and study the scattering ampli- ®

tude for the magnetic cosmic string and the chiral cosmic X=X— > 5)
string backgrounds. Finally, we solve the problem of Landau &

levels in the presence of the cosmic string, in the framework

of Kaluza-Klein theory, finding the energy spectrum and o=—.
wave functions for this problem. In this case, the uniform a
magnetic field is described by the fifth dimension.

2

F=dt?—dZ?—dp?®— a?p?d®— ) 1)

54
dx’+ 2ﬂ_dgo

¥

P(t,p,p,z,x)=exd —iEt+il p+iKz+iQx]R(p), (4)

(6)

In the flat coordinatest(p, 6,z,X), Eq. (4) becomes

II. THE KALUZA-KLEIN MAGNETIC COSMIC STRING . . . .
U(t,p,0,2,X)=exd —iEt+il o40+iKz+iQX]R(p), (7)

In this section we study the quantum dynamics of a scalar
particle in the five-dimensional space-time of a magnetiovhere
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®Q ™ .
S flo)=— > [e7@RIS(p+ w—2ml)
_ ™ 27K T
letr= (8)
+€/ (P2 5o — w—271) = 28(p— 27l ) ]+ FO (@),
is an effective angular momentum due both to the boundary (15)

condition, which states that the total angle around the string
is 2ma, and to the coupling with the electromagnetic field. where
And, of course]=0,=1,+2, ... .

Formula (8) suggests that, when the particle circles the

string, the wave function changes according to fO(p)= e (PRRAIA(@, ) — €(PP2IA(p,— w),
' a2l — eng 27 [ 2Q o (16)
b—y'=e y=exp——l=5—11i 9)

A((p’iw):eii[(DQ/ZW](wtw)/(i_ei(goiw))’ (17)

This shift in the angular momentum is analogous to the do= —m(1—a-1) F thi lude that the oh
shift |—1—Qd/2m in the eletromagnetic Aharonov-Bohm 2nd@=—m(1—a 7). From this we conclude that the phase
effect [13] combined with its gravitational counterpdt], shift and the scattering amplitude depend on the parameters

which corrects the angular momentum by a factor of. #%n ¢ and ®. In summary, in this section we have shown a
immediate consequence of E@) is that the angular mo- geqeral|zat!on O.f th? Aharonov-Bohrr_] effect due to a mag-
mentum operator may be redefined as netic cosmic string in the Kaluza-Klein framework: the an-

gular momentum of a scalar particle is corrected not only by
@, in the usual Aharonov-Bohm way, but also &ygiving a

) (10 gravitational analogue to the Aharonov-Bohm effect. The
scattering states are also affected by the topology of space-

where the additional contribution (/) (®/2m)d,, takes time as can be seen in the phase shift and scattering ampli-

i i +<I)
eff= dg Eé’x

into account the electromagnetic flux. tude expressions, which depend en
Now, using the ansatz given by B@), Eq. (3) reduces to
lll. THE KALUZA-KLEIN MAGNETIC CHIRAL
(I ® o 2 COSMIC STRING
pd,(pd,)— 2—727+[E2— M2—K2-Q2%]p? [ R(p) In this section we extend the problem studied in Sec. Il to
a more general spacetime, that of a chiral string, or cosmic
~0 11 dislocation. We write the line element as

=(dt+ 2_dp?— a2p2d - (dz+ 2
This is a Bessel differential equation whose regular solution dS°=(dt+ Jode)*—dp®~ a®p’de®~ (dz+ J,de)

is given by
RSP (1) I _ a0 2m)a(NP), (12)

where \2=E?—(K2+M?+Q?) and u?=(I—®Q/27)/a?.
The “plus sign” corresponds to the cate —[PQ/(27)],
and the “minus sign” corresponds to the cade
—[®Q/(2)], where[x] means the largest integer less than
or equal tox.

The associated phase shifts

16} 2
dx+ quo) . (18

The parameterd, andJ, are related to angular momentum
and torsion, respectively, of the string. Wilg=0, J,=0
and® =0, Eq.(18) represents the metric of the cosmic string
in five dimensions; with],=0 only, it represents a spinning
string [17,18]; and with onlyJy=0, ®=0, it represents a
space-time generated by a cosmic dislocafibh,19. For
®=0 it represents a space-time generated by a chiral cone

™ . ®Q [14].
6= iE (1-a Hﬁ (13 The Klein-Gordon equation in the meti(it8) is given by
follow immediately from Hankel's asymptotic expansion 2 o 1 I D
[15]. From expressior{13) we can compute the scattering K=, pap(pap) I ap? 9o~ Jodi = J20
amplitudef (8) which is defined by 16]
o 2
1 . _ ——ﬁx} #=0. (19
)= —— 3 (eZ9—1)ele, 14 2m }
(@)= === 2 ( ) (14

The metric(18) is actually a locally flat one as we can see
Therefore, using Eqg13) and(14) and doing the appropri- by applying the coordinate transformation
ate regularization§16], we get the following result for the
scattering amplitude: t=T—Jge, (20
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0 responds to the cade< —[JE—J,K—PQ/27], the square
= (21) brackets meaning “the largest integer less than or equal to,”
as before. The associated phase shift is
e 5= I(1= a1 = JgE+J,K °Q 28
® |——§(—a)—o+z+zy (28
X=X— P (22

which leads to the following scattering amplitude:

Using a reasoning similar to the one used in Sec. Il we get i
oy

®Q f(@)= 2 [efiﬂ'[(¢>/2‘rra)Q+JZK7JoE] o+ w—21l)
1+ 30E—| JK+ 5~ 2mK 1
Ieff: ” , (23) + ei w[®Q27ma+J,K—JgE] 5(()0_ w— 277.')

: —28(¢—2ml) ]+ 2
with |=0,£1,=2, ..., asbefore. Therefore we have an ef- (¢=2m)] (#), 9
fective angular momentum for the particle due to the couyynere
pling with the electromagnetic field, to the angular momen-
tum of the string, and to the torsion, which is also corrected _
by the angular factoe. fO(p)= e~ U/ )[®QR2TTIK=IEIA (& )

From the result given by Eq23) we see that the wave ™

function must be changed according to — lim@)(@QRT+IK-IEIA (o — o), (30)

dQ .
o5 th
JK+ 277)]4/;, wi

, 2ri
lp_) Lﬂ'IGZﬂ'”eff:eX 7(|+JOE)_
(24) A((P,iw):eii[(I)QIZTrJrJZK*JOE](@tw)/(1_ei(tpiw)) (31)

when the particle circles the string once. Again, this shift ingq = — 7(1—a Y. Itis clear that, now, the phase shift

the angular momentum due to the fldx angular momen-  anq the scattering amplitude depend on the parameters
tum J, and torsion J,, corresponds to a generalized , ¢ j andJ,
1] vz .

Aharonov-Bohm effecf20]. In summary, in this section we further generalize the
It follows from Eq. (24) that the angular momentum op- Anaronov-Bohm effect to be caused not only by the mag-

erator may be redefined as netic flux®, but also by the conical topolodyepresented by

i o a), by the rotation(represented by,), and by the torsion
lopr=— -~ 9p—Jody+3,0,+ Zax . (25) (represented by,) of the spacetime.
Compared to the correspondirig; for a spinning cosmic IV. LANDAU LEVELS IN A FIVE-DIMENSIONAL
SPACETIME

string, given by Eq(10), there is an additional contribution
—(i/a)(—Jgd;—J,9,) that takes into account the rotation of  |n this section we consider the relativistic and nonrelativ-

the string and the torsion. _ istic problems of Landau levels in the presence of defects. In
Using the ansatz given by Ed4), the Klein-Gordon this new approach the uniform magnetic field is introduced
equation(19) reduces to geometrically by use of Kaluza-Klein theory. The five-
L dimensional metric that corresponds to a uniform magnetic
[pap<pa,,>+p2[E2—K2+Q2+M2]— ~ field s
« Bop? 2
®Q)2 d52=dt2—dp2—d22—a2p2dcp2—(dx— 5 d(p) ,
X[ 1+JgE—J,K— ﬁ) ] R(p) (32
=0, (26) where A ,=B,p/(2a) is the vector potencial and the mag-

netic field isB*=B;,. The Klein-Gordon equation for one
which is again a Bessel equation whose regular solution iparticle in this background is

given by
1 1
RRREN p) o (1)1 0E K0T ) - (27) A pemil Bop?dy)?+ MZ} ¢
where agaim?=E2—K?2+M?2+Q?, but now u?=(I+J,E =0. (33

—J,K—®Q/2m)? a?. The “plus sign” corresponds to the
casel = —[JoE—J,K—®Q/27] and the “minus sign” cor- This equation has as solution
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L | 2
lﬂ(t,p,(p,Z,X)=e_'Et+'KZ+'|¢+'QXF —n,%-l—l,%), (34)

where F(a,b,x) is the hypergeometric function and
=0, 1, 2,... . Forthis problem we obtain the energy lev-
els as

BoQ

|I| I 2 2 2
E=+/— |20+ - +1]+ M +K+Q% (39

o

Notice that these results depend on the parametemd
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This result is in perfect agreement with our earlier wi2k]
where the magnetic field is introduced by minimal coupling.
This also agrees with Eq35) in the nonrelativistic limit as
can easily be demonstrated by takikigto be very large.

V. CONCLUDING REMARKS

In this work we used Kaluza-Klein theory to investigate
global effects of the special boundary conditions that cosmic
strings impose on a quantum scalar particle. We considered
the situations involving a magnetic flux string and a chiral

therefore the introduction of defects breaks the degeneracy §fagnetic cosmic string. The magnetic flux of the string gives

the Landau levels.

rise to the Aharonov-Bohm effect. In addition, the topologi-

Now. we consider the nonrelativistic case. To do this letc@l factora, that characterizes the string, and the parameters

us consider the covariant Schliinger equation in the metric
(32), which is given by

1 1 Bop? \2 oy
T2, = 2 . oP _: 7
2m@+p@@mﬂ+@+a%43¢ > @>¢ e
(36)
The wave function is now given by
l//(t,p,(Plz,X):CnlefiEt+iKZ+iQX+i|<p
- 2 1] p°
X e BoQraplllpl —n — 41— (37
"« 2
and eigenvalues
BoQ[ I I 1) K* Q?
__Zma( T2 223 Tam T oam 9

Jo andJ,, that characterize the angular momentum and tor-
sion, respectively, of the string spacetime, correct both the
angular momentum of the particle and its energy, giving rise
to a generalized Aharonov-Bohm effdetrecent publication
[22], by one of us and a coworker, deals with this general-
ized A-B effect in the context of condensed matter physics
We have also studied, within the Kaluza-Klein framework,
the problem of Landau levels in the presence of a cosmic
string, both relativistic and not. The result, as shown in a
previous publication, is a break of degeneracy of the levels.
To conclude, we wish to emphasize the straightforwardness
and elegance of the Kaluza-Klein approach to deal with the
quantum dynamics of a scalar particle in the background
spacetime of a cosmic string.
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