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Global effects due to cosmic defects in Kaluza-Klein theory
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Using Kaluza-Klein theory we study the quantum mechanics of a scalar particle in the background of a
magnetic cosmic string and in the background of a chiral cosmic string. We show that the wave functions, the
phase shifts, and scattering amplitudes associated with the particle depend on the global features of those
spacetimes. These dependences represent gravitational analogues of the well-known Aharonov-Bohm effect. In
addition, we discuss the Landau levels in the presence of a cosmic string in the framework of Kaluza-Klein
theory.@S0556-2821~99!03610-3#

PACS number~s!: 04.50.1h, 11.10.Kk
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I. INTRODUCTION

Topological defects in spacetime can be characterized
metrics with a zero Riemann-Chistoffel curvature tensor
erywhere, except on the defects, i.e., by conic-type curva
singularities@1#. Examples of such topological defects a
the domain wall@2#, the cosmic string@2,3#, and the global
monopole @4#. Cosmic strings provide a bridge betwee
physics on microscopic and macroscopic scales. They
linear defects, analogous to vortex filaments in superfl
helium @5# and to dislocations and disclinations in condens
matter physics@6# and may have been formed in the ve
beginning of the universe@7#.

On the other hand, Kaluza-Klein theories in five or mo
dimensions have experienced a renewed interest in re
years. The geometrical unification of gravitation and elet
magnetism obtained in the five-dimensional version of g
eral relativity constructed by Kaluza@8# and Klein @9# gave
some beautiful results. In a recent paper Azreg-Ainou a
Clement@10# make a systematic investigation of stationa
cylindrically symmetric solutions to the five-dimension
Einstein and Einstein-Gauss-Bonnet equations. In additio
the known solutions, they have found some new ones
can be characterized with five-dimensional generalization
four-dimensional metrics which are singular on ther50
axis. Examples of such solutions are five-dimensional ge
alizations of the cosmic string, the chiral cosmic string@11#,
and the magnetic flux string@12#.

In this work, we study the quantum scalar particle in t
presence of topological defects in Kaluza-Klein theory. W
are mainly interested on the effects of global features
these defects on the quantum states of the particle. We s
the Klein-Gordon equation and study the scattering am
tude for the magnetic cosmic string and the chiral cosm
string backgrounds. Finally, we solve the problem of Land
levels in the presence of the cosmic string, in the framew
of Kaluza-Klein theory, finding the energy spectrum a
wave functions for this problem. In this case, the unifo
magnetic field is described by the fifth dimension.

II. THE KALUZA-KLEIN MAGNETIC COSMIC STRING

In this section we study the quantum dynamics of a sc
particle in the five-dimensional space-time of a magne
0556-2821/99/59~10!/107504~4!/$15.00 59 1075
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cosmic string. The line element corresponding to the m
netic flux string in five dimensions is given by@10#

dS25dt22dz22dr22a2r2dw22S dx51
F

2p
dw D 2

, ~1!

with a5124m, wherem is the linear mass density of th
string. By using the standard Kaluza-Klein decomposition
the five-dimensional metric, it can be shown that this me
represents the magnetic flux string with a longitudinal fie

Bz5k21Fd (2)~rW !, ~2!

wherek is the Kaluza constant. The azimuthal vector pote
tial Aw5k21(F/2p) is pure gauge, except for a singulari
on the axis. Notice that in Eq.~1! the parametera charac-
terizes the cosmic string. Klein-Gordon equation in the m
ric ~1! reduces to

H ] t
22

1

r
]r~r]r!2

1

a2r2 S ]w2
F

2p
]xD 2

2]x
22]z

21M2J c

50, ~3!

where we madex55x. The solution of this equation can b
obtained using the ansatz

c~ t,r,w,z,x!5exp@2 iEt1 i l w1 iKz1 iQx#R~r!, ~4!

whereE,l ,K andQ are constants. We consider now the c
ordinate transformation that changes the metric~1! into a flat
metric. The transformation is

x5X2
F

2p
w, ~5!

w5
u

a
. ~6!

In the flat coordinates (t,r,u,z,X), Eq. ~4! becomes

c~ t,r,u,z,X!5exp@2 iEt1 i l e f fu1 iKz1 iQX#R~r!, ~7!

where
©1999 The American Physical Society04-1



a
rin
ld

he

th

-

io

an

n
g

-

e
ters
a
g-

n-
by

he
ace-

pli-

to
mic

m

g
g

one

e

BRIEF REPORTS PHYSICAL REVIEW D 59 107504
l e f f5

l 2
FQ

2p

a
~8!

is an effective angular momentum due both to the bound
condition, which states that the total angle around the st
is 2pa, and to the coupling with the electromagnetic fie
And, of course,l 50,61,62, . . . .

Formula ~8! suggests that, when the particle circles t
string, the wave function changes according to

c→c85e2p i l e f fc5expH 2p i

a F l 2
FQ

2p G J c. ~9!

This shift in the angular momentum is analogous to
shift l→ l 2QF/2p in the eletromagnetic Aharonov-Bohm
effect @13# combined with its gravitational counterpart@14#,
which corrects the angular momentum by a factor of 1/a. An
immediate consequence of Eq.~8! is that the angular mo
mentum operator may be redefined as

l̂ e f f52
i

a S ]w1
F

2p
]xD , ~10!

where the additional contribution, (2 i /a)(F/2p)]x , takes
into account the electromagnetic flux.

Now, using the ansatz given by Eq.~4!, Eq. ~3! reduces to

H r]r~r]r!2

S l 2
F

2p
QD 2

a2
1@E22M22K22Q2#r2J R~r!

50. ~11!

This is a Bessel differential equation whose regular solut
is given by

RlQK
Reg~lr!}~61! lJu l 2FQ8/2pu/a~lr!, ~12!

where l25E22(K21M21Q2) and m25( l 2FQ/2p)/a2.
The ‘‘plus sign’’ corresponds to the casel>2@FQ/(2p)#,
and the ‘‘minus sign’’ corresponds to the casel ,
2@FQ/(2p)#, where@x# means the largest integer less th
or equal tox.

The associated phase shifts

d l56
p

2 F l ~12a21!1
FQ

2pa G ~13!

follow immediately from Hankel’s asymptotic expansio
@15#. From expression~13! we can compute the scatterin
amplitudef (u) which is defined by@16#

f ~w!5
1

A2pK
(

l
~e2id l21!eil w. ~14!

Therefore, using Eqs.~13! and ~14! and doing the appropri
ate regularizations@16#, we get the following result for the
scattering amplitude:
10750
ry
g

.

e

n

f ~w!52
p

A2pK
(

l
@e2 i (FQ/2a)d~w1v22p l !

1ei (FQ/2a)d~w2v22p l !22d~w22p l !#1 f (0)~w!,

~15!

where

f (0)~w!5
i

A2pK
e2 i (FQ/2a)A~w,v!2ei (FQ/2a)A~w,2v!,

~16!

A~w,6v!5e6 i [FQ/2p](w6v)/~ i 2ei (w6v)!, ~17!

andv52p(12a21). From this we conclude that the phas
shift and the scattering amplitude depend on the parame
a and F. In summary, in this section we have shown
generalization of the Aharonov-Bohm effect due to a ma
netic cosmic string in the Kaluza-Klein framework: the a
gular momentum of a scalar particle is corrected not only
F, in the usual Aharonov-Bohm way, but also bya giving a
gravitational analogue to the Aharonov-Bohm effect. T
scattering states are also affected by the topology of sp
time as can be seen in the phase shift and scattering am
tude expressions, which depend ona.

III. THE KALUZA-KLEIN MAGNETIC CHIRAL
COSMIC STRING

In this section we extend the problem studied in Sec. II
a more general spacetime, that of a chiral string, or cos
dislocation. We write the line element as

dS25~dt1J0dw!22dr22a2r2dw22~dz1Jzdw!2

2S dx1
F

2p
dw D 2

. ~18!

The parametersJ0 andJz are related to angular momentu
and torsion, respectively, of the string. WithJ050, Jz50
andF50, Eq.~18! represents the metric of the cosmic strin
in five dimensions; withJz50 only, it represents a spinnin
string @17,18#; and with onlyJ050, F50, it represents a
space-time generated by a cosmic dislocation@11,19#. For
F50 it represents a space-time generated by a chiral c
@14#.

The Klein-Gordon equation in the metric~18! is given by

H ] t
22]z

22
1

r
]r~r]r!2]x

22
1

ar2 F]w2J0] t2Jz]z

2
F

2p
]xG2J c50. ~19!

The metric~18! is actually a locally flat one as we can se
by applying the coordinate transformation

t5T2J0w, ~20!
4-2



e

f-
ou
n

te

in

d

-

n
of

n

o,’’

ft
ters

he
g-

iv-
. In
ed
-

etic

-

BRIEF REPORTS PHYSICAL REVIEW D 59 107504
w5
u

a
, ~21!

z5Z2Jzw,

x5X2
F

2p
w. ~22!

Using a reasoning similar to the one used in Sec. II we g

l e f f5

l 1J0E2S JzK1
FQ

2p D
a

, ~23!

with l 50,61,62, . . . , asbefore. Therefore we have an e
fective angular momentum for the particle due to the c
pling with the electromagnetic field, to the angular mome
tum of the string, and to the torsion, which is also correc
by the angular factora.

From the result given by Eq.~23! we see that the wave
function must be changed according to

c→c85e2p i l e f f5expH 2p i

a
~ l 1J0E!2S JzK1

FQ

2p D J c,

~24!

when the particle circles the string once. Again, this shift
the angular momentum due to the fluxF, angular momen-
tum J0 and torsion Jz , corresponds to a generalize
Aharonov-Bohm effect@20#.

It follows from Eq. ~24! that the angular momentum op
erator may be redefined as

l̂ e f f52
i

a S ]w2J0] t1Jz]z1
F

2p
]xD . ~25!

Compared to the correspondingl̂ e f f for a spinning cosmic
string, given by Eq.~10!, there is an additional contributio
2( i /a)(2J0] t2Jz]z) that takes into account the rotation
the string and the torsion.

Using the ansatz given by Eq.~4!, the Klein-Gordon
equation~19! reduces to

H r]r~r]r!1r2@E22K21Q21M2#2
1

a2

3S l 1J0E2JzK2
FQ

2p D 2J R~r!

50, ~26!

which is again a Bessel equation whose regular solutio
given by

RlQK
Reg~lr!}~61! lJ

u l 1J0E2JzK2FQ/2pu
a

~lr!, ~27!

where againl25E22K21M21Q2, but nowm25( l 1J0E
2JzK2FQ/2p)2/a2. The ‘‘plus sign’’ corresponds to the
casel>2@J0E2JzK2FQ/2p# and the ‘‘minus sign’’ cor-
10750
t

-
-
d

is

responds to the casel ,2@J0E2JzK2FQ/2p#, the square
brackets meaning ‘‘the largest integer less than or equal t
as before. The associated phase shift is

d l56
p

2 F l ~12a21!2J0E1JzK1
FQ

2p G , ~28!

which leads to the following scattering amplitude:

f ~w!5
ip

A2pK
(

l
@e2 ip[(F/2pa)Q1JzK2J0E]d~w1v22p l !

1eip[FQ/2pa1JzK2J0E]d~w2v22p l !

22d~w22p l !#1 f (0)~w!, ~29!

where

f (0)~w!5
i

A2pK
e2( ip/a)[FQ/2p1JzK2J0E]A~w,v!

2e( ip/a)(FQ/2p1JzK2J0E)A~w,2v!, ~30!

with

A~w,6v!5e6 i [FQ/2p1JzK2J0E](w6v)/~12ei (w6v)! ~31!

and v52p(12a21). It is clear that, now, the phase shi
and the scattering amplitude depend on the parame
a,F,Jz andJ0.

In summary, in this section we further generalize t
Aharonov-Bohm effect to be caused not only by the ma
netic fluxF, but also by the conical topology~represented by
a), by the rotation~represented byJ0), and by the torsion
~represented byJz) of the spacetime.

IV. LANDAU LEVELS IN A FIVE-DIMENSIONAL
SPACETIME

In this section we consider the relativistic and nonrelat
istic problems of Landau levels in the presence of defects
this new approach the uniform magnetic field is introduc
geometrically by use of Kaluza-Klein theory. The five
dimensional metric that corresponds to a uniform magn
field is

dS25dt22dr22dz22a2r2dw22S dx2
B0r2

2
dw D 2

,

~32!

whereAw5Bor/(2a) is the vector potencial and the mag
netic field is Bz5B0. The Klein-Gordon equation for one
particle in this background is

H ] t
22]z

22]x
22

1

r
]r~r]r!2

1

a2r2
~]w2Bor2]x!

21M2J w

50. ~33!

This equation has as solution
4-3
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c~ t,r,w,z,x!5e2 iEt1 iKz1 i l f1 iQxFS 2n,
u l u
a

11,
r2

2 D , ~34!

where F(a,b,x) is the hypergeometric function andn
50, 1, 2, . . . . Forthis problem we obtain the energy lev
els as

E5AB0Q

a S 2n1
u l u
a

2
l

a
11D1M21K21Q2. ~35!

Notice that these results depend on the parametera and
therefore the introduction of defects breaks the degenerac
the Landau levels.

Now, we consider the nonrelativistic case. To do this
us consider the covariant Schro¨dinger equation in the metric
~32!, which is given by

2
1

2m
]z

21
1

r
]r~r]r!1]x

21
1

a2r2 S ]w2
B0r2

2
]xD 2

c5 i
]c

]t
.

~36!

The wave function is now given by

c~ t,r,w,z,x!5Cnle
2 iEt1 iKz1 iQx1 i l w

3e2B0Qr2/4ar u l uFS 2n,
u l u
a

11,
r2

2 D ~37!

and eigenvalues

E5
B0Q

2ma S n1
u l u
2a

2
l

2a
1

1

2D1
K2

2m
1

Q2

2m
. ~38!
k

. A

10750
of

t

This result is in perfect agreement with our earlier work@21#
where the magnetic field is introduced by minimal couplin
This also agrees with Eq.~35! in the nonrelativistic limit as
can easily be demonstrated by takingM to be very large.

V. CONCLUDING REMARKS

In this work we used Kaluza-Klein theory to investiga
global effects of the special boundary conditions that cos
strings impose on a quantum scalar particle. We conside
the situations involving a magnetic flux string and a chi
magnetic cosmic string. The magnetic flux of the string giv
rise to the Aharonov-Bohm effect. In addition, the topolog
cal factora, that characterizes the string, and the parame
J0 andJz , that characterize the angular momentum and t
sion, respectively, of the string spacetime, correct both
angular momentum of the particle and its energy, giving r
to a generalized Aharonov-Bohm effect~a recent publication
@22#, by one of us and a coworker, deals with this gener
ized A-B effect in the context of condensed matter physic!.
We have also studied, within the Kaluza-Klein framewo
the problem of Landau levels in the presence of a cos
string, both relativistic and not. The result, as shown in
previous publication, is a break of degeneracy of the lev
To conclude, we wish to emphasize the straightforwardn
and elegance of the Kaluza-Klein approach to deal with
quantum dynamics of a scalar particle in the backgrou
spacetime of a cosmic string.
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